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The Precise Point Positioning (PPP) concept enables centimetre-level positioning accuracy
by employing one Global Navigation Satellite System (GNSS) receiver. The main advantage
of PPP over conventional Real Time Kinematic (cRTK) methods is that a local reference
network infrastructure is not required. Only a global reference network with approximately
50 stations is needed because reference GNSS data is required for generating precise error
correction products for PPP. However, the current implementation of PPP is not suitable for
some applications due to the long time period (i.e. convergence time of up to 60 minutes)
required to obtain an accurate position solution. This paper presents a new method to reduce
the time required for initial integer ambiguity resolution and to improve position accuracy. It
is based on combining GPS and GLONASS measurements to calculate the float ambiguity
positioning solution initially, followed by the resolution of GPS integer ambiguities.

The results show that using the GPS/GLONASS float solution can, on average, reduce the
time to initial GPS ambiguity resolution by approximately 5% compared to using the GPS
float solution alone. In addition, average vertical and horizontal positioning errors at the
initial ambiguity resolution epoch can be reduced by approximately 17% and 4%, respectively.
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1. INTRODUCTION. The state-of-the-art method to obtain centimetre-level
positioning accuracy is conventional Real Time Kinematic (cRTK), which is based on
cancelling or reducing errors that are correlated between two Global Navigation
Satellite System (GNSS) receivers by differencing measurements across the receivers
and satellites. This method provides centimetre-level positioning accuracy with short
convergence times. However, its main drawback is that it requires the use of a local
reference network infrastructure or a single reference station, which may not always be
available. In the case of cRTK, the baseline between receivers must typically be
shorter than 50 km when employing dual-frequency GNSS receivers. However, in the
case of high ionospheric activity, ionospheric de-correlation can be significant even
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with shorter baselines, leading to poor positioning accuracy. The cost of building
dense reference networks can be high and potentially prohibitive in remote areas
(Kaplan and Hegarty, 2006).
With Precise Point Positioning (PPP), a local reference infrastructure is not required

(Zumberge et al., 1997). This leads to cost savings when high accuracy positioning is
needed, for example, in remote areas. Instead of correcting errors by differencing
measurements across receivers and satellites, they are corrected by employing
correction products generated from data captured by global reference networks
and, where appropriate, modelling the errors. The major error sources for PPP are
the ionosphere, troposphere, satellite clock, and satellite orbit and receiver clock.
In addition, site-displacement, antenna phase centre offset, antenna phase centre
variation and phase wind-up errors should be corrected to obtain high positioning
accuracy (Abdel-salam, 2005).
There are already many possible applications of PPP including land surveying,

precision farming or crystal deformation monitoring. In general, using PPP is
practical if there is no local reference network infrastructure available and the
long PPP solution convergence time is not a problem for the application (Bisnath
and Gao, 2007).
The traditional PPP model employs the ionosphere-free GPS L1/L2 observable to

eliminate the first-order ionospheric error, which can cause metre-level range errors
(Heroux et al., 1993). The tropospheric errors are corrected by employing, for
example, the Saastamoinen model and mapping function (Saastamoinen, 1973). The
International GNSS Service (IGS) precise satellite orbit and clock products (IGS,
2009) are used to correct satellite orbit and clock errors. The site-displacement effects
are caused by the periodic movements of stations compared to the International
Terrestrial Reference Frame (ITRF) (Kouba, 2009a). They can be corrected using
site-displacement models to estimate correction terms and adding these to position
estimates. The antenna offsets and variations can be corrected using corrections in the
Antenna Exchange Format (Kouba, 2009a). The satellite antenna phase wind-up
correction can be calculated based on the phase centre coordinates of the receiver and
satellite antennae (Wu et al., 1992).
Carrier-phase ambiguities are estimated as float numbers. According to Bisnath and

Gao (2007), it may take 30 minutes, or more, depending on the processing scenario, to
obtain static 3D position solution accuracy better than 10 cm.
A key issue with traditional PPP models is that they do not fix carrier-phase

ambiguities to integers because of Fractional Cycle Biases (FCB) or Un-Calibrated
Phase Delay (UPD) errors in GNSS carrier-phase signals. This issue has recently been
addressed by Geng et al. (2010) through the FCB estimation method and Collins
(2008) and Laurichesse et al. (2011) through the Integer Recoverable Clock (IRC)
method. To date these two methods are the main fixed ambiguity PPP approaches for
the GPS-only scenarios. The principle of the FCB estimation method is to use a global
reference network to estimate narrow-lane FCB corrections. The narrow-lane, which
has a wavelength of 10·7 cm, is a combination of GNSS L1 and L2 measurements
(Collins, 2008). The calculation of it is explained later in this paper. These FCB
corrections are applied at the user-level when narrow-lane ambiguity resolution is
carried out. In contrast, in the IRC method, FCB corrections are not needed for
narrow-lane ambiguity resolution because a carrier-phase reference network solution
is employed when estimating satellite clock corrections.
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The main weakness of the current GPS fixed ambiguity PPP methods above is the
long time period (30 to 60 minutes) required to obtain an initial ambiguity fixed
position solution (Geng et al., 2010; Laurichesse, 2011). Other issues include: lack of
an appropriate ambiguity validation method and of integrity monitoring, and
insufficient performance for centimetre-level position accuracy. These additional
issues are addressed by the GPS-only PPP model presented in Jokinen et al. (2012).
However, the length of time required to obtain the initial ambiguity fix is still an open
issue (Jokinen et al., 2012).
It is shown in Jokinen et al. (2011) that employing both GPS and GLONASS

can reduce the PPP float solution convergence time compared to GPS alone in some
cases. Reussner and Wanninger (2011) showed that GLONASS ambiguity resolution
in the case of PPP could be used, in a geometry-dependent way, by using external
ionosphere corrections. According to their work, solving GLONASS ambiguities
is not possible in a geometry-free way as in the case of fixed ambiguity GPS
PPP, because receiver specific code biases make it impossible to use the Melbourne-
Wubbena combination to estimate wide-lane float ambiguities (Melbourne, 1985,
Wubbena, 1985). Furthermore, Reussner and Wanninger (2011) showed that
calibrating the code biases is difficult because of receiver specific variations. In
addition, calibration of GLONASS inter-channel phase biases is required (Reussner
and Wanninger, 2011). For these reasons, solving GLONASS carrier-phase
ambiguities in the case of PPP is a difficult task. On the other hand, employing both
GLONASS and GPS measurements when estimating a float position solution is
straightforward and should provide performance benefits.
This paper builds on the work on the combined usage of GPS and GLONASS

measurements for PPP to propose a new method for employing GLONASS to
facilitate the resolution of GPS integer ambiguities. Section 2 describes the GPS/
GLONASS PPP method developed, focussing on error models and corrections, as
well as GPS ambiguity resolution and validation. Section 3 presents the test results
and Section 4 concludes the paper.

2. PPP METHOD
2.1. Error models and corrections. The French Space Agency (CNES) satellite

orbit and clock corrections are employed both for GPS and GLONASS satellites
(CNES, 2012). There are no FCB errors in the GPS satellite clock corrections because
they are generated by employing a carrier-phase network solution (Laurichesse, 2011).
In contrast, the GLONASS satellite clock corrections are generated in the usual way
by employing a code-phase network solution (CNES, 2012). The CNES satellite clock
and orbit corrections are generated in real time. Therefore, the results presented in this
paper, although post-processed, give a good indication of real-time (epoch by epoch)
positioning performance.
The standard deviation of the CNES GPS satellite clock corrections is 0·12 ns,

which is equivalent to 3·6 cm, and the 3D accuracy of CNES GPS orbit corrections is
better than 5 cm on average (Laurichesse, 2011). The satellite orbit error in the radial
direction is significantly smaller than the 3D orbit error (Laurichesse et al., 2008).
According to Laurichesse (2011), the accuracy of CNES GPS orbit and clock
corrections is sufficient to enable GPS narrow-lane ambiguity resolution. For the
CNES GLONASS satellite orbit and clock corrections, accuracy estimates are not
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available in the public domain. Therefore, it is assumed that the accuracy of
GLONASS orbit and clock corrections is worse than of GPS orbit and clock
corrections.
The antenna phase centre offsets and variations can cause decimetre-level errors

and therefore must be corrected in PPP (Abdel-salam, 2005). Both the receiver and
satellite antenna phase centre offsets and variations are therefore, corrected by
employing corrections in the ANTEX 1.4 format provided by IGS (IGS, 2009).
According to Kaplan and Hegarty (2006), the magnitude of the total tropospheric

delay can typically vary between 2·4 m and 25 m, depending on the satellite elevation.
The tropospheric delay is corrected using the UNB3m troposphere model (Leandro
et al., 2006) and the Global Mapping Function (GMF) (Boehm et al., 2006). The
dry component is corrected directly by employing the UNB3m model. The wet
component is mapped to the range domain by employing GMF, and estimated as a
state in an Extended Kalman Filter (EKF). Tropospheric gradients to the north
and east directions are also estimated as states. The Chen mapping function as
shown in (1), is used to map tropospheric gradient to the range domain (Chen and
Herring, 1997).

m(ε)azi =
1

sin ε cos ε+ 0·0032 (1)

where ε is the elevation angle of the satellite.
The total tropospheric delay correction is calculated as:

dtrop = m(ε)hdh +m(ε)wdw +m(ε)azi(GN cos ϕ+ GE sin ϕ) (2)
Where:

ϕ is the azimuth angle of the satellite
m(ε)h is the tropospheric dry delay mapping function
dh is the tropospheric dry delay
m(ε)w is the tropospheric wet delay mapping function
dw is the tropospheric wet delay
m(ε)azi is the tropospheric gradient mapping function
GN is the tropospheric gradient value to the north direction and
GE is the tropospheric gradient value to the east direction.

C1/P1 and C2/P2 Differential Code Biases (DCB) are biases between C1 and P1 or
C2 and P2 code-phase measurements. When C1 or C2 measurements are used, the
biases must be corrected because CNES precise orbit and clock corrections refer to P1
and P2 measurements. The correction of the biases is done using products from the
Centre for Orbit Determination in Europe (CODE) (Dach et al., 2007). DCB
corrections are provided as monthly files because they are fairly stable. For example,
the approximate day by day reproducibility of C1/P1 DCB is 1·5 cm (RMS). In the
case of PPP, correcting DCB is particularly important when employing the
Melbourne-Wubbena combination (see section 2.2.1) to estimate wide-lane ambi-
guities, because the impact of DCBs can be up to 1·2 m or 1·4 wide-lane cycles. (Dach
et al., 2007).
The satellite phase wind-up correction is calculated based on the receiver antenna

and satellite antenna phase centre coordinates (Wu et al., 1992).The wind-up effect
can cause errors smaller than one cycle. Satellites which are in the eclipsing phase are
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excluded because it is not possible to model their yaw attitude accurately (Kouba,
2009b).
The first order ionospheric error is eliminated by employing the ionosphere-free

measurement combination, with higher order terms ignored due to their relatively
small contributions to the range error. The higher order ionospheric error terms can
cause an error of a few centimetres for satellites at low elevation angles, if the
ionosphere is highly active (Dach et al., 2007).
To obtain centimetre-level positioning accuracy, site displacement effects need to be

corrected (Dach et al., 2007). In particular, solid earth tides can cause significant
position errors, typically 30 cm in the radial direction and 5 cm in the horizontal
direction (Kouba, 2009a). Solid earth tides, ocean loading and pole tides are corrected
by employing models presented in Kouba (2009a). The atmospheric pressure loading
effect can occasionally cause centimetre-level vertical errors (Urquhart, 2009), which
are considered insignificant and therefore ignored in this paper.
Multipath and Non-Line-Of-Sight (NLOS) errors as in Kaplan and Hegarty (2006)

are dealt with using elevation-based measurement weighting and detection using
integrity monitoring.
Cycle slip detection is carried out before using measurements to the position

estimation, and is based on detecting changes in the ionospheric Total Electron
Content (TEC) Rate (TECR) and the Melbourne–Wubbena Wide Lane (MWWL)
ambiguity between the current and previous measurement epochs (Liu, 2011). When
there is no cycle slip, both TECR and MWWL differences between the epochs are
small.
If a cycle slip occurs, a cycle slip correction method, mainly based on work

presented in Banville and Langley (2009), is applied. The magnitude on the L1 and L2
measurements is estimated based on the change of geometry-dependent wide-lane
ambiguity and TECR between the current and previous epochs. Cycle slips are
corrected based on these estimated values. The geometry-dependent wide-lane is used
for cycle slip correction instead of MWWL because the geometry dependent wide-
lane has smaller multipath and noise. Cycle slip corrections are validated by checking
TECR and geometry-dependent wide-lane difference between the current and
previous epochs. The cycle slip correction is rejected if the validation test is not passed.

2.2. GPS ambiguity resolution and validation. The Between-Satellite-Difference
(BSD) operation is used to remove receiver clock error and receiver side FCB from the
measurements by differencing the GPS code-phase measurements, as shown in
equation (3), and carrier-phase measurements, as shown in equation (4). The highest
elevation satellite is chosen as a base-satellite and the measurements of the base-
satellite are subtracted from the measurements of other satellites. The BSD was
previously used in the FCB estimation by Geng et al. (2010). In this paper, BSD
measurements are used together with the IRC fixed-ambiguity PPP method. Un-
differenced GLONASS measurements are used.
The terms and notation used in the formulation of the relevant subsequent

mathematical expressions are:

F is the frequency band index of the received GPS or GLONASS signals. The
signal can be either on the L1 (index=1) or L2 (index=2) frequency band

f is the frequency of the GNSS signal in Hertz
f1 is GPS or GLONASS L1 frequency and
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f2 is GPS or GLONASS L2 frequency
CF is a GPS or GLONASS C-code observation on the frequency band F in metres
PF is a GPS or GLONASS P-code observation on the frequency band F in metres.

In the case of receivers providing C-code observations, P-code observations
can be obtained by employing DCB corrections

LF is a GPS or GLONASS carrier-phase observation on the frequency band F in
metres

j is the index of a base satellite
i is the index of a satellite (i≠ j)

Pij
F = Pi

F − Pj
F (3)

Lij
F = Li

F − Lj
F (4)

The ionosphere-free combination is calculated by using (5) for code-phase
measurements (P3) and (6) for carrier-phase measurements (L3) in metres.
Ionosphere-free ambiguity terms are estimated as Extended Kalman Filter (EKF)
states. The principle of Kalman filtering as originally presented in Kalman (1960) is to
minimise Gaussian noise in the system. However, it is not possible to solve for
ionosphere-free ambiguities directly because these ambiguities have a non-integer
nature (Geng et al., 2010). This can be seen in (7) where the ionosphere-free ambiguity
term (bc) is calculated based on the L1 ambiguity (N1) and L2 ambiguity (N2) terms.
The value of bc is not an integer, even whenN1 andN2 are fixed to integers. Therefore,
GPS ambiguity resolution is carried out in two stages: the wide-lane ambiguity is fixed
in the first stage and the narrow-lane ambiguity is fixed in the second stage.
GLONASS ambiguities are kept as float.

P3 = 1
( f 21 − f 22 )( f 21 P1 − f 22 P2)

(5)

L3 = 1
(f 21 − f 22 )(f 21 L1 − f 22 L2)

(6)

bc = 1
( f 21 − f 22 )( f 21 N1 − f1f2N2)

(7)

2.2.1. Wide-lane ambiguity resolution and validation. The Melbourne-Wubbena
combination in (8) is employed to estimate GPS wide-lane ambiguity float values
(Melbourne, 1985; Wubbena, 1985). The CNES wide-lane FCB corrections are
applied to the estimates to recover the integer nature of the wide-lane ambiguities
(Laurichesse, 2011). Thereafter, the estimates are fed to the EKF to filter out
measurement noise. Using the EKF instead of averaging Melbourne-Wubbena wide-
lane ambiguities can be beneficial because wide-lane ambiguities are correlated with
each other. The correlation is due to the BSD operation on the measurements. It is
important to apply the same wide-lane corrections on the client side as used in the
generation of the IRC satellite clock corrections, otherwise wide-lane ambiguities
could be fixed to the wrong integers.

Li,j
6 = f1L

i,j
1 − f2L

i,j
2

f1 − f2
− f1P

i,j
1 + f2P

i,j
2

f1 + f2
(8)
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Wide-lane ambiguity resolution is achieved by rounding the float wide-lane
ambiguity estimate to the nearest integer value. The wide-lane integer ambiguity
candidates are validated by using the probability-based test presented in Dong and
Bock (1989). With this test, an ambiguity validation decision is based on the distance
from the nearest integer and the standard deviation of the float wide-lane estimate. It is
possible to use this simple method to fix wide-lane ambiguities because the wavelength
of the wide-lane ambiguities is long (86 cm) compared to the typical error budget.

2.2.2. Narrow-lane ambiguity resolution with the minimum constellation method.
The narrow-lane float ambiguity estimate (bnl

i,j) shown in (9) is calculated based on the
float ionosphere-free ambiguity estimate (bc(i, j)), from (7), and the fixed wide-lane
ambiguity (Nwl

i,j ) Geng et al., 2010).

bi,jnl =
f1 + f2
f1

bi,jc − f2
f1 − f2

Ni,j
wl (9)

The narrow-lane integer candidate vector is obtained by using the Least-squares
AMBiguity De-correlation Adjustment (LAMBDA) method (Jonge and Tiberius,
1996). With this method, the integer ambiguity least squares search is carried out by
using a transformation that de-correlates the ambiguities. At least four narrow-lane
float ambiguities are required before the LAMBDA method can be used. The
Minimum Constellation Method (MCM) developed in Schuster et al. (2012) and
adopted in Jokinen et al. (2012) is used when there are more than four float
ambiguities available.
The principle of the MCM is to attempt ambiguity resolution with all possible sub-

set combinations of float ambiguities if the full-set cannot be used. For example, if
there are five narrow-lane float ambiguities available, ambiguity resolution can be
attempted for one five-satellite group and five four-satellite groups. The benefit of
employing the MCM is the achievement of fast initial ambiguity resolution
by exploiting measurement sub-sets that have the required quality and geometry
conditions. (Jokinen et al., 2012).
To reduce the amount of computational power required, narrow-lane ambiguity

groups consisting of low elevation satellites (below 15°) or narrow-lane ambiguity
groups with high Position Dilution Of Precision (PDOP) can be excluded when there
are more than nine narrow-lane ambiguities available. Nine is empirically selected as
the critical value for the number of combinations to test because the required
computation time increases significantly when the number of ambiguity combinations
increases. Nine is chosen as the threshold because the data processing would otherwise
take too long to be practical. For example, there are 126 four ambiguity groups to test
when there are nine float narrow-lane ambiguities available. The number increases to
210 when there are ten float narrow-lane ambiguities available.

2.2.3. Narrow-lane ambiguity validation. Narrow-lane ambiguity validation is
carried out using the ratio test in (10), where R2 is the Sum of Squared Errors (SSE) of
ambiguity residuals of the second most probable ambiguity candidate vector. R1 is the
SSE of the most probable ambiguity candidate vector. These vectors are calculated as
shown in (11),

R2

R1
. threshold (10)
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Ri = (â− ǎi)TG−1
â (â− ǎi) (11)

where: â is the float ambiguity vector
ǎi is an integer ambiguity candidate vector and
Gâ is the variance matrix of the float ambiguity vector
The fixed ambiguity candidate vector is accepted if R2

R1
is larger than the test

threshold. The ratio test does not test the absolute correctness of the fixed ambiguity
candidate vector. Instead it provides information on the closeness of the integer
ambiguity candidate vector to the float ambiguity vector. Therefore, the integer
ambiguity candidate vectors accepted could be incorrect if the float ambiguity vector
is incorrect, for example, as a result of multipath or other measurement errors.
(Teunissen and Verhagen, 2008)
An empirically chosen constant ratio test threshold value such as 1·5 or 3·0 is used in

many RTK and PPP software packages. However, there is no credible theoretical or
practical justification for the use of a constant threshold. For higher reliability
ambiguity validation, the ratio test threshold can be calculated based on the required
confidence level and the degrees of freedom. (Feng et al., 2012)
It is assumed that the residuals of integer ambiguity candidate vectors obey the non-

central chi-square distribution shown in (12) where:

n is the number of degrees of freedom (i.e. the number of float narrow-lane
ambiguities in the candidate vector)

δi is the non-central parameter and
i is the frequency index (i.e. either 1 or 2).

Both the numerator and denominator of the ratio test statistics obey the non-central
chi-square distribution shown in (13). Therefore, the ratio test statistics obey the
double non-central F-distribution shown in (14), where (δ1,δ2) are the parameters of
the F-distribution, if it is assumed that R1 and R2 are independent. (Feng et al., 2012)

Ri

nσ2
= χ(n, δi) (12)

R2

R1
= R2/(nσ2)

R1/(nσ2) (13)

R2

R1
� F (n, n, δ2, δ1) (14)

The ratio test threshold value can be obtained by solving numerically the integral
shown in (15) (Feng et al., 2012). The calculation is based on the number of degrees of
freedom (n) and the required confidence level (Pc). In the case of a practical software
implementation, there is no need to calculate this integer as shown in (15) in real-time.
A table of ratio test thresholds for different combinations of confidence levels and
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degrees of freedom can be included in the software.

Pc =
∫
R2

R1

0

F (x|n, n; δ2, δ1)dx (15)

2.2.4. Making wrong ambiguity resolution less likely. As presented in the
previous section, the ratio test provides information about the closeness of an integer
ambiguity candidate vector to the float ambiguity vector. However, it does not
validate the correctness of the float ambiguity vector.
Figure 1 shows an example of wrong ambiguity resolution, which occurs when the

float position solution is still converging. In this case, the ratio test alone is used with a
confidence level threshold of 99·99% to validate the ambiguities. The values of fixed
and float ambiguities at the initial ambiguity resolution epoch are shown in Table 1. It
can be seen that the float ambiguity values are close to integers. Thus, the ratio test
accepts the fixed ambiguity candidate vector with the test statistic value of 24·93, when
the threshold is 24·06. However, the float ambiguity values are far from the correct
values, because the float position solution is still converging. The correct float
ambiguity values correspond to when the magnitude of the position error is zero.
However, it not possible to know the exact correct float ambiguity values when using
real data. Thus, it is assumed that float ambiguities are far from the correct values
when the position error is large (3D error more than 10·7 cm). In summary, this case

Figure 1. 3D position error in the case of fixing ambiguities wrongly.
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shows that wrong ambiguity resolution may occur when using the ratio test alone and
the float ambiguities are far from the correct values.
To reduce the likelihood of a wrong ambiguity resolution, additional validation is

required to complement the ratio test.
When employing MCM, there may be more than one ambiguity candidate vector

accepted by the ratio test. Therefore, the best ambiguity candidate vector has to be
determined, based on the following criteria established in this paper: the largest
number of fixed ambiguities in the vector and the highest ratio test statistic.
Thereafter, it is required that the best ambiguity candidate vector is the same over a
given number of epochs consecutively, and that the ambiguities belonging to the
vector can be fixed to the same integers during the chosen time-period. In this paper,
30 epochs are used as an empirically chosen threshold in the decision to accept or not
the ambiguity resolution. The theory behind this test is that the float ambiguity values
are changing when the float solution is converging. Thus, if for 30 epochs (150 s with
5 s data-rate) the best ambiguity candidate vector is the same and ambiguities in the
vector are fixed to the same values, then it is less likely that float ambiguities have
not converged to the correct values and are close to the nearest integer. The value of
30 epochs is selected based on testing ambiguity resolution with different values such
as 10, 20, 30 and 40 and selecting the value which gives a good compromise between
the reliability and rapidity of ambiguity resolution.
With the LAMBDA method, the number of float narrow-lane ambiguities in a

vector must be at least four. However, in this paper at least five ambiguities are
required. This is because it is less likely that five ambiguities are close to wrong integers
than four ambiguities when the float position solution is far from the correct position.
The probability that all float ambiguities are close to wrong integers decreases as the
number of the ambiguities tested increases.
A five degree elevation mask is used in this paper. However, ambiguity resolution is

only attempted for an ambiguity term when the elevation angle for the satellite is at
least ten degrees. The reason for this selection is that it is beneficial to use low elevation
satellites in the calculation to improve tropospheric error estimation. However,
ambiguity resolution for low elevation satellites, particularly for satellites below
10 degrees, is risky because of the increased likelihood of multi-path errors.
When employing the confidence level-based ratio test, the ratio test statistic must

be larger than the threshold for the integer ambiguity candidate vector to be
accepted. A confidence level threshold value of 99·99% is used during the float
solution convergence period and 99·9% is used otherwise. The solution is defined to be
in the convergence period when the longest carrier-phase lock time is smaller than

Table 1. Ambiguity values in a wrong ambiguity resolution case.

Satellite Base satellite Float ambiguity value Fixed ambiguity value
Pseudo random
Noise (PRN) Code

Pseudo random
Noise (PRN) Code

(Narrow-lane
cycles)

(Narrow-lane
cycles)

2 13 −87·86 −88
20 13 −99·11 −99
16 13 −53·15 −53
23 13 −77·04 −77
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2000 seconds. The reason for using the higher ratio test confidence threshold during
the float solution convergence period is that the position error is typically larger during
this period. Thus, it is more likely that float ambiguities are close to wrong integers.
The choice of ambiguity validation parameters is a trade-off between the rapidity

and reliability of ambiguity resolution. For example, it is possible to obtain ambiguity
resolution in a short period of time (e.g. less than 500 seconds) under favourable
conditions if using less strict ambiguity validation parameters than used in this paper.
However, the probability of wrong ambiguity resolution is then also higher.

2.2.5. Calculating the ambiguity fixed position solution. After the
integer ambiguity candidate is accepted by the ratio test, fixed ionosphere-free
ambiguity (bc

i,j) values are calculated based on the fixed wide-lane and narrow-
lane ambiguities as shown in (16) (Geng et al., 2010). It is not possible to fix
ionosphere-free ambiguities to integer values but the ionosphere-free ambiguities can
be fixed to float values. In this paper, an initial fixed ambiguity position solution is
defined as a fix of at least four ionosphere-free ambiguities.

bi,jc = f1
f1 + f2

(Ni,j
nl ) +

f1f2
f 21 − f 22

Ni,j
wl (16)

2.2.6. The benefit of adding GLONASS. In this paper, both GPS and
GLONASS measurements are used when estimating the float position solution.
Using GLONASS measurements in addition to GPS measurements can improve float
position solution convergence in many cases as presented in Jokinen et al. (2011). The
reasons for the improvement are better satellite geometry and the larger number of
measurements available, which can help, for example, tropospheric error estimation.
The narrow-lane ambiguity resolution is largely affected by the accuracy of the float
position solution. Therefore, ambiguity resolution performance can be improved
by employing GLONASS measurements in those cases where the use of GLONASS
improves the quality of the float position solution.

2.3. The Extended Kalman Filter (EKF). The principle of the Kalman filter was
originally presented in Kalman (1960). Kalman filters are commonly applied in
navigation to filter out measurement noise, which is typically assumed to be Gaussian
distributed. In this paper, an EKF similar to that in Feng et al. (2009) is employed.
The estimated EKF states are latitude, longitude, altitude, GLONASS receiver clock
error, tropospheric wet delay, tropospheric gradients to the east and north directions,
GPS and GLONASS ionosphere-free ambiguities and GPS wide-lane ambiguities.
The EKF is updated separately with BSD GPS and un-differenced GLONASS

measurements. The standard deviation of GPS carrier-phase measurements is
obtained based on (17), where a is 0·003 m, b is 0·003 m and el is the elevation angle
of the satellite. The formula and the values of the GPS measurement standard
deviations are similar to those used in the RTKLIB software (Takasu, 2012). It is
assumed that standard deviations are 100 times larger for GPS code-phase
measurements than for GPS carrier-phase measurements. It is also assumed that the
quality of GLONASS orbit and clock corrections is worse than the GPS clock and
orbit corrections. Thus, the magnitude of the GLONASS measurement standard
deviation is set as larger than for GPS measurements. The standard deviation of
GLONASS carrier-phase measurements is set at three times the GPS carrier-phase
measurements. For GLONASS code-phase measurements, the standard deviation is
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set at 20 times the GPS code-phase measurements. In addition, there are no separate
code-phase and carrier-phase satellite clock corrections for GLONASS and there can
be inter-channel code-biases in GLONASS code-phase measurements. This is another
reason why GLONASS code-phase measurements are significantly underweighted
against GPS code-phase measurements.

std = a+ b
sin(el) (17)

3. TEST RESULTS. The effect of using both GPS and GLONASS compared
to using GPS alone is analysed. The first aim is to test the effect of using a combined
float position solution when attempting GPS ambiguity resolution against a float
position solution obtained by GPS only.
All tests presented in this paper are carried out with the iNsight project (http://www.

insight-gnss.org/) POINT software. The POINT software is programmed in C/C++
and is flexible in its configuration to test different positioning scenarios.

3.1. Test data. Static GNSS data recorded by IGS is used to test ambiguity
resolution algorithms. Originally recorded at 1 Hz the data were resampled to
5 seconds to match the rate of the satellite clock correction products. A five degree
satellite elevation mask is used for these tests. Data from 12 different stations recorded
on 10 different days (30–31 December 2011, 2–6 January 2012 and 10–12 February
2012) are used. The codes of the IGS stations used are: BRST, HERT, KIR0, LAMA,
MARS, MATE, SASS, SOFI, TITZ, UNB3, WTZR and ZIM2.

3.2. Ambiguity resolution. The average times required to obtain an initial
ambiguity resolution with GPS-only and the combination of GPS and GLONASS
are computed and compared. Initial ambiguity resolution is defined as the fixing of at
least four integer narrow-lane carrier-phase ambiguities. A position error at the initial
ambiguity resolution epoch is obtained by comparing coordinates estimated by the
POINT software to the known International Terrestrial Reference Frame (ITRF)
2008 coordinates of the stations. For the ZIM2 and TITZ stations, the known
coordinates are provided by the GNSS Data Centre (GDC) as in GDC (2012). For
the remainder of the stations, the known coordinates are provided by ITRF (2012).
The estimated accuracy of the station coordinates provided by GDC and ITRF is
at the millimetre level, enabling the investigation of the accuracy of the position
solutions provided by POINT.
Figure 2 shows the average time required to obtain ambiguity resolution on

different days. Results suggest that combining GPS with GLONASS reduces, on
average, the time required to obtain the initial ambiguity resolution compared to the
GPS-alone scenario on all ten days. Depending on the day, the magnitude of
reduction is between 15 and 230 seconds. Figure 3 shows the average time needed for
initial ambiguity resolution at different stations. It can be seen that the average time is
lower at ten different stations in the GPS/GLONASS case. The largest reduction of
589 s is obtained when processing data from the SASS station. The station specific
differences in the average time may depend on the receiver and antennae used, as
well as the local tropospheric conditions. It can be seen from Figure 4 that using
GLONASS with GPS results in an initial ambiguity resolution time 5% shorter when
averaged over all stations and days tested. In general, it can be seen that using both
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Figure 2. Average time for initial ambiguity resolution for different days over all stations (standard
deviation shown by bars).

Figure 3. Average time for initial ambiguity resolution at different stations over all tested time
periods (standard deviation shown by error bars).

Figure 4. Average time for initial ambiguity resolution for all tests (standard deviation shown by
error bars).
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GPS and GLONASS gives a small reduction in the time required to fix ambiguities.
Although the reduction is small it is beneficial given that adding GLONASS to the
processing can be done at little additional cost, because most modern professional
GNSS receivers already support GLONASS. The standard deviations of the time
required to obtain an initial ambiguity resolution are shown by error bars.
Ambiguities can be fixed for all tested days and stations when RINEX data are
available, using both the GPS-only and GLONASS with GPS processing models.
The average horizontal position errors on different days are shown in Figure 5 and

for different stations in Figure 6. In terms of the average horizontal position error,
using GPS with GLONASS gives a smaller or equal average error for the data on eight
of the days analysed (between 0 and 0·3 cm) and for nine stations (between 0 and
0·2 cm). The largest increase of 0·2 cm to the average horizontal position error caused
by using both GPS and GLONASS occurs on 31 June 2011. The horizontal position
error is larger in the MARS, SASS, WTZR and ZIM2 stations when employing both
GPS and GLONASS. There may be problems with GLONASS orbit and clock
corrections for some of the satellites. Thus, the horizontal error is larger in some
stations. In general, the difference in the average horizontal error in the different
processing cases is small (between 0 and 0·3 cm).

Figure 6. Average horizontal position errors – different stations – all time-periods (standard
deviation shown by error bars).

Figure 5. Average horizontal position errors – different days – all stations (standard deviation is
shown by error bars).
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The average vertical position errors on different days are shown in Figure 7. It can
be seen that using GLONASS with GPS reduces the average horizontal error on all
the days tested, varying between 0·1 cm and 1·4 cm. The vertical position error at
different stations is shown in Figure 8. It can be seen that using GPS with GLONASS
gives smaller or equal vertical errors in all stations except WTZR. In the WTZR
station, using GPS with GLONASS causes a 0·4 cm increase in the average vertical
error compared to using GPS alone. There are many possible reasons which may
cause the increase: the worse quality of GLONASS orbit and clock correction
products, accuracy of site-displacement corrections, partially wrong ambiguity
resolution, incorrect tropospheric modelling and incorrect input parameters for the
tropospheric model. In the other stations, using GLONASS with GPS reduces the
average vertical error between 0 and 1·5 cm.
Figure 9 shows the average 3D, horizontal and vertical position errors based on all

data tested. It can be seen that using GLONASS with GPS reduces the average 3D
error by 11%, horizontal error by 4% and vertical error by 17%.
In general, it can be seen that using GLONASS with GPS gives benefits for fixed-

ambiguity PPP processing by reducing the time required for the initial ambiguity

Figure 7. Average vertical position errors on different days over all stations (standard deviation
shown by error bars).

Figure 8. Average vertical position errors at different stations over all tested time-periods
(standard deviation shown by error bars).
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resolution, and by increasing accuracy. The average reduction in time to initial
ambiguity resolution is 5%, in the horizontal error (at initial ambiguity resolution
epoch) 4% and in the vertical error (at initial ambiguity resolution epoch) 17%, based
on the all data tested. It is likely that smaller vertical errors are obtained due to the
increase in the number of satellites, which helps tropospheric error estimation, when
using both GPS and GLONASS. On the other hand, the horizontal errors are not
reduced as much as the vertical errors because the increased number of satellites due
to adding GLONASS does not provide a significant benefit to the horizontal error
estimation. In addition, the quality of the GLONASS satellite orbit predictions may
not be as good as the quality of the GPS satellite orbit predictions, which can cause a
negative impact to the horizontal error estimation.
Using both GPS and GLONASS for processing is particularly useful in terms of

reducing the vertical position error. The reduction of the time needed to obtain the
initial ambiguity resolution and horizontal position error is less significant. However,
the cost of adding GLONASS to the processing is small, because most modern
professional GNSS receivers can already provide both GPS and GLONASS
measurements. Thus, the method of aiding GPS PPP ambiguity resolution with
GLONASS is suitable for common use.

4. CONCLUSIONS. A novel PPP method which uses GLONASS to aid GPS
ambiguity resolution is presented in this paper. Between-Satellite-Difference (BSD)
GPS measurements and un-differenced GLONASS measurements are used. The
resolution of GPS carrier-phase ambiguities is attempted and GLONASS carrier-
phase ambiguities are kept as float numbers. The minimum constellation method is
used to reduce the time required to obtain an initial ambiguity resolution. Ambiguity
validation is carried out by employing the ratio test with a confidence level based
variable threshold and additional validation methods, presented in this paper.
PPP ambiguity resolution is tested for two cases: GPS only and the combination of

GPS with GLONASS. The results show that using both GPS and GLONASS can help
reduce the time needed to achieve initial GPS ambiguity resolution by approximately
5% and reduce vertical and horizontal position errors at the initial ambiguity
resolution epoch by approximately 17% and 4%, respectively.

Figure 9. Average 3D, horizontal and vertical errors based on all data tested (standard deviation is
shown by error bars).
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Future work will investigate PPP with new GNSS signals. These may help reduce
the time needed for initial ambiguity resolution. In addition, future work can include
the developing and testing of integrity monitoring algorithms.
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