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1. Introduction

In this work, we study the diophantine equation

f(X) = Y m; (1.1)

where m > 2 is an integer and f(X) is a polynomial with coefficients in a number
field K. The first important result on this topic is due to Siegel [19], who showed
that ifm = 2 and f has at least three simple roots or if m > 3 and f has at least two
simple roots, then (1.1) has only finitely many integral solutions. Three years later,
he proved [20] that if the algebraic curve defined by (1.1) is of positive genus, then
(1.1) has only finitely many integral solutions. The p-adic analogue of this theorem
was established independently by Lang [9] and LeVeque [12], who showed that,
under the same conditions, (1.1) has only finitely many S-integral solutions. After
that, LeVeque [13] gave a necessary and sufficient condition for the algebraic curve
defined by (1.1) to have positive genus. However, all these results are based on
Thue’s method, and hence are ineffective.

Using his work on linear forms in logarithms, Baker [1] gave the first effectively
computable bound on the size of rational integer solutions of (1.1) in the case
K = Q, under the same hypothesis as Siegel [19]. His results were improved
and extended to algebraic number fields by Sprindžuk [23] (see also [24] and
the references given there), Brindza [4], Poulakis [16], Schmidt [17] and, more
recently, Voutier [26]. We also have to mention an unpublished paper of Bilu [3].
Further, using the p-adic theory of linear forms in logarithms, due to Van der
Poorten, generalizations to the case of S-integral solutions were established by
Trelina [25], Kotov and Trelina [8] and Brindza [4], among others (see [18] for
more references).

The purpose of the present work is to improve and generalize to the p-adic
case Voutier’s results. We will more or less follow his proofs, however, using some
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new ideas, we give effective upper bounds for the size of S-integral solutions with
a better dependence on m and show that the dependence on the height of the
polynomial f is trivial if one takes also its discriminant into account (this was first
noticed by Trelina). Our main tools are the new results due to the author and Györy
[5], [6], concerning the size of the solutions of S-unit and Thue–Mahler equations.

2. Statement of the results

Let K be a number field of degree d. Denote by DK its discriminant, by hK its
class number and by OK the ring of integers in K. Let S be a finite set of places on
K, including the set of infinite places S1. Denote by p1; : : : ; pt the t prime ideals
corresponding to the finite places of S. Further, denote byOS the ring of S-integers
in K. Let n > 2 be an integer. We consider a monic polynomial

f(X) = Xn + an�1X
n�1 + � � �+ a0 2 OK[X]:

Let a 2 OK n f0g and m > 2 be an integer, we study the equation

f(x) = a ym in (x; y) 2 OS �K: (2.1)

Denote by �1; : : : ; �r the r distinct roots of f and, respectively, by e1; : : : ; er their
order of multiplicity. For i = 1; : : : ; r, we define the positive integer

mi :=
m

(ei;m)
;

and we reorder the roots such that m1 > � � � > mr.
We assume that the mi’s satisfy the so-called ‘LeVeque’s condition’, i.e. that

(m1; : : : ;mr) 6= (2; 2; 1; : : : ; 1);

and

(m1; : : : ;mr) 6= (t; 1; : : : ; 1)

where t denotes any integer.
Under this condition, it follows from LeVeque [13] that (1) has only finitely

many solutions. The purpose of this work is to give a new upper bound for the size
of these solutions. We pay particular attention to the dependence on the parameters
of the field K and especially on the height of the polynomial f (for the definition,
see Section 3). As in [5] and [6], we denote by h(�) the absolute multiplicative
height of the algebraic number �.

Before stating our theorems, we have to introduce some more notations. We
define the polynomial

g(X) = (X � �1) � � � (X � �r) 2 OK[X];
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and denote by �g := �i6=j(�i � �j) its discriminant. Let P be the largest of the
rational primes lying below the finite places of S, with the convention that P = 1
if S = S1. Further, suppose that jNK=Q(a)j is at most A (> e) and that the height
of the polynomial f is bounded by H (> ee).

Throughout this paper, we stand the notation log�x for maxflogx; 1g.

THEOREM 1. If mi 6 2 for each i and there are at least three roots for which
mi = 2, then all the solutions of (2:1) satisfy

h(x) 6 H2 expf c1(d; n; t)P
4n3d (log�P )4n2dt

�jDKj15n2=2 A3n2 jNK=Q(�g)j12n

��log jADK NK=Q(�g)j
�6n2d log logHg

and

h(x) 6 H2 expf c2(d; n; t)P
4n3d (log�P )4tn3 jDKj16n3

�jNK=Q(�g)j28n2
A8n3 �

log jADK NK=Q(�g)j
�8n3dg;

where c1(d; n; t) and c2(d; n; t) are effectively computable constants.

Remark. The purpose of the first inequality is to give a better estimate in terms
of jDKj than the second one. Further, it is based on Lemma 4, which may be of
independent interest.

THEOREM 2. Supposem > 3 and there exist 1 6 i 6= j 6 r such that (mi;mj) >
3. If (mi;mj) is not a power of 2, letm0 be the smallest odd prime number dividing
it, otherwise put m0 = 4. Then all the solutions of (1) satisfy

h(x) 6 Hm0+1 expf c3(d; n;m; t)P dn2m03
(log�P )tn

2m0 jDKj5n2m0=2

jNK=Q(�g)j5nm0

An2m0

�
log jADK NK=Q(�g)j

�2dn2m0g;

where c3(d; n;m; t) is an effectively computable constant.
In the particular case S = S1, Theorem 2 improves Theorem 2 of [26] in terms

of jDKj: we remove a factor mm0. This is mainly due to the following two reasons.
On the one hand, we use a case by case analysis which allows us to work in a
field M of degree less than n2m0 over K and to derive either S-unit equations, or a
Thue-Mahler equation. On the other hand, Lemma 9 (see Section 4), suggested by
the referee, provides us a sharp upper bound for the discriminant of the field M.

From Theorem 2 we deduce the following result.
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THEOREM 3. Under LeVeque’s condition, suppose that the hypotheses of Theo-
rems 1 and 2 are not fulfilled. Then there exist 1 6 i 6= j 6 r such that mi > 3 and
mj > 2, and all the solutions of (1) satisfy

h(x) 6 Hm2
expf c4(d; n;m; t)P d(m5+4tm3)=2 jDKjm6=8 jNK=Q(�g)jm6=8

A5m4=8 �log jADK NK=Q(�g)j
�dm3g;

where c4(d; n;m; t) is an effectively computable constant.
It is interesting to note that the dependence on n appears only in the constant

c4.
These three theorems considerably improve and generalize the results of Trelina

[25] in terms of t, H , A, jDKj and jNK=Q(�g)j. In particular, the exponents of A,
jDKj and jNK=Q(�g)j do not depend on t; this is essentially due to the new results
concerning the size of the solutions of S-unit and Thue-Mahler equations [5], [6].

Remarks. If (x; y) is a solution of (1), Theorems 1 to 3 give estimates only for
the size of x. A bound for the size of y immediately follows, but it also involves
the height of a.

If, more generally, the polynomial f has coefficients in K, we easily deduce
from our theorems upper bounds for the size of the solutions of (2.1), but we have
to take into consideration the denominator and the leading coefficient of f .

Noticing that we can bound jNK=Q(�g)j by H2dn times a constant depending
on d and n (cf [26], Lemma 7), our theorems also provide estimates involving only
the height of the polynomial f . However, we point out that the height of f can be
arbitrarily large compared with the discriminant of g.

3. Bounds for S-units, S-regulators and linear forms in logarithms

Let K be an algebraic number field, denote by d its degree and by MK the set of
places on K. Let S be a finite subset of MK containing the set of infinite places
S1. Throughout this paper, we will always use the notation DK, OK, O�

K, OS ,
O�
S , RS and NS for, respectively, the discriminant of K, the ring of integers in

K, the group of units in K, the ring of S-integers in K, the group of S-units in
K, the S-regulator and the S-norm (see definitions below). For every place v we
choose a valuation j : jv in the following way: if v is infinite and corresponds to an
embedding � :K ! C then we put, for every � 2 K,

j�jv = j�(�)jdv ;

where dv = 1 or 2 according as �(K) is contained in R or not; if v is a finite place
corresponding to the prime ideal p in K then we put j0jv = 0 and, for � 2 K n f0g,

j�jv = N(p)�ordp(�):
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The (absolute) height of an algebraic number � contained in K is defined by

h(�) =
� Y
v2MK

max(1; j�jv)
�1=d

:

This height is independent of the choice of K. Moreover,X
v2MK

jlog j�jv j = 2d log h(�): (3.1)

For a polynomial F (X) = X l+ bl�1X
l�1 + � � �+ b0 2 K[X], we define its height

h(F ) by

h(F ) =
� Y
v2MK

maxf1; jb0jv; : : : ; jbl�1jvg
�1=d

:

It is well-known (cf. [22], Chapter VIII, Theorem 5.9) that

2�l
Y

� root of F

h(�) 6 h(F ) 6 2l�1
Y

� root of F

h(�): (3.2)

Let now define the S-norm and the S-regulator. For � 2 K n f0g, the ideal
(�) generated by � can be uniquely written in the form a1a2 where the ideal a1

(resp. a2) is composed of prime ideals outside (resp. inside) S. The S-norm of �,
denoted by NS(�), is defined as N(a1), and we put NS(0) = 0. The S-norm is
multiplicative, and, for S = S1, we have NS(�) = jNK=Q(�)j. For any � 2 K,

we have NS(�) = �v2S j�jv and NS(�) 6
�
h(�)

�d. Further, if � 2 OS n f0g, then
NS(�) is a positive integer.

Let s be the cardinality of S. For v 2 S, denote by j � jv the corresponding valua-
tion normalized as above. Let v1; : : : ; vs�1 be a subset of S, and let f"1; : : : ; "s�1g
be a fundamental system of S-units in K. Denote by RS the absolute value of
the determinant of the matrix (log j"ijvj )i;j=1;:::;s�1. It is easy to verify that RS is
a positive number which is independent of the choice of v1; : : : ; vs�1 and of the
fundamental system of S-units f"1; : : : ; "s�1g. RS is called the S-regulator of K.
If in particular S = S1, then we have RS = RK, the regulator of K.

We refer to [5] for the proofs of Lemmas 1–3 (the first two of them go back
to Siegel’s well-known paper [21] ). We recall that there exists a constant �d > 0,
depending only on d, such that log h(�) > �d=d for any non-zero algebraic number
� with degree 6 d unless � is a root of unity. Put

c5 = c5(d; s) =

�
(s� 1)!

�2

(2s�2ks�1)
;

c6 = c6(d; s) = c5(�d=d)
2�s; c7 = c7(d; s) = c5d

s�1��1
d :
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LEMMA 1. There exists in K a fundamental system f"1; : : : ; "s�1g of S-units with
the following properties:

(i)
s�1Y
i=1

log h("i) 6 c5RS ;

(ii) log h("i) 6 c6RS ; i = 1; : : : ; s� 1;

(iii) the absolute values of the entries of the inverse matrix of (log j"ijvj )i;j=1;:::;s�1

do not exceed c7.

Denote by RK, hK and r = rK the regulator, class number and unit rank
of K. Let p1; : : : ; pt be the prime ideals corresponding to the t finite places in
S, and denote by P the largest of the rational primes lying below them. Put
c8 = c8(d; r) = rr+1�

�(r�1)
d =2.

LEMMA 2. For every� 2 OS nf0g and every integer n > 1 there exists an S-unit
" such that

h("n�) 6 NS(�)
1=d expfn(c8RK + thK log� P )g:

LEMMA 3. If t > 0, then we have

RS 6 RKhK

tY
i=1

log N(pi) 6 RKhK(d log�P )t

and

RS > RK

tY
i=1

log N(pi) > c9(log 2)d (log�P );

where c9 = 0:2052:
Lemma 3 was obtained independently by Bilu ([2], Proposition 1.4.8) and

Bugeaud and Györy [5] (see also Hajdu [7] and Pethő [15] for similar results).
Let �1; : : : ; �n (n > 2) be non-zero algebraic numbers and let K = Q(�1; : : : ;

�n). Let A1; : : : ; An be positive real numbers such that

logAi > max
n

log h(�i);
j log�ij

3:3d
;

1
d

o
; i = 1; : : : ; n; (3.3)

where log denotes the principal value of the logarithm. Let b1; : : : ; bn be rational
integers and put B = maxf jb1j; : : : ; jbnj; 3g. Further, set

� = �b1
1 ; : : : ; �

bn
n � 1:
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In Proposition 1, it will be convenient to add the following technical conditions

B > logAn expf4(n+ 1)(7 + 3 log(n+ 1))g; (3.4)

and

7 + 3 log(n+ 1) > log d: (3.5)

Proposition 1 is a consequence of Corollary 10.1 of Waldschmidt [27].

PROPOSITION 1. (M. Waldschmidt [27]). If � 6= 0, bn = 1 and (3:4), (3:5) hold,
then

j�j > exp
n
�c10(n)d

n+2 logA1 : : : logAn log
� 2nB

logAn

�o
;

where c10(n) = 1500 � 38n+1(n+ 1)3n+9.

In Proposition 2, let v = vp be a finite place on K, corresponding to the prime
ideal p of OK. Let p denote the rational prime lying below p, and denote by j�jv the
non-archimedian valuation normalized as above. Instead of (3.3), assume now that
A1; : : : ; An are positive real numbers such that

logAi > maxflog h(�i); j log�ij=(10d); log pg; i = 1; : : : ; n:

The following proposition is a simple consequence of the main result of Kunrui
Yu [28].

PROPOSITION 2. (Kunrui Yu [28]). Let

� = c11(n)
�
d=
p

log p
�2(n+1)

pd logA1 : : : logAn log(10nd logA);

where c11(n) = 22000(9:5(n+ 1))2(n+1) and A = maxfA1; : : : ; An; eg. If � 6= 0
then

j�jv > expf�d(log p)� log(dB)g:

Further, if bn = 1 and An > Ai for i = 1; : : : ; n � 1, then A can be replaced by
maxfA1; : : : ; An�1; eg and for any � with 0 < � 6 1, we have

j�jv > expf�d(log p)maxf� log(��1�= logAn); �Bgg:

Thanks to the above lemmas and propositions, we are now able to state a
generalization of the second part of Lemma 5 of [26] to the case ofS-unit equations,
which may be of independent interest.
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4. Some lemmas

LEMMA 4. Let K be a number field of degree d and let K1 and K2 be two subfields
of K. Let S (resp. S1, S2) a finite set of places on K (resp. K1, K2) containing the
set of infinite places S1. Denote by s (resp. s1, s2) the cardinality of S (resp. S1,
S2) and by P the largest of the rational primes lying below the finite places of S,
with the convention that P = 1 if S = S1. Assume that O�

S1
� O�

S and O�
S2
� O�

S

and, for i = 1, 2, denote by Ri the Si-regulator of Ki. Let �1, �2, �3 be non-zeros
elements in K with height at most H (H > e) and consider the equation

�1"1 + �2"2 + �3"3 = 0; (4.1)

in the unknowns "1 2 O�
S1

, "2 2 O�
S2

and "3 2 O�
S . Then, for i = 1, 2, we have the

upper bound

h(�i"i=�3"3) < exp
�
c12(d; s)

P d

(log�P )2R1R2 log� maxfR1; R2g

� logH log� log� maxfh("1); h("2)g
�
;

where c12(d; s) is an effective constant.

Remark. In the particular case S = S1, this result was first obtained by Voutier
([26], Lemma 5).

Proof. Using an idea of Voutier ([26], Lemma 5), we follow the proof of
the Theorem of [5]. The constants c13; : : : ; c25 in the proof are all effectively
computable and depend only on d and s. We recall that there exists a �d > 0 such
that log h(�) > �d=d for any non-zero � in K which is not a root of unity. Let
f�1; : : : ; �s1�1g (resp. f�1; : : : ; �s2�1g) be a fundamental system of S1-units (resp.
S2-units) in K1 (resp. K2) satisfying the properties specified in Lemma 1. Then we
can write

"1 = �1�
b1
1 : : : �

bs1�1

s1�1 and "2 = �2�
d1
1 : : : �

ds2�1

s2�1 : (4.2)

with roots of unity �1, �2 2 K and with rational integers b1; : : : ; bs1�1; d1; : : : ; ds2�1.
Put B = maxfjb1j; : : : ; jbs1�1j; jd1j; : : : ; jds2�1j; 3g, it follows from (4.2) that

for all v 2 S we have

log j"1jv =
s1�1X
i=1

bi log j�ijv;

whence, by (iii) of Lemma 1 and (3.1), we get

max
16i6s1�1

jbij 6 c13 log h("1):
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In a similar way we can bound di for i = 1; : : : ; s2 � 1 and hence we obtain

B 6 c14 log� maxfh("1); h("2)g: (4.3)

Let v 2 S for which j"3="1jv is minimal. It follows from the hypotheses that "1

and "2 are S-units in K. Setting �0 = ��2�2=(�1�1) and b0 = 1, we deduce from
(4.1) and (4.2) that�����3"3

�1"1

����
v

= j�0�
�b1
1 : : : �

�bs1�1

s1�1 �d1
1 : : : �

ds2�1

s2�1 � 1jv: (4.4)

We shall derive a lower bound for j"3="1jv in order to get an upper bound for
h("3="1).

First assume that v is infinite and put

logAi = ��1
d log h(�i); i = 1; : : : ; s1 � 1;

logAj = ��1
d log h(�j); j = s1; : : : ; s1 + s2 � 2;

logA0 = 2��1
d logH:

Condition (3.3) is then fulfilled. Indeed, let � 6= 0 be in K, we have to check that

log h(�) ��1
d > j log�j=(3:3 d):

Write � = ea+ib, with jbj 6 �. Then we have

j log�j = (a2 + b2)1=2 6 (a2 + �2)1=2

6 (log2 j�j+ �2)1=2 6 (log2 h(�) + �2)1=2:

From log h(�) > �d=d, it follows that

j log�j 6 log h(�)
�

1 +
�2d2

�2
d

�1=2

6
log h(�)

�d
d (1 + �2)1=2;

since d > �d. Now, it suffices to note that (1 + �2)1=2 6 3:3.
Then, we apply Proposition 1 to (4.4) and, using inequality (i) of Lemma 1 as

in the proof of the Theorem of [5], we get the upper bound

h
�
�3"3

�1"1

�
6 expfc15R1R2 logH logBg: (4.5)

Next assume that v is finite. To apply Proposition 2, we put now

logAi = ��1
d log h(�i) + log�P; i = 1; : : : ; s1 � 1;

logAj = ��1
d log h(�j) + log�P; j = s1; : : : ; s1 + s2 � 2; (4.6)

logA0 = 2��1
d logH + log�P:
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Exactly as in [5], it follows from (i) of Lemma 1 and the second inequality of
Lemma 3 that

logA1; : : : ; logAs1+s2�2 6 c16R1(log�P )s1�2 R2(log�P )s2�2

6 c16R1R2(log�P )s1+s2�4: (4.7)

Let c17 = c6
�
[K1 : Q]; s1

�
and c18 = c6

�
[K2 : Q]; s2

�
. We distinguish two

cases. First assume that logH < c17R1 + c18R2. Then, by Lemmas 1 and 3, we
have

logA := max
06i6s1+s2�2

logAi 6 c19 maxfR1; R2g:

We apply now to (4.4) the first part of Proposition 2. Putting

� =
P d

(log�P )s1+s2
logA0 logA1; : : : ; logAs1+s2�2

� log
�
10(s1 + s2 � 1)d logA

�
; (4.8)

we get, as in [5], the estimate

h(�3"3=�1"1) 6 expfc20� log�P logBg: (4.9)

Next assume that logH > c17R1 + c18R2. Then, by Lemmas 1 and 3, we have
A0 > Ai for i = 1; : : : ; s1 + s2 � 2 and

logA := max
16i6s1+s2�2

logAi 6 c19maxfR1; R2g:

Consider now the above defined � with this value of logA.
If B < �(log�P )=(c17R1 + c18R2) then (4.2) and (ii) of Lemma 1 imply that

h
�
�3"3

�1"1

�
= h

�
1 +

�2"2

�1"1

�

6 2h(�1) h(�2) h("1) h("2)

6 H2 expfc21(R1 +R2)Bg

6 expfc22� log�Pg: (4.10)

Assume now that B > �(log�P )=(c17R1 + c18R2). We apply the second part
of Proposition 2 to (4.4). Putting

� =
� log�P

B(c17R1 + c18R2)
;
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we obtain

h(�3"3=�1"1) 6 exp

(
c23�(log�P ) log

�
B(c17R1 + c18R2)

log�P logA0

�)
:

Recalling that logH > c17R1 + c18R2, we get from (4.6)

h(�3"3=�1"1) 6 expfc24� log�P logBg:
The definition (4.8) of � and estimates (4.7), (4.6) and (4.3) yield

h(�3"3=�1"1) 6 exp
�
c25

P d

(log�P )2R1R2 log� maxfR1; R2g

logH log� log� maxfh("1); h("2)g
�
: (4.11)

Since we can bound h(�3"3=�2"2) in a similar way, the lemma follows from (4.5),
(4.9), (4.10) and (4.11). 2

Further, we recall some results of [5] and [6].
Let K be a number field with the same parameters as in Section 3. Let S be a

finite set of places on K containing the set of infinite places S1. Denote by t the
number of finite places in S and by P the largest of the rational primes lying below
the finite places of S, with the convention that P = 1 if S = S1. Consider the
following equation

x1"1 + x2"2 + x3"3 = 0 in "i 2 O�
S (4.12)

where x1, x2, x3 2 K n f0g with max16i63 h(xi) 6 H (H > e):

PROPOSITION 3. For every solution "1, "2, "3 of (4:12) there is an " 2 O�
S such

that

max
16i63

h(""i) < expfc26(d; s)P
dRS (log�RS)

2

�(RK + thK log�P + logH)g;
where c26(d; s) is effectively computable.

Proof. It is a particular case of the Corollary of [5]. 2

Let M be a finite extension of K with [M :K] = n > 3. Let SM be the set of all
extensions to M of the places in S. Denote by hM, RM and RSM the class number,
regulator and SM-regulator of M, respectively. Let � 2 M such that M = K(�)
and h(�) 6 A, with A > e. Further, let � be a non-zero element of K with height
at most B and with S-norm not exceeding B� (> e). Consider the norm form
equation

NM=K(x+ y�) = � in x; y 2 OS : (4.13)
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PROPOSITION 4. All the solutions of (4:13) satisfy

max fh(x); h(y)g

< B1=n expfc27(d; n; s)P
dn(n�1)(n�2) RSM

�(log�RSM)
2 �RM + thM + log(AB�)

�g;
where c27(d; n; s) is an effectively computable constant.
Proof. Apply Theorem 2 of [6] with m = 2. 2

We also need several well-known lemmas, the first of them is due to Minkowski.

LEMMA 5. In every ideal class C of K, there exists an integral ideal a 2 C such
that

jNK=Q(a)j 6 jDKj1=2:

Proof. cf. [18], Theorem A.1. 2

LEMMA 6. Let K and M as above. Let a be an integer in M such that M = K(a)
and denote by P its minimal defining polynomial over K. Then we have

jDMj 6 jDKjn jNM=Q(P
0(a))j:

Proof. It follows from Narkiewicz (cf. [14], page 160) that the different diffM=K
is generated by the F 0(b), where b runs through the integral elements of M satis-
fying M = K(b) and F is the minimal defining polynomial of b over K. Hence,
jNM=Q(diffM=K)j 6 jNM=Q(P

0(a))j, and the lemma follows from

jDMj = jDKjn jNM=Q(diffM=K)j: 2

LEMMA 7. Let K and M as above and put m = [M : Q]. Then there exists an
effectively computable constant c28(m) such that

RK 6 c28(m)RM:

Proof. cf. [24], Chapter II, Lemma 2.3. 2

LEMMA 8. There exists an effective constant c29(d), which depends only on d,
such that
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RKhK 6 c29(d)jDKj1=2 (log� jDKj)d�1:

Proof. See for example [11]. 2

Finally, we state a very useful lemma, suggested by the referee.

LEMMA 9. Let K as above and a 2 K. Let � be a root of the polynomial P (X) =
X� � a. Then we have

NK(�)=Q(diffK(�)=K) 6 c30(d; �)NK=Q

� Y
ordp(a)6=0

p

���1

;

where c30(d; �) is effectively computable (the product being over the prime ideals
of K with the property ordp(a) 6= 0).

Proof. We write D for NK(�)=K(diffK(�)=K). Let p be a prime ideal of K,
ramified in K(�), and p = p(p) the underlying rational prime. We know that
p divides D and, consequently, p divides NK(�)=K

�
P 0(�)

�
. It follows that either

p 6 � or ordp(a) 6= 0.

Denote by OK(�) the ring of integers of the field K(�) and let pOK(�) =
P
e1
1 : : :P

ek
k be the decomposition of p in OK(�) into prime ideals. Denote by

f1; : : : ; fk the residue degrees of P1; : : : ;Pk, respectively, so that NK(�)=K(Pi) =

pfi for all i. Notice that e1f1 + � � �+ ekfk = [K(�) :K] 6 �.
By Proposition 6.3 of [14], we have, for i = 1; : : : ; k,

ordPi
(diffK(�)=K) 6 ei + ei ordp(ei)� 1;

whence

ordp(D) 6
kX
i=1

(ei + ei ordp(ei)� 1)fi: (4.14)

If p > �, then ordp(ei) = 0 for all i and ordp(D) 6 (e1�1)f1+ � � �+(ek�1)fk 6
� � 1. Write D = D1D2, where

D1 =
Y

p(p)6�

p
ordp(D); D2 =

Y
p(p)>�

p
ordp(D):

It follows from (4.14) that ordp(D) 6 c31(d; �), whence NK=Q(D1) 6 c32(d; �),
with c31(d; �) and c32(d; �) effectively computable. Finally, since all prime ideals
of K dividing D are ramified in K(�), we have

NK=Q(D2) 6 NK=Q

�Q
ordp(a)6=0 pordp(D)

�

6 NK=Q

� Y
ordp(a)6=0

p

���1

;
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and the lemma is proved. 2

5. Proofs of the theorems

First we have to introduce some new notations. For i= 1; : : : ; r let fi be the minimal
defining polynomial of �i over K and denote by ��i its discriminant. Recalling
that g(X) = (X � �1) � � � (X � �r), we observe that its discriminant, denoted by
�g, the resultant of the polynomials g0 and fi, denoted by Res(g0; fi), and ��i

are algebraics integers in K. Further, we will often use (without mentioning it)
the fact that NK=Q(��i) and NK=Q(Res(g0; fi)) divide NK=Q(�g). The constants
c33; : : : ; c50 are all effectively computable and depend only on d, n and t. The
constants c51; : : : ; c93 are all effectively computable and depend only on d, n, m
and t.

Proof of Theorem 1.

It follows from the hypothesis of the theorem that f(X) = f1(X)m=2f2(X)m,
where the polynomial f1 is monic and has at least three distinct roots with odd
multiplicity. If (x; y) 2 OS�K is a solution of (2.1), thena = f1(x)

m=2f2(x)
my�m

must be an m=2-th power in K. Hence, there exists u 2 OK such that a = um=2

and
�
x; y=f2(x)

�
is a solution of the equation f1(X) = uY 2. Further, we have

jNK=Q(u)j 6 jNK=Q(a)j and jNK=Q(�f1)j 6 jNK=Q(�g)j.
Thus, we only have to prove the theorem in the case whenm = 2 and f has three

distinct roots with odd multiplicity. Assuming this hypothesis, let (x; y) 2 OS�K
be a solution of (2.1).

First step. The ideal (x) splits uniquely under the form

(x) = ab
�1;

where a and b are relatively prime integer ideals in OK, such that the set of the
prime divisors of b is contained in S. By Lemma 5, there is an integer ideal b0 in
the same class as b�1 satisfying jNK=Q(b

0)j 6 jDKj1=2. Thus we have

(x) = (ab0) � (b0b)�1:

Since the integer ideals b0 b and a b0 are principal, we can write x = X=z, where
X , z 2 OK and

(X) = ab
0; (z) = bb

0:

In particular,
�
(X); (z)

�
= b0.

Clearly, if a power pl of a prime ideal p exactly divides (z), then pl divides b0

or p is one of the pi’s. Defining the binary form f(X; z) := znf(X=z), Equation
(2.1) becomes

f(X; z) = ay2zn: (5.1)
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Second step. It follows from the hypothesis that e1, e2 and e3 are odd. Let i =
1; : : : ; r and put Ki := K(�i). Working in F, the splitting field of f , we have for
each root � of f

�
(X � �iz); (X � �z)

�j(� � �i)
�
(X); (z)

�jg0(�i) b0:
Let p be a prime ideal dividing X ��iz with an odd exponent. If p does not divide
g0(�i)b

0, then it does not divide X � �jz for all j 6= i, and we necessarily have
pj(a). Thus, prime ideals not appearing in b0

�
ag0(�i)

�
divideX��iz with an even

exponent, which is also true in the field Ki, and there exist two integer ideals ai
and bi in Ki with ai square-free satisfying

(X � �iz) = ai b
2
i and aiOFjb0 (ag0(�i))OF:

Let �i1 = �i; : : : ; �ik be the roots of the polynomial fi. Since NF=Q(aij ) =
NF=Q(ai) for j = 1; : : : ; k, we have

jNF=Q(ai)jk 6
����NF=Q

�
ab0
�k kY

j=1

NF=Q
�
g0(�ij )

�����
6 jNF=Q

�
ab0
�k NF=Q

�
Res(g0; fi)

�j;
and, noticing that Res(g0; fi) 2 K, we get

jNKi=Q(ai)j 6
����ANK=Q(b

0)
�n NK=Q

�
Res(g0; fi)

����
6 An jDKjn=2 jNK=Q

�
Res(g0; fi)

�j: (5.2)

By Lemma 5, there is an integer ideal b0i in the class of bi satisfying jNKi=Q(b
0
i)j 6

jDKi
j1=2. Then we have (X � �iz) = (ai b

02
i ) � (bi=b0i)2 and, reasoning as above,

we obtain �0i 2 OKi
and �0i 2 Ki such that

X � �iz = �0i�
02
i :

Applying Lemma 7 to the extension K � Ki = K(�i), we get

jDKi
j 6 jDKjn jNKi=Q(f

0
i(�i))j 6 jDKjn jNK=Q(��i)j (5.3)

and it follows from (5.2) that

jNKi=Q(�
0
i)j 6 jNKi=Q(ai)j � jNKi=Q(b

0
i)

2j

6 An jDKj3n=2 jNK=Q
�
Res(g0; fi)��i

�j: (5.4)
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Hence, applying Lemma 2 to the algebraic integer �0i 2 Ki, we obtain �i 2 OKi

and �i 2 Ki such that jNKi=Q(�
0
i)j = jNKi=Q(�i)j,

X � �iz = �i�
2
i and

h(�i) 6 expfc33
�
RKi

+ log jADK NK=Q(�g)j
�g: (5.5)

Third step. We follow very closely the argument of Voutier [26]. For i = 1; 2; 3
we fix a square root

p
�i of �i. For i, j 2 f1; 2; 3g with i 6= j, we define the

number fields Kij = Ki(�j) and Lij = Kij

�p
�i�j

�
. Those are subfields of

M = K(�1; �2; �3;
p
�1 �2;

p
�1 �3), which is a number field with degree less or

equal to 4n(n � 1)(n � 2)d over Q. We denote by Rij (resp. hij) the regulator
(resp. the class number) of Lij .

In order to deduce from (5.5) four unit-equations, we set

�1 = �1�1; �2 =
p
�1�2�2 and �3 =

p
�1�3�3;

and, immediately, it follows that

�1(�2 � �1)z = �2
1 � �2

2 ;

�1(�3 � �1)z = �2
1 � �2

3 ;

�1(�2 � �3)z = �2
3 � �2

2 :

(5.6)

For i 6= j, let Sij be the set of all extensions to Lij of the places in S. The algebraic
numbers �1 � �2 belong to the field L12 and are algebraic integers (to see this,
consider �2

1 and �2
2 ). In the same way, �1��3 (resp.

p
�3=�1(�2��3)) are algebraic

integers in L13 (resp. L23). It follows from (5.4) and (5.6) that

NS1j (�1 � �j) 6 expfc34
�
log jADK NK=Q(�g)j

�g; j = 2; 3;

NS23

�p
�3=�1(�2 � �3)

�
6 expfc35

�
log jADK NK=Q(�g)j

�g:
Applying Lemma 2 in the fields Lij , we may write

�1 + �2 = b3"3 and �1 � �2 = g3�3;

�1 + �3 = b2"2 and �1 � �3 = g2�2;p
�3=�1(�2 + �3) = b01"1 and

p
�3=�1(�2 � �3) = g01�1;

(5.7)

where, for each permutation (i; j; k) of the indices (1; 2; 3), "i and �i are Sjk-units
in Ljk. Moreover, setting b1 =

p
�1=�3 b

0
1 and g1 =

p
�1=�3 g

0
1, we have

�2 + �3 = b1"1 and �2 � �3 = g1�1 (5.8)
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with

max
16i63

fh(bi); h(gi)g 6 expfc36
�
R12 +R13 +R23 + (h12 + h13 + h23)

� log�P + log jADK NK=Q(�g)j
�g: (5.9)

The ideal (z) admits the following decomposition into prime ideals in K

(z) =
tY

i=1

p
ai
i �

uY
j=1

q
bj
j ;

where�u
j=1q

bj
j divides b0. We make the Euclidean division of ai by 2hK (recall that

hK is the class number of K) : there exist integers qi and ri, with 0 6 ri < 2hK,

such that ai = 2hK qi + ri. Let z1 be a generator of the principal ideal �t
i=1p

hK qi
i

and notice that z�1
1 is a S-unit. We have z = z2

1z2, where z2 2 OK has a norm
(over Q) bounded above by jNK=Q(b

0)jP 2hK td. Applying Lemma 2, with n = 2,
to the algebraic integer z2, we obtain a unit �2 2 OK and z3 2 OK such that

z2 = �2
2z3 and

h(z3) 6 expfc37 (RK + hK log�P + log jDKj)g: (5.10)

Setting � = ��1
2 z�1

1 , we have z = ��2z3 and � is an S-unit.
Let SM be the set of all extensions to M of the places in S, we deduce from

(5.7) and (5.8) four SM-unit equations, which we multiply by �:

b1"1� � b2"2� + g3�3� = 0;

b1"1� + g2�2� � b3"3� = 0;

g1�1� + b2"2� � b3"3� = 0;

g1�1� � g2�2� + g3�3� = 0:

(5.11)

Fourth step. We now prove the first part of the theorem. Before applying Lemma 4 to
the equations (5.11), we have to bound the size of the Sij-regulator of Lij , denoted
byRSij . The minimal defining polynomial of

p
�i �j over Kij isX2��i �j ; hence,

by successive applications of Lemma 6 and inequalities (5.3) and (5.4), we get

jDLij
j 6 jDKij

j2 jNLij=Q(2
p
�i �j)j

6 22n2d jDKij j2 jNKij=Q(�i �j)j

6 22n2d jDKi
j2n jNKi=Q(��j )j2 jNKij=Q(�i �j)j
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6 22n2d jDKj5n
2 jNK=Q(��i ��j )j2nA2n2

�jNK=Q(Res(g0; fifj)��i ��j )jn

6 22n2d jDKj5n
2
A2n2 jNK=Q(�g)j8n; (5.12)

whence

log jDLij
j 6 c38

�
log jADK NK=Q(�g)j

�
and, by Lemma 8,

hij Rij 6 c39 jDKj5n
2=2 An2 jNK=Q(�g)j4n

��log jADK NK=Q(�g)j
�2n2d�1

: (5.13)

Since the number of finite places in Sij is bounded by 2dn(n� 1)t, Lemma 3
and (5.13) lead to the estimate

maxfRS12 ; RS13 ; RS23g 6 c40 jDKj5n
2=2 An2 jNK=Q(�g)j4n

��log jADK NK=Q(�g)j
�2n2d�1

�(log� P )2dn(n�1)t: (5.14)

Applying Lemma 4 to the equations (5.11), we obtain from (5.9) and (5.14) the
upper bound

maxi=1;2

�
h
�
bi"i

b3"3

�
; h
�
gi�i

b3"3

�
; h
�
bi"i

g3�3

�
; h
�
gi�i

g3�3

��

6 expfc41 T1 Eg; (5.15)

where

T1 6 P 4n3d(log�P )4dn2t�1jDKj15n2=2 A3n2 jNK=Q(�g)j12n

��log jADK NK=Q(�g)j
�6n2d�2

;

E = log� log� maxfh("1�); h("2�); h(�1�); h(�2�)g:
In order to bound E, we notice that, using (5.7), (5.6) and (5.10), we have

(b1"1�)
2 =

�
b1"1

b3"3

��
b1"1

g3�3

�
(b3"3�) (g3�3�)

=

�
b1"1

b3"3

��
b1"1

g3�3

�
�1(�2 � �1)z3: (5.16)
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From (3.2), (5.5), (5.10) and Lemma 7, we get

h(�1(�1 � �2)z3)

6 H expfc42
�
RK1 + hK log�P + log jADK NK=Q(�g)j

�g;
and we deduce from (5.15), (5.16) and Lemma 7 that

h("1�) 6 h(b1)h(b1"1�) 6 H expfc43 T1 Eg:

This bound is still true, with c44 instead of c43, for h("2�), h(�1�) and h(�2�).
Consequently, E 6 log�(c44 T1 E) + log logH , and

E 6 c45 log jAP DK NK=Q(�g)j+ log logH: (5.17)

We can now deduce an upper bound for h(x). Namely, setting  = b3"3=g3�3,
we obtain from (5.7) that

2�1 = (�1 � �2) + b3"3 = (�1 � �2)(1 + );

and, similarly,

2�1 = (�1 + �2)(1 + �1):

Hence, we get the equality

4�2
1 = (�2

1 � � 2
2 )(1 + )(1 + �1);

which, using (5.6) and (5.5), we may write as

4(X � �1z) = (�2 � �1)z(1 + )(1 + �1):

Dividing this equality by z, we infer that

x = �1 +
1
4(1 + )(1 + �1)(�2 � �1): (5.18)

Noticing that  = (b3"3=g1�1)(g1�1=g3�3), we immediately get from (3.2), (5.15),
(5.17) and (5.18) the upper bound

h(x) 6 H2 expfc46 P
4n3d (log�P )4n2dt

�jDKj15n2=2 A3n2 jNK=Q(�g)j12n

��log jADK NK=Q(�g)j
�6n2d log logHg: (5.19)
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Fifth step. We now prove the second part of the theorem. The aim of Lemma 4,
used in the proof of Theorem 1, is to obtain a good dependence in terms of jDKj.
Unfortunately, the dependence onH is not very satisfactory and it can be improved
by using Proposition 3 instead of Lemma 4. Therefore, the dependence on jDKj is
worse.

We exactly follow the first three steps of the proof and we apply Proposition 3
to the four equations (5.11). Recall that M = K(�1; �2; �3;

p
�1�2;

p
�1�3) has

degree less or equal than 4n(n� 1)(n� 2)d. Using Lemma 6, (5.4) and (5.12), we
can bound its discriminant

jDMj 6 jDL12 j2n jNK=Q(�g)j4n
2 jNM=Q(2

p
�1�3)j

6 24n3d jDKj10n3
A4n3 jNK=Q(�g)j20n2 jNM=Q(2

p
�1�3)j

6 28n3d jDKj10n3
A4n3 jNK=Q(�g)j20n2

�jNK1=Q(�1)j2n
2 jNK3=Q(�3)j2n

2

6 28n3d jDKj16n3
A8n3 jNK=Q(�g)j28n2

: (5.20)

As before, denote by SM the set of all extensions to M of the places in S and
by RSM the SM-regulator of M. Applying Proposition 3 to the first two SM-unit
equations (5.11), we get, by (5.9) and Lemma 7,

max
�

h
�
b1"1

b3"3

�
; h
�
b1"1

g3�3

��
6 expfc47 T2g; (5.21)

where

T2 6 P 4n3dRSM (log�RSM)
2 �RM + (h12 + h13 + h23 + hM) log�P

+ log jADK NK=Q(�g)j
�
:

Recall that we have put  = b3"3=g3�3. It follows from (5.21) that h() 6
expfc48 T2g and from (5.18) that h(x) 6 H2 expfc49 T2g. Finally, we use Lemma
8, (5.12) and (5.20) to bound the quantity T2 and, after some computations, we get

h(x) 6 H2
n
c50 P

4n3d (log�P )4tn3 jDKj16n3 jNK=Q(�g)j28n2

A8n3 �
log jADK NK=Q(�g)j

�8n3d�o
;

as claimed. 2
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Proof of Theorem 2

We keep the same notations as in the proof of Theorem 1. By the same reasoning
as in the first step of the above proof, letting f(X; z) := znf(X=z), equation (2.1)
becomes

f(X; z) = a ymzn;

in the unknowns X; z 2 OK and y 2 K. Further, there is an integral ideal b0, with
jNK=Q(b

0)j 6 jDKj1=2, such that
�
(X); (z)

�
= b0.

We reorder the roots such that (m1;m2) > 3. Arguing as in the proof of Theorem
1, we claim that, for i = 1; 2, there exist two integer ideals ai and bi in OKi

, with
ai free of mi-th powers, satisfying

(X � �iz) = ai b
mi
i

and

jNKi=Q(ai)j 6 An jNKi=Q(b
0)NK=Q

�
Res(g0; fi)

�jmi�1
: (5.22)

Further, by (5.22), Lemma 5 and Lemma 2, we obtain �i 2 OKi
, an ideal b0i in OKi

with jNKi=Q(b
0
i)j 6 jDKi

j1=2 and �i 2 Ki such that �iOKi
= ai b

0mi
i ,

X � �iz = �i�
mi
i ;

h(�i) 6 expfc51
�
RKi

+ log jADK NK=Q(�g)j
�g; and

jNKi=Q(�i)j 6 An jDKjnmi jNK=Q(�g)j3mi=2: (5.23)

Recall that if (m1;m2) is not a power of 2, then m0 is the smallest odd prime
dividing (m1;m2), otherwise m0 = 4. Further, put m0

1 = m1=m
0, m0

2 = m2=m
0.

Working in the field L = K(�1; �2), we deduce from (5.23) the equation

(�2 � �1)z = �1�m0

1

�
�1�

m0

1
1

�m0 � �1�m0

2

�
�2�

m0

2
2

�m0

: (5.23)

In the sequel, we will put for convenience �1 = �1�
m0

1
1 and �2 = �2�

m0

2
2 .

Usually, one works in the field L(�1=m0

1 ; �
1=m0

2 ) of degree m02 (in general)
over L. Voutier [26] prefers the field L

�
(�1=�2)

1=m0

; �m0

�
, where �m0 denotes a

primitivem0-th root of unity, but, however, it does not help him to make a numerical
improvement. Here, we work either in L

�
(�1=�2)

1=m0
�

or in L(�m0), and, thus, we
remove a factor m0. This idea goes back to Bilu [2]. Further, Lemma 9 provides
sharp upper bounds for differents of certain extensions of number fields and allows
us to remove a factor m.

Suppose first that m0 6= 4. By Theorem 9.1 of Chapter VIII of [10], there are
two possible cases:
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(i) The polynomial Tm0 � (�1=�2)
m0�1 is irreducible over L.

(ii) There exists an u 2 L such that (�1=�2)
m0�1 = um

0

.

Case (i). Let v 2 C be a root of Tm0 � (�1=�2)
m0�1 and consider the field

M = L(v), it follows from (5.24) that

NM=L
�
�1 � v�2

�
= �m

0�1
1 (�2 � �1)z: (5.25)

Recall that there exist non-negative integers a1; : : : ; at and an ideal b00 which
divides b0 such that zOK = b00p

a1
1 : : : patt . Let �1; : : : ; �t 2 OK be generators of the

principal ideals p
hK
1 ; : : : ; p

hK
t , respectively. Using Euclidean divisions, it is easy

to see that we can write z = z00(�b1
1 : : : �btt )

m0

, where the bi’s are non-negative
integers and z00 2 OK satisfies jNK=Q(z

00)j 6 jDKj1=2 P tdhKm0

. By Lemma 2,
there exists a unit " 2 OK such that z00 = z0"m

0

,

NS(z
0) 6 jDKj1=2 and

h(z0) 6 expfc52 (RK + hK log�P + log� jDKj)g: (5.26)

Equation (5.25) now becomes

NM=L

�
�1

"�b1
1 : : : �btt

� v
�2

"�b1
1 : : : �btt

�
= �m

0�1
1 (�2 � �1)z

0: (5.27)

Let SL (resp. SM) be the set of all extensions to L (resp. M) of the places in
S and denote by RSM the SM-regulator of M. Further, observe that the number of
finite places in SL is not greater than tn2. In order to apply Proposition 4 to the
Thue–Mahler equation

NM=L(X0 � vY0) = �m
0�1

1 (�2 � �1)z
0 in X0; Y0 2 OSL ;

we need the following upper bounds, which can be deduced from (3.2), (5.23) and
(5.26)

h
�
�m

0�1
1 (�2 � �1)z

0
�

6 H expfc53
�
RK1 + hK log jAP DK NK=Q(�g)j

�g;
NSL

�
�m

0�1
1 (�2 � �1)z

0
�
6 expfc54 log jADK NK=Q(�g)jg;

h(v) 6 expfc55
�
RK1 +RK2 + log jADK NK=Q(�g)j

�g:
(5.28)

By Lemma 3, we have

RSM 6 RM hM(m
0n2d log�P )tn

2m: (5.29)
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Apply Proposition 4 to the equation (5.27). Using Lemma 7, (5.28) and (5.29), we
obtain

h
�
�i=("�

b1
1 : : : �btt )

�
6 H expfc56 T3g; i = 1; 2; (5.30)

where

T3 6 P dn2m0(m0�1)2
(log�P )tn

2m0

(RMhM)
2

�
log�(RMhM)

�2 logjADKNK=Q(�g)j:

We deduce from Lemma 7 and (5.26) that

h
�
z=("�b1

1 : : : �btt )
m0
�
= h(z0) 6 expfc57 T3g;

and, since X � �1z = �1�m0

1 �m
0

1 , we infer from (5.30) that

h
�
X=("�b1

1 : : : �btt )
m0
�
6 Hm0+1 expfc58 T3g:

Thus, we get the upper bound

h(x) = h(X=z) 6 Hm0+1 expfc59 T3g: (5.31)

Now, we have to bound the quantity RMhM; for this, in view of Lemma 8, it is
sufficient to bound jDMj. Recall that v 2 C is a root of Tm0 � (�1=�2)

m0�1 and
that M = L(v). In order to apply Lemma 9, which leads to

jDMj 6 c60 jDLjm
0

NL=Q

� Y
ordp(�1�2)6=0

p

�m0�1

; (5.32)

observe that the prime ideals in OL dividing �1�2 belong to one of the following
two groups

(a) those dividing a1 a2 OL;
(b) those dividing b01 b

0
2 OL.

Let i = 1; 2 and recall that aiOKi
divides a

�
b0 g0(�i)

�mi�1
OKi

. Denoting by F
the splitting field of f , it follows from

jNF=Q
�
g0(�i)

�j[K(�i):K]
6 jNF=Q

�
Res(g0; fi)

�j;
that

jNKi=Q
�
g0(�i)

�j 6 jNK=Q(�g)j:
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Consequently, we have

NL=Q

� Y
pj�1�2

p

�

6 jNL=Q(a b
0) � NK1=Q(b

0
1)
n � NK2=Q(b

0
2)
n � NK=Q(�g)

2nj

6 An2 jDKjn
2=2 jDK1 jn=2 jDK2 jn=2 jNK=Q(�g)j2n; (5.33)

and, by (5.32) and

jDKi
j 6 jDKjn jNK=Q(�g)j; i = 1; 2;

jDLj 6 jDKjn2 jNK=Q(�g)j2n;
(5.34)

we obtain

jDMj 6 c61 jDLjm
0

An2m0 jDKjn
2m0=2 jDK1 jnm

0=2 jDK2 jnm
0=2

jNK=Q(�g)j2nm
0

6 c61 jDKj5n
2m0=2 An2m0 jNK=Q(�g)j5nm

0

: (5.35)

Finally, (5.31), (5.35) and Lemma 8 lead to the bound

h(x) 6 Hm0+1 expf c62 P
dn2m03

(log�P )tn
2m0 jDKj5n2m0=2

�jNK=Q(�g)j5nm0

An2m0

��log jADK NK=Q(�g)j
�2dn2m0g: (5.36)

Case (ii). Let � be a primitivem0-th root of unity and consider the field M1 = L(�),
which is of degree 6 m0 � 1 over L. Equation (5.24) now becomes

�m
0�1

1 (�2 � �1)z =
m0Y
k=1

(�1 � �ku�2):

Let S1 be the set of all extensions to the field M1 of the places in S and RS1 be the
S1-regulator of M1. Observe that the number of finite places in S1 is not greater
than m0n2t. Clearly, it follows from (5.23) that

NS1

�
�m

0

2 �m
0�1

1 (�2 � �1)z
�
6 expfc63 log jADK NK=Q(�g)jg;
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and the same upper bound is also valid for NS1

�
�2(�1 � �ku�2)

�
, k = 1; : : : ;m0.

Thus, noticing that �2(�1 � �ku�2) is an algebraic integer and applying Lemma 2,
we can write

�2(�1 � �ku�2) = bk"k; (5.37)

where "k is an S1-unit in M1 and bk 2 M1 satisfies

h(bk) 6 expfc64
�
RM1 + hM1 log�P + log jADK NK=Q(�g)j

�g: (5.38)

Using (5.37), we get the following S1-unit equations in M1:

�
(�k � �2)b1

�
"1 +

�
(� � �k)b2

�
"2 +

�
(�2 � �)bk

�
"k = 0; (5.39)

for k = 3; : : : ;m0. The height of the algebraic numbers �k��k
0

, 1 6 k < k0 6 m0,
is bounded by an absolute constant depending only onm0. So, applying Proposition
3 to the equations (5.39) and using (5.38), there exist S1-units �3; : : : ; �m0 in M1

such that, for k = 3; : : : ;m0 and i 2 f1; 2; kg,

h("i=�k) 6 expfc65 T4g; where

T4 = P n2d(m0�1)RS1

�
log�RS1

�2
(RM1 + hM1 log�P

+ log jADKNK=Q(�g)j
�
: (5.40)

It follows from (3.2), (5.40) and

�m
0

2 �m
0�1

1 (�2 � �1) �
z

�3
3�4; : : : ; �m0

= b1
"1

�3
� b2

"2

�2
�
m0Y
k=3

bk
"k

�k
;

that

h
�
z=(�3

3�4; : : : ; �m0)
�
6 H expfc66 T4g: (5.41)

Further, by eliminating u�2 from the two equalities

�2(�1 + �u�2) = b1"1 and �2(�1 + �2u�2) = b2"2;

and using again (5.40), we infer that

h(�1=�k) 6 expfc67 T4g; k = 3; : : : ;m0;

whence, from X � �1z = �1�m0

1 �m
0

1 , we get

h
�
X=(�3

3�4; : : : ; �m0)
�
6 H2 expfc68 T4g: (5.42)
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In order to bound the quantity T4, we use the estimate RS1 6 RM1 hM1 (m
0n2d

log�P )m
0n2t given by Lemma 3, the bound jDM1 j 6 jDLjm0�1 (see [26], Equation

(28)) and (5.34). Hence, from Lemma 8, (5.40), (5.41) and (5.42), it easily follows
that

h(x) = h(X=z) 6 H3 expf c69 P
dn2m0

(log�P )m
0n2t jDKjn2m0

�jNK=Q(�g)j2nm0

��log jADK NK=Q(�g)j
�2dn2m0g: (5.43)

Now we deal with the case when (m1;m2) = 2l+2, where l > 0. Equation
(5.24) becomes

�3
1(�2 � �1)z =

�
�1�

m0

1
1

�4 � (�1=�2)
3 ��2�

m0

2
2

�4
: (5.44)

By Theorem 9.1 of Chapter VIII of [10], there are three possible cases:

(iii) The polynomial T 4 � (�1=�2)
3 is irreducible over L.

(iv) There exists u 2 L such that �4(�1=�2)
3 = u4.

(v) There exists u 2 L such that (�1=�2)
3 = u2.

Case (iii). We exactly follow the argument of Case (i) and we get the same bound,
namely

h(x) 6 Hm0+1 expf c70 P
dn2m03

(log�P )tn
2m0 jDKj5n2m0=2

�jNK=Q(�g)j5nm0

An2m0

��log jADK NK=Q(�g)j
�2dn2m0g: (5.45)

Case (iv). We work in the field M2 = L(i;
p

2). Equation (5.44) can be rewritten
as

�3
1(�2 � �1)z =

4Y
k=1

(�1 � iku�2=
p

2):

Noticing that
p

2�2
�
�1 � iku�2=

p
2
�
, where 1 6 i 6 4, are algebraic integers, we

proceed as in the proof of Case (ii). By estimates (5.34) and jDM2 j 6 c71jDLj4, we
get

h(x) 6 H3 expf c72 P
4dn2

(log�P )4tn2+3 jDKj4n2 jNK=Q(�g)j8n

��log jADK NK=Q(�g)j
�8dn2+3g: (5.46)
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Case (v). Let v 2 C such that v2 = u, in the field M3 = L(i; v), Equation (5.44)
becomes

�3
1(�2 � �1)z =

4Y
k=1

(�1 � ikv�2):

We have to estimate the discriminant of the field M3. For this, observe that there
exists some u0 2 L such that �2�

3
1 = u02 and, if v0 2 C satisfies v02 = u0, we have

L(v) = L(v0). Noticing that u0 and �1�2 have exactly the same prime divisors, we
apply Lemma 9 in order to bound jDL(v0)j, and, using (5.33), we get

jDL(v0)j 6 c73 jDLj2 An2 jDKjn
2=2 jDK1 jn=2

�jDK2 jn=2 jNK=Q(�g)j2n; (5.47)

whence, by (5.34),

jDL(v0)j 6 c73 jDKj7n
2=2 An2 jNK=Q(�g)j7n:

Thus, we obtain the estimate

jDM3 j 6 c74 jDKj7n
2
A2n2 jNK=Q(�g)j14n:

Repeating the same reasoning as in the proof of Case (ii), we get the bound

h(x) 6 H3 expfc75 P
4dn2

(log�P )4tn2 jDKj7n2 jNK=Q(�g)j14n

�A2n2 �
log jADK NK=Q(�g)j

�8dn2+3g: (5.48)

Comparing the estimates (5.36), (5.43), (5.45), (5.46) and (5.48) obtained in the
cases (i) to (v), we see that the bound

h(x) = h(X=z) 6 Hm0+1 expf c76 P
dn2m03

(log�P )tn
2m0 jDKj5n2m0=2

�jNK=Q(�g)j5nm0

An2m0

��log jADK NK=Q(�g)j
�2dn2m0g (5.49)

is always valid, and the proof of Theorem 2 is complete. 2

Preliminary to the proof of Theorem 3.

In order to prove Theorem 3, we need a variant of Theorem 2, in which jNK=Q(�g)j
does not appear. Keeping the same notations and the same arguments as in the proof
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of Theorem 2, we state a new estimate for h(x), using the parameters of the field
L = K(�1; �2).

Denote by dL the degree of L and by tL the number of finite places in SL. We
do the same case by case analysis as in the proof of Theorem 2.

Cases (i) and (iii). Using the estimate RSM 6 RM hM(m
0dL log�P )tL m0

given
by Lemma 3, we proceed as in the proof of Theorem 2 to get, instead of (5.31),

h(x) 6 Hm0+1 expfc77 T
0
3g; (5.50)

where

T 0
3 6 P dL m0(m0�1)2

(log�P )tL m0

(RMhM)
2

�
log�(RMhM)

�2 logjADKNK=Q(�g)j:

Instead of (5.33), we use the estimate

NL=Q

� Y
ordp(�1�2)6=0

p

�

6 jNL=Q(a b
0 b01 b

0
2)j � NL=Q

� Y
ordp(g0(�1)g0(�2)) 6=0

p

�
;

and, in view of jDKi
j[L:Ki] 6 jDLj for i = 1; 2, we get

NL=Q

� Y
ordp(�1�2)6=0

p

�

6 An2 jDKjn
2=2 jDLj

Y
pj�g

�
NK=Q(p)

�n2
: (5.51)

Finally, (5.32), (5.50), (5.51) and Lemma 8 lead to the bound

h(x) 6 Hm0+1 exp
�
c78 P

dL m0(m0�1)2
(log�P )tL m0

�jDLj2m
0 jDKjm

0n2=2 Am0n2 Y
pj�g

�
NK=Q(p)

�m0n2

�
��

logAjDLj
Y
pj�g

NK=Q(p)
�2dLm

0

+ log jNK=Q(�g)j
��

: (5.52)
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Cases (ii) and (iv). Using jDM1 j 6 jDLjm0�1 and jDM2 j 6 c79 jDLj4, we get in
both cases the estimate

h(x) 6 H3 exp
n
c80 P

dL m0

(log� P )tL m0+3 jDLjm0

��(logA jDLj)2dL m0+3 + log jNK=Q(�g)j
�o
: (5.53)

Case (v). Instead of (5.47), we have

jDL(v0)j 6 c81 jDLj2 An2 jDKjn
2=2 jDLj

Y
pj�g

�
NK=Q(p)

�n2
;

hence, after some computations,

h(x) 6 H3 exp
n
c82 P

4dL (log�P )4tL jDLj6 jDKjn
2
A2n2

�
Y
pj�g

�
NK=Q(p)

�2n2�
(logA jDLj)8dL+3

+ log jNK=Q(�g)j
�o
: (5.54)

Comparing the estimates (5.52), (5.53) and (5.54) obtained in the cases (i) to
(v), we see that the bound

h(x) 6 Hm0+1 exp
�
c83 P

dL m0(m0�1)2
(log�P )tL m0 jDLj2m0

�jDKjm0n2=2 Am0n2 Y
pj�g

�
NK=Q(p)

�m0n2

�
��

logA jDLj
Y
pj�g

NK=Q(p)
�2dL m0

+ log jNK=Q(�g)j
��

: (5.55)

is always valid.

Proof of Theorem 3

We can suppose m1 > m2, with m1 > 3 and m2 > 2 and we claim that �1 2 K.
Indeed, if f(X) has a root �i =2 K for which mi > 3, then there exists j 6= i such
that�j is a conjugate of�i over K, hence we havemi = mj > 3 and the hypothesis
of Theorem 2 is satisfied, in contradiction with our assumption. Similarly, if �2
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lies in an extension of degree > 3 over K, then there exist distinct i and j such
that i 6= 2; j 6= 2 and both �i and �j are conjugate to �2 over K, and we have
mi = mj = m2 > 2. But this case is covered by Theorem 1 or Theorem 2, in
contradiction with our assumption. Hence we deduce [K(�2) : K] 6 2 (all this is
due to Voutier [26]).

Let (x; y) 2 OS � K be a solution of (2.1) and put L = K(�2). Keeping the
same notations and arguing as in the proofs of Theorems 1 and 2, we get the two
equations

X � �1z = �1�
m1
1

X � �2z = �2�
m2
2 ;

(5.56)

where

jNL=Q(�1)j 6 A2 jDKj2m1 jNK=Q(�g)j2m1 ;

jNL=Q(�2)j 6 A2 jDKj2m2 jNK=Q(�g)j3m2=2; and

h(�i) 6 expfc84
�
RL + log jADK NK=Q(�g)j

�g for i = 1; 2:

(5.57)

As before, we deduce from (5.56) the equation

(�1 � �2)z = �2�
m2
2 � �1�

m1
1 ; (5.58)

which can be viewed as a superelliptic equation with coefficients in OL.
More precisely, using Euclidean divisions as in the proof of Theorem 1 (see

after (5.9)), we infer that there exist an S-unit � with ��1 2 OK and z0 2 OK such
that

z = z0 ��m1m2 ; jNL=Q(z
0)j 6 jDKjP 2tdhK m1m2 ; and

h(z0) 6 expfc85 (RK + hK log�P + log� jDKj)g:
(5.59)

Together with (5.58), it yields

�m2�1
2 �1

�
�1�

m2
�m1 =

�
�2�2�

m1
�m2 � �m2�1

2 (�1 � �2)z
0;

and, denoting by SL the set of all extensions to the field L of the places in S, we
remark that

�
�2�2�

m1 ; �1�
m2
� 2 OSL �L is a solution to the superelliptic equation

Xm2
0 � �m2�1

2 (�1 � �2)z
0 = �m2�1

2 �1 Y
m1

0 ; (5.60)

to which we may apply the estimate (5.55). The purpose of this estimate is to get
an upper bound with no hK in the exponent of P . Indeed, if we apply Theorem 2
to (5.60), a factor P hK due to jNL=Q(�f0)j occur (see (5.62) and (5.63) after).

Let � be a root of the polynomial f0(X) := Xm2
0 � �m2�1

2 (�1 � �2)z
0 and �

be a primitive m2-th root of unity. Here the field L (resp. L0 := L(�; �)) plays the
role of K (resp. L) occurring in (5.55).
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First, observe that the prime ideals in OL dividing the algebraic integer �m2 =
�m2�1

2 (�2 � �1)z
0 belong to one of the following four groups

(a) those dividing �2;
(b) those dividing �1 � �2;
(c) those dividing b0;
(d) those belonging to SL.

Arguing as in the proof of Theorem 2 and using the same notations, we get

NL=Q

� Y
ordp(�m2 )6=0

p

�
6 jNL=Q(a b

0
b
0
2 �g)jP 2dt

6 A2 jDKj jDLj1=2 jNK=Q(�g)j2 P 2dt: (5.61)

By Lemma 9, (5.61), (5.34) and jDLj 6 jDKj2 jNK=Q(�g)j, we can estimate the
discriminant jDL(�)j of the field L(�)

jDL(�)j 6 c86 A
2m2 jDKj4m2 jNK=Q(�g)j7m2=2 P 2dtm2 ;

whence we get

jDL0 j 6 c87 A
2m2

2 jDKj4m
2
2 jNK=Q(�g)j7m

2
2=2 P 2dtm2

2 :

The polynomial f0(X0) =
Qm2�1

l=0 (X0�� l�) is squarefree and its discriminant,
denoted by �f0 , satisfies

jNL=Q(�f0)j 6 c88jNL=Q(�
m2)jm2�1 (5.62)

and, using (5.61), we have

Y
pj�f0

�
NL=Q(p)

�
6 c89

Y
pj�m2

�
NL=Q(p)

�

6 c89 A
2 jDKj jDLj1=2 jNK=Q(�g)j2 P 2dt:

In view of (5.57) and (5.59), we infer that

jNL=Q(�
m2)j 6 jNL=Q(�2)jm2�1 jNL=Q(z

0)j jNL=Q(�g)j

6 expfc90 hK log jAP DK NK=Q(�g)jg: (5.63)

Moreover, we have

h(�) 6 H expfc91
�
RL + hK log�P + log jADK NK=Q(�g)j

�g;
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and

jNL=Q(�
m2�1
2 �1)j 6 A2m2 jDKj2m1+2m2(m2�1)

�jNK=Q(�g)j2m1+3m2(m2�1)=2 :

Using the above estimates together with jDLj 6 jDKj2 jNK=Q(�g)j, m1 > 3 and
m2 > 2, we apply (5.55) to the equation (5.60) and we get after some calculation

h(�2�2�
m1) 6 Hm1+1 expfc92 T5g; (5.64)

where

T5 = P 2dm2
2m

3
1+6dtm1m

2
2 (log�P )2tm1m

2
2 A5m1m

3
2 jDKj2m2

1m
4
2

�jNK=Q(�g)j2m2
1m

4
2
�
log jADK NK=Q(�g)j

�4dm1m
2
2 :

Hence, using m2 6 m=2 (otherwise, m1 = m2 = m and we could apply Theorem
2, in contradiction with our assumption), we get

T5 6 P d(m5+4tm3)=2 jDKjm
6=8 jNK=Q(�g)jm

6=8

�A5m4=8 �log jADK NK=Q(�g)j
�dm3

: (5.65)

Finally, we infer from (5.56) and (5.59) that

x =
X

z
=

�2�
m2
2

z
+ �2 =

(�2�2�
m1)m2

�m2�1
2 z0

+ �2;

which, with (5.57), (5.59), (5.64), (5.65) and m2 6 m=2, yields

h(x) 6 Hm2
exp

n
c93 P

d(m5+4tm3)=2 jDKjm6=8 jNK=Q(�g)jm6=8

�A5m4=8 �log jADK NK=Q(�g)j
�dm3o

;

and the proof is complete. 2

Acknowledgements

I am indebted to the referee for his numerous valuable remarks and, in particular,
for Lemma 9. Also, I would like to thank Maurice Mignotte and Kálmán Györy
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94–09, Mathématiques Stochastiques, Univ. Bordeaux 2, 1994.
4. Brindza, B.: On S-integral solutions to the equation ym = f(x), Acta Math. Hung. 44, (1984)

133–139.
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6. Bugeaud, Y. and Győry, K.: Bounds for the solutions of Thue–Mahler equations and norm form

equations, Acta Arith. 74, (1996) 273–292.
7. Hajdu, L.: A quantitative version of Dirichlet’s S-unit theorem in algebraic number fields, Publ.

Math. Debrecen 42, (1993) 239–246.
8. Kotov, S. V. and Trelina, L. A.: S-ganze Punkte auf elliptischen Kurven, J. Reine Angew. Math.

306, (1979) 28–41.
9. Lang, S.: Integral points on curves, Publ. Math. I.H.E.S. 6, (1960) 27–43.

10. Lang, S.: Algebra (2nd edition), Addison–Wesley, 1984.
11. Lenstra, H. W. Jr.: Algorithms in algebraic number theory, Bull. Amer. Math. Soc. 26, (1992)

211–244.
12. LeVeque, W. J.: Rational points on curves of genus greater than 1, J. Reine Angew. Math. 206,

(1961) 45–52.
13. LeVeque, W. J.: On the equation ym = f(x), Acta Arith. 9, (1964) 209–219.
14. Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers, Springer-Verlag, Berlin,

1990.
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