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Abstract

Let K be a finite unramified extension of Qp. We parametrize the (ϕ, Γ)-modules
corresponding to reducible two-dimensional Fp-representations of GK and characterize
those which have reducible crystalline lifts with certain Hodge–Tate weights.

Contents

1 Introduction 376
2 Generalities on p-adic representations 377

2.1 Fontaine’s rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
2.2 Crystalline representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
2.3 (ϕ, Γ)-modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
2.4 Wach modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

3 Rank one modules 384
3.1 A parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
3.2 Lifts in characteristic zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

4 Bases for the space of extensions 388
4.1 Construction of Bi when ci < p− 1 . . . . . . . . . . . . . . . . . . . . . . 389
4.2 Construction of Bi when ci = p− 1 . . . . . . . . . . . . . . . . . . . . . . 392
4.3 Linear independence of the [Bi] . . . . . . . . . . . . . . . . . . . . . . . . . 394

5 The space of bounded extensions 396
5.1 Bounded extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
5.2 Generic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
5.3 Case f = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

6 Exceptional cases 406
6.1 Cyclotomic character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
6.2 Trivial character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
6.3 Case p= 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

7 Crystalline ⇒ bounded 413
7.1 The extension lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
7.2 Extensions of rank one modules . . . . . . . . . . . . . . . . . . . . . . . . 416
7.3 Generic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
7.4 Case f = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

Acknowledgements 426
References 426

Received 10 September 2009, accepted in final form 26 April 2010, published online 13 December 2010.
2000 Mathematics Subject Classification 11S25 (primary).
Keywords: p-adic representations, crystalline representations, (ϕ, Γ)-modules, Wach modules.
This journal is c© Foundation Compositio Mathematica 2010.

https://doi.org/10.1112/S0010437X1000504X Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X1000504X


S. Chang and F. Diamond

1. Introduction

Buzzard, Jarvis and one of the authors [BDJ10] have formulated a generalization of Serre’s
conjecture for mod pGalois representations over totally real fields unramified at p. To give a recipe
for weights, certain distinguished subspaces of local Galois cohomology groups in characteristic p
are defined in terms of the existence of ‘crystalline lifts’ to characteristic zero. More precisely, let
K be a finite unramified extension of Qp with residue field k, F a finite extension of Fp containing
k, ψ :GK → F× a character, and denote by S the set of embeddings of k in F. For each J ⊂ S,
they define a subspace (or in certain cases two subspaces) of H1(GK , F(ψ)), which we denote
LJ (or L±J ); with certain exceptions these subspaces have dimension |J | (see Remark 7.7 below
for the relation between our notation and that of [BDJ10]). The definition of these subspaces
in terms of crystalline lifts is somewhat indirect, making it hard for example to compare the
spaces LJ for different J . Viewing the specification of the weights in terms of a conjectural
mod p Langlands correspondence as in [BDJ10, § 4], such a comparison provides information
about possible local factors at primes over p of mod p automorphic representations (see [Bre09]).

The aim of this paper is to describe them more explicitly using Fontaine’s theory of (ϕ, Γ)-
modules. In particular, we prove that, if ψ is generic, as defined in § 5.2, then the subspaces are
well-behaved with respect to J in the following sense.

Theorem 1.1. If ψ is generic and ψ|IK 6= χ±1 where χ is the mod p cyclotomic character, then
LJ =

⊕
τ∈J L{τ}.

We remark that Theorem 1.1 has been proved independently by Breuil [Bre09,
Proposition A.3] using different methods. We also treat the case where ψ|IK = χ±1; see
Theorem 7.8 below for the statement.

We also give a complete description of the spaces LJ (and L±J ) in terms of (ϕ, Γ)-modules when
K is quadratic, without the assumption that ψ is generic. In particular, we prove the following
theorem, which exhibits cases where the spaces LJ are not well-behaved as in Theorem 1.1.

Theorem 1.2. Suppose that [K : Qp] = 2 and that ψ is ramified. Writing S = {τ, τ ′}, we have
L{τ} = L{τ ′} if and only if ψ|IK = ωi2 for some fundamental character ω2 of niveau 2 and some
integer i ∈ {1, . . . , p− 1}.

This is part of Theorem 7.12 below; see also Theorem 7.15 for the case when ψ is unramified.
The paper is organized as follows. In § 2 we review preliminary facts on p-adic representations

and (ϕ, Γ)-modules, and set up the category of étale (ϕ, Γ)-modules (corresponding to F[GK ]-
modules) in which we will be working. In § 3 we give a parametrization of rank one objects in
the category, and identify them as reductions of crystalline characters of GK using results of
Dousmanis [Dou08]. In § 4 we construct bases for the space of extensions of rank one objects.
(In a different but related direction, see [Her98, Her01, Liu08] for computation of p-adic Galois
cohomology via (ϕ, Γ)-modules.) In § 5 we introduce the notion of bounded extensions, motivated
by the theory of Wach modules, which characterizes those (ϕ, Γ)-modules corresponding to
crystalline representations (see [Ber02, Ber04b, Wac96, Wac97]), and use this to define subspaces
V

(±)
J , which we compute in the generic and quadratic cases. In § 6 we treat certain exceptional

cases excluded from §§ 4 and 5. In § 7 we relate the spaces L(±)
J and V

(±)
J in the generic and

quadratic cases and prove our main results. We remark that a difficulty arises from the fact
that the integral Wach module functor is not right exact; to overcome this we derive sufficient
conditions for exactness that may be of independent interest.
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Extensions of rank one (ϕ, Γ)-modules

2. Generalities on p-adic representations

In this section we summarize (and expand a bit upon) basic facts on p-adic representations,
crystalline representations, (ϕ, Γ)-modules and Wach modules. We will give references for details
and proofs along the way. For an excellent general introduction to the theory, see [Ber04a].

Let p be a rational prime and fix an algebraic closure Qp of Qp. If K is a finite extension of
Qp contained in Qp, GK denotes the Galois group Gal(Qp/K) and K0 denotes the absolutely
unramified subfield of K. Let χ :GK → Z×p be the cyclotomic character and let ·̄ : Zp→ Fp be
the reduction modulo p, so that χ= ·̄ ◦ χ :GK → F×p is the mod p cyclotomic character. We set
Kn =K(µpn)⊂Qp for n> 1, and get a tower of fields

K =K0 ⊂K1 ⊂ · · · ⊂Kn ⊂ · · · ⊂K∞ ⊂Qp,

where K∞ =
⋃
n>1 Kn. We define HK to be the kernel of χ, i.e., HK = Gal(Qp/K∞), and set

ΓK =GK/HK = Gal(K∞/K). In many cases where there is no possibility of confusion, we will
simply write Γ for ΓK , suppressing K. We set Γn = ΓK,n = Gal(K∞/Kn) for n> 1.

2.1 Fontaine’s rings
Here we give a summary of the constructions of some of the rings introduced by Fontaine that we
will be using. See [CC98, Col99, Fon94a] for more details. Let Cp denote the p-adic completion
of Qp and vp the p-adic valuation normalized by vp(p) = 1. The set

Ẽ = lim←−
x7→xp

Cp = {x= (x(0), x(1), . . .) | x(i) ∈Cp, (x(i+1))p = x(i)},

together with the addition and the multiplication defined by

(x+ y)(i) = lim
j→∞

(x(i+j) + y(i+j))p
j

and (xy)(i) = x(i)y(i),

is an algebraically closed field of characteristic p, complete for the valuation vE defined by
vE(x) = vp(x(0)). We endow Ẽ a Frobenius ϕ and the action of GQp by

ϕ((x(i))) = ((x(i))p) and g((x(i))) = (g(x(i)))

if g ∈GQp . We denote the ring of integers of Ẽ by Ẽ+; it is stable under the actions of ϕ and GQp .
Let ε= (1, ε(1), . . . , ε(i), . . .) be an element of Ẽ such that ε(1) 6= 1, so that ε(i) is a primitive
pith root of unity for all i> 1. Then vE(ε− 1) = p/(p− 1) and EQp is defined to be the subfield
Fp((ε− 1)) of Ẽ. We define E to be the separable closure of EQp in Ẽ, and Ẽ+ (respectively mE)
to be the ring of integers (respectively the maximal ideal) of E+. The field E is stable under the
action of GQp and we have EHQp = EQp . The theory of the field of norms shows that EK := EHK

is a finite separable extension of EQp of degree |HQp/HK |= [K∞ : Qp(µp∞)] and allows one to
identify Gal(E/EK) with HK . The ring of integers of EK is denoted by E+

K .

Let Ã =W (Ẽ) be the ring of Witt vectors with coefficients in Ẽ and let B̃ = Ã[1/p] = Fr(Ã).
Then B̃ is a complete discrete valuation field with ring of valuation Ã and residue field Ẽ. If
x ∈ Ẽ, [x] denotes Teichmüller representative of x in Ã. Then every element of Ã can be written
uniquely in the form

∑
i>0 p

i[xi] and that of B̃ in the form
∑

i�∞ pi[xi]. We endow Ã with the
topology that makes the map x 7→ (xi)i∈N a homeomorphism Ã→ ẼN, where ẼN is endowed
with the product topology (Ẽ is endowed with the topology defined by the valuation vE). We
endow B̃ =

⋃
i∈N p−iÃ with the topology of inductive limit. The action of GQp on Ẽ induces

continuous actions on Ã and B̃ that commute with the Frobenius ϕ. Let π = [ε]− 1. Define AQp
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to be the closure of Zp[π, π−1] in Ã. Then

AQp =
{∑
i∈Z

anπ
i

∣∣∣∣ ai ∈ Zp, ai→ 0 as i→−∞
}

and AQp is a complete discrete valuation ring with residue field EQp . As

ϕ(π) = (1 + π)p − 1 and γ(π) = (1 + π)χ(g) − 1 if g ∈GQp ,

the ring AQp and its field of fractions BQp = AQp [1/p] are stable under ϕ and the action of
GQp . Let B be the closure of the maximal unramified extension of BQp contained in B̃, and set
A = B ∩ Ã, so that we have B = A[1/p]. Then A is a complete discrete valuation ring with field
of fractions B and residue field E. The ring A and the field B are stable under ϕ and GQp . If K
is a finite extension of Qp, we define AK = AHK and BK = BHK , which makes AK a complete
discrete valuation ring with residue field EK and the field of fractions BK = AK [1/p]. When
K = Qp, the two definitions of AK and BK coincide. If F is a finite extension of K, then BF

is an unramified extension of BK of degree [F∞ :K∞]. If the extension F/K is Galois, then the
extensions B̃F /B̃K and BF /BK are also Galois with Galois group

Gal(B̃F /B̃K) = Gal(BF /BK) = Gal(EF /EK) = Gal(F∞/K∞) =HK/HF .

In particular, if K is a finite unramified extension of Qp, we have

AK =
{∑
n∈Z

anπ
n

∣∣∣∣ an ∈ OK , an→ 0 as n→−∞
}
,

with ϕ acting as the Frobenius and Γ acting trivially on OK .

The homomorphism θ : Ã+→OCp ,
∑

n>0 p
n[xn] 7→

∑
n>0 p

nx
(0)
n is surjective and its kernel

is a principal ideal generated by ω = π/ϕ−1(π). We extend θ to a homomorphism B̃+ =
Ã+[1/p]→Cp and we set B+

dR to be the ring lim←− B̃+/(ker θ)n. Then θ extends by continuity
to a homomorphism B+

dR→Cp. This makes B+
dR a discrete valuation ring with maximal ideal

ker θ and residue field Cp. The action of GQp on B̃+ extends by continuity to a continuous
action of GQp on B+

dR. The series log[ε] =
∑

n>1(−1)n−1πn/n converges in B+
dR to an element t,

which is a generator of ker θ on which σ ∈GQp act via the formula σ(t) = χ(σ)t. We set
BdR = B+

dR[t−1] = Fr B+
dR, and BdR comes with a decreasing, separated and exhaustive filtration

FiliBdR := tiB+
dR for i ∈ Z. Let Acris = {x=

∑
n>0 an(ωn/n!) ∈B+

dR | an ∈ Ã+, an→ 0}. Then
B+

cris = Acris[1/p] is a subring of B+
dR stable by GQp and contains t, and the action of ϕ on B̃+

extends by continuity to an action of B+
cris. We have ϕ(t) = pt and we define Bcris to be the

subring B+
cris[1/t] of BdR, and define the filtration FiliBcris := FiliBdR ∩Bcris.

2.2 Crystalline representations
Let K be a finite extension of Qp, and let K0 denote its maximal absolutely unramified subfield.

Definition 2.1. A p-adic representation of GK is a finite dimensional Qp-vector space together
with a linear and continuous action of GK . A Zp-representation of GK is a Zp-module of
finite type with a Zp-linear and continuous action of GK . A mod p representation of GK is
a finite dimensional Fp-vector space with a linear and continuous action of GK .

Remark 2.2. A Zp-representation T of GK that is torsion-free over Zp is naturally identified
with a (GK-stable) lattice of the p-adic representation V := Qp ⊗Zp T of GK .
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If B is a topological Qp-algebra endowed with a continuous action of GK and if V is a p-adic
representation of GK , we define DB(V ) := (B ⊗Qp V )GK , which is naturally a module over BGK .
If, in addition, B is GK-regular (i.e., B is a domain, (FrB)GK =BGK , and every b ∈B − {0}
such that Qpb is stable under GK-action is a unit), then the map

αV :B ⊗BGK DB(V )→B ⊗Qp V

induced by the inclusion DB(V )→B ⊕Qp V is an injection (see [Fon94b, § 1.3]). In particular,
we have

dimBGKDB(V ) 6 dimQpV.

(If B is GK-regular, BGK is forced to be a field.)

Definition 2.3. If B is GK-regular, we say that a p-adic representation V of GK is B-admissible
if dimBGKDB(V ) = dimQpV . We say that V is crystalline if it is Bcris-admissible and that V is
de Rham if BdR-admissible.

Remark 2.4. We have the following equivalent conditions (cf. [Fon94b, § 1.4]):

(i) dimBGKDB(V ) = dimQpV ;
(ii) αV is an isomorphism; and
(iii) B ⊗Qp V 'BdimQpV as B[GK ]-modules.

If V is a p-adic representation of GK , DdR(V ) := (BdR ⊗Qp V )GK is naturally a filtered K-
vector space. More precisely, it is a finite dimensional K-vector space with a decreasing, separated
and exhaustive filtration FiliDdR(V ) := (FiliBdR ⊗Qp V )GK of K-subspaces for i ∈ Z. If V is
de Rham, a Hodge–Tate weight of V is defined to be an integer h ∈ Z such that FilhDdR(V ) 6=
Filh+1DdR(V ) with multiplicity dimK FilhDdR(V )/Filh+1DdR(V ). So there are dimQpV Hodge–
Tate weights of V counting multiplicities. We remark that this differs from the more standard
convention (e.g., [Ber04a]) of defining −h to be a Hodge–Tate weight of V for h as above.

Definition 2.5. A filtered ϕ-module over K is a finite dimensional K0-vector space D together
with a σ-semilinear bijection ϕ :D→D and a Z-indexed filtration on DK :=D ⊗K0 K of
K-subspaces that is decreasing, separated and exhaustive.

If V is a p-adic representation of GK , then Dcris(V ) := (Bcris ⊗Qp V )GK is a filtered ϕ-module
over K. More precisely, the Frobenius on Bcris induces a Frobenius map ϕ : Dcris(V )→Dcris(V )
and the filtration on BdR induces a filtration FiliDcris(V ) :=DK ∩ (FiliBdR ⊗Qp V )GK on
Dcris(V ). Moreover, Dcris(V ) has finite dimension over K0 and ϕ is bijective on Dcris(V ). We
get a functor

Dcris : RepQp
GK →MFϕK

from the category of p-adic representations of GK to the category of filtered ϕ-modules over K.
If D is a filtered ϕ-module over K of finite dimension d> 1, then ∧dD is a filtered ϕ-module

of dimension one. If e ∈ ∧dK0
D − {0} and ϕ(e) = λe then val(λ) is independent of choice of e and

we define tN (D) := vp(λ). Also, we define tH(D) = tH(DK) to be the largest integer such that
FiltH(D)(∧dKDK) is non-zero, i.e. Fili(∧dKDK) = ∧dKDK for i6 tH(D) and Fili(∧dKDK) = 0 for
i > tH(D).

Definition 2.6. Let D be a filtered ϕ-module over K. We say that D is weakly admissible if
tH(D) = tN (D) and tH(D′) 6 tN (D′) for every subobject D′ of D. We say that D is admissible
if D 'Dcris(V ) for some p-adic representation V of dimension dimK0D.
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One can show that, if V is a crystalline representation of GK , then Dcris(V ) is weakly
admissible. The converse was conjectured by Fontaine, and proved by Colmez and Fontaine.

Theorem 2.7 [CF00]. Every weakly admissible filtered ϕ-module over K is admissible.

In sum, we have an equivalence of categories

Dcris : Repcris
Qp
GK →MFϕ,w.a.K

between crystalline representations of GK and weakly admissible filtered ϕ-modules over K with
a quasi-inverse given by Vcris(·) := (Fil0(·))ϕ=1.

2.3 (ϕ, Γ)-modules

Definition 2.8. A (ϕ, Γ)-module over AK (respectively BK , EK) is an AK-module of finite
type (respectively finite dimensional vector space over BK , EK) endowed with a semilinear and
continuous action of ΓK and with a semilinear map ϕ that commutes with the action of ΓK .
We say that a (ϕ, Γ)-module M over AK (respectively EK) is étale if ϕ(M) generates M over
AK (respectively EK). A (ϕ, Γ)-module M over BK is étale if M contains an AK-lattice that is
stable under ϕ and is étale.

Remark 2.9. We identify a (étale) (ϕ, Γ)-module over AK killed by p with the corresponding
(étale) (ϕ, Γ)-modules over EK .

If T is a Zp-representation of GK , we define D(T ) = (A⊗Zp T )HK . Then D(T ) is naturally a
module over AK of finite type. The Frobenius ϕ on A induces a Frobenius map ϕ : D(T )→D(T )
and the residual action of ΓK on D(T ) commutes with ϕ. One can also check that D(T ) is étale
over AK . Conversely, if M is an étale (ϕ, Γ)-module over AK we define T(M) = (A⊗AK

M)ϕ=1,
which is a Zp-representation of GK .

Theorem 2.10 [Fon90]. The functor T 7→D(T ) defines an equivalence of categories

D : RepZpGK →Mϕ,Γ,et
AK

between Zp-representations and étale (ϕ, Γ)-modules over AK with T as a quasi-inverse. It
induces, by inverting p, an equivalence of categories

D : RepQp
GK →Mϕ,Γ,et

BK

between p-adic representations and étale (ϕ, Γ)-modules over BK with

M 7→V(M) := (B⊗BK D)ϕ=1

as a quasi-inverse. Moreover, if T is a Zp-representation and V a p-adic representation of GK ,
then

rankZpT = rankAK
D(T ),

dimQpV = dimBKD(V ).

When we restrict the equivalence to the p-torsion objects we get the following corollary.

Corollary 2.11. The functor T 7→D(T ) defines an equivalence of categories between mod p
representations of GK and étale (ϕ, ΓK)-modules over EK .
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Now we introduce coefficients to representations of GK and (ϕ, Γ)-modules to extend Theo-
rem 2.10 and Corollary 2.11. We assume that K is absolutely unramified (of degree f over Qp)
and let F be a finite extension of Qp with ring of integers OF , uniformizer $F and residue
field F. Consider the ring AK,F :=OF ⊗Zp AK with the actions of ϕ and ΓK extended to AK,F by
linearity, i.e., ϕ acts as 1⊗ ϕ and γ ∈ ΓK as 1⊗ γ. We assume there is an embedding τ0 :K ↪→ F ,
which we fix once and for all, and put τi = τ0 ◦ ϕi, where ϕ is the Frobenius on K. We denote
by S the set of all embeddings K ↪→ F and fix the identification S = Z/fZ via the map τi 7→ i.
We can then identify AK,F with AS

Qp,F
via the isomorphism defined by a⊗ bπn 7→ (aτ(b)⊗ πn)τ .

Note that

AQp,F =
{∑
n∈Z

anπ
n

∣∣∣∣ an ∈ OF , an→ 0 as n→−∞
}
,

and the actions of ϕ and γ ∈ ΓK on AS
Qp,F

become

ϕ(g0(π), g1(π), . . . , gf−1(π)) = (g1(ϕ(π)), . . . , gf−1(ϕ(π)), g0(ϕ(π))),
γ(g0(π), g1(π), . . . , gf−1(π)) = (g0(γ(π)), g1(γ(π)), . . . , gf−1(γ(π))).

We similarly define BK,F = F ⊗Qp BK and EK,F = F⊗Fp EK and endow them with actions of
ϕ and Γ. Note that BK,F = AK,F [1/p] and EK,F = AK,F /$FAK,F . Again identifying S with
the set of embeddings k→ F, we have the isomorphism EK,F = F((π))S with the actions of ϕ
and ΓK given by the same formulas as above.

Definition 2.12. An OF -representation of GK is a finitely generated OF -module with a
continuous OF -linear action of GK . A (ϕ, ΓK)-module over AK,F is a finitely generated AK,F -
module M endowed with commuting semilinear actions of ΓK and ϕ. A (ϕ, ΓK)-module M over
AK,F is étale if ϕ(M) generates M over AK , or equivalently over AK,F .

We write RepOFGK for the category of OF -representations of GK , and Mϕ,Γ,et
AK,F

for that of
étale (ϕ, ΓK)-modules over AK,F . We use analogous definitions and notation for representations
of GK over F and F, and (ϕ, ΓK)-modules over BK,F and EK,F . The category of étale (ϕ, ΓK)-
modules over EK,F is the main category we will be working in. Theorem 2.10 and Corollary 2.11
immediately yield the following corollary.

Corollary 2.13. The functor D induces equivalences of categories RepOFGK →Mϕ,Γ,et
AK,F

,

RepFGK →Mϕ,Γ,et
BK,F

and RepFGK →Mϕ,Γ,et
EK,F

.

For each embedding τ :K ↪→ F, let eτ : AK,F →AQp,F denote the projection to the τ -
component, defined by a⊗ bπi 7→ aτ(b)πi. If M is a (ϕ, Γ)-module over AK,F , then M =∏
τ∈S eτM , each eτM inherits an action of Γ, and ϕ induces semilinear morphisms eτ◦ϕM → eτM

compatible with the action of Γ. We use the same notation for (ϕ, Γ)-modules over BK,F and
EK,F .

Lemma 2.14. If M is an étale (ϕ, Γ)-module over AK,F , then the following are equivalent:

(i) T(M) is free over OF of rank d;

(ii) M is free over AK of rank d[F : Qp]; and

(iii) M is free over AK,F of rank d.

If M is an étale (ϕ, Γ)-module over BK,F (respectively EK,F ), then M is free over BK,F

(respectively EK,F ) of rank dimF T(M) (respectively dimF T(M)).
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Proof. Suppose that M is étale over AK,F . Then multiplication by p is injective on M if and
only if it is injective on T(M). Thus M is torsion-free, and hence free, over AK if and only
if T(M) is free over OF . Since the AK-rank of M coincides with the Zp-rank of T(M), the first
two conditions are equivalent.

If M is free of rank d over AK,F , then it is clearly free of rank d[F : Qp] over AK . Conversely
suppose that M is free over AK . Then each eτM is torsion-free, hence free, over the discrete
valuation ring AQp,F . We need only show that each eτM has the same rank. Since M is étale,
the maps

eτ◦ϕM ⊗AQp,F ,ϕ
AQp,F → eτM

are surjective, so we have rank(eτiM) 6 rank(eτi+1M) for all i ∈ Z/fZ. The equivalence between
the last two conditions follows.

The assertions for étale (ϕ, Γ)-modules over BK,F and EK,F are similar, but simpler since
BK and EK are fields. 2

Finally, there are tensor products and exact sequences in the various categories of étale
(ϕ, Γ)-modules, compatible via D with tensor products and exact sequences in the corresponding
categories of representations of GK .

2.4 Wach modules
It is very useful to be able to characterize whether a p-adic representation is crystalline in terms
of the corresponding (ϕ, Γ)-module. This can be done via the theory of Wach modules if K is
unramified over Qp.

Let A+ = A ∩ Ã+ = B ∩ Ã+ and B+ = A+[1/p]. If K is a finite unramified extension of Qp,
we set A+

K = (A+)HK =OK [[π]]⊂AK and B+
K = (B+)HK = A+

K [p−1]⊂BK .

Definition 2.15. Let K be a finite unramified extension of Qp. We say that a Zp-representation
T (respectively p-adic representation V ) of GK is of finite height if there exists a basis of D(T )
(respectively D(V )) such that the matrices describing the action of ϕ and the action of ΓK are
defined over A+

K (respectively B+
K).

Colmez [Col99] proved that every crystalline representation is necessarily of finite height.
The converse is not true in general and there are representations of finite height that are not
crystalline. However, Wach [Wac96, Wac97] proved that finiteness of height together with a
certain condition (existence of a certain A+

K-submodule of the corresponding (ϕ, Γ)-module)
implies crystallinity. Berger [Ber02, Ber04b] then refined the results of Wach and Colmez as
summarized below.

Definition 2.16. Suppose a6 b ∈ Z. A Wach module over A+
K (respectively B+

K) with weights
in [a, b] is a free A+

K-module (respectively B+
K-module) N of finite rank, endowed with an action

of ΓK that becomes trivial modulo π, and also with a Frobenius map ϕ :N [1/π]→N [1/π] that
commutes with the action of ΓK and such that ϕ(π−aN)⊂ π−aN and π−aN/ϕ(π−aN) is killed
by qb−a, where we define q := ϕ(π)/π.

Theorem 2.17 [Ber04b]. (i) A p-adic representation V is crystalline with Hodge–Tate weights
in [a, b] if and only if D(V ) contains a Wach module N(V ) of rank dimQpV with weights in [a, b].
The association V 7→N(V ) induces an equivalence of categories between crystalline
representations of GK and Wach modules over B+

K , compatible with tensor products, duality
and exact sequences.
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(ii) For a given crystalline representation V , the map T 7→N(T ) := N(V ) ∩D(T ) induces
a bijection between GK-stable lattices of V and Wach modules over A+

K that are A+
K-lattices

contained in N(V ). Moreover D(T ) = AK ⊗A+
K

N(T ).

(iii) If V is a crystalline representation of GK , and if we endow N(V ) with the
filtration FiliN(V ) = {x ∈N(V ) | ϕ(x) ∈ qiN(V )}, then we have an isomorphism Dcris(V )→
N(V )/πN(V ) of filtered ϕ-modules (with the induced filtration on N(V )/πN(V )).

Remark 2.18. If 0→ V1→ V → V2→ 0 is an exact sequence of crystalline representations of
GK , then

0→N(V1)→N(V )→N(V2)→ 0

is an exact sequence of B+
K-modules. However, N does not define an exact functor from GK-

stable lattices to A+
K-modules; indeed it fails to be right exact. We return to this point in more

detail in § 7.

Again by introducing an action of F to the categories, we get an analogous equivalence of
categories between crystalline F -representations and Wach modules over B+

K,F := F ⊗Qp B+
K .

Here, by a crystalline F -representation we mean a finite dimensional F -vector space with a
continuous action of GK which is crystalline considered as a Qp-linear representation (i.e.,
forgetting F -structure). Similarly, for a fixed crystalline F -representation of GK , we have a
corresponding equivalence of categories between GK-stable OF -lattices and Wach modules over
A+
K,F :=OF ⊗Zp A+

K .

Corollary 2.19. Let k ∈ Z>0. An F -representation V of GK is crystalline with Hodge–Tate
weights in [0, k] (i.e., positive crystalline) if and only if there exists a B+

K,F -module N free of
rank d := dimF (V ) contained in D(V ) such that:

(i) the Γ-action preserves N and is trivial on N/πN ; and

(ii) ϕ(N)⊂N and N/ϕ∗(N) is killed by qk.

Moreover, if N is given a filtration by

Fili(N) := {x ∈N | ϕ(x) ∈ qiN}

for i> 0, then we have an isomorphism

Dcris(V )'N/πN

of filtered ϕ-modules over F ⊗Qp K, where N/πN is endowed with induced filtration.

A standard argument (cf. Lemma 2.14) shows that an F -representation V of GK is crystalline
if and only if the filtered ϕ-module Dcris(V ) = (Bcris ⊗Qp V )GK is free of rank dimFV over
F ⊗Qp K. We have a decomposition Dcris(V ) =

⊕
τ :K↪→F eτDcris(V ), where eτDcris(V ) is the

filtered F -vector space Dcris(V )⊗K⊗QpF,eτ
F with the filtration given by FilieτDcris(V ) :=

eτFiliDcris(V ). A labeled Hodge–Tate weight with respect to the embedding τ :K ↪→ F is an
integer h ∈ Z such that FilheτDcris(V ) 6= Filh+1eτDcris(V ), counted with multiplicity

dimFFilheτDcris(V )/Filh+1eτDcris(V ).

Lemma 2.20. If N is a Wach module over A+
K,F (respectively B+

K,F ), then N is free over A+
K,F

(respectively B+
K,F ).
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Proof. We just give the proof for Wach modules over A+
K,F ; the case of B+

K,F can be deduced
from this or proved similarly.

Let T denote the OF -representation corresponding to T , and let d denote its rank. The
OF ⊗Zp OK-module N/πN is a lattice in Dcrys(Qp ⊗Zp T ), which is free of rank d over F ⊗Qp K.
It follows that N/πN is free of rank d over OF ⊗Zp OK . Since π is in the Jacobson radical of
A+
K,F , Nakayama’s lemma shows that N is generated by d elements over A+

K,F . By Lemma 2.14,
we know that AK,F ⊗A+

K,F
N is free of rank d over AK,F , so it follows that N is free of rank d

over A+
K,F . 2

3. Rank one modules

In this section we give a parametrization of rank one étale (ϕ, Γ)-modules over EK,F (with a
view toward parametrizing their extensions) and then identify them with the reduction modulo p
of Wach modules of rank one over A+

K,F .

3.1 A parametrization
Denote by valπ : F((π))→ Z the valuation normalized by valπ(π) = 1, and let λγ ∈ Fp[[π]] be the
unique (pf − 1)/(p− 1)th root of γ(π)/χ(γ)π, that is congruent to 1 mod π, if γ ∈ Γ.

Proposition 3.1. For any C ∈ F× and any ~c= (c0, . . . , cf−1) ∈ ZS , letting M = EK,fe with

ϕ(e) = Pe= (Cπ(p−1)c0 , π(p−1)c1 , . . . , π(p−1)cf−1) e,

γ(e) = Gγe= (λ
∑

0 ~c
γ , λ

∑
1 ~c

γ , . . . , λ
∑
f−1 ~c

γ ) e,

where Σl = Σl~c=
∑
cip

j summing over 0 6 i, j 6 f − 1, i− j ≡ l mod f , defines an étale (ϕ, Γ)-
module of rank one over EK,F . Conversely, for any rank one étale (ϕ, Γ)-module M over EK,F

we can choose a basis e so that M = EK,F e with the action of ϕ and Γ given as above for
some C and some ~c. Two such modules M and M ′ are isomorphic if and only if C = C ′ and
Σ0~c≡ Σ0

~c′ mod pf − 1. In particular, every rank one (ϕ, Γ)-module over EK,F can be written
uniquely in this form with 0 6 ci 6 p− 1 and at least one ci < p− 1.

Proof. To show that the given formula actually defines an étale (ϕ, Γ)-module we need to verify
that Pϕ(Gγ) =Gγγ(P ) and Gγγ′ =Gγγ(Gγ′). The first identity holds as

ϕ(Gγ)/Gγ = (λpΣ1−Σ0
γ , . . . , λ

pΣ0−Σf−1
γ )

= (λc0(pf−1)
γ , . . . , λ

cf−1(pf−1)
γ )

=
((

γ(π)
π

)c0(p−1)

, . . . ,

(
γ(π)
π

)cf−1(p−1))
= γ(P )/P.

To prove the second identity, as Γ acts componentwise, we need to show that λγγ′ = λγ(λ). But
note that

(λγγ(λγ′))(pf−1)/(p−1) =
γ(π)
π

χ(γ)γ
(
γ′(π)
π

χ(γ′)
)

=
γγ′(π)
π

χ(γγ′)

and λγγ(λγ′)≡ 1 mod π. The claim follows from the uniqueness of the λγ . Note also that the
function γ 7→ λγ is continuous since it is the composite of γ(π)/χ(γ)π with the inverse of
the continuous bijective function x 7→ x(pf−1)/(p−1) on the compact Hausdorff space 1 + πFp[[π]];
it follows that the Γ-action we have just defined is continuous.
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We now prove that any rank one module can be written in this form. Suppose we
are given a rank one module M = EK,F e such that ϕ(e) = (h0(π), . . . , hf−1(π))e and γ(e) =
(g0(π), . . . , gf−1(π))e. Note that, if u ∈E×K,F , by a change of basis e′ = ue we get P ′ = (ϕ(u)/u)P
and G′γ = (γ(u)/u)Gγ , where ϕ(e′) = P ′e′ and γ(e′) =G′γe

′. If u= (πj , . . . , πj), then ϕ(u)/u=
(π(p−1)j , . . . , π(p−1)j). So we can assume that hi(π) ∈ F[[π]] by choosing a large enough j > 0. We
can ‘shift’ between components by appropriate change of basis: if u= (1, . . . , 1, ui(π), 1, . . . , 1),
then ϕ(u)/u= (1, . . . , 1, ui−1(πp), ui(π)−1, 1, . . . , 1). By successive changes of basis we can make
it into a form where ϕ(e) = (h(π), 1, . . . , 1)e with h(π) ∈ F[[π]]. Moreover, for some choice of e,
ϕ(e) = (Cπv, 1, . . . , 1)e for C ∈ F× and v > 0 as

ϕ(u(π), u(πp
f−1

), . . . , u(πp))
(u(π), u(πpf−1), . . . , u(πp))

= (u(πp
f
)/u(π), 1 . . . , 1)

and the map 1 + πF[[π]]→ 1 + πF[[π]], u(π) 7→ u(πp
f
)/u(π), is surjective: as the map is

multiplicative and 1 + πF[[π]] is complete π-adically, it suffices to prove that, for any s> 1
and α ∈ F×, 1 + απst(π) is in the image for some t(π) ∈ F[[π]]×, and indeed 1− απs 7→
(1− απspf )/(1− απs)≡ 1 + απs mod πs+1.

To show that (p− 1)|v, we note that ϕγ(e) = γϕ(e) if and only if

ϕ(g0, . . . , gf−1)
(g0, . . . , gf−1)

=
γ(Cπv, 1, . . . , 1)
(Cπv, 1, . . . , 1)

,

where Gγ = (g0, . . . , gf−1). This is equivalent to(
g1(πp)
g0(π)

, . . . ,
g0(πp)
gf−1(π)

)
=
((

γ(π)
π

)v
, 1, . . . , 1

)
,

which implies that (γ(π)/π)v = g0(πp
f
)/g0(π)≡ 1 mod π. If δ ∈ Γ is such that δΓ1 generates

Γ/Γ1 ' µp−1, then δ(π)/π ≡ χ(δ) mod π. Thus δ(π)/π has order p− 1 modulo π so that p− 1|v
and ϕ(e) = (Cπ(p−1)w, 1, . . . , 1), where (p− 1)w = v.

To determine the corresponding action of γ ∈ Γ, we note that ϕγ(e) = γϕ(e) if and only if(
g1(πp)
g0(π)

, . . . ,
g0(πp)
gf−1(π)

)
=
((

γ(π)
π

)(p−1)w

, 1, . . . , 1
)

if and only if g0(πp
f
)/g0(π) = (γ(π)/π)(p−1)w = (γ(π)/πχ(γ))(p−1)w (the order of χ being p− 1)

and g1(π) = g2(πp), . . . , gf−2(π) = gf−1(πp), gf−1(π) = g0(πp). Thus, to get gi that satisfy the
above identity, we just need to define g0(π) such that g0(πp

f
)/g0(π) = (γ(π)/πχ(γ))(p−1)w. If we

set g0(π) = αγλγ(π)w with αγ ∈ F×, we have g0(πp
f
)/g0(π) = λγ(πp

f
)w/λγ(π)w = λγ(π)w(pf−1) =

(γ(π)/πχ(γ))(p−1)w. Conversely if g′0(π) ∈E×K,F satisfies

g′0(πp
f
)/g′0(π) = (γ(π)/πχ(γ))(p−1)w = g′0(πp

f
)/g′0(π),

then h(π) = g′0(π)g−1
0 (π) satisfies h(πp

f
) = h(π) and is therefore constant. Thus we see that the

identity implies that g0(π) has the required form.
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Since Gγγ′ =Gγγ(G′γ), the map γ 7→ αγ must define a character Γ→ F×, from which we
conclude that αγ = χ(γ)j0 for some 0 6 j0 < p− 1. Letting u= (π, πp

f−1
, πp

f−2
, . . . , πp), we have

ϕ(u)
u

= (πp
f−1, 1, . . . , 1),

γ(u)
u

=
(
γ(π)
π

,

(
γ(π)
π

)pf−1

,

(
γ(π)
π

)pf−2

, . . . ,

(
γ(π)
π

)p)
≡ (χ(γ), . . . , χ(γ)) mod π,

so replacing e by u−je for some j ≡ j0 mod p− 1 gives M = EK,F e with

ϕ(e) = (Cπ(p−1)w, 1, . . . , 1)e,

γ(e) = (λγ(π)w, λγ(πp
f−1

)w, . . . , λγ(πp)w)e,

where 0 6 w < pf − 1. Write w = c0 + c1p+ · · ·+ cf−1p
f−1 with 0 6 ci 6 p− 1. Taking e′ = ue

with u= (1, π(p−1)(c1+c2p+···+cf−1p
p−2), 1, . . . , 1) yields

ϕ(e′) = (Cπ(p−1)c0 , π(p−1)(c1+c2p+···+cf−1p
p−2), 1, . . . , 1)e.

Doing this successively gives ϕ(e) = (Cπ(p−1)c0 , π(p−1)c1 , . . . , π(p−1)cf−1)e for some basis e. It is
easily checked that those changes of basis that maintain Gγ ≡ (1, . . . , 1) mod π are e′ = ue such
that u= (u0, . . . , uf−1) with (p− 1)|valπ(ui) and that the corresponding action of γ ∈ Γ is given

by γ(e) = (λ
∑

0 ~c
γ , λ

∑
1 ~c

γ , . . . , λ
∑
f−1 ~c

γ )e.
Finally, we suppose that M is isomorphic to M ′ = EK,F e

′ with

ϕ(e′) = P ′e′ = (C ′π(p−1)c′0 , π(p−1)c′1 , . . . , π(p−1)c′f−1)e′,

γ(e′) =G′γe
′ = (λ

∑
0
~c′

γ , λ
∑

1
~c′

γ , . . . , λ
∑
f−1

~c′

γ )e′,

and determine when the two are isomorphic. After appropriate changes of bases we can assume
that

ϕ(e) = Pe= (Cπ(p−1)w, 1, . . . , 1)e,

ϕ(e′) = P ′e′ = (C ′π(p−1)w′ , 1, . . . , 1)e′,

where w =
∑

0 ~c and w′ =
∑

0
~c′ satisfy 0 6 w, w′ < pf − 1.

Suppose that u= (u0, . . . , uf−1) ∈E×K,F is such that P ′ = (ϕ(u)/u)P and G′γ = (γ(u)/u)Gγ
for all γ ∈ Γ. Then γ(u0)/u0 ≡ 1 mod πF[[π]], so (p− 1)|valπ(u0). It follows that u=
(u0(π), u0(πp

f−1
), . . . , u0(πp)) with u0(π) = u′0(π)π(p−1)j for some u′0(π) ∈ F[[π]]× and j ∈ Z, in

which case we have
ϕ(u)/u= (π(p−1)(pf−1)ju′0(π)p

f−1, 1, . . . , 1).
Thus, we conclude that M and M ′ are isomorphic if and only if C = C ′ and

∑
cip

i ≡
∑
c′ip

i

mod pf − 1.
The last assertion is clear. 2

We denote the module defined in the proposition by MC~c =MC(c0,...,cf−1). We simply write
M~c for MC~c if C = 1. We also put

κϕ(MC~c) = κϕ(C, ~c ) = (Cπ(p−1)c0 , π(p−1)c1 , . . . , π(p−1)cf−1),

κγ(MC~c) = κγ(C, ~c ) = (λ
∑

0 ~c
γ , λ

∑
1 ~c

γ , . . . , λ
∑
f−1 ~c

γ ),

and write Σl for Σl~c, where the ci are understood.
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3.2 Lifts in characteristic zero
We now construct rank one Wach modules over A+

K,F following Dousmanis [Dou08, § 2] and
check that these reduce modulo $F to the (ϕ, Γ)-modules MC~c over EK,F .

Let q1 = q = ϕ(π)/π, qn = ϕn−1(q) ∈ Zp[[π]] and let Λf =
∏
j>0 q1+jf/p, Λγ = Λf/γ(Λf ) ∈

Q[[π]]. One then has that Λf ∈ 1 + πQp[[π]] and Λγ ∈ 1 + πZp[[π]].
Suppose we want to construct a rank one Wach module N = A+

K,F e such that

ϕ(e) = (C̃qc0 , qc1 , . . . , qcf−1)e,
γ(e) = (g0(π), . . . , gf−1(π))e

if γ ∈ Γ, where C̃ ∈ O×F is any lift of C ∈ F× and each gi(π) = gγ,i(π) ∈ OF [[π]] depends on γ ∈ Γ.
Commutativity of the actions of ϕ and Γ amounts to the following identities:

γ(q)c0g0(π) = qc0ϕ(g1(π)),
γ(q)c1g1(π) = qc1ϕ(g2(π)),

...
γ(q)cf−2gf−2(π) = qcf−2ϕ(gf−1(π)),
γ(q)cf−1gf−1(π) = qcf−1ϕ(g0(π)).

Thus, we are looking for a solution gi(π) for each γ of the equation

g0(π) =
(

q

γ(q)

)c0
ϕ

(
q

γ(q)

)c1
ϕ2

(
q

γ(q)

)c2
· · · ϕf−1

(
q

γ(q)

)cf−1

ϕf (g0(π)).

It is straightforward to check that

g0(π) = Λc0γ ϕ(Λγ)c1ϕ2(Λγ)c2 · · · ϕf−1(Λγ)cf−1

gives the unique solution, that is congruent to 1 modulo π, and that the remaining gi(π) are
uniquely determined by

g1(π) =
(

q

γ(q)

)c1
ϕ

(
q

γ(q)

)c2
· · · ϕf−1

(
q

γ(q)

)cf−1

ϕf−1(g0(π)),

...

gf−2(π) =
(

q

γ(q)

)cf−2

ϕ

(
q

γ(q)

)cf−1

ϕ2(g0(π)),

gf−1(π) =
(

q

γ(q)

)cf−1

ϕ(g0(π)).

Dousmanis [Dou08, § 6] shows that N = A+
K,F e endowed with the actions of ϕ and Γ

described above defines a Wach module over A+
K,F , which we denote by NC̃~c. Furthermore,

(NC̃~c/πNC̃~c)⊗A+
K,F

B+
K,F is a filtered ϕ-module corresponding to a positive character GK → F×

with labeled Hodge–Tate weights (cf−1, c0, c1, . . . , cf−2). One can check the following by direct
computation.

Proposition 3.2. We have an isomorphism MC~c 'NC̃~c ⊗A+
K,F

EK,F of (ϕ, Γ)-modules over

EK,F .

Combined with [BDJ10, Lemma 3.8], we obtain the following corollary, where ωτ denotes
the fundamental character associated to τ (i.e., ωτ : IK → F× is defined by composing τ with
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the homomorphism IK → k× obtained from local class field theory, with the convention that
uniformizers correspond to geometric Frobenius elements).

Corollary 3.3. If ψ :GK → F× is the character defined by the action on V(MC~c), then

ψ|IK =
∏
τ∈S ω

−cτ◦ϕ−1

τ .

4. Bases for the space of extensions

We will assume p > 2 for the rest of the paper except in §§ 6.3 and 7. We fix a topological generator
η of the pro-cyclic group Γ = ΓK , and set ξ = ηp−1, so that ξ topologically generates Γ1.

Given C ∈ F× and ~c= (c0, . . . , cf−1) ∈ {0, 1, . . . , p− 1}S with some ci < p− 1, we are going
to parametrize the space of extension classes Ext1(M0, MC~c) in the category of étale (ϕ, Γ)-
modules over EK,F . Here M0 denotes the étale (ϕ, Γ)-module EK,F with the usual action of
ϕ and Γ, so M0 =M1,~0 corresponds to the trivial character GK → F×. Recall that MC~c, κϕ(MC~c)
and κγ(MC~c) were defined at the end of § 3.1; since MC~c will be fixed in this section, we denote
these simply κϕ and κγ .

We start by noticing that there is an F-linear isomorphism

β :H/H0→ Ext1(M0, MC~c),

where H is the subgroup of EK,F × {Γ→EK,F } consisting of elements (µϕ, (µγ)γ∈Γ) such that
γ 7→ µγ is continuous and satisfies:1

(†) (κϕϕ− 1)(µγ) = (κγγ − 1)(µϕ) ∀γ ∈ Γ,

(‡) µγγ′ = κγγ(µγ′) + µγ ∀γ, γ′ ∈ Γ,

and H0 = {(κϕϕ(b)− b, (κγγ(b)− b)γ∈Γ) | b ∈ F((π))S} ⊂H.
We call elements of H cocyles and those of H0 coboundaries. The map β is defined as follows:

given a cocycle µ= (µϕ, (µγ)γ∈Γ) ∈H, we define an extension

0→MC~c→ E→M0→ 0

basis {e, e′} such that the action ϕ and γ ∈ Γ are given by the matrices P =
(κϕ µϕ

0 1

)
and

Gγ =
(κγ µγ

0 1

)
. It is straightforward to check that the matrices P and Gγ define an extension

if and only if µ ∈H, that every extension arises this way, and that a change of basis for an
extension E corresponds to adding an element of H0 to µ. If µ ∈H, then we write [µ] for the
corresponding extension class β(µ).

By Corollary 2.13, we get an isomorphism Ext1(M~0, MC~c)'H1(K, F(ψ)) where ψ :GK →
F× is the character defined by the action on V(MC~c).

Lemma 4.1. Via Corollary 2.13, M~0 corresponds to the trivial character and M−−→
p−2

to the mod p
cyclotomic character.

Proof. The assertion is clear for the trivial character. The mod p cyclotomic character
factors as GK → Z×p → F×p ↪→ F×, where the arrow in the middle is the reduction mod p.
If T = Zp(1), its Wach module is given by N(Zp(1)) = A+

Ke, where ϕ(e) = (π/ϕ(π))e
and γ(e) = (χ(γ)π/γ(π))e if γ ∈ Γ (cf. [Ber04b, Appendice A]). Working modulo p and extending

1 We will frequently use the following notation: for an element κ and a ring endomorphism ψ of EK,F , we denote
by κψ − 1 the F-linear endomorphism of EK,F defined by (κψ − 1)(x) = κψ(x)− x. We do the same for F((π)) in
place of EK,F . Thus, for example, if Σ, s ∈ Z, then (λΣ

γ γ − 1)(πs) denotes λγ(π)Σ · γ(πs)− πs.
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scalars to F we see that the étale (ϕ, Γ)-module over EK,F corresponding to the mod p cyclotomic
character is given by M = EK,F e with ϕ(e) = π1−pe= (π1−p, . . . , π1−p)e. By a change of basis
e′ = ue with u= (πp−1, . . . , πp−1), we get M 'M−−→

p−2
. 2

Since

dimFH
1(K, F(ψ)) =

{
f + 1 if ψ = 1 or χ,
f if ψ 6∈ {1, χ},

we have

dimF Ext1(M~0, MC~c) =
{
f + 1 if C = 1, and ~c=~0 or ~c=

−−−→
p− 2,

f otherwise.

We are about to define elements B0, . . . , Bf−1 ∈H such that the associated extension classes
form a basis for Ext1(M~0, MC~c) except for the two cases where C = 1, ~c=~0 or C = 1, ~c=

−−−→
p− 2,

for which a separate treatment will be given in § 6. Thanks to the isomorphism β, we only need
to define µϕ and the µγ satisfying the desired properties (†) and (‡). According to whether
the parameter ci is equal to p− 1 or not, the extension Bi is constructed in a slightly different
manner.

4.1 Construction of Bi when ci < p− 1

Recall that we have fixed a topological generator η for Γ, and we let ξ = ηp−1, a topological
generator for Γ1.

Lemma 4.2. Suppose that Σ, s ∈ Z, and v = vp(Σ + s(pf − 1)/(p− 1))<∞. Then

(λΣ
η η − 1)(πs) ∈ (χ(η)s − 1)πs + sv

χ(η)s(χ(η)− 1)
2

πs+p
v

+ πs+2pvFp[[πp
v
]],

where Σ + s(pf − 1)/(p− 1) =
∑

j>v sjp
j .

Proof. It is easy to see that in Fp[[π]]/πp−1 we have

λη = λ(pf−1)/(p−1)
η =

η(π)
χ(η)π

= χ(η)−1
d0−1∑
j=1

d0!
j!(d0 − j)!

πj−1 = 1 +
d0−1∑
j=2

d0!
d0j!(d0 − j)!

πj−1,

where χ(η) =
∑

j>0 djp
j ∈ Z×p . Noting that, if s ∈ Z, then

(λΣ
η η − 1)(πs) =

(
χ(η)sλΣ

η ·
(
η(π)
χ(η)π

)s
− 1
)
πs,

the result follows as

χ(η)sλΣ
η ·
(
η(π)
χ(η)π

)s
− 1 = χ(η)sλΣ+s(pf−1)/(p−1)

η − 1

= χ(η)sλ
∑
j>v sjp

j

η − 1

= χ(η)sλη(πp
v
)svλη(πp

v+1
)sv+1 · · · − 1

≡ (χ(η)s − 1) + χ(η)s
((

1 +
χ(η)− 1

2
πp

v

)sv
− 1
)

≡ (χ(η)s − 1) + sv
χ(η)s(χ(η)− 1)

2
πp

v
mod π2pv
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and

χ(η)sλΣ
η ·
(
η(π)
χ(η)π

)s
− 1−

(
(χ(η)s − 1) + sv

χ(η)s(χ(η)− 1)
2

πp
v

)
∈ π2pvFp[[πp

v
]]. 2

We note the following lemma, whose straightforward proof we omit.

Lemma 4.3. If n> 1, γ ∈ Γn and χ(γ)≡ 1 + zpn mod pn+1, then λγ ≡ 1 + zπp
n−1 + zπp

n
mod

π2pn−2.

Lemma 4.4. Let χ(ξ)≡ 1 + zp mod p2 with 0< z 6 p− 1 and let Σ, s ∈ Z. If v = vp(Σ +
s(pf − 1)/(p− 1))<∞, then

(λΣ
ξ ξ − 1)(πs) ∈ svz(πs+(p−1)pv + πs+p

v+1
) + πs+2pv(p−1)Fp[[πp

v
]],

where Σ + s(pf − 1)/(p− 1) =
∑

j>v sjp
j .

Proof. By Lemma 4.3, we have

λξ ≡
ξ(π)
πχ(ξ)

≡ 1 + zπp−1 + zπp mod π2p−2.

Noting that, if s ∈ Z, then

(λΣ
ξ ξ − 1)(πs) =

(
λΣ
ξ ·
(
ξ(π)
πχ(ξ)

)s
− 1
)
πs,

the result follows as

λΣ
ξ ·
(
ξ(π)
πχ(ξ)

)s
− 1 = λ

Σ+s(pf−1)/(p−1)
ξ − 1

= λξ(πp
v
)svλξ(πp

v+1
)sv+1 · · · − 1

≡ λξ(πp
v
)sv − 1 mod π(p−1)pv+1

≡ svz(π(p−1)pv + πp
v+1

) mod π2(p−1)pv

and

λΣ
ξ ·
(
ξ(π)
πχ(ξ)

)s
− 1− svz(π(p−1)pv + πp

v+1
) ∈ π2(p−1)pvFp[[πp

v
]]. 2

We now assume ci < p− 1 and construct an element Bi ∈H. (For the case ci = p− 1, we will
need to use a modified construction described in § 4.2.)

Suppose for the moment that we have successfully defined Bi with µϕ(Bi) of the form
(0, . . . , 0, Hi(π), 0, . . . , 0), Hi(π) being the ith component. For each γ ∈ Γ, by the condition (†)
there should exist µγ(Bi) = (G0(π), . . . , Gf−1(π)) such that

(κϕϕ− 1)(µγ(Bi)) = (κγγ − 1)(µϕ(Bi)),

i.e.,

(Cπ(p−1)c0G1(πp)−G0(π), π(p−1)c1G2(πp)−G1(π), . . . , π(p−1)cf−1G0(πp)−Gf−1(π))
= (0, . . . , 0, (λΣi

γ γ − 1)(Hi(π)), 0, . . . , 0).
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This is true if and only if

(Cπ(p−1)ΣiΦ− 1)(Gi(π)) = (λΣi
γ γ − 1)(Hi(π)),

Gi+1(π) = π(p−1)ci+1Gi+2(πp),
...

Gf−1(π) = π(p−1)cf−1G0(πp),

G0(π) = Cπ(p−1)c0G1(πp),
G1(π) = π(p−1)c1G2(πp),

...
Gi−1(π) = π(p−1)ci−1Gi(πp),

where Φ(G(π)) =G(πp
f
). Except for the case C = 1, ~c=~0, the map Cπ(p−1)ΣiΦ− 1 defines a

bijection F[[π]]→ F[[π]]. So the trick is to find Hi(π) so that we have (λΣi
γ γ − 1)(Hi(π)) ∈ F[[π]].

The corresponding Gi(π) and so the µγ(Bi) are automatically and uniquely determined by the
bijectivity. Moreover, since the bijection Cπ(p−1)ΣiΦ− 1 on the compact Hausdorff space F[[π]]
is continuous, so is its inverse, and it follows that γ 7→ µγ(Bi) is continuous.

To find such Hi(π), we observe via Lemma 4.2 that2

valπ(λΣi
η η − 1)(π1−p) = 2− p and valπ(λΣi

η η − 1)(πs) = s if 2− p6 s6−1.

Then there exist unique ε2−p, . . . , ε−1 ∈ Fp such that

(λΣi
η η − 1)(π1−p + ε2−pπ

2−p + · · ·+ ε−1π
−1) ∈ F[[π]].

We set
Hi(π) = π1−p + hi(π) = π1−p + ε2−pπ

2−p + · · ·+ ε−1π
−1

and claim that
(λΣi
γ γ − 1)(Hi(π)) ∈ F[[π]]

for all γ ∈ Γ. Note that by Lemma 4.3 we have λγ1 ≡ 1 mod πp−1, so that (λγ1γ1 − 1)(πs)≡
0 mod πp−1 for all 1− p6 s6−1 if γ1 ∈ Γ1. Since any given γ ∈ Γ can be written as γ = ηmγ1,
where m ∈N>0 and γ1 ∈ Γ1, we have

(λΣi
γ γ − 1)(Hi(π)) ∈ F[[π]]

by the following lemma.

Lemma 4.5. Let Σ and v be integers and H(π) ∈ F((π)). For any γ, γ′ ∈ Γ, if the valuations
(in π) of (λΣ

γ γ − 1)(H(π)) and (λΣ
γ′γ
′ − 1)(H(π)) are at least v, so is that of (λΣ

γγ′γγ
′ − 1)(H(π)).

Proof. If both λΣ
γ γ(H(π))−H(π) and λΣ

γ′γ
′(H(π))−H(π) are in πvF[[π]], then

(λΣ
γγ′γγ

′ − 1)(H(π)) =
(
γγ′(π)
πχ(γγ′)

)(p−1)Σ/(pf−1)

γγ′(H(π))−H(π)

=
(
γ

(
γ′(π)
πχ(γ′)

)
γ(π)
πχ(γ)

)(p−1)Σ/(pf−1)

γ(γ′(H(π)))−H(π)

= λΣ
γ γ(λΣ

γ′γ
′(H(π))−H(π)) + λΣ

γ γ(H(π))−H(π) ∈ πvF[[π]]. 2

2 Note that, if ci = p− 1, then Σi ≡−1 mod p and v > 1 in the notation of Lemma 4.2, which is why we need to
modify the construction in that case.
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So far we have defined µϕ = µϕ(Bi) and µγ = µγ(Bi) satisfying the condition (†), and need to
verify the condition (‡). It is easily checked that, if γ, γ′ ∈ Γ, both µγγ′ and µ′γγ′ = κγγ(µγ′) + µγ
satisfy (†). Since when we fix µϕ the solution of (†) for γγ′ is unique (by the bijectivity of the
map CπΣiΦ− 1), we must have (‡) µγγ′ = κγγ(µγ′) + µγ .

4.2 Construction of Bi when ci = p− 1

Proposition 4.6. If ci = p− 1 and ci+1 6= p− 2, we have

(λΣi
η η − 1)(π1−p2

+ h′′i (π) + ε(π2−2p + h′i(π) + hi(π))) ∈ F[[π]]

for some unique ε ∈ F× and some unique Laurent polynomials h′′i (π) =
∑p−2

s=1 ε
′′
sπ

1−p2+sp, h′i(π) =∑p−2
s=1 ε

′
sπ

2−2p+s and hi(π) =
∑p−2

s=1 εsπ
1−p+s ∈ F[π][1/π].

Proof. By Lemma 4.2 we have,

(λΣi
η η − 1)(π1−p2

) ∈ F×π1−p2+p + π1−p2+2pF[[πp]]

and

(λΣi
η η − 1)(π1−p2+sp) ∈ F×π1−p2+sp +

p−s∑
j=1

Fπ1−p2+(s+j)p + F[[π]]

for 1 6 s6 p− 2. Thus there exist unique ε′′s , ν
′ ∈ F such that

(λΣi
η η − 1)

(
π1−p2

+
p−2∑
s=1

ε′′sπ
1−p2+sp

)
∈ ν ′π1−p + F[[π]].

Similarly, there exist unique ε′s, εs, ν ∈ F such that

(λΣi
η η − 1)

(
π2−2p +

p−2∑
s=1

ε′sπ
2−2p+s +

p−2∑
s=1

εsπ
1−p+s

)
∈ νπ1−p + F[[π]].

Put h′′i (π) =
∑p−2

s=1 ε
′′
sπ

2−p2+sp, h′i(π) =
∑p−2

s=1 ε
′
sπ

2−2p+s and hi(π) =
∑p−2

s=1 εsπ
1−p+s.

The point then is to show that both ν and ν ′ are non-zero so that

(λΣi
η η − 1)(π1−p2

+ h′′i (π)) + ε (λΣi
η η − 1)(π2−2p + h′i(π) + hi(π)) ∈ F[[π]],

where ε=−ν ′/ν ∈ F− {0}. So let us prove the non-vanishing of ν ′ and ν. Suppose ν ′ = 0,
so that valπ(λΣi

η η − 1)(π1−p2
+ h′′i (π)) > 0. By Lemma 4.5, recalling that ξ = ηp−1, it follows

that valπ(λΣi
ξ ξ − 1)(π1−p2

+ h′′i (π)) > 0, However, by Lemma 4.4 we have valπ(λΣi
η η − 1)(π1−p2

+
h′′i (π)) = 1− p. Thus ν ′ cannot be zero. Similarly, we get ν 6= 0. 2

Proposition 4.7. If ci = p− 1, and r ∈ {0, . . . , f − 1} is such that ci+1 = · · ·= ci+r = p− 2
and ci+r+1 6= p− 2, we have

(λΣi
η η − 1)

(
π1−pr+2

+
r+1∑
j=0

h
(j)
i +

r∑
j=0

ε(j)h
′(j)
i

)
∈ F[[π]]
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for some unique Laurent polynomials

h
(j)
i (π) =

p−2∑
s=1

ε(j)s π1−pj+1+spj (0 6 j 6 r + 1),

h
′(j)
i (π) = π1+pj−2pj+1

+
p−2∑
s=1

ε′(j)s π1+pj−2pj+1+spj (0 6 j 6 r)

in F[π][1/π] with ε
(r+1)
1 , ε(r) 6= 0.

Proof. By Lemma 4.2 (with v = r + 1, sv = ci+r+1 + 2) we get

(λΣi
η η − 1)π1−pr+2 ∈ F×π1−pr+2+pr+1

+ π1−pr+2+2pr+1
F[[πp

r+1
]]

and

(λΣi
η η − 1)π1−pr+2+spr+1 ∈ F×π1−pr+2+spr+1

+
p−s−1∑
t=1

Fπ1−pr+2+(s+t)pr+1
+ F[[π]]

for 1 6 s6 p− 2, so that there exist unique ε(r+1)
1 , . . . , ε

(r+1)
p−2 , ν(r+1) ∈ F such that

(λΣi
η η − 1)

(
π1−pr+2

+
p−2∑
s=1

ε(r+1)
s π1−pr+2+spr+1

)
∈ ν(r+1)π1−pr+1

+ F[[π]].

We set h(r+1)
i =

∑p−2
s=1 ε

(r+1)
s π1−pr+2+spr+1

.
Again by Lemma 4.2 we get

(λΣi
η η − 1)π1−2pr+1+pr ∈ F×π1−2pr+1+2pr + π1−2pr+1+3prF[[πp

r
]]

and

(λΣi
η η − 1)π1−2pr+1+(1+s)pr ∈ F×π1−2pj+1+(1+s)pj +

p−s−2∑
t=1

Fπ1−2pr+1+(1+s+t)pr + π1−pr+1
F[[πp

r
]]

for 1 6 s6 p− 2, so that there exist unique ε′(r)1 , . . . , ε
′(r)
p−2, ν

′(r) ∈ F such that

(λΣi
η η − 1)

(p−2∑
s=0

ε′(r)s π1+pr−2pr+1+spr
)
∈ ν ′(r)π1−pr+1

+ π1−pr+1+prF[[πp
r
]],

where we have set ε′(r)0 = 1.
As in the proof of Proposition 4.6, one can show that both ν(r+1) and ν ′(r) are not zero, so

that

(λΣi
η η − 1)(π1−pr+2

+ h
(r+1)
i + ε(r)h

′(r)
i ) ∈ π1−pr+1+prF[[πp

r
]],

where ε(r) =−ν(r+1)/ν ′(r) 6= 0. Then again

(λΣi
η η − 1)(π1−pr+2

+ h
(r+1)
i + ε(r)h

′(r)
i + h

(r)
i ) ∈ Fπ1−pr + F[[π]]

for some h(r)
i =

∑p−2
s=1 ε

(r)
s π1−pr+1+spr . Iterating the process proves the proposition. 2

When ci = p− 1, ci+1 = · · ·= ci+r = p− 2, ci+r+1 6= p− 2, we define

µϕ(Bi) = (0, . . . , 0, Hi(π), 0, . . . , 0),
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where

Hi(π) = π1−pr+2
+

r+1∑
j=1

h
(j)
i (π) +

r∑
j=0

ε(j)h
′(j)
i (π)

is the ith component. By Proposition 4.7, we get (λΣi
γ γ − 1)(µϕ(Bi)) ∈ F[[π]] and then

µγ(Bi) is determined by bijectivity of the map Cπ(p−1)ΣiΦ− 1 : F[[π]]→ F[[π]]. The condition (‡)
is checked in an analogous fashion as in § 4.1.

Remark 4.8. The cocycle Bi for the case ci = p− 1, ci+1 = · · ·= ci+r = p− 2, ci+r+1 6= p− 2 is
cohomologous to a cocycle B′i defined by

µϕ(B′i) =
(
ε(0)π2−2p

p−2∑
s=0

ε′(0)
s πs + π1−p

p−2∑
s=1

ε(0)
s πs

)
ei

+
(
ε(1)π3−3p

p−2∑
s=0

ε′(1)
s πs + π2−2p

p−2∑
s=1

ε(1)
s πs

)
ei+1

...

+
(
ε(r)π3−3p

p−2∑
s=0

ε′(r)s πs + π2−2p
p−2∑
s=1

ε(r)s πs
)
ei+r

+
(
π2−2p

p−2∑
s=0

ε(r+1)
s πs

)
ei+r+1,

where ε′(0)
0 = ε

′(1)
0 = · · ·= ε

′(r)
0 = ε

(r+1)
0 = 1 and ε(r) 6= 0. See Lemma 5.7 for the proof in the case

f = 2.

4.3 Linear independence of the [Bi]
Throughout this subsection we assume C 6= 1 if ~c=~0, so that Cπ(p−1)ΣiΦ− 1 : F[[π]]→ F[[π]]
defines a valuation-preserving bijection for all i ∈ S. From the constructions in §§ 4.1 and 4.2 we
have at hand the extensions [B0], . . . , [Bf−1] ∈ Ext1(M0, MC~c) such that, if i ∈ S,

µϕ(Bi) = (0, . . . , 0, Hi(π), . . . , 0)

has ith component

Hi(π) = π1−pr+2
+

r+1∑
j=0

h
(j)
i (π) +

r∑
j=0

ε(j)h
′(j)
i (π),

where, if ci 6= p− 1, then we set r =−1 and h(0)
i (π) = hi(π) was defined in § 4.1, and, if ci = p− 1,

then r is the least non-negative integer such that ci+r+1 6= p− 2 and h
(j)
i , h(j)

i and ε′(j) were
defined in § 4.2.

To prove linear independence of the [Bi], suppose that β0B0 + · · ·+ βf−1Bf−1 is a
coboundary for some β0, . . . , βf−1 ∈ F. We want to show that β0 = · · ·= βf−1 = 0. By the
cyclic nature of the indexing, it is enough to show that βf−1 = 0. Since β0µϕ(B0) + · · ·+
βf−1µϕ(Bf−1) = (β0H0(π), . . . , βf−1Hf−1(π)), by adding another coboundary, we see that

(β0H0(π) + β1Cπ
(p−1)c0H1(πp) + · · ·+ βf−1Cπ

(p−1)
∑f−2
j=0 cjp

j

Hf−1(πp
f−1

), 0, . . . , 0)

= (Cπ(p−1)c0b1(πp)− b0(π), π(p−1)c1b2(π)− b1(π), . . . , π(p−1)cf−1b0(πp)− bf−1(π))
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for some (b0(π), . . . , bf−1(π)) ∈ F((π))S . It follows that

β0H0(π) + β1Cπ
(p−1)c0H1(πp) + · · ·+ βf−1Cπ

(p−1)
∑f−2
j=0 cjp

j

Hf−1(πp
f−1

)

= (Cπ(p−1)Σ0Φ− 1)(b0(π))

and

b1(π) = π(p−1)c1b2(πp),
b2(π) = π(p−1)c2b3(πp),

...
bf−2(π) = π(p−1)cf−2bf−1(πp),

bf−1(π) = π(p−1)cf−1b0(πp).

As the map Cπ(p−1)Σ0Φ− 1 : F[[π]]→ F[[π]] is a bijection, we get a congruence

β0H0(π) + β1Cπ
(p−1)c0H1(πp) + · · ·+ βf−1Cπ

(p−1)
∑f−2
j=0 cjp

j

Hf−1(πp
f−1

)

≡ (Cπ(p−1)Σ0Φ− 1)(b(π)) mod F[[π]]

for some b(π) = b−sπ
−s +

∑s−1
j=1 b−s+jπ

−s+j ∈ F[1/π] with s > 0 and b−s 6= 0. Suppose βf−1 6= 0
and we will get contradictions.

First assume cf−1 = p− 1, cf = · · ·= cf−1+r = p− 2, cf+r 6= p− 2 with r > 0, in which case
we have

Hf−1(π) = π1−pr+2
+

r+1∑
j=0

h
(j)
i (π) +

r∑
j=0

ε(j)h
′(j)
i (π).

One can check that the lowest degree term (in π) of the left-hand side of the congruence is

βf−1Cπ
(p−1)

∑f−2
j=0 cjp

j

π(1−pr+2)pf−1
,

so that the valuation of the left-hand side is (p− 1)(
∑f−2

j=0 cjp
j − (1 + p+ · · ·+ pr+1)pf−1).

On the other hand, we have three possibilities for the right-hand side: (p− 1)Σ0 − spf <−s,
−s < (p− 1)Σ0 − spf and (p− 1)Σ0 − spf =−s.

If (p− 1)Σ0 − spf <−s, the leading term of the right-hand side is b−sCπ(p−1)Σ0π−sp
f

and
we have s= (p− 1)(2 + p+ · · ·+ pr) and βf−1 = b−s. Now the term

βf−1Cπ
(p−1)

∑f−2
j=0 cjp

j

ε(r)π(1+pr−2pr+1)pf−1

survives on the left-hand side and must match a term on the right-hand side. Considering possible
matching valuations on the right-hand side we get either

(p− 1)
f−2∑
j=0

cjp
j + (1 + pr − 2pr+1)pf−1 =−t

or

(p− 1)
f−2∑
j=0

cjp
j + (1 + pr − 2pr+1)pf−1 = (p− 1)Σ0 − tpf

for some 0< t < s= (p− 1)(2 + p+ · · ·+ pr). The former equation contradicts the inequality
t < s and the latter implies that t= 2pr − pr−1 + p− 2. Since pf 6 | t+ (p− 1)Σ0, there must
be a term of degree −t on the left-hand side. However, if m< r, then the leading term
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of π(p−1)
∑m−1
j=0 cjp

j

Hm(πp
m

) has degree greater than −t, and, if m> r, then its terms cannot
be congruent to −t mod pr, and we again arrive at a contradiction.

If −s < (p− 1)Σ0 − spf , the leading term of the right-hand side is −b−sπ−s. Then (p− 1)|s
and s(pf − 1)/(p− 1)< Σ0 < pf − 1, so that s < 1, which is impossible.

Lastly, if (p− 1)Σ0 − spf =−s, working modulo powers of p, we get s= c0 = · · ·= cf−1 =
p− 1, a contradiction.

Now we may assume that βj = 0 for all j ∈ S such that cj = p− 1 and cj+1 = p− 2. Suppose
now that cf−1 = p− 1 and c0 6= p− 2. We then proceed to show that βf−1 = 0 by induction on m,
where m> 1 is such that cf−m−1 6= p− 1 and cf−m = cf−m+1 = · · · cf−1 = p− 1. We may thus
assume that βf−m = · · ·= βf−2 = 0 if m> 2. The argument used in the case r > 0 then goes
through with the following two changes: (1) the induction hypothesis is used to show that the
term

βf−1Cπ
(p−1)

∑f−2
j=0 cjp

j

ε(0)π(2−2p)pf−1

is alive on the left-hand side, and (2) the equality

(p− 1)
f−2∑
j=0

cjp
j + (2− 2p)pf−1 = (p− 1)Σ0 − tpf

immediately gives a contradiction without considering more terms.
Now we may assume that βj = 0 for all j ∈ S such that cj = p− 1, and suppose cf−1 < p− 1.

The leading term of the left-hand side then is

βf−1Cπ
(p−1)

∑f−2
j=0 cjp

j

π(1−p)pf−1
.

If (p− 1)Σ0 − spf <−s, spf = (p− 1)(Σ0 −
∑f−2

j=0 cjp
j + pf−1) = (p− 1)(cf−1 + 1)pf−1, and so

p|(cf−1 + 1), which is impossible as 0 6 cf−1 < p− 1. If (p− 1)Σ0 − spf >−s, then

−s6 (p− 1)
(f−2∑
j=0

cjp
j − pf−1

)
6 1− p,

contradicting that s(pf − 1)/(p− 1) 6 Σ0 < pf − 1.
This completes the proof that the [Bi] are linearly independent, hence form a basis for

Ext1(M0, MC~c) (unless C = 1, ~c=~0 or C = 1, ~c= p− 2).

5. The space of bounded extensions

In this section we define bounded extensions, which we will later relate to extensions arising from
crystalline representations.

5.1 Bounded extensions
Definition 5.1. Suppose A, B ∈ F× and 0 6 ai, bi 6 p with exactly one of ai or bi being zero
for each i ∈ S. We say that an extension (class) E ∈ Ext1(MA~a, MB~b

) is bounded if there exists a
basis for E such that the defining matrices P and Gγ satisfy the following:

(i) P =
(
κϕ(B,~b) ∗

0 κϕ(A,~a)

)
and Gγ =

(
κγ(B,~b) ∗

0 κγ(A,~a)

)
if γ ∈ Γ;

(ii) P ∈M2(F[[π]]S); and
(iii) Gγ − I2 ∈ πM2(F[[π]]S) if γ ∈ Γ1.
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Bounded extensions form a subspace, denoted by Ext1
bdd(MA~a, MB~b

), of the full space
Ext1(MA~a, MB~b

) of extensions.

Remark 5.2. Note that the space Ext1
bdd(MA~a, MB~b

) depends on ~a and ~b and not just on the
isomorphism classes of the (ϕ, Γ)-modules MA~a and M

B~b
.

Lemma 5.3. The condition (iii) in Definition 5.1 can be replaced by a weaker condition (iii ′)
Gξ − I2 ∈ πM2(F[[π]]S). (Recall that ξ is a topological generator of Γ1.)

Proof. If γ, γ′ ∈ Γ1, then

Gγγ′ =GγγGγ′ ≡
(

1 µγ(E) + γµγ′(E)
0 1

)
mod π

by Lemma 4.3. So, if Gξ = I2 mod π, we have by induction that Gξn ≡ I2 for all n> 1. Since 〈ξ〉
is dense in Γ1, continuity of the action gives that Gγ − I2 ∈ πM2(F[[π]]S) for all γ ∈ Γ1. 2

We now describe a way to analyze extensions systematically and to check for boundedness.
Given J ⊂ S and n ∈ Z/(pf − 1)Z, we can always find ai, bj for i ∈ J, j ∈ S − J with 1 6 ai, bj 6 p
such that

n≡
∑
j 6∈J

bjp
j −

∑
i∈J

aip
i mod pf − 1.

The congruence has a unique solution if n 6≡ nJ mod pf − 1, and has two solutions if n≡
nJ mod pf − 1, where nJ :=

∑
i∈J p

i+1 −
∑

i6∈J p
i (cf. [BDJ10, § 3]). To compute the solutions

explicitly in the double solution case, suppose n≡ nJ mod pf − 1 and we have two solutions ai, bj
and a′i, b

′
j . Then Σ :=

∑
j 6∈J(bj − b′j)pj −

∑
i∈J(ai − a′i)pi ≡ 0 mod pf − 1. Note that |Σ|6 pf − 1,

as |ai − a′i|, |bj − b′j |6 p− 1, so that Σ = 0 or ±(pf − 1), and in the latter case we can exchange
~a,~b and ~a′,~b′ if necessary in order to assume Σ = pf − 1. If Σ = 0, then reducing modulo
powers of p shows that ~a= ~a′ and ~b=~b′. If Σ = pf − 1, then we have solutions ai = 1, bj = p
and a′i = p, b′j = 1 (i ∈ J, j ∈ S − J).

Now fix J ⊂ S, C ∈ F× and ~c ∈ {0, 1, . . . , p− 1}S with some ci < p− 1. If Σ0~c 6≡ nJ
mod pf − 1, we can solve the congruence Σ0~c≡

∑
i6∈J bip

i −
∑

i∈J aip
i mod pf − 1 with unique

solution, and get an isomorphism

Ext1(M~0, MC~c)' Ext1(M~0, MC~d
),

where di =−ai if i ∈ J and dj = bj if j 6∈ J . The isomorphism is (not canonical but) well-defined
up to AutMC~c = F× and the valuations of entries of the matrices defining the (ϕ, Γ)-module
extensions are invariant, which suffices for our purposes. Tensoring MA~a with the subobject and
the quotient of the extension gives an isomorphism

ι : Ext1(M~0, MC~c)→ Ext1(MA~a, MB~b
),

where CA=B and ai = 0 if i 6∈ J and bi = 0 if i ∈ J . Note that, if J = ∅, A= 1 and ci > 0 for all
i, then MA~a =M0, M

B~b
=MC~c =M

C~d
and ι is the identity. In general, we have the following

commutative diagram.

H/H0
//

��

H ′/H ′0

��
Ext1(M~0, MC~c) // Ext1(MA~a, MB~b

)
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The vertical arrows are the isomorphisms β defined at the beginning of § 4, and the bottom
arrow, which we also denote ι, is induced by

(µϕ, (µγ)γ∈Γ) 7→ (κϕ(A, ~a)〈~c 〉Jµϕ, (κγ(A, ~a)〈~c 〉Jµγ)γ∈Γ),

where the isomorphism EK,F e=MC~c 'MC~d
= EK,F e

′ is defined by the change of basis e=
〈~c 〉Je′ with 〈~c 〉J ∈E×K,F . It is straighforward to check the following formula for 〈~c 〉J , which we
will need in order to compute spaces of bounded extensions:

〈~c 〉J = (π(p−1)ε0 , . . . , π(p−1)εf−1),

where (pf − 1)εi = Σi(~c− ~d).
We define

VJ = ι−1(Ext1
bdd(MA~a, MB~b

))⊂ Ext1(M~0, MC~c),
so that dimF VJ = dimF Ext1

bdd(MA~a, MB~b
).

If Σ0~c≡ nJ mod pf − 1, we can assume that nJ =
∑

i6∈J bip
i −
∑

i∈J aip
i and nJ + 1− pf =∑

i6∈J b
′
ip
i −
∑

i∈J a
′
ip
i where ai, bj and a′i, b

′
j are two solutions. Then we have ai = p, bj = 1 and

a′i = 1, b′j = p (for i ∈ J and j ∈ S − J).
As in the case of a unique solution, we have isomorphisms (but now there are two)

ι+ : Ext1(M~0, MC~c)→ Ext1(MA~a, MB~b
),

ι− : Ext1(M~0, MC~c)→ Ext1(M
A~a′
, M

B~b′
)

and define
V +
J = ι−1

+ (Ext1
bdd(MA~a, MB~b

))⊂ Ext1(M~0, MC~c),

V −J = ι−1
− (Ext1

bdd(M
A~a′
, M

B~b′
))⊂ Ext1(M~0, MC~c).

Note that we always use + to denote the case where all ai = p, bj = 1, and − for the case where
all ai = 1 and bj = p.

In the next two subsections we will compute explicitly the spaces of bounded extensions in
the generic case and in the case f = 2.

5.2 Generic case
For each i ∈ S, let ei : EK,F = F((π))S → F((π)) denote the projection (g0, . . . , gf−1) 7→ gi.

Proposition 5.4. If 0< ci < p− 1 for all i ∈ S, then:

(i) V{i} = F[Bi+1] for all i ∈ S;

(ii) VJ =
⊕

i∈J V{i} if J ⊂ S; and

(iii) V +
S = V −S = Ext1(M~0, MC

−−→
p−2

) if C 6= 1, ~c=
−−−→
p− 2.

Remark 5.5. Proposition 5.4 does not say anything about the cyclotomic case C = 1, ~c=
−−−→
p− 2,

which will be treated in § 6.1.

Proof. First consider the case J 6= ∅. We may assume that f − 1 ∈ J ; even though we do not
have complete symmetry due to the presence of the constant C, we will see that the argument
goes through independently of which component C lies in. As 0< ci < p− 1 for all i ∈ S we have
(pf − 1)/(p− 1) 6 Σ0~c6 (p− 2)(pf − 1)/(p− 1). We claim that the congruence

Σ0~c≡
∑
i6∈J

bip
i −
∑
i∈J

aip
i mod pf − 1
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has a unique solution ai, bj (i ∈ J, j 6∈ J) such that 1 6 ai, bj 6 p, except when J = S and
~c=
−−−→
p− 2. If there were another distinct solution, we have either Σ0~c=

∑
j 6∈J p

j+1 −
∑

j∈J p
j or

Σ0~c=
∑

j 6∈J p
j+1 −

∑
j∈J p

j + pf − 1. The former is impossible since modulo p we have c0 ≡−1
if 0 ∈ J and c0 ≡ 0 if j 6∈ J , and thus c0 = p− 1 or 0, contradicting the assumption. In the latter
case, we have 0 ∈ J and c0 = p− 2. Computations modulo p2 show that 1 ∈ J and c1 = p− 2.
By induction we get J = S and ci = p− 2 for all i ∈ S. Thus, unless J = S, ~c=

−−−→
p− 2, we have

unique ai, bj (i ∈ J, j 6∈ J) satisfying the equation
∑f−1

i=0 cip
i =
∑

i6∈J bip
i −
∑

i∈J aip
i + pf − 1.

Letting u= (π(p−1)δf−1J , π(p−1)δ0J , . . . , π(p−1)δf−2J ) with δiJ = 1 if i ∈ J and δiJ = 0 otherwise,
one can check that EK,F e=MC~c 'MC~d

= EK,F e
′ via the change of basis e= ue′, where di = bi

if i 6∈ J and di =−ai if i ∈ J , and that 〈~c 〉J = u. Note that

ϕ(〈~c 〉J)
〈~c 〉J

=
(π(p−1)pδ0J , π(p−1)pδ1J , . . . , π(p−1)pδf−1J )
(π(p−1)δf−1J , π(p−1)δ0J , . . . , π(p−1)δf−2J )

= (π(p−1)(pδ0J−δf−1J ), π(p−1)(pδ1J−δ0J ), . . . , π(p−1)(pδf−1J−δf−2J ))

and that

(pδ0J − δf−1J) + p(pδ1J − δ0J) + · · ·+ pf−1(pδf−1J − δf−2J) = (pf − 1)δf−1J = pf − 1.

Recall that we have a basis [B0], . . . , [Bf−1] for Ext1(M~0, MC~c) such that

µϕ(Bi) = (0, . . . , 0, π1−p + hi(π), 0, . . . , 0),

µξ(Bi) = (G(i)
0 , . . . , G

(i)
f−1),

where hi(π) ∈ Fπ2−p + · · ·+ Fπ−1 and

G
(i)
i (π) = −αi + gi(π),

G
(i)
i−1(π) = π(p−1)ci−1(−αi + gi(πp)),

G
(i)
i−2(π) = π(p−1)(ci−2+ci−1p)(−αi + gi(πp

2
)),

...
G

(i)
0 (π) = π(p−1)(c0+c1p+···+ci−1p

i−1)(−αi + gi(πp
i
)),

G
(i)
f−1(π) = π(p−1)(cf−1+c0p+c1p2+···+ci−1p

i)(−αi + gi(πp
i+1

)),
...

G
(i)
i+1(π) = π(p−1)(ci+1+···+ci−1p

f−2)(−αi + gi(πp
f−1

)),

with αi = s0z ∈ F× as in Lemma 4.4.
To show that ι[Bi+1] ∈ Ext1(MA~a, MB~b

) is bounded if i ∈ J is straightforward: as 〈~c 〉J =
(π(p−1)δf−1J , π(p−1)δ0J , . . . , π(p−1)δf−2J ) and δiJ = 1, we have

µϕ(ιBi+1) = κϕ(A, ~a)〈~c 〉Jµϕ(Bi+1)

= (0, . . . , 0, π(p−1)(ai+1+1)(π1−p + hi+1(π)), 0, . . . , 0) ∈ F[[π]]S

with the non-zero entry in the (i+ 1)th component, and

µξ(ιBi+1) = κξ(A, ~a)〈~c 〉Jµξ(Bi+1) ∈ πF[[π]]S

as ei+1µξ(ιBi+1) = λ
(p−1)Σj+1~a
ξ πp−1G

(i)
i+1 and ej+1µξ(ιBi+1) = λ

(p−1)Σj+1~a
ξ π(p−1)δjJG

(i)
j+1 is divis-

ible by π(p−1)cj+1 if j 6= i.
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Next we need to show that, if E =
∑f−1

j=0 βjBj and [E] ∈ VJ , then βi+1 = 0 for all i /∈ J .
Suppose ι[E] is bounded, i 6∈ J and βi+1 6= 0. Then µϕι(E +B) ∈ F[[π]]S and µξι(E +B) ∈
πF[[π]]S for some coboundary B, for which we have

µϕ(B) = (Cπ(p−1)c0b1(πp)− b0, π(p−1)c1b2(πp)− b1, . . . , π(p−1)cf−1b0(πp)− bf−1),

µξ(B) = ((λΣ0~c
ξ ξ − 1)b0(π), (λΣ1~c

ξ ξ − 1)b1(π) . . . , (λΣf−1~c
ξ ξ − 1)bf−1(π)),

for some (b0(π), . . . , bf−1(π)) ∈EK,F . Note that κξ(A, ~a)≡ 1 = (1, . . . , 1) mod π and ei+1〈~c 〉J =
π(p−1)δiJ = 1. As valπei+1µξ(E +B) = valπei+1µξι(E +B) > 1 while valπei+1µξ(E) = 0, the
valuation of ei+1µξ(B) = (λΣi+1

ξ ξ − 1)bi+1(π) has to be zero. Letting s= valπbi+1(π), Lemma 4.4

implies that (λΣi+1~c
ξ ξ − 1)bi+1(π) ∈ πF[[π]] if s> 0, and valπ(λΣi+1~c

ξ ξ − 1)bi+1(π) = s+ (p− 1)pv

if s < 0 and Σi+1~c+ s(pf − 1)/(p− 1) is divisible by pv but not pv+1. Thus valπbi+1(π) must be
negative and divisible by p− 1. Looking at the ith component, we have

eiµϕ(ι(E +B)) = π(p−1)(ai+δi−1J )(eiµϕ(E) + eiµϕ(B))

= π(p−1)δi−1J (π1−p + hi(π) + π(p−1)cibi+1(πp)− bi(π)),

whose valuation has to be non-negative. Since (p− 1)ci + p valπbi+1(π)< 1− p= valπ(π1−p +
hi(π)), we get valπbi(π) = (p− 1)ci + p valπbi+1(π). Cycling this through all j ∈ S leads to
valπbi+1(π) = (p− 1)Σi~c+ pfvalπbi+1(π), so that valπbi+1(π) =−(p− 1)Σi~c/(pf − 1)> 1− p,
which is a contradiction.

Now suppose J = S, C 6= 1, ~c=
−−−→
p− 2. In this case we have two solutions ~a= ~p,~b=~0 and

~a′ =~1, ~b′ =~0 of the congruence and the corresponding isomorphisms

ι+ : Ext1(M~0, MC
−−→
p−2

)→ Ext1(MA~p, MB~0),

ι− : Ext1(M~0, MC
−−→
p−2

)→ Ext1(MA~1, MB~0).

One can show that V +
J = V −J = Ext1(M~0, MC

−−→
p−2

) by straightforward computations.

If J = ∅, the congruence equation has a unique solution unless ~c=~1, in which case we have
two solutions ~a=~0,~b=~1 and ~a′ =~0, ~b′ = ~p. The proof that V∅ = 0 (when ~c 6=~1) and V +

∅ = V −∅ = 0
(when ~c=~1) is similar to the case J 6= ∅. 2

5.3 Case f = 2
Throughout this subsection we assume that f = 2, 0 6 c0, c1 6 p− 1, not both p− 1. If ~c=~0 or−−−→
p− 2, we further assume C 6= 1; the cases ~c=~0 and ~c=

−−−→
p− 2 when C = 1 are dealt with in §§ 6.1

and 6.2. Before determining which extensions are bounded, we describe the basis elements in the
form we will need. Recall that we defined a basis {[B0], [B1]} for Ext1(M~0, MC~c), where B0 and
B1 are cocycles of the following form:

µϕ(B0) = (H0(π), 0),

µξ(B0) = (G(0)
0 (π), G(0)

1 (π))

= ((Cπ(p−1)Σ0Φ− 1)−1((λΣ0
ξ ξ − 1)H0(π)), π(p−1)c1G

(0)
0 (πp)),

µϕ(B1) = (0, H1(π)),

µξ(B1) = (G(1)
0 (π), G(1)

1 (π))

= (π(p−1)c0G
(1)
1 (πp), (Cπ(p−1)Σ1Φ− 1)−1((λΣ1

ξ ξ − 1)H1(π))),
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where

H0(π) =


π1−p + h0 if c0 < p− 1,
π1−p2

+ h
(1)
0 + ε(0)h

′(0)
0 + h

(0)
0 if c0 = p− 1, c1 6= p− 2,

π1−p3
+ h

(2)
0 + ε(1)h

′(1)
0 + h

(1)
0 + ε(0)h

′(0)
0 + h

(0)
0 if c0 = p− 1, c1 = p− 2,

H1(π) =


π1−p + h1 if c1 < p− 1,
π1−p2

+ h
(1)
1 + ε(0)h

′(0)
1 + h

(0)
1 if c1 = p− 1, c0 6= p− 2,

π1−p3
+ h

(2)
1 + ε(1)h

′(1)
1 + h

(1)
1 + ε(0)h

′(0)
1 + h

(0)
1 if c1 = p− 1, c0 = p− 2.

Lemma 5.6. Suppose that i ∈ {0, 1} is such that 0 6 ci < p− 1. Then for some αi ∈ F×, gi(π) ∈
1 + πF[[π]], we have

µϕ(B0) = (π1−p + h0(π), 0),

µξ(B0) = (α0g0(π), π(p−1)c1α0g0(πp))

}
if i= 0,

µϕ(B1) = (0, π1−p + h1(π)),

µξ(B1) = (Cπ(p−1)c0α1g1(πp), α1g1(π))

}
if i= 1.

Proof. We assume i= 0; the case i= 1 is similar. As in Lemma 4.4, we have

L0(π) := (λΣ0
ξ ξ − 1)(π1−p + h0(π))≡ s0z mod πF[[π]],

so that e0µξ(B0) = (Cπ(p−1)Σ0Φ− 1)−1(L0(π)) = α0g0(π) for some g0(π) ∈ 1 + πF[[π]] with α0 =
(C − 1)−1s0z if c0 = c1 = 0, and α0 =−s0z otherwise. (Recall that we assume for now that C 6= 1
if c0 = c1 = 0.) 2

If ci = p− 1, we introduce a cocycle B′i cohomologous to Bi, which we will work with.

Lemma 5.7. Suppose that {i, j}= {0, 1} with ci = p− 1 and cj < p− 2. Then there is a cocycle
B′i such that [B′i] = [Bi] and

valπ(eiµϕ(B′i)) = valπ(ejµϕ(B′i)) = 2− 2p,

valπeiµξ(B′i)) > 0 and valπ(ejµξ(B′i)) = 1− p.

Proof. Again assume i= 0, the case i= 1 being similar. By the very construction of H0(π), we
have L0(π) := (λΣ0

ξ ξ − 1)H0(π) ∈ F[[π]], so that

g′0(π) := e0µξ(B0) = (Cπ(p−1)Σ0Φ− 1)−1(L0(π)) ∈ F[[π]]

and µξ(B0) = (g′0(π), π(p−1)c1g′0(πp)). Now let B′0 =B0 −B, where B is a coboundary such that

µϕ(B) = (Cπ(p−1)c0b1(πp)− b0(π), π(p−1)c1b0(πp)− b1(π))

= (π1−p2
+ h

(1)
0 ,−C−1(π2−2p + h̃

(1)
0 )),

µξ(B) = (0, (λΣ1
ξ ξ − 1)b1(π)),

where b0(π) = 0, b1(π) = C−1(π2−2p + h̃
(1)
0 ) with h̃

(1)
0 :=

∑p−2
s=1 ε

(1)
s π2−2p+s. Then

µϕ(B′0) = (ε(0)h
′(0)
0 + h

(0)
0 , C−1(π2−2p + h

(1)
0 ))

µξ(B′0) = (g′0(π), π(p−1)c1g′0(πp)− (λΣ1
ξ ξ − 1)b1(π)),

so that B′0 has the required form. 2
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Lemma 5.8. Suppose that {i, j}= {0, 1} with ci = p− 1 and cj = p− 2. Then there is a cocycle
B′i such that [B′i] = [Bi] and

valπ(eiµϕ(B′i)) > 2− 2p, valπ(ejµϕ(B′i)) = 3− 3p,

valπ(eiµξ(B′i)) = 1− p and valπ(ejµξ(B′i)) > 2− 2p.

Proof. This is similar to Lemma 5.7 but choose the coboundary B such that

µϕ(B) = (Cπ(p−1)c0b1(πp)− b0(π), π(p−1)c1b0(πp)− b1(π))

= (π1−p3
+ ε(1)h

′(1)
0 + h

(1)
0 + h

(2)
0 − C

−1h̃
(2)
0 ,−C−1(ε(1)h̃

′(1)
0 + h̃

(1)
0 )),

µξ(B) = ((λΣ0
ξ ξ − 1)b0(π), (λΣ1

ξ ξ − 1)b1(π)),

by taking b0(π) = C−1h̃
(2)
0 , b1(π) = C−1(ε(1)h̃

′(1)
0 + h̃

(1)
0 ) + π(p−1)(p−2)b0(πp), where h̃

(2)
0 :=∑p−2

s=0 ε
(2)
s π2−2p+s (with ε

(2)
0 = 1), h̃

′(1)
0 :=

∑p−2
s=0 ε

′(1)
s π3−3p+s (with ε′(1) = 1) and h̃

(1)
0 :=∑p−2

s=1 ε
(1)
s π2−2p+s. 2

Proposition 5.9. If f = 2, then

VS = V ±S = Ext1(M~0, MC~c),

with ± occurring when ~c=
−−−→
p− 2.

Proof. By straightforward calculations one can check that both ι[B0] and ι[B1] are bounded in
each of the following cases that need to be considered:

• 0 6 c0, c1 6 p− 2, 1 6 a0, a1 6 p− 1, 〈~c 〉S = (πp−1, πp−1);
• c0 = p− 1, 0 6 c1 < p− 2, a0 = 1, 1 6 a1 < p− 1, 〈~c 〉S = (πp−1, π2p−2);
• 0 6 c0 < p− 2, c1 = p− 1, 1 6 a0 < p− 1, a1 = 1, 〈~c 〉S = (π2p−2, πp−1);
• p− 2 6 c0, c1 6 p− 1, p− 1 6 a0, a1 6 p, 〈~c 〉S = (π2p−2, π2p−2);
• c0 = c1 = p− 2, a0 = a1 = p, 〈~c 〉S = (π2p−2, π2p−2) (for V +

S ); and
• c0 = c1 = p− 2, a0 = a1 = 1, 〈~c 〉S = (πp−1, πp−1) (for V −S ). 2

Proposition 5.10. If f = 2, then

V∅ = V ±∅ = 0,

with ± occurring when ~c=~1.

Proof. We have the following cases to consider:

• 1 6 c0, c1 6 p− 1, 1 6 b0, b1 6 p− 1, 〈~c 〉∅ = (1, 1);
• c0 = 0, 2 6 c1 6 p− 1, b0 = p, 1 6 b1 6 p− 2, 〈~c 〉∅ = (1, π1−p);
• 2 6 c0 6 p− 1, c1 = 0, 1 6 b0 6 p− 2, b1 = p, 〈~c 〉∅ = (π1−p, 1); and
• 0 6 c0, c1 6 1, p− 1 6 b0, b1 6 p, 〈~c 〉∅ = (π1−p, π1−p).

If E is a cocycle such that ι[E] is bounded, then there is a coboundary B associated
to some (b0(π), b1(π)) ∈ F((π))S such that ι(E +B) has µϕ ∈ F[[π]]S and µξ ∈ πF[[π]]S . As
κϕ(A, ~a) ∈ (F×)S and 〈~c 〉∅ = (π(1−p)ε0 , π(1−p)ε1) for some εj ∈ {0, 1}, we get µϕ(E +B) ∈ F[[π]]S

and µξ(E +B) ∈ πF[[π]]S .
First consider the case 0 6 c0, c1 < p− 1 and E =B0 + βB1 for some β ∈ F×. As

valπe0µϕ(E) = 1− p and valπe1µϕ(E) > 1− p, we have valπ(Cπ(p−1)c0b1(πp)− b0(π)) = 1− p
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and valπ(π(p−1)c1b0(πp)− b1(π)) > 1− p. If valπb0(π)> 1− p, then (p− 1)c0 + pvalπb1(π) = 1−
p, which implies p|(c0 + 1), contradicting c0 < p− 1. If valπb0(π) 6 1− p, then (p− 1)c1 +
pvalπb0(π)< 1− p, which implies that valπb1(π) = (p− 1)c1 + pvalπb0(π)< 1− p, which in turn
implies (p− 1)c0 + pvalπb1(π)< 1− p, so that valπb0(π) = (p− 1)c0 + pvalπb1(π) = (p− 1)Σ0 +
p2valπb0(π), yielding a contradiction. The proof that ι[B1] is not bounded is the same.

Next suppose c0 = p− 1 and 0< c1 < p− 2. First consider the case E =B′0 + βB1.
As valπe1µξ(E) = 1− p, we have valπ(λΣ1

ξ ξ − 1)b1(π) = 1− p, so that valπb1(π) 6 2− 2p.
Then valππ(p−1)c0b1(πp) = (p− 1)c0 + pvalπb1(π)< (1− p)(1 + p)< 2− 2p= valπe0µϕ(E), and
so valπb0(π) = valππ(p−1)c0b1(πp) = (p− 1)c0 + pvalπb1(π). Then again valππ(p−1)c1b0(πp) =
(p− 1)Σ1 + p2valπb1(π)< 2−2p=valπe1µϕ(E), so that valπb1(π) = valππ(p−1)c1b0(πp) =
(p− 1)Σ1 + p2valπb1(π), or valπb1(π) =−(p− 1)Σ1/(p2 − 1)> 2− 2p, a contradiction. The proof
that ι[B1] is not bounded is the same as in the case c0 < p− 1.

If c0 = p− 1, c1 = p− 2, the proof is similar to the preceding case, except that we start by
noting that valπe0µξ(E) = 1− p if E =B′0 + βB1.

The proof in the case that c1 = p− 1 is the same as the case c0 = p− 1. 2

Proposition 5.11. If f = 2, then

V{1} =


F[B1] if c0 = p− 1,
F[α1B0 − α0B1] if 0< c0 < p− 1, c1 = 0,
F[B0] 0 6 c0 < p− 1, 0< c1 6 p− 1,

V +
{1} = F[α1B0 − α0B1],

V −{1} = 0,

with ± occurring when ~c=~0. (See Lemma 5.6 for the definition of the αi.)

Proof. Unless ~c=~0, ~c gives rise to unique ~a= (0, a1),~b= (b0, 0) with 1 6 a1, b0 6 p. If ~c=~0, we
have ~a= (0, p),~b= (1, 0) (for V +

J ) or ~a= (0, 1),~b= (p, 0) (for V −J ). We always have 〈~c 〉{1} =
(πp−1, 1) except when ~c=~0, b0 = p, a0 = 1, in which case we have 〈~c 〉{1} = (1, π1−p).

(i) Assume c0 = p− 1. It is straightforward to check that ι[B1 + βB] is bounded for some
β ∈ F×, where B is a coboundary such that

µϕ(B) = (Cπ(p−1)c0π(1−p)p,−π1−p) and µξ(B) = (0, (λΣ1
ξ ξ − 1)(π1−p)).

Suppose ι[B′0] is bounded. There exists a coboundary B such that µϕι(B′0 +B) ∈ F[[π]]S ,
µξι(B′0 +B) ∈ πF[[π]]S , and so

µϕ(B′0) + (Cπ(p−1)c0b1(πp)− b0(π), π(p−1)c1b0(πp)− b1(π)) ∈ π1−pF[[π]]× π(1−p)a1F[[π]],
µξ(B′0) + ((λΣ0

ξ ξ − 1)b0(π), (λΣ1
ξ ξ − 1)b1(π)) ∈ π2−pF[[π]]× πF[[π]]

for some b0(π), b1(π) ∈ F((π)).
If c1 < p− 2, we have valπ(λΣ1

ξ ξ − 1)b1(π) = 1− p as valπe1µξ(B′0) = 1− p, so that
valπb1(π) 6 2− 2p. Then

valπ(π(p−1)c0b1(πp)) = (p− 1)c0 + pvalπb1(π)< (1− p)(1 + p)< valπe0µϕ(B′0),

and so valπb0(π) = (p− 1)c0 + pvalπb1(π). Then again

valππ(p−1)c1b0(πp) = (p− 1)c1 + pvalπb0(π) = (p− 1)Σ1 + p2valπb1(π)
< (1− p)(1 + p)< (1− p)a1,
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so that valπb1(π) = (p− 1)Σ1 + p2valπb1(π), or valπb1(π) =−(p− 1)Σ1/(p2 − 1)> 1− p, a
contradiction.

If c1 = p− 2, start with valπ(λΣ0
ξ ξ − 1)b0(π) = 1− p and the same argument as above (for

the case c1 < p− 2) goes through.

(ii) Assume 0< c0 < p− 1, c1 = 0. Straightforward calculations show that µϕιB0, µϕιB1 ∈
F[[π]]S but µξιB0(π), µξιB1 6∈ πF[[π]]S . If, however, we take α1B0 − α0B1, it has µϕ obviously in
F[[π]]S and µξ = κξ(A, ~a)(πp−1α0α1(g0(π)− Cπ(p−1)c0g1(πp)), α0α1(g0(πp)− g1(π))) ∈ πF[[π]]S .

Now suppose ι[B1] is bounded, and so we have, for some coboundary B, that µϕι(B1 +B) ∈
F[[π]]S and µξι(B1 +B) ∈ πF[[π]]S , which implies

µϕ(B1) + (Cπ(p−1)c0b1(πp)− b0(π), π(p−1)c1b0(πp)− b1(π)) ∈ π1−pF[[π]]× π(1−p)a1F[[π]],
µξ(B1) + ((λΣ0

ξ ξ − 1)b0(π), (λΣ1
ξ ξ − 1)b1(π)) ∈ π2−pF[[π]]× πF[[π]]

for some b0(π), b1(π) ∈ F((π)).

We have valπ(λΣ1
ξ ξ − 1)b1(π) = 0 and so valπb1(π) 6 1− p, so that valππ(p−1)c0b1(πp) =

(p− 1)c0 + pvalπb1(π)< 1− p. Then valπb0(π) = (p− 1)c0 + pvalπb1(π) and valππ(p−1)c1b0(πp) =
(p− 1)Σ1 + p2valπb1(π)< (1− p)a1, so that valπb1(π) = Σ1 + p2valπb1(π), or valπb1(π) =
−(p− 1)/(p2 − 1)Σ1 > 1− p, a contradiction.

(iii) Assume 0 6 c0 < p− 1, 0< c1 6 p− 1. It is straightforward to check that ι[B0] is
bounded:

µϕι(B0) = (A, π(p−1)a1)(πp−1, 1)(π1−p + h0(π)) ∈ F[[π]]S ,

µξι(B0) = κξ(A, ~a)(πp−1, 1)(α0g(π), π(p−1)c1α0g0(πp)) ∈ πF[[π]]S

as c1 > 0.

Now suppose ι[B1] is bounded. Then there exists a coboundary B such that µϕι(B1 +B) ∈
F[[π]]S , µξι(B1 +B) ∈ πF[[π]]S , and so

µϕ(B1 +B) + (Cπ(p−1)c0b1(πp)− b0(π), π(p−1)c1b0(πp)− b1(π)) ∈ π1−pF[[π]]× π(1−p)a1F[[π]],
µξ(B1 +B) + ((λΣ0

ξ ξ − 1)b0(π), (λΣ1
ξ ξ − 1)b1(π)) ∈ π2−pF[[π]]× πF[[π]].

If c1 < p− 1, then the argument is the same as in case (ii).

If c1 = p− 1, c0 < p− 2, then as valπe0µξ(B′1 +B) > 2− p and valπe0µξ(B′1) = 1− p, we have
valπe0µξ(B) = valπ(λΣ0

ξ ξ − 1)b0(π) = 1− p, so that valπb0(π) 6 2− 2p. Then

valππ(p−1)c1b0(πp) = (p− 1)c1 + pvalπb0(π)
6 (1− p)(1 + p)<min(valπe1µϕB

′
1, (1− p)a1),

so that valπb1(π) = (p− 1)c1 + pvalπb0(π). So

valππ(p−1)c0b1(πp) = (p− 1)Σ0 + p2valπb0(π)< (1− p)(1 + p)< valπe0µϕ(B′1),

which implies valπb0(π) = (p− 1)Σ0 + p2valπb0(π), or valπb0(π) =−(p− 1)Σ0/(p2 − 1)> 1− p,
a contradiction.

If c1 = p− 1, c0 = p− 2, then as valπe1µξ(B′1 +B) > 1 and valπe1µξ(B′1) = 1− p, we have
valπe1µξ(B) = valπ(λΣ1

ξ ξ − 1)b1(π) = 1− p, so that valπb1(π) 6 2− 2p. Then

valππ(p−1)c0b1(πp) = (p− 1)c0 + pvalπb1(π) 6 (1− p)(1 + p)< valπe0µϕB
′
1,
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so that valπb0(π) = (p− 1)c0 + pvalπb1(π). So

valππ(p−1)c1b0(πp) = (p− 1)Σ1 + p2valπb1(π)< (1− p)(1 + p)< valπe1µϕ(B′1),

which implies valπb1(π) = (p− 1)Σ1 + p2valπb1(π), or valπb1(π) =−(p− 1)Σ1/(p2 − 1)> 1− p,
a contradiction.

(iv) Assume c0 = c1 = 0, b0 = 1, a1 = p. Straightforward calculations show that µϕιB0(π),
µϕιB1 ∈ F[[π]]S but µξιB0(π), µξιB1 6∈ πF[[π]]S . If, however, we take α1B0 − α0B1, it has µϕ
obviously in F[[π]]S and

µξ = (πp−1α0α1(g0(π)− Cg1(πp)), α0α1(g0(πp)− g1(π))) ∈ πF[[π]]S .

Now suppose ι[B1] is bounded, and so we have, for some coboundary B, that µϕι(B1 +B) ∈
F[[π]]S and µξι(B1 +B) ∈ πF[[π]]S , which implies

µϕ(B0) + (Cb1(πp)− b0(π), b0(πp)− b1(π)) ∈ π1−pF[[π]]× π(1−p)pF[[π]],
µξ(B0) + ((ξ − 1)b0(π), (ξ − 1)b1(π)) ∈ π2−pF[[π]]× πF[[π]]

for some b0(π), b1(π) ∈ F((π)). We have valπ(ξ − 1)b1(π) = 0 and so valπb1(π) 6 1− p, so that
valπb1(πp) = pvalπb1(π)< 1− p. Then valπb0(π) = pvalπb1(π) and valπb0(πp) = p2valπb1(π)<
(1− p)p < valπe0µϕ(B1), giving valπb1(π) = 0 and a contradiction.

(v) Assume c0 = c1 = 0, b0 = p, a1 = 1. Suppose ι[B0 + βB1] is bounded for some β ∈ F.
There exists a coboundary B such that µϕι(B0 + βB1 +B) ∈ F[[π]]S and µξι(B0 + βB1 +B) ∈
πF[[π]]S . As κϕ(A, ~a)〈~c 〉 ∈ (F×)S , we have

µϕ(B0 + βB1 +B) = µϕ(B0 + βB1) + (Cb1(πp)− b0(π), b0(πp)− b1(π)) ∈ F[[π]]S ,

µξ(B0 + βB1 +B) = µξ(B0 + βB1) + ((ξ − 1)b0(π), (ξ − 1)b1(π)) ∈ πF[[π]]S

for some b0(π), b1(π) ∈ F((π)).
Note that

valπe0µϕ(B0 + βB1) = 1− p6 valπe1µϕ(B0 + βB1),
valπe0µξ(B0 + βB1) > 0, valπe1µξ(B0 + βB1) > 0.

Then valπe0µϕ(B) = valπ(Cb1(πp)− b0(π)) = 1− p, and we get either valπb0(π) = 1− p <
valπb1(πp) or valπb1(πp) = valπb0(π)< 1− p. In either case, we have valπb0(πp)< 1− p, so
valπb0(πp) = valπb1(π), giving a contradiction. The same argument proves that ι[B1] is not
bounded. 2

Similarly one proves the following proposition.

Proposition 5.12. If f = 2, then

V{0} =


F[B0] if c1 = p− 1,
F[Cα1B0 − α0B1] if c0 = 0, 0< c1 < p− 1,
F[B1] 0< c0 6 p− 1, 0 6 c1 < p− 1,

V +
{0} = F[Cα1B0 − α0B1],

V −{0} = 0,

with ± occurring when ~c=~0. (See Lemma 5.6 for the definition of the αi.)

In proving Propositions 5.11 and 5.12 we have shown the following, which exhibits instances
of coincidence of the VJ for distinct J .
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Corollary 5.13. Suppose f = 2 and recall (c0, c1) 6= (p− 1, p− 1).

(i) If c0 = p− 1, then V{1} = V{0} = F[B1].
(ii) If c1 = p− 1, then V{1} = V{0} = F[B0].

(iii) If c0 = c1 = 0, then V +
{1} and V +

{0} are distinct and one-dimensional, and V −{1} = V −{0} = 0.

(iv) In all other cases, V{1} and V{0} are distinct and one-dimensional.

6. Exceptional cases

6.1 Cyclotomic character
Assume C = 1, ~c=

−−−→
p− 2, so that

κϕ(C, ~c ) = (π(p−1)(p−2), . . . , π(p−1)(p−2)),

κγ(C, ~c ) =
((

γ(π)
πχ(γ)

)p−2

, . . . ,

(
γ(π)
πχ(γ)

)p−2)
if γ ∈ Γ. Recall that the Bi for all i ∈ S have already been constructed in § 4.1 and we just need
to construct an additional basis element, which we will denote Btr (for très ramifié). Before we
do this for arbitrary f > 1, let us first consider the situation where f = 1 (i.e., K = Qp) and
F = Fp as a foundation for the general construction. (We will go back to the general case f > 1
in the paragraph preceding Lemma 6.4.)

Lemma 6.1. Let η ∈ Γ be such that ηΓ1 generates Γ/Γ1 ' F×p and let χ(ξ)≡ 1 + zp mod p2 with

0< z 6 p− 1. If s ∈ Z is divisible by pv but not by pv+1 for some v ∈ Z, then

χ(η)η(πs)− πs ∈ (χ(η)s+1 − 1)πs + sv
χ(η)s+1(χ(η)− 1)

2
πs+p

v
+ πs+2pvFp[[πp

v
]],

χ(ξ)ξ(πs)− πs ∈ svz(πs+(p−1)pv + πs+p
v+1

) + πs+p
v+1(p−1)Fp[[πp

v
]],

where s=
∑

j>v sjp
j .

Proof. This is similar to the proofs of Lemmas 4.2 and 4.4. 2

Lemma 6.2. There exists h′(π) ∈ π1−2p + π2−2pF[[π]] such that

(χ(η)η − 1)(h′(π)) ∈ F(π−p − π−1) + πF[[π]].

(Recall that η is a topological generator of Γ.)

Proof. By Lemma 6.1, there exist ε2−2p, . . . , ε−1, ε0 ∈ F (unique if we set ε−p = ε−1 = 0) such
that

(χ(η)η − 1)(π1−2p + ε2−2pπ
2−2p + · · ·+ ε−1π

−1 + ε0) ∈ Fπ−p + Fπ−1 + πF[[π]].

Set h′(π) = π1−2p + ε2−2pπ
2−2p + · · ·+ ε−1π

−1 + ε0, so

(χ(η)η − 1)(h′(π)) ∈ απ−p + βπ−1 + πF[[π]]

for some α, β ∈ F. Writing (χ(ξ)ξ − 1) = (
∑p−2

i=0 χ(η)iηi)(χ(η)η − 1) we find that

(χ(ξ)ξ − 1)(h′(π)) ∈ −(απ−p + βπ−1) + F[[π]].

On the other hand, a direct computation shows that

(χ(ξ)ξ − 1)(h′(π)) ∈ z(π−p − π−1) + F[[π]],

where z ∈ F×, so that α= β =−z and the lemma follows. 2
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Let h′(π) be as in the lemma. Since ϕ− 1 is bijective on πF[[π]], it follows that

(χ(η)η − 1)(h′(π)) ∈ (ϕ− 1)(g′η(π))

for a unique g′η ∈ −z−1π−1 + πF[[π]]. We now extend the definition to construct elements
g′γ(π) ∈ π−1F[[π]] for all γ ∈ Γ. We let

g′ηn(π) =
n−1∑
i=0

χ(η)iηi(g′η(π))

for n ∈N. If γ′ ∈ Γ2, then (χ(γ′)γ′ − 1)(h′(π)) is in πF[[π]] and can therefore be written as
(ϕ− 1)(g′γ′(π)) for a unique g′γ′(π) ∈ πF[[π]]. If ηn ∈ Γ2, then p(p− 1)|n and the definitions
coincide. Moreover, an arbitrary γ ∈ Γ can be written as γ′ηn for some γ′ ∈ Γ2 and n ∈N, and

g′γ(π) := g′γ′(π) + γ′(g′ηn(π))

is independent of the choice of γ′ and n.
One can then check that µ= (h′(π), (g′γ(π))γ′∈Γ) satisfies conditions (†) and (‡), giving an

extension
0→Mcyc→ E′→M0→ 0

in the category of étale (ϕ, Γ)-modules over EK , where Mcyc = EKe1 is a rank one object
defined by ϕ(e′1) = e′1 and γ(e′1) = χ(γ)e′1 if γ ∈ Γ (and, of course, M0 = EKe0 by ϕ(e0) = e0

and γ(e0) = e0). Using the isomorphism Mcyc 'Mp−2 = EKe1 defined by e′1 = π2−pe1 we get an
extension

0→Mp−2→ E→M0→ 0
defined by the cocycle µ= (π3(1−p)h(π), (π1−pgγ(π))γ∈Γ) with h(π) = π2p−1h′(π), gγ(π) =
πg′γ(π).

Now we go back to the context of arbitrary f > 1, and define µϕ(Btr) = (π3(1−p)h(π), . . . ,
π3(1−p)h(π)) and µγ(Btr) = (π1−pgγ(π), . . . , π1−pgγ(π)) for all γ ∈ Γ. It is straightforward to
check that Btr ∈H, so that [Btr] ∈ Ext1(M~0, M−−→p−2

).

Remark 6.3. The class [Btr] is not canonical. Choosing ε−p =−ε−1 6= 0 in the proof of Lemma 6.2
gives different extension classes [Btr] differing by a multiple of [B0] + [B1] + · · ·+ [Bf−1].

Lemma 6.4. The extensions [B0], . . . , [Bf−1], [Btr] ∈ Ext1(M~0, M−−→p−2
) are linearly independent,

and therefore form a basis.

Proof. It suffices to show that [Btr] is not contained in the span of the [Bi]. Suppose that
Btr = β0B0 + · · ·+ βf−1Bf−1 for some βi ∈ F. Then E :=Btr − (β0B0 + · · ·+ βf−1Bf−1) is a
coboundary, so that

µϕ(E) = (π(p−1)(p−2)b1(πp)− b0(π), . . . , π(p−1)(p−2)b0(πp)− bf−1(π))

for some bi(π) ∈ F((π)). As

µϕ(Btr) = (π3(1−p)h(π), . . . , π3(1−p)h(π)),

µξ(Btr) = (π1−pgξ(π), . . . , π1−pgξ(π)),

where h(π), gξ(π) ∈ F[[π]]×, we have valπeiµϕ(E) = valπ(π(p−1)(p−2)bi+1(πp)− bi(π)) = 3(1− p)
for all i ∈ S. For each i ∈ S, letting si := valπ(bi(π)), we have si 6 3(1− p) or (p− 1)(p− 2) +
si+1p= 3(1− p). The latter is impossible looking at divisibility by p, and so si 6 3(1− p) for all
i ∈ S, which yields a contradiction after cycling. 2
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The determination of which linear combinations of [B0], [B1], . . . , [Bf−1] are bounded is
exactly as in the generic case. We now extend this to include [Btr].

Proposition 6.5. Suppose that C = 1, ~c=
−−−→
p− 2 and A ∈ F×;

(i) if J = S, then

ι[Btr] ∈ Ext1
bdd(MA~p, MA~0),

so that V +
S = Ext1(M~0, M−−→p−2

);

(ii) V −S =
⊕

i∈S F[Bi], and if J 6= S, then VJ =
⊕

i∈J F[Bi+1].

Proof. (i) This is straightforward: as ~a= ~p and 〈~c 〉S = (π2(p−1), . . . , π2(p−1)), we have

µϕ(ιBtr) = (Aπ(p−1)2
h(π), π(p−1)2

h(π), . . . , π(p−1)2
h(π)) ∈ F[[π]]S ,

µξ(ιBtr) = (λ(p−2)(pf−1)/(p−1)
ξ , . . . , λ

(p−2)(pf−1)/(p−1)
ξ )(πp−1gξ(π), . . . , πp−1gξ(π)) ∈ πF[[π]]S .

(ii) Let E := β0B0 + · · ·+ βf−1Bf−1 +Btr for some β0, . . . , βf−1 ∈ F. We must show that, in all
other cases where ι : Ext1(M~0, M−−→p−2

)→ Ext1(MA~a, MA~b
) was defined, we have that ι[E] is not

bounded.
So suppose that ι[E] is bounded. Then there exists a coboundary B defined by

(b0(π), . . . , bf−1(π)) such that µϕ(ι(E +B)) ∈ F[[π]]S and µξ(ι(E +B)) ∈ πF[[π]]S . We have
ei〈~c 〉J = 1 or πp−1 and valπeiµξ(ιE) 6 0. It follows that valπeiµξ(B) = valπeiµξ(E) = 1− p, so
by Lemma 4.4, we must have si := valπ(bi(π)) 6 2(1− p). Then we have valπ(π(p−1)cibi(πp)) =
(p− 1)(p− 2) + sip6 (1− p)(p+ 2), so that si−1 = (p− 1)(p− 2) + sip. Cycling this through
indices leads to a contradiction. 2

6.2 Trivial character
In this subsection, we assume that C = 1, ~c=~0, so that κϕ(C, ~c ) = κγ(C, ~c ) = (1, . . . , 1) ∈
F((π))S .

Using Lemma 4.2 we can find unique ε2−p, . . . , ε−1 ∈ F such that

(η − 1)(π1−p + ε2−pπ
2−p + · · ·+ ε−1π

−1) ∈ F[[π]].

Set H(π) = π1−p + ε2−pπ
2−p + · · ·+ ε−1π

−1. By Lemma 4.4, we get

(ξ − 1)(H(π)) ∈ F× + πF[[π]],

which implies, via Proposition 4.6, that

(η − 1)(H(π)) ∈ ν + πF[[π]]

for some ν ∈ F− {0}. Likewise we have

(η − 1)(H(πp)) ∈ ν + πF[[π]],

so that

(η − 1)(−H(πp) +H(π)) ∈ πF[[π]].

Note that, if γ′ ∈ Γ2, then (γ′ − 1)(H(π)) ∈ πF[[π]], and it follows that (γ′ − 1)(−H(πp) +
H(π)) ∈ πF[[π]]. Now for each γ ∈ Γ, writing γ = ηnγ′ where γ′ ∈ Γ2, we get by Lemma 4.5 that

(γ − 1)(−H(πp) +H(π)) ∈ πF[[π]].
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As the map g(π) 7→ g(πp
f
)− g(π) defines a bijection πF[[π]]→ πF[[π]], for each γ ∈ Γ there exists

a unique gγ(π) ∈ πF[[π]] such that

gγ(πp
f
)− gγ(π) = (γ − 1)(−H(πp) +H(π))

or equivalently

(ϕ− 1)(gγ(π), gγ(πp
f−1

), . . . , gγ(πp)) = (γ − 1)(−H(πp) +H(π), 0, . . . , 0).

If we set
µϕ(B0) = (−H(πp) +H(π), 0, . . . , 0),

µγ(B0) = (gγ(π), gγ(πp
f−1

), . . . , gγ(πp)),
µ(B0) = (µϕ(B0), (µγ(B0))γ∈Γ) satisfies the condition (†) by the considerations above. We
note that µγ(B0) are uniquely determined so that they satisfy (†). As both µγγ′(B0) and
µ′γγ′ := γ(µγ′(B0)) + µγ(B0) satisfy (†) for γγ′, they must coincide, so that (‡) is satisfied.

For each 1 6 i6 f − 1, we construct [Bi] ∈ Ext1(M~0, M~0) in a similar way, i.e., by setting

µϕ(Bi) = (0, . . . , 0,−H(πp) +H(π), 0, . . . , 0),

µγ(Bi) = (gγ(πp
i
), . . . , gγ(πp), gγ(π), gγ(πp

f−1
), . . . , gγ(πp

i+1
)).

Remark 6.6. For each 0 6 i6 f − 1, consider the coboundary B′′i by

µϕ(B′′i ) = (0, . . . , 0, H(πp),−H(π), 0, . . . , 0),
µγ(B′′i ) = (0, . . . , 0, 0, (γ − 1)(H(π)), 0, . . . , 0),

where H(π) is the ith component and −H(π) is the (i+ 1)th component of µϕ(B′′i ) and
(γ − 1)(H(π)) is the (i+ 1)th component of µγ(B′′i ). Define B′i =Bi +B′′i for each 0 6 i6 f − 1.
Then F[Bi] = F[B′i] in Ext1(M~0, M~0) for all 0 6 i6 f − 1, where we have

µϕ(B′i) = (0, . . . , 0, H(π),−H(π), 0, . . . , 0),

µγ(B′i) = (gγ(πp
i
), . . . , gγ(πp), gγ(π), gγ(πp

f−1
) + (γ − 1)H(π), gγ(πp

f−2
), . . . , gγ(πp

i+1
)).

Next, we define Bnr (for non-ramifié) by setting

µϕ(Bnr) = (1, 0, . . . , 0),
µγ(Bnr) = (0, 0, . . . , 0)

for all γ ∈ Γ. It is straightforward to check that this defines an extension [Bnr] ∈
Ext1(M~0, M~0). We can ‘move’ the 1 in µϕ to any component, i.e., taking any of (1, 0, . . . , 0),
(0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1) to be µϕ defines the same cocycle class (up to coboundaries).

Set Bcyc =
∑f−1

i=0 B
′
i. Then we have

µϕ(Bcyc) = (0, . . . , 0),
µγ(Bcyc) = (g′γ(π), . . . , g′γ(π))

for some g′γ ∈ F[[π]]. Since (ϕ− 1)g′γ(π) = 0, we must have in fact g′γ(π) = g′γ ∈ F. In particular,
g′η = ν. Moreover, γ 7→ g′γ defines a homomorphism Γ→ F. Thus if γ = ηnγ modulo Γ2, then

µγ(Bcyc) = νnγ(1, . . . , 1).

Lemma 6.7. The extensions [Bnr], [B0], . . . , [Bf−1] ∈ Ext1(M~0, M~0) are linearly independent,
and therefore form a basis.
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Proof. Suppose that E = βBnr + β0B0 + · · ·+ βf−1Bf−1 is a coboundary. By adding some
coboundary B we have

e0µϕ(E +B) = β + β0(−H(πp) +H(π)) + β1(−H(πp
2
) +H(πp)) + · · ·

+ βf−2(−H(πp
f−1

) +H(πp
f−2

)) + βf−1(−H(πp
f
) +H(πp

f−1
))

= β + β0H(π) + (β1 − β0)H(πp) + · · ·
+ (βf−1 − βf−2)H(πp

f−1
)− βf−1H(πp

f
)

= (Φ− 1)
(∑
j>s

bjπ
j

)
for some

∑
j>s bjπ

j ∈ F((π)). Equating constant terms gives β = 0. If βf−1 6= 0, then s=
1− p, β0H(π) =−(b1−pπ1−p + · · ·+ b−1π

−1) and β0 = β1 = · · ·= βf−1. It follows that E =
βf−1

∑f−1
i=0 Bi is cohomologous to βf−1Bcyc, and therefore that Bcyc is a coboundary. Thus

there exists (b0(π), . . . , bf−1(π)) ∈ F((π))S such that

(ϕ− 1)(b0(π), . . . , bf−1(π)) = (0, . . . , 0),
(ξ − 1)(b0(π), . . . , bf−1(π)) =−ν(1, . . . , 1),

which is impossible, as the former implies that b0(π) = · · ·= bf−1(π) ∈ F, so that we get
(ξ − 1)(b0(π), . . . , bf−1(π)) = 0. Thus, βf−1 = 0.

If 0 6 i6 f − 2 is the largest such that βi 6= 0, then valπ(e0µϕ(E +B)) = pi+1(1− p), which
leads to an easy contradiction. Thus, βi = 0 for all 0 6 i6 f − 2. 2

We now assume f = 2 and compute the spaces of bounded extensions. We then have the
following cases to consider:

• J = S, a0 = a1 = p− 1;
• J = {1}, b0 = 1, a1 = p (for V +

J );
• J = {1}, b0 = p, a1 = 1 (for V −J );
• J = {0}, a0 = p, b1 = 1 (for V +

J );
• J = {0}, a0 = 1, b1 = p (for V −J );
• J = ∅, b0 = b1 = p− 1.

Proposition 6.8. If f = 2, C = 1, ~c=~0 and A ∈ F× then:

(i) VS = Ext1(M~0, M~0);
(ii) V +

{i} = 〈[Bnr], [Bi]〉 for i= 0, 1;

(iii) V −{i} = 〈[Bnr]〉 for i= 0, 1;

(iv) V∅ = {0}.

Proof. (i) We have 〈~c 〉S = (πp−1, πp−1) and it is straightforward to check that ι[B0], ι[B1] and
ι[Bnr] are bounded.

(ii) Suppose J = {1}. Then b0 = 1, a1 = p and 〈~c 〉{1} = (πp−1, 1) and it is straightforward to
check that ι[B1] and ι[Bnr] are bounded. Therefore, it suffices to prove that ι[Bcyc] is not bounded.
So suppose that B is a coboundary such that ι(Bcyc +B) has µϕ ∈ F[[π]]S and µξ ∈ πF[[π]]S .
Then

µϕ(Bcyc +B) = µϕ(B) = (b1(πp)− b0(π), b0(πp)− b1(π))
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for some b0(π), b1(π) ∈ F((π)), and (Aπp−1, πp(p−1))µϕ(B) ∈ F[[π]]S . Letting v0 = valπ(b0(π))
and v1 = valπ(b1(π)), we see that v0 > 1− p and v1 > 0. Therefore

µξ(Bcyc +B) = (−ν + (ξ − 1)b0(π),−ν + (ξ − 1)b1(π)),

and since −ν + (ξ − 1)b1(π) has constant term −ν, we arrive at a contradiction.
The case J = {0} is the same.
(iii) Suppose again that J = {1}. Now we have b0 = p, a1 = 1 and 〈~c 〉{1} = (1, π1−p) and it is

clear that ι[Bnr] is bounded. Therefore, it suffices to prove that, if E = β0B0 + β1B1 with β0, β1

such that ι[E] is bounded, then β0 = β1 = 0. The argument in the proof of Lemma 6.7 shows that
β0 = β1, so we are reduced to proving that ι[Bcyc] is not bounded. The proof of this is similar to
the proof of part (ii).

The case J = {0} is the same.
(iv) Now we have 〈~c 〉∅ = (π1−p, π1−p), and if ι[E] is bounded then µϕ(E +B) ∈ πp−1F[[π]]S

for some coboundary B. The proof of Lemma 6.7 then shows that E is cohomologous to a
multiple of Bcyc, and the boundedness of ι[Bcyc] yields a contradiction as above. 2

6.3 Case p = 2
We assume p= 2 throughout this section. Now Γ is not pro-cyclic; we write Γ = ∆× Γ2, where
∆ = 〈η〉 with χ(η) =−1, so ∆ has order 2, and we choose a topological generator ξ of Γ2.

Lemma 6.9. We have λη ≡ 1 + π mod π2fF[[π]]. If γ ∈ Γ2, then λγ ≡ 1 mod π3F[[π]].

Proof. The first assertion follows from the fact that

λ2f−1
η = η(π)/π = (1 + π)−1.

For the second assertion, note that, if γ ∈ Γ2, then χ(γ)≡ 1 mod 4, so γ(π)/π ≡ 1 mod π3F[[π]]. 2

Let C ∈ F× and ~c= (c0, . . . , cf−1) ∈ {0, 1}S with some cj = 0 be given. First assume that
C 6= 1 if ~c=~0, so that CπΣj~cΦ− 1 : F[[π]]→ F[[π]] defines a valuation-preserving bijection for
all j ∈ S. As in the case p > 2, we will define for each i ∈ S an element Hi(π) ∈ F((π)) such that

(λΣi~c
γ γ − 1)Hi(π) ∈ F[[π]]

for all γ ∈ Γ. If ci = 0, we let Hi(π) = π−1; otherwise we use the following lemma.

Lemma 6.10. Suppose that ci = 1, and r ∈ 0, . . . , f − 1 is such that ci+1 = · · ·= ci+r = 0 and
ci+r+1 = 1. Let

Hi(π) = π1−2r+2
+ π1+2r−2r+2

.

Then (λΣi~c
γ γ − 1)Hi(π) ∈ F[[π]] for all γ ∈ Γ.

Proof. Note that we can assume f > 2. We have

λΣi
γ γπ

1−2r+2
= λΣi

γ

(
γ(π)
π

)1−2r+2

π1−2r+2
= λΣi+(2f−1)(1−2r+2)

γ π1−2r+2
.

Note that Σi = 1 if r = f − 1 and Σi ≡ 1 + 2r+1 mod 2r+2 otherwise. In either case we have
Σi + (2f − 1)(1− 2r+2)≡ 2r+1 mod 2r+2. It follows that

(λΣi
γ γ − 1)(π1−2r+2

)≡ (λ2r+1

γ − 1)π1−2r+2
mod F[[π]].
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Similarly we find that

(λΣi
γ γ − 1)(π1+2r−2r+2

)≡ (λ2r

γ − 1)π1+2r−2r+2
mod F[[π]].

Lemma 6.9 gives λ2s
η ≡ 1 + π2s mod π2s+f for s> 0, and it follows that

(λ2r+1

η − 1)π1−2r+2 ≡ (λ2r

η − 1)π1+2r−2r+2 ≡ π1+2r+1−2r+2
mod F[[π]].

Therefore the lemma holds for γ = η. We also get that λ2s
γ ≡ 1 mod π3×2s for γ ∈ Γ2, from which

it follows that (λ2r+1

γ − 1)π1−2r+2
and (λ2r

γ − 1)π1+2r−2r+2
are in F[[π]]. The lemma therefore

holds for γ ∈ Γ2 as well, and we deduce from Lemma 4.5 that it holds for all γ ∈ Γ. 2

By the bijectivity of CπΣ0~cΦ− 1, for each γ ∈ Γ we have a unique Gi(π) =Gi,γ(π) ∈ F[[π]]
such that (CπΣ0~cΦ− 1)(Gi(π)) = (λΣi~c

γ γ − 1)(Hi(π)). Then letting

µϕ(Bi) = (0, . . . , 0, Hi(π), 0, . . . , 0),
µγ(Bi) = (G0(π), . . . , Gi(π), . . . , Gf−1(π)),

where

G0(π) = Cπc0+2c1+···+2i−1ci−1Gi(π2i),

G1(π) = πc1+2c2+···+2i−2ci−1Gi(π2i−1
),

...
Gi−1(π) = πci−1Gi(π2),

Gi+1(π) = Cπci+1+2ci+2···+2f−2ci−1Gi(π2f−1
),

...
Gf−1(π) = Cπcf−1+2c0+···+2ici−1Gi(π2i+1

),

gives rise to an extension [Bi] ∈ Ext1(M~0, MC~c). By almost identical arguments to the case p > 2,
one finds that [B0], . . . , [Bf−1] are linearly independent, so that they form a basis.

Now suppose that C = 1 and ~c=~0. We can define, similarly to the p > 2 case,
[B0], . . . , [Bf−2], [Bf−1] such that

µϕ(B0) = (π−2 + π−1, 0, . . . , 0),
µϕ(B1) = (0, π−2 + π−1, 0, . . . , 0),

...
µϕ(Bf−1) = (0, . . . , 0, π−2 + π−1).

As before, each Bi is cohomologous to B′i with

µϕ(Bi) = (0, . . . , 0, π−1, π−1, 0, . . . , 0),

the non-zero entries being in the i, i+ 1 coordinates (unless f = 1, in which case µϕ(B0) = 0).
We again set Bcyc =

∑f−1
i=0 B

′
i, and define a cocycle Bnr by setting

µϕ(Bnr) = (1, 0, . . . , 0),
µγ(Bnr) = (0, 0, . . . , 0)

for all γ ∈ Γ.
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The difference now is that, if p= 2, then dimF Ext1(M~0, M~0) = f + 2, so we need one more
basis element. We define Btr by

µϕ(Bnr) = (0, 0, . . . , 0),
µγ(Bnr) = nγ(1, 1, . . . , 1),

where nγ = 0 if γ ∈ Γ3 ∪ ηΓ3, and nγ = 1 otherwise (so γ 7→ nγ defines a homomorphism Γ→ F).
One can check as in the case p > 2 that the elements [Bnr], [B0], [B1], . . . , [Bf−1], [Btr] are linearly
independent, hence form a basis for Ext1(M~0, M~0).

Finally we assume f = 2 and compute the spaces of bounded extensions. There are three
possibilities to consider:

(i) ~c= (0, 1) or (1, 0);
(ii) ~c= (0, 0) and C 6= 1;
(iii) ~c= (0, 0) and C = 1.

We omit the proofs of the following which are essentially the same as for p > 2.

Proposition 6.11. If ~c= (0, 1) or (1, 0), then:

• VS = Ext1(M~0, MC~c);
• if ~c= (0, 1), then V{0} = V{1} = F[B0];
• if ~c= (1, 0), then V{0} = V{1} = F[B1];
• V∅ = 0.

Proposition 6.12. If ~c= (0, 0) and C ∈ F× with C 6= 1, then:

• V +
S = V −S = Ext1(M~0, MC~0);

• V +
{1} = F[B0 +B1];

• V +
{0} = F[CB0 +B1];

• V −{1} = V −{0} = V +
∅ = V −∅ = 0.

Proposition 6.13. If ~c= (0, 0) and C = 1, then:

• V +
S = V −S = Ext1(M~0, M~0);

• V +
{i} = F[Bnr]⊕ F[Bi] for i= 0, 1;

• V −{i} = F[Bnr] for i= 0, 1;

• V +
∅ = V −∅ = 0.

Remark 6.14. With a view towards relating bounded extensions to crystalline ones, we would
have liked V −S = F[Bnr]⊕ F[B0]⊕ F[B1] in the trivial case. This could have been achieved with
a more restrictive definition of boundedness, requiring for example that µγ ∈ π2F[[π]]S for γ ∈ Γ2

if p= 2. However, we opted instead for the definition we found most uniform and easiest to work
with.

7. Crystalline ⇒ bounded

The paper [BDJ10] formulates conjectures concerning weights of mod p Hilbert modular forms in
terms of the associated local Galois representationsGK →GL2(F). When the local representation
is reducible, i.e., of the form (χ1 ∗

0 χ2
), the set of weights is determined by the associated class
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in H1(GK , F(χ1χ
−1
2 )), or more precisely whether the class lies in certain distinguished subspaces.

These subspaces are defined in terms of reductions of crystalline extensions of crystalline
characters. Our aim is to relate these to the spaces of bounded extensions we computed in the
preceding sections. The idea is to show that Wach modules over A+

K,F associated to crystalline
extensions have bounded reductions. This is easily seen to be true when the Wach module itself
is the extension of two Wach modules; the problem is that this is not always the case. Recall
that Theorem 2.17 establishes an equivalence of categories between crystalline representations
and Wach modules over B+

K . We note however that N does not define an exact functor from
GK-stable lattices to A+

K-modules.

Example 7.1. LetK = Qp and V = Qp(1− p)⊕Qp. The corresponding Wach module is N(V ) =
B+

Qp
e1 ⊕B+

Qp
e2 with:

• ϕ(e1) = qp−1e1 and γ(e1) = (γ(π)/χ(γ)π)p−1e1 for γ ∈ Γ;

• ϕ and Γ acting trivially on e2.

Let f1 = p−1(e1 − πp−1e2) and consider the A+
Qp

-lattice N = A+
Qp
f1 ⊕A+

Qp
e2 in N(V ). Then it is

straightforward to check that N is a Wach module over A+
Qp

, hence corresponds to a GQp-stable
lattice T in V . Such a lattice necessarily fits into an exact sequence

0→ Zp(1− p)→ T → Zp→ 0

of Zp-representations of GQp , but there is no surjective morphism α :N →A+
Qp

. Indeed, the
image would have to be generated over A+

Qp
by elements α(f1) and α(e2) satisfying pα(f1) =

−πp−1α(e2), and hence could not be free over A+
Qp

. This example is somewhat special since V
is split and T can also be written as an extension

0→ Zp→ T → Zp(1− p)→ 0,

which does correspond to an extension of Wach modules. However, it illustrates the
problem, which we shall see also occurs for lattices in non-split extensions of Qp-representations.

We will prove under certain hypotheses that the relevant extensions of Zp-representations do
in fact correspond to extensions of Wach modules. In particular, we will show this holds in the
generic case, and in all but a few special cases when f = 2. As a result, we will be able to give
a complete description of the distinguished subspaces in [BDJ10] in terms of (ϕ, Γ)-modules in
the generic case and the case f = 2.

7.1 The extension lemma
We first establish a general criterion for a Wach module over A+

K,F to arise from an extension of
two Wach modules. We consider extensions of crystalline representations of arbitrary dimension
since it is no more difficult than the case of one-dimensional representations.

Suppose that we have an exact sequence

0→ V1→ V → V2→ 0

of crystalline Qp-representations of GK with Hodge–Tate weights in [0, b] for some b> 0. We
shall identify V1 with a subrepresentation of V . By Theorem 2.17, we have an exact sequence of
corresponding Wach modules over B+

K :

0→M1→M →M2→ 0,
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where M = N(V ), M1 = N(V1) = N(V ) ∩D(V1) and M2 is the image of N(V ) in D(V2). Now
suppose that T is a GK-stable lattice in V . Letting T1 = T ∩ V1 and T2 = T/T1, we have an exact
sequence

0→ T1→ T → T2→ 0
of Zp-representations of GK . Letting N = N(T ) =M ∩D(T ) be the Wach module in M = N(V )
corresponding to T , we see that N1 :=N ∩M1 = N(T1) since

N ∩M1 = N(T ) ∩D(V1) = D(T ) ∩N(V ) ∩D(V1) = D(T ) ∩N(V1) = D(T1) ∩N(V1).

The quotient N2 :=N/N1 is a finitely generated torsion-free A+
K-module with an action of ϕ and

Γ such that qbN2 ⊂ ϕ∗(N2) and Γ acts trivially on N2/πN2. (Note that N2 is torsion-free since
N/N1←↩ M2, but N2 is not necessarily free, as we will see below.) Furthermore N(T )→N(T2)
induces an injective homomorphism N2→N(T2), which becomes an isomorphism on tensoring
with B+

K .
Letting E+

K = A+
K/pA

+
K , N =N/pN and N i =Ni/pNi, we know also that

N [1/π] = EK ⊗E+
K
N and N i[1/π] = EK ⊗E+

K
N i

for i= 1, 2 are the (ϕ, Γ)-modules over EK corresponding to the reductions mod p of the
corresponding GK-stable lattices. Moreover N1 and N are free over E+

K and the homomorphism
N1→N is injective; we identify N1 with a submodule of N .

Lemma 7.2. The following are equivalent:

(i) the homomorphism N(T )→N(T2) is surjective;

(ii) N2 = N(T )/N(T1) is free over A+
K ; and

(iii) N1 =N ∩D(T1/pT1).

Proof. If N(T )→N(T2) is surjective, then N2
∼= N(T2) is free over A+

K . Conversely, if N2 is free,
then N(T ) maps onto a Wach module over A+

K in N(V2), which by Theorem 2.17 is of the form
N(T ′2) for some GK-stable lattice T ′2 in V2; moreover N(T ′2)⊂N(T2) implies that T ′2 ⊂ T2. On
the other hand, since N(T ) maps to N(T ′2), D(T ) maps to D(T ′2), hence T maps to T ′2, and
therefore T2 = T ′2.

Since B+
K ⊗A+

K
N2
∼= N(V2) is free of rank d2 := dimQpV2 over B+

K , it follows from Nakayama’s

lemma that N2 is free over A+
K if and only if N2/pN2 =N/N1 is free of rank d2 over E+

K . Since
N and N1 are free over E+

K and the difference of their ranks is d2, this in turn is equivalent to
N/N1 being torsion-free over E+

K , which in turn is equivalent to N1 =N ∩N1[1/π]. 2

Example 7.3. Returning to Example 7.1, note that, since e1 − πp−1e2 ∈ pN , we have πp−1e2 =
−e1 ∈N , so e2 =−π1−pe1 ∈N

′
1, where N

′
1 =N ∩N1[1/π]. Thus we find in this case that

N1 = Fp[[π]]e1, but N ′1 = π1−pFp[[π]]e1, so the criterion of the lemma is not satisfied.

We remark that everything above holds with coefficients; in particular, if

0→ T1→ T → T2→ 0

is an exact sequence of GK-stable OF -lattices in crystalline representations, then the sequence

0→N(T1)→N(T )→N(T2)→ 0

of A+
K,F -modules is exact if and only if

N(T1)/$FN(T1) = (N(T )/$FN(T )) ∩D(T1/$FT1).
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7.2 Extensions of rank one modules
We now specialize to the case where V1 and V2 are one-dimensional over F , with labeled Hodge–
Tate weights (bf−1, b0, . . . , bf−2) and (af−1, a0, . . . , af−2) where each ai, bi > 0. Suppose that
we have an exact sequence

0→ V1→ V → V2→ 0
of crystalline F -representations of GK , and T is a GK-stable OF -lattice in V . We thus have
exact sequences

0→ T1→ T → T2→ 0 and 0→ T 1→ T → T 2→ 0,
where each Ti is a GK-stable OF -lattices in Vi and ·̄ denotes reduction modulo $F . We
let N = N(T ) be the Wach module over A+

K,F corresponding to T , and N its reduction
modulo $F . Thus N is a free rank two E+

K,F -module with an action of ϕ and Γ such that Γ
acts trivially modulo N/πN . Furthermore EK,F ⊗E+

K,F
N ∼= D(T ) as (ϕ, Γ)-modules over EK,F .

Letting N
′
1 = D(T 1) ∩N and N

′
2 =N/N

′
1, we see that each N

′
i is an E+

K,F -lattice in D(T i),
stable under ϕ and Γ with Γ acting trivially modulo π.

From the classification of rank one (ϕ, Γ)-modules over EK,F , we know that D(T 1)∼=MC~c =
EK,F e for some C ∈ F× and ~c ∈ ZS . Under this isomorphism, N ′1 corresponds to a submodule of
the form (πr0 , πr1 , . . . , πrf−1)E+

K,F e. Since Γ acts trivially on E+
K,F e/πE+

K,F e and on N
′
1/πN

′
1,

we see that (p− 1)|ri for i= 0, . . . , f − 1. Moreover,

ϕ∗(N ′1) = (π(p−1)b′0 , . . . , π(p−1)b′f−1)N ′1

for some b′0, . . . , b
′
f−1, all non-negative since N ′1 is stable under ϕ. Similarly we have

ϕ∗(N ′2) = (π(p−1)a′0 , . . . , π(p−1)a′f−1)N ′2

for some a′0, . . . , a
′
f−1 > 0.

For the following proposition, recall that Σj(~c ) =
∑f−1

i=0 ci+jp
i, where ck is defined for k ∈ Z

by setting ck = ck′ if k ≡ k′ mod f . We also define a partial ordering on ZS by ~c6 ~c ′ if ci 6 c′i for
all i.

Proposition 7.4. With the above notation, we have:

(i) min(ai, bi) 6 a′i 6 max(ai, bi), min(ai, bi) 6 b′i 6 max(ai, bi) and a′i + b′i = ai + bi for i=
0, . . . , f − 1;

(ii) if ~a6~b or ~b6 ~a, then {~a,~b}= {~a′,~b′};
(iii) Σj(~a′) > Σj(~a), Σj(~b′) 6 Σj(~b), Σj(~a′)≡ Σj(~a) mod (pf − 1) and Σj(~b′)≡ Σj(~b) mod

(pf − 1) for j = 0, . . . , f − 1; and

(iv) ~a= ~a′ if and only if ~b=~b′ if and only if N(T )→N(T2) is surjective.

Proof. (i) We first prove that a′i + b′i = ai + bi for i= 0, . . . , f − 1. The A+
K,F -module ∧2

A+
K,F

N(T )

inherits actions of ϕ and Γ, making it a Wach module in ∧2
B+
K,F

N(V )∼= N(∧2
FV ), hence it

corresponds to an OF -lattice in ∧2
FV . The same is true of N(T1)⊗A+

K,F
N(T2); since any two

such lattices are scalar multiples of each other, it follows that the corresponding Wach modules
over A+

K,F are isomorphic, and hence that

N
′
1 ⊗E+

K,F
N
′
2
∼= ∧2

E+
K,F

N ∼= (N(T1)/$FN(T1))⊗E+
K,F

(N(T2)/$FN(T2))
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as E+
K,F -modules. Moreover, the isomorphisms are compatible with the action of ϕ, so a′i + b′i =

ai + bi for all i.
For the inequalities, suppose first that min(ai, bi) = 0 for each i. Since ai + bi = a′i + b′i, we

know that a′i + b′i 6 max(ai, bi) for each i, and the result follows. The general case follows by
twisting T by a character with the correct Hodge structure and N(T ) by the corresponding
Wach module.

(ii) By twisting we can again reduce to the case where min(ai, bi) = 0 for each i. The condition
~a6~b or ~b6 ~a becomes ~a or ~b=~0, and we must show that ~a′ or ~b′ =~0. The result then follows
from the equality ~a+~b= ~a′ +~b′ proved in (i).

If ~a′ 6=~0 and ~b′ 6=~0, then ϕf (N ′i)⊂ πN
′
i for i= 1, 2, so that ϕ2f (N)⊂ πN . This means that

ϕ is topologically nilpotent on N in the sense that ϕ(N)⊂ (π, $F )N for some n > 0.
On the other hand, the F -representation V of GK is ordinary in the sense that there is an

exact sequence
0→ V0→ V → V/V0→ 0,

where V0 is unramified, V/V0 is positive crystalline and each is one-dimensional over F . (If
~b=~0, then take V0 = V1; if ~b 6=~0 and ~a=~0, then the sequence 0→ V1→ V → V2→ 0 splits and
we can take V0 to be the image of V2.) Since Dcrys(V0)⊂Dcrys(V )∼= N(V )/πN(V ) and N/πN
is a ϕ-stable lattice in N(V )/πN(V ), we see that there is an element e0 ∈N/πN such that
e0 6∈$F (N/πN) and φ(e0) = ue0 for some u ∈ (OF ⊗OK)×. Choosing a lift ẽ0 ∈N of e0, we
have that ϕ(ẽ0) ∈ uẽ0 + (π, $F )N , contradicting that ϕ is topologically nilpotent on N .

(iii) SinceN1 =N(T1)/$FN(T1) is contained inN ′1, we can writeN1 =(πt0 , πt1 , . . . , πtf−1)N ′1
for some integers t0, t1, . . . , tf−1 > 0. We therefore have

φ∗(N1) = (πpt1 , πpt2 , . . . , πptf−1 , πpt0)φ∗(N ′1)

= (πb
′
0+pt1 , πb

′
1+pt2 , . . . , πb

′
f−2+ptf−1 , πb

′
f−1+pt0)N ′1.

On the other hand, we also have

φ∗(N1) = (πb0 , πb1 , . . . , πbf−1)(N1)

= (πb0+t0 , πb1+t1 , . . . , πbf−1+tf−1)N ′1.

It follows that bj + tj = b′j + ptj+1 and thus Σj(~b) +
∑f−1

i=0 ti+jp
i = Σj(~b′) +

∑f−1
i=0 ti+j+1p

i+1,
and therefore that Σj(~b) = tj(pf − 1) + Σj(~b′). The assertions concerning Σj(~b′) follow, and those
concerning Σj(~a′) then follow using (i).

(iv) We see from the proof of (iii) that the hypotheses of Lemma 7.2 are satisfied if and only if
N1 =N

′
1 if and only if ~t= 0. On the other hand,~b=~b′ if and only if ti = pti+1 for i= 0, . . . , f − 1,

which implies that ti = pf ti for i= 0, . . . , f − 1, hence is equivalent to ~t=~0. That ~a= ~a′ if and
only if ~b=~b′ follows from (i). 2

7.3 Generic case
In this subsection, we specialize to the generic case in the sense of § 5.2, namely 0< ci < p− 1
for all i. Recall that if J ⊂ S, then there are integers ai and bi for i ∈ S such that:

• 1 6 ai 6 p if i ∈ J , and ai = 0 if i 6∈ J ;
• 1 6 bi 6 p if i 6∈ J , and bi = 0 if i ∈ J ; and
•
∑

i∈S bip
i −
∑

i∈S aip
i ≡
∑

i∈S cip
i mod pf − 1.
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Moreover, the ai and bi are uniquely determined by ~c and J except in the case where we can
take either ai = p for i ∈ J and bi = 1 for i 6∈ J , or ai = 1 for i ∈ J and bi = p for i 6∈ J .

Lemma 7.5. Suppose that 0< ci < p− 1 for all i. Then ai < p and bi < p for all i unless ~c=~1,
J = ∅ and ~b= ~p, or ~c=

−−−→
p− 2, J = S and ~a= ~p. In particular, ~a and ~b are uniquely determined

by ~c and J except in the above two cases where we can also have ~b or ~a=~1 instead of ~p.

Proof. Suppose that bi = p and consider Σi(~c ). We have Σi(~c )≡ Σi(~b)− Σi(~a) mod (pf − 1) and

1 + p+ · · ·+ pf−1 6 Σi(~c ) 6 (pf − 1)− (1 + p+ · · ·+ pf−1).

If Σi(~b)− Σi(~a) ∈ [0, pf − 1), then Σi(~c ) = Σi(~b)− Σi(~a)≡ 0 mod p, so ci = 0, giving a
contradiction. If Σi(~b)− Σi(~a) ∈ [1− pf , 0), then Σi(~c ) = pf − 1 + Σi(~b)− Σi(~a)≡ p− 1 mod p,
so ci = p− 1, giving a contradiction. If Σi(~b)− Σi(~a) > pf − 1, then 0 6 Σi(~b)− Σi(~a)− (pf −
1) 6 1 + · · ·+ pf−1, giving Σi(~c ) = 1 + · · ·+ pf−1, so that ~c=~1, J = ∅ and ~b= ~p. If Σi(~b)−
Σi(~a) 6 1− pf , then similar considerations give a contradiction. The proof in the case ai = p is
similar (in fact, one can exchange ~c with

−−−→
p− 1− ~c, J with its complement and ~a with ~b), giving

~c=
−−−→
p− 2, J = S and ~a= ~p. 2

Suppose that V1 = F (χ1) and V2 = F (χ2), where χ1 and χ2 are crystalline characters of GK
with labeled Hodge–Tate weights (bf−1, b0, . . . , bf−2) and (af−1, a0, . . . , af−2) respectively, V is
an extension

0→ V1→ V → V2→ 0

of representations of GK over F , and T is a GK-stable OF -lattice in V . Letting T1 = T ∩ V1 and
T2 = T/T1, we have

0→ T1→ T → T2→ 0.

Lemma 7.6. Suppose that ~c ∈ ZS is generic and ~a,~b ∈ ZS are as above. If V is crystalline, then

0→N(T1)→N(T )→N(T2)→ 0

is exact.

Proof. Since V is crystalline, there is a Wach module N = N(T ) over A+
K,F corresponding to T .

Since ~c is generic, we have max(ai, bi) 6 p− 1 for all i, unless {~a,~b}= {~0, ~p}. If max(ai, bi) 6 p− 1
for all i, then by Proposition 7.4(i) and (iii), we have:

• 0 6 a′i 6 max(ai, bi) 6 p− 1 for all i; and

•
∑f−1

i=0 a
′
ip
i ≡
∑f−1

i=0 aip
i mod (pf − 1).

These conditions imply that ~a= ~a′ (unless {~a, ~a′}= {~0,−−−→p− 1}, which would give {~a,~b}=
{~0,−−−→p− 1} and hence that ~c=~0 is not generic). If {~a,~b}= {~0, ~p}, then we instead use parts (ii)
and (iii) of Proposition 7.4 to conclude that ~a= ~a′. Thus in either case, we conclude from part (iv)
of the proposition that N(T )→N(T2) is surjective, and therefore the sequence of Wach modules
is exact. 2

Now consider a character ψ :GK → F×. By the classification of rank one (ϕ, Γ)-modules over
EK,F , there is a unique pair C ∈ F×, ~c ∈ ZS with 0 6 ci 6 p− 1 and some ci < p− 1, such that
D(F(ψ))∼=MC~c. Suppose that J ⊂ S and ~a,~b ∈ ZS satisfying the usual conditions, and
that A, B ∈ F× with BA−1 = C. Recall then that we have defined a subspace Ext1

bdd(MA~a, MB~b
)
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of Ext1(MA~a, MB~b
) and an isomorphism

ι : Ext1(M~0, MC~c)→ Ext1(MA~a, MB~b
),

well-defined up to an element of F×. We then define VJ as the preimage of Ext1
bdd(MA~a, MB~b

).
This space is independent of the choices of A and B such that BA−1 = C, but for certain J
there are two choices for the pair ~a,~b; we denote by V +

J the space obtained by taking ai = p for
all i ∈ J and bi = 1 for all i 6∈ J , and by V −J the one obtained by taking ai = 1 for all i ∈ J and
bi = p for all i 6∈ J .

We now also recall the definition of the subspaces of H1(GK , F(ψ)) used in [BDJ10], but
we modify the notation from there to be more consistent with this paper. (For the translation
between the notations, see the remark below.) For ψ, J , ~a, ~b as above, we consider a crystalline
lift ψ̃J :GK → F× of ψ with labeled Hodge–Tate weights (hf−1, h0, . . . , hf−2), where hi =−ai if
i ∈ J and hi = bi if i 6∈ J . Such a character ψ̃J is uniquely determined up to an unramified twist,
which we specify by requiring that ψ̃J(g) be the Teichmüller lift of ψ(g) for g ∈GK corresponding
via local class field theory to the uniformizer p ∈K×. When (~a,~b) is not uniquely determined
by J , we adopt the notation ψ̃±J as usual. Recall that H1

f (GK , F (ψ̃J)) denotes the space of
cohomology classes corresponding to crystalline extensions

0→ F (ψ̃J)→ V → F → 0.

We then define the space L′J as the image in H1(GK , F(ψ)) of the preimage in H1(GK ,OF (ψ̃J))
of H1

f (GK , F (ψ̃J)). We set LJ = L′J except in the following two cases.

– If ψ is cyclotomic, J = S and ~a= ~p, we let LJ =H1(GK , F(ψ)).

– If ψ is trivial and J 6= S, we let LJ be the span of L′J and the unramified class.

As usual we disambiguate using the notation L±J . More precisely, we define ψ̃±J as above, taking
all ai = p and bj = 1 for ψ̃+

J , and all ai = 1 and bj = p for ψ̃−J . We then define (L′J)± as the
image in H1(GK , F(ψ)) of the preimage in H1(GK ,OF (ψ̃±J )) of H1

f (GK , F (ψ̃J)±). We then
make the same modifications as above in the same exceptional cases to obtain the space L±J . In
particular, the first exceptional case above actually only applies to L+

J . We identify LJ (or L±J )
with subspaces of Ext1(M~0, MC~c) via the isomorphisms

H1(GK , F(ψ))∼= Ext1
F[GK ](F, F(ψ))∼= Ext1(D(F),D(F(ψ)))∼= Ext1(M~0, MC~c),

the last of these given by an isomorphism D(F(ψ))∼=MC~c that is unique up to an element of F×.

Remark 7.7. The article [BDJ10] (after Lemma 3.9) defines spaces Lα ⊂H1(GK , Fp(ψ)) for
certain pairs (V, J) where J ⊂ S and V is an irreducible representation of GL2(k). The
relation between the spaces is that L(V,J ′) = LJ ⊗F Fp, where J = {i | i− 1 ∈ J ′} and if V ∼=⊗

i∈S(detmi ⊗k Symni−1k2 ⊗k,τi Fp), then we take ai = ni−1 if i ∈ J and bi = ni−1 if i 6∈ J . (The
space L(V,J ′) is in fact independent of ~m, and when there are two choices of ~n compatible with
ψ and J ′, the resulting spaces L(V,J ′) are obtained from L±J in the evident way.)

We now prove our main result in the generic case.

Theorem 7.8. Suppose that ~c is generic.

(i) Suppose that J 6= S (respectively J 6= ∅) if ~c=
−−−→
p− 2 (respectively ~c=~1). Then VJ = LJ ,

so LJ =
⊕

i∈J L{i}.
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(ii) If ~c=
−−−→
p− 2 and J = S, then V ±J = L±J , so L−J =

⊕
i∈J L{i} if f > 1.

(iii) If ~c=~1 and J = ∅, then V ±J = L±J = {0}.

Proof. We first prove part (i). Suppose that x ∈ LJ , so x is a class of extensions

0→MC~c→ E→M~0→ 0

corresponding via D to a class of extensions of Galois representations

0→ F(ψ)→ T → F→ 0.

The assumption that x ∈ LJ means that there is an extension

0→OF (ψ̃J)→ T →OF → 0

whose reduction mod$F is T and such that F ⊗OF T is crystalline. Let ψ2 :GK → F× be a
crystalline character with labeled Hodge–Tate weights (af−1, a0, . . . , af−2) and let ψ1 = ψ̃Jψ2.
(Recall that ai = 0 if i 6∈ J and bi = 0 if i ∈ J .) Then ψ1 is crystalline with Hodge–Tate weights
(bf−1, b0, . . . , bf−2) and we have an exact sequence

0→ T1→ T (ψ2)→ T2→ 0,

where Ti =OF (ψi) and F ⊗OF T (ψ2) is crystalline. By Lemma 7.6, the corresponding sequence
of Wach modules over A+

K,F ,

0→N(T1)→N →N(T2)→ 0,

is exact. Reducing mod$F , we obtain an exact sequence of free E+
K,F -modules with commuting

ϕ and Γ actions such that Γ acts trivially modπ. Tensoring with EK,F yields an exact sequence

0→M
B~b
→ E′→MA~a→ 0

of (ϕ, Γ)-modules, bounded with respect to a basis for N . It follows that E′ defines an element of
Ext1

bdd(MA~a, MB~b
). Moreover, this exact sequence is obtained from the one defining x by twisting

with MA~a, so we have shown that ι(x) is bounded, and hence that x ∈ VJ . Thus LJ ⊂ VJ .
By Proposition 5.4 of this paper and Lemma 3.10 of [BDJ10], we have that dimFVJ = |J |=

dimFLJ = |J |; therefore LJ = VJ . The assertion that LJ =
⊕

i∈J L{i} then also follows from
Proposition 5.4.

The proofs of parts (ii) and (iii) are exactly the same as that for part (i), except that for part
(ii) in the cyclotomic case one uses Proposition 6.5. 2

Remark 7.9. We see from the proof of the theorem that, in the definition of LJ , ψ̃J can be
replaced by its twist by any unramified character GK →O×F with trivial reduction mod$F .
This can also be proved using Fontaine–Laffaille theory.

However, in the case where ψ is cyclotomic, J = S and ~a= ~p, we defined LJ as H1(GK , F(ψ))
rather than L′J . In fact L′J has codimension one and depends on the unramified twist, as the
next proof shows.

As a further application, we show that, in the generic case, bounded extensions ‘lift’ to
extensions of Wach modules.

Corollary 7.10. Suppose that ~c ∈ ZS is generic and ~a,~b ∈ ZS are as above and that

0→M
B~b
→ E→MA~a→ 0
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is a bounded extension of (ϕ, Γ)-modules over EK,F . In the case A=B, ~c=
−−−→
p− 2 and ~a= ~p,

assume F is ramified. Then the extension E arises by applying EK,F⊗A+
K,F

to an exact sequence

over A+
K,F of Wach modules of the form

0→N(ψ1)→N →N(ψ2)→ 0,

where ψ1 (respectively ψ2) is a crystalline character with labeled Hodge–Tate weights
(bf−1, b0, . . . , bf−2) (respectively (af−1, a0, . . . , af−2)).

Proof. First assume we are not in the exceptional case where A=B, ~c=
−−−→
p− 2 and ~a= ~p. Since

the extension class defined by E is bounded, the equality VJ = LJ of the preceding theorem
shows that E arises by applying D to the reduction mod$F of a crystalline extension

0→OF (ψ1)→ T →OF (ψ2)→ 0,

where ψ1 and ψ2 have the required Hodge–Tate weights. Lemma 7.6 then gives the desired
extension of Wach modules over A+

K,F .

Suppose now that A=B, ~c=
−−−→
p− 2 and ~a= ~p. Consider the class x := ι(E) ∈

Ext1(M~0, M−−→p−2
)∼=H1(GK , F(χ)), where χ denotes the cyclotomic character. We claim that

there is an unramified character µ :GK →O×F with trivial reduction mod$F so that x is in the
image of H1(GK ,OF (χpµ)). (This is essentially proved in [KW09a, Proposition 3.5] or [KW09b,
§ 3.2.7], but there it is assumed that x is très ramifié, so we recall the argument here.) The long
exact sequence associated to

0→OF (χpµ) $F−→OF (χpµ)→ F(χ)→ 0

shows that the image of H1(GK ,OF (χpµ)) is the kernel of the connecting homomorphism

H1(GK , F(χ))→H2(GK ,OF (χpµ)).

By Tate duality, this is the space orthogonal to the image of the connecting homomorphism

H0(GK , (F/OF )(χ1−pµ−1))→H1(GK , F)

arising from the dual short exact sequence. Letting α denote the homomorphism GK → F defined
by (χ1−p − 1)/p, and β the unramified homomorphism sending FrobK to 1, we find that the
image of the connecting homomorphism is spanned by β if µ 6≡ 1 mod pOF (which is possible as
F is ramified over Qp) and by α+ λβ if µ(FrobK)≡ 1 + pλ mod p$FOF . If x ∪ β = 0 then we
can take µ 6≡ 1 mod pOF , and if x ∪ β 6= 0 then there is a unique λ so that λ(x ∪ β) =−x ∪ α
and we choose µ accordingly. Now since H1(GK , F (χpµ)) =H1

f (GK , F (χpµ)), we see that E
arises from the reduction of a crystalline extension of the required form, and the result again
follows from Lemma 7.6. 2

7.4 Case f = 2
In this subsection we will show that, if f = 2, then LJ = VJ (or L±J = V ±J ) unless ~c=~0; in
other words, the space of bounded extensions coincides with the one obtained from reductions of
crystalline extensions of the corresponding weights unless the ratio of the characters is unramified.
Furthermore, we give a complete description in this exceptional case.

Before treating the case f = 2, we note what happens in the case f = 1. The case ~c 6=~0 is
already treated by the results of the preceding section. Assume for the moment that p > 2. Then
the proof goes through just the same if ~c=~0 and J = S = {0}. Suppose then that ~c=~0 and J = ∅.
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If C 6= 1, then V∅ = L∅ = {0}, so there is nothing to prove. If C = 1, then we have V∅ = {0}, but
L∅ =H1(GQp , F). Indeed, all such classes arise as reductions of lattices in representations of the
form Qp ⊕Qp(χ1−pµ) with µ unramified; the corresponding Wach module is described just as in
Example 7.1 and so does not give rise to a bounded extension. If p= 2, there are differences
in the case C = 1 (see Remark 6.14). In that case

V +
S = V −S = L+

S =H1(GQ2 , F) = 〈Bnr, Bcyc, Btr〉

and V +
∅ = V −∅ = {0}, but L−S = L−∅ = 〈Bnr, Bcyc〉 and L+

∅ = 〈Bnr, Btr〉. (For the explicit
descriptions, note that the extensions of Galois representations are unramified twists of ones
on which HK acts trivially, and if HK acts trivially on T , then D(T ) = EK ⊗ T .)

We now turn our attention to f = 2. We maintain the notation of the preceding section,
without the assumption that ~c is generic. In particular, J ⊂ S and ~a,~b satisfy the usual conditions,
V1 and V2 are one-dimensional crystalline representations with labeled Hodge–Tate weights
(b1, b0) and (a1, a0), V is an extension of V2 by V1, T is a GK-stable OF -lattice in V , T1 = T ∩ V1

and T2 = T/T1. The refinement of Lemma 7.6 is the following lemma.

Lemma 7.11. Suppose that f = 2 and ~c 6=~0. If V is crystalline, then

0→N(T1)→N(T )→N(T2)→ 0

is exact.

Proof. Since the generic case is covered by Lemma 7.6, we can assume (interchanging embeddings
if necessary) that ~c= (i, 0) for some i ∈ {1, . . . , p− 2} or that ~c= (i, p− 1) for some i ∈
{0, . . . , p− 2}. The cases where J = ∅ or J = S are covered by the same argument (using
parts (ii), (iii) and (iv) of Proposition 7.4), as are the cases where ~c= (i, 0) or J = {1}
(using parts (i), (iii) and (iv) of the proposition). We are thus left with the case where
~c= (i, p− 1) for some i ∈ {0, . . . , p− 2} and J = {0}, in which case ~a= (p− i, 0) and ~b= (0, p).
In the notation of Proposition 7.4, the possible values of ~b′ are (0, p) and (1, 0). To complete the
proof, we must rule out the latter possibility, which we accomplish by considering the reduction
of N(T ) modulo p2. From the exact sequence

0→D(T1)→D(T )→D(T2)→ 0

and the description in [Dou08] of rank one (ϕ, Γ)-modules recalled in § 3, we see that there is
a basis {e1, e2} for D(T ) over AK,F in terms of which the matrices describing the actions of ϕ
and γ ∈ Γ are

P =
(

(B̃, qp) ∗
0 (Ãqp−i, 1)

)
and Gγ =

(
(ϕ(Λpγ), Λpγ) ∗

0 (Λp−iγ , ϕ(Λγ)p−i)

)
for some Ã, B̃ ∈ O×F . On the other hand, since V is crystalline, there is a basis {e′1, e′2} for D(T )
over AK,F in terms of which the matrices P ′ and G′γ describing these actions lie in GL2(A+

K,F ),

with G′γ ≡ I mod πM2(A+
K,F ). If we assume further that ~b′ = (1, 0) (and so ~a′ = (p− i− 1, p)),

then we can choose e′1, e
′
2 such that

P
′ ≡
(

(Bπp−1, 1) ∗
0 (Aπ(p−i−1)(p−1), πp(p−1))

)
and G

′
γ =

(
(λγ , λ

p
γ) ∗

0 (λp
2+p−i−1
γ , λp

2−ip
γ )

)
,
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where ·̄ denotes reduction modulo $F . Since D(T )∼= AK,F ⊗A+
K,F

N(T ), we can write (e′1, e
′
2) =

(e1, e2)Q for some Q ∈GL2(AK,F ), and then we have

P ′ =Q−1Pϕ(T ) and G′γ =Q−1Gγγ(Q) for all γ ∈ Γ.

Claim. We have Q≡RS mod pAK,F for some matrices R=
(
α(q−1,1) ∗

0 β(q,1)

)
∈GL2(AK,F ) with

α, β ∈ O×F and S ∈ I +$FM2(A+
K,F ).

Since F may be ramified over Qp, we prove the claim by showing inductively that Q≡
RmSm mod $m

F AK,F for some matrices Rm, Sm of the prescribed form for m= 1, . . . , e where
e= e(F/Qp).

To prove the statement for m= 1, note that setting R0 =
(

(q−1,1) 0
0 (q,1)

)
gives

R
−1
0 Pϕ(R0) =

(
(Bπp−1, 1) ∗

0 (Aπ(p−i)(p−1), πp(p−1))

)
.

So if we write R=R0S0, then

S0

(
(Bπp−1, 1) ∗

0 (Aπ(p−i)(p−1), πp(p−1))

)
=
(

(Bπp−1, 1) ∗
0 (Aπ(p−i)(p−1), πp(p−1))

)
ϕ(S0).

It follows easily that S0 = (ᾱ δ̄
0 β̄) for some ᾱ, β̄ ∈ F×, δ̄ ∈EK,F . Choosing lifts α, β ∈ O×F and

δ ∈AK,F and setting R1 =R0(α δ
0 β) gives the result for m= 1.

Suppose now that m ∈ {1, . . . , e− 1} and that Q≡RmSm mod $m
F AK,F with Rm, Sm of the

prescribed form. Setting Qm =R−1
m QS−1

m , we have Qm = I +$m
F Q
′
m for some Q′m ∈M2(AK,F ).

Define

Pm =R−1
m Pϕ(Rm), Gγ,m =R−1

m Gγγ(Rm),
P ′m = S−1

m P ′ϕ(Sm) and G′γ,m = S−1
m G′γγ(Sm),

so that

P ′m =Q−1
m Pmϕ(Qm) and G′γ,m =Q−1

m G′γ,mγ(Qm).

Note that P ′m ∈M2(A+
K,F ), G′γ,m ∈ I + πM2(A+

K,F ), Pm ≡ P ′m mod $m
F M2(AK,F ), Gγ,m ≡

G′γ,m mod $m
F M2(AK,F ),

Pm ≡
(

(B̃πp−1, 1) ∗
0 (Ãπ(p−i−1)(p−1), πp(p−1))

)
mod pM2(AK,F )

and

Gγ,m ≡
(

(λγ , λ
p
γ) ∗

0 (λp
2+p−i−1
γ , λp

2−ip
γ )

)
mod pM2(AK,F ).

Note that, since m+ 1 6 e, the last two congruences hold mod$m+1
F , and that Q−1

m ≡ I −
$m
F Q
′
m mod $m+1

F M2(AK,F ). It follows that

P ′m ≡ (I −$m
F Q
′
m)Pm(I +$m

F ϕ(Q′m))
≡ Pm +$m

F (Pmϕ(Q′m)−Q′mPm) mod $m+1
F M2(AK,F ),

and therefore that

$m
F (Pmϕ(Q′m)−Q′mPm)≡ P ′m − Pm ≡$m

F

(
x y
z w

)
mod $m+1

F M2(AK,F )
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with x, z, w ∈A+
K,F . Note that Pm = P

′, so we have P ′ϕ(Q′m)−Q′mP
′ = (x̄ ȳ

z̄ w̄) for some x̄, z̄, w̄ ∈
E+
K,F , ȳ ∈EK,F . Similarly we find that G′γγ(Q′m)−Q′mG

′
γ = (x̄γ ȳγ

z̄γ w̄γ) for some x̄γ , z̄γ , w̄γ ∈ πE+
K,F ,

ȳγ ∈EK,F .
Writing

Q
′
m =

(
(r0, r1) (s0, s1)
(t0, t1) (u0, u1)

)
with r0, r1, . . . , u0, u1 ∈ F((π)), the condition that z̄ ∈E+

K,F becomes πp(p−1)t0(π)p −
t1(π), Aπ(p−i−1)(p−1)t1(πp)−Bπp−1t0(π) ∈ F[[π]], from which one deduces that valπ(t0) > 1− p
and valπ(t1) > 0. The condition that z̄γ ∈ πE+

K,F then becomes that γ(t0)λp
2+p−i−2
γ − t0 ∈

πF[[π]]. Lemma 4.2 rules out the possibility that 1− p < valπ(t0)< 0, and Lemma 4.4 rules
out the possibility that valπ(t0) = 1− p. Therefore (t0, t1) ∈E+

K,F . Since P
′ ∈M2(E+

K,F ), the
condition that x̄ ∈E+

K,F then becomes that πp−1(r1(πp)− r0(π)), r0(πp)− r1(π) ∈ F[[π]], which
implies that (r0, r1) ∈E+

K,F . The condition that w̄ ∈E+
K,F becomes that π(p−i−1)(p−1)(u1(πp)−

u0(π)), πp(p−1)u0(πp)− u1(π) ∈ F[[π]], which implies that valπ(u0) > 1− p and valπ(u1) > i+
2− p. Since (t0, t1) ∈E+

K,F and G′γ ≡ I mod πM2(E+
K,F ), the condition that wγ ∈ πE+

K,F becomes
that γ(ui)− ui ∈ πE+

K,F for i= 0, 1, so that Lemmas 4.2 and 4.4 again imply that (u0, u1) ∈
E+
K,F . We can thus lift Q′m to a matrix (r st u) ∈M2(AK,F ) with r, t, u ∈A+

K,F . Setting Rm+1 =

Rm

(
1 $mF s
0 1

)
and Sm+1 =

(
1+$mF r 0
$mF t 1+$mF u

)
Sm then gives Q≡Rm+1Sm+1 mod $m+1

F M2(AK,F )
with Rm+1, Sm+1 of the prescribed form, and completes the proof of the claim.

To derive a contradiction from the claim, we proceed as in the proof of the induction step
above, but with m= e and working modulo $m+1

F . More precisely, we define Qe, Q′e, Pe, Gγ,e, P
′
e

and G′γ,e as above; the difference now is that the congruences satisfied by Pe and Gγ,e modulo p
are not satisfied modulo p$F . In particular, the upper left-hand entry of Pe is (Ãq, qp/ϕ(q)),
and a straightforward calculation shows that

qp

ϕ(q)
≡ 1 + p(g(π−p)− g(π−1) + f(π)) mod p2AQp ,

where g(X) =
∑p−1

i=1 (−X)i/i and f(π) ∈A+
Qp

. As before, we have P ′ϕ(Q′e)−Q
′
eP
′ = (x̄ ȳ

z̄ w̄) with
z̄ ∈E+

K,F since Pe is upper-triangular, but now x̄ ∈ (0, c(ḡ(π−p)− ḡ(π−1))) + E+
K,F for some

c ∈ F× (the reduction of p/$e
F ). Similarly we have G′γγ(Q′e)−Q

′
eG
′
γ = (x̄γ ȳγ

z̄γ w̄γ) with z̄γ ∈ πE+
K,F .

So just as before we get (t0, t1) ∈E+
K,F , but this implies that πp−1(r1(πp)− r0(π)) ∈ F[[π]] and

r0(πp)− r1(π) ∈ c(ḡ(π−p)− ḡ(π−1)) + F[[π]], which leads to a contradiction and completes the
proof of the lemma. 2

Theorem 7.12. Suppose that f = 2 and ~c 6=~0. Then VJ = LJ (or V ±J = L±J ) for all J ⊂ S. In
particular, L{0} = L{1} if and only if ~c= (i, p− 1) or (p− 1, i) for some i ∈ {1, . . . , p− 2}.

Proof. The proof of the first assertion is exactly the same as for Theorem 7.8. The second then
follows from the corresponding result for VJ in § 5.3. 2

Theorem 1.2 of the introduction now follows in view of Corollary 3.3.

Remark 7.13. Again we see that, in the definition of LJ , ψ̃J can be replaced by its twist by
any unramified character with trivial reduction; the cases where some ai or bi is p (with J = {0}
or {1}) are outside the range of Fontaine–Laffaille theory.
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Note also that the case where we had to work the hardest in the proof of Lemma 7.11 is
precisely the one where L{0} = L{1}.

By the same proof as Corollary 7.10, we obtain the following corollary.

Corollary 7.14. Suppose that f = 2, that ~c 6=~0 and ~a,~b ∈ ZS are as above and that

0→M
B~b
→ E→MA~a→ 0

is a bounded extension of (ϕ, Γ)-modules over EK,F . In the case A=B, ~c=
−−−→
p− 2 and ~a= ~p,

assume F is ramified. Then the extension E arises by applying EK,F⊗A+
K,F

to an exact sequence

over A+
K,F of Wach modules of the form

0→N(ψ1)→N →N(ψ2)→ 0,

where ψ1 (respectively ψ2) is a crystalline character with labeled Hodge–Tate weights (b1, b0)
(respectively (a1, a0)).

We now say what we can in the case ~c=~0. First note that the proof of Lemma 7.11 goes
through in the following cases:

• J = S, in which case ~a=
−−−→
p− 1 (or ~2 if p= 2);

• J = {0}, ~a= (p, 0), ~b= (0, 1) (the + case);
• J = {1}, ~a= (0, p), ~b= (1, 0) (the + case).

The proof of Theorem 7.12 goes through in these cases unless J = S, p= 2, ~a= 1, C = 1, where we
get L−S ⊂ V

−
S , but dim L−S = 3 6= dim V −S = 4 (see Remark 6.14). In this case, however, we know

that L−S consists of the peu ramifiée extensions. To compute the corresponding (ϕ, Γ)-modules,
note that V +

{0} = L+
{0} contains the classes arising from reductions of Galois stable lattices in

F (µψ2)⊕ F (ψσ), where ψ :GK →O×F is a crystalline character with labeled Hodge–Tate weights
(0, 1), σ is the non-trivial element of Gal(K/Q2), and µ :GK →O×F is an unramified character
with trivial reduction mod$F . These classes correspond to homomorphisms GK → F whose
restriction to inertia is a multiple of the reduction of 1/2(ψσψ−2 − 1)|IK . One can compute these
explicitly using class field theory and check that they are peu ramifiée. It follows that L+

{0} ⊂ L
−
S ,

and similarly L+
{1} ⊂ L

−
S , so that L−S = 〈Bnr, B0, B1〉.

If J = ∅, we have V∅ = {0}, and L∅ = {0} unless C = 1. If C = 1, one can compute
the extensions and associated (ϕ, Γ)-modules explicitly since they are unramified twists of
representations on which HK acts trivially. If p 6= 2, one gets L∅ = 〈Bnr, Bcyc〉. If p= 2, one
gets L+

∅ = 〈Bnr, Bcyc〉 (with ~b=~1) and L−∅ = 〈Bnr, Btr〉 (with ~b=~2).
The most interesting is the − case when S = {0} or {1}. For example, if S = {0}, ~a= (p, 0)

and ~b= (0, 1), the proof of Lemma 7.11 breaks down, but we see that, if the associated sequence
of Wach modules is not exact, then ~a′ = (0, 1) and ~b′ = (p, 0), so the extension of (ϕ, Γ)-modules
associated to T is in V +

{1}. Since V −{0} ⊂ V
+
{1}, it follows that L−{0} ⊂ V

+
{1}, and dimension counting

implies equality. We therefore have that V −{0} is contained in L−{0} = V +
{1} = L+

{1} with codimension
one. Similarly V −{1} is contained in L−{1} = V +

{0} = L+
{0} with codimension one.

Putting everything together we get the following theorem.

Theorem 7.15. Suppose that f = 2, ~c=~0.

(i) If C 6= 1, then:

– if p > 2 then LS = VS = Ext1(M~0, MC~0);
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– if p= 2 then L±S = V ±S = Ext1(M~0, MC~0);
– V −{0} = V −{1} = {0} and L−{0} = L+

{1} = V +
{1} 6= V +

{0} = L+
{0} = L−{1};

– if p > 2 then L∅ = V∅ = {0}; and
– if p= 2 then L±∅ = V ±∅ = {0}.

(ii) If C = 1, then:

– if p > 2 then LS = VS = Ext1(M~0, M~0);
– if p= 2 then L+

S = V ±S = Ext1(M~0, M~0) and L−S = 〈Bnr, B0, B1〉;
– V −{0} = V −{1} = 〈Bnr〉, L−{0} = L+

{1} = V +
{1} = 〈Bnr, B1〉 and L−{1} = L+

{0} = V +
{0} = 〈Bnr, B0〉;

– if p > 2 then V∅ = {0} and L∅ = 〈Bnr, Bcyc〉; and
– if p= 2 then V ±∅ = {0}, L+

∅ = 〈Bnr, Bcyc〉 and L−∅ = 〈Bnr, Btr〉.

Note that the strict inclusion V −{0} ⊂ L
−
{0} implies the existence of non-split crystalline

extensions 0→ F (ψ1)→ V → F (ψ2)→ 0 with Galois stable OF -lattices T such that the
corresponding sequence of Wach modules over A+

K,F is not exact (with ψ1 and ψ2 of labeled
Hodge–Tate weights (p, 0) and (0, 1) respectively).

As in Remark 7.13, we see that the definitions of LJ are independent of the choice of
unramified twist, unless C = 1, J = ∅ and F is ramified, in which case twisting by an unramified
character that is trivial mod$F but not mod p would give L′J = LJ = 〈Bnr〉.

Finally we remark that the proof of Corollary 7.14 goes through when ~c=~0 except in the
following two cases where C = 1.

– If p= 2 and ~a=~1, then only classes in L−S lift (see Remark 6.14).

– If ~a= (1, 0) and ~b= (0, p) (or ~a= (0, 1) and ~b= (p, 0)), then we have not determined
whether Bnr lifts.
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Bre09 C. Breuil, Sur un problème de compatibilité local–global modulo p pour GL2. Preprint (2009),

http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf.

426

https://doi.org/10.1112/S0010437X1000504X Published online by Cambridge University Press

http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf
https://doi.org/10.1112/S0010437X1000504X


Extensions of rank one (ϕ, Γ)-modules

BDJ10 K. Buzzard, F. Diamond and F. Jarvis, On Serre’s conjecture for mod ` Galois representations
over totally real fields, Duke Math. J. 155 (2010), 105–161.

Cha06 S. Chang, Extensions of rank one (ϕ, Γ)-modules, PhD thesis, Brandeis University (2006).
CC98 F. Cherbonnier and P. Colmez, Représentations p-adiques surconvergentes, Invent. Math. 133

(1998), 581–611.
Col99 P. Colmez, Représentations cristallines et représentations de hauteur finie, J. Reine Angew.

Math. 514 (1999), 119–143.
CF00 P. Colmez and J.-M. Fontaine, Constructions des représentations p-adiques semi-stables, Invent.

Math. 140 (2000), 1–43.
Dou08 G. Dousmanis, On reductions of families of crystalline Galois representations. Preprint (2008),

arXiv:0805.1634.
Fon90 J.-M. Fontaine, Représentations p-adiques des corps locaux I, in The Grothendieck Festschrift,
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