COMPOSITIO MATHEMATICA

Extensions of rank one (φ, Γ)-modules and crystalline representations

Seunghwan Chang and Fred Diamond

Compositio Math. 147 (2011), 375-427.
doi:10.1112/S0010437X1000504X

Extensions of rank one (φ, Γ)-modules and crystalline representations

Seunghwan Chang and Fred Diamond

AbstractLet K be a finite unramified extension of \mathbf{Q}_{p}. We parametrize the (φ, Γ)-modulescorresponding to reducible two-dimensional $\overline{\mathbf{F}}_{p}$-representations of G_{K} and characterizethose which have reducible crystalline lifts with certain Hodge-Tate weights.
Contents
1 Introduction 376
2 Generalities on p-adic representations 377
2.1 Fontaine's rings 377
2.2 Crystalline representations 378
$2.3(\varphi, \Gamma)$-modules 380
2.4 Wach modules 382
3 Rank one modules 384
3.1 A parametrization 384
3.2 Lifts in characteristic zero 387
4 Bases for the space of extensions 388
4.1 Construction of B_{i} when $c_{i}<p-1$ 389
4.2 Construction of B_{i} when $c_{i}=p-1$ 392
4.3 Linear independence of the $\left[B_{i}\right]$ 394
5 The space of bounded extensions 396
5.1 Bounded extensions 396
5.2 Generic case 398
5.3 Case $f=2$ 400
6 Exceptional cases 406
6.1 Cyclotomic character 406
6.2 Trivial character 408
6.3 Case $p=2$ 411
7 Crystalline \Rightarrow bounded 413
7.1 The extension lemma 414
7.2 Extensions of rank one modules 416
7.3 Generic case 417
7.4 Case $f=2$ 421
Acknowledgements 426
References 426

[^0]
S. Chang and F. Diamond

1. Introduction

Buzzard, Jarvis and one of the authors [BDJ10] have formulated a generalization of Serre's conjecture for $\bmod p$ Galois representations over totally real fields unramified at p. To give a recipe for weights, certain distinguished subspaces of local Galois cohomology groups in characteristic p are defined in terms of the existence of 'crystalline lifts' to characteristic zero. More precisely, let K be a finite unramified extension of \mathbf{Q}_{p} with residue field k, \mathbf{F} a finite extension of \mathbf{F}_{p} containing $k, \psi: G_{K} \rightarrow \mathbf{F}^{\times}$a character, and denote by S the set of embeddings of k in \mathbf{F}. For each $J \subset S$, they define a subspace (or in certain cases two subspaces) of $H^{1}\left(G_{K}, \mathbf{F}(\psi)\right.$), which we denote L_{J} (or $L_{J}^{ \pm}$); with certain exceptions these subspaces have dimension $|J|$ (see Remark 7.7 below for the relation between our notation and that of [BDJ10]). The definition of these subspaces in terms of crystalline lifts is somewhat indirect, making it hard for example to compare the spaces L_{J} for different J. Viewing the specification of the weights in terms of a conjectural $\bmod p$ Langlands correspondence as in [BDJ10, §4], such a comparison provides information about possible local factors at primes over p of $\bmod p$ automorphic representations (see [Bre09]).

The aim of this paper is to describe them more explicitly using Fontaine's theory of (φ, Γ) modules. In particular, we prove that, if ψ is generic, as defined in $\S 5.2$, then the subspaces are well-behaved with respect to J in the following sense.
Theorem 1.1. If ψ is generic and $\left.\psi\right|_{I_{K}} \neq \chi^{ \pm 1}$ where χ is the $\bmod p$ cyclotomic character, then $L_{J}=\bigoplus_{\tau \in J} L_{\{\tau\}}$.

We remark that Theorem 1.1 has been proved independently by Breuil [Bre09, Proposition A.3] using different methods. We also treat the case where $\left.\psi\right|_{I_{K}}=\chi^{ \pm 1}$; see Theorem 7.8 below for the statement.

We also give a complete description of the spaces $L_{J}\left(\right.$ and $\left.L_{J}^{ \pm}\right)$in terms of (φ, Γ)-modules when K is quadratic, without the assumption that ψ is generic. In particular, we prove the following theorem, which exhibits cases where the spaces L_{J} are not well-behaved as in Theorem 1.1.

Theorem 1.2. Suppose that $\left[K: \mathbf{Q}_{p}\right]=2$ and that ψ is ramified. Writing $S=\left\{\tau, \tau^{\prime}\right\}$, we have $L_{\{\tau\}}=L_{\left\{\tau^{\prime}\right\}}$ if and only if $\left.\psi\right|_{I_{K}}=\omega_{2}^{i}$ for some fundamental character ω_{2} of niveau 2 and some integer $i \in\{1, \ldots, p-1\}$.

This is part of Theorem 7.12 below; see also Theorem 7.15 for the case when ψ is unramified.
The paper is organized as follows. In $\S 2$ we review preliminary facts on p-adic representations and (φ, Γ)-modules, and set up the category of étale (φ, Γ)-modules (corresponding to $\mathbf{F}\left[G_{K}\right]-$ modules) in which we will be working. In $\S 3$ we give a parametrization of rank one objects in the category, and identify them as reductions of crystalline characters of G_{K} using results of Dousmanis [Dou08]. In §4 we construct bases for the space of extensions of rank one objects. (In a different but related direction, see [Her98, Her01, Liu08] for computation of p-adic Galois cohomology via (φ, Γ)-modules.) In $\S 5$ we introduce the notion of bounded extensions, motivated by the theory of Wach modules, which characterizes those (φ, Γ)-modules corresponding to crystalline representations (see [Ber02, Ber04b, Wac96, Wac97]), and use this to define subspaces $V_{J}^{(\pm)}$, which we compute in the generic and quadratic cases. In $\S 6$ we treat certain exceptional cases excluded from $\S \S 4$ and 5 . In $\S 7$ we relate the spaces $L_{J}^{(\pm)}$and $V_{J}^{(\pm)}$in the generic and quadratic cases and prove our main results. We remark that a difficulty arises from the fact that the integral Wach module functor is not right exact; to overcome this we derive sufficient conditions for exactness that may be of independent interest.

Extensions of rank one (φ, Γ)-modules

2. Generalities on p-adic representations

In this section we summarize (and expand a bit upon) basic facts on p-adic representations, crystalline representations, (φ, Γ)-modules and Wach modules. We will give references for details and proofs along the way. For an excellent general introduction to the theory, see [Ber04a].

Let p be a rational prime and fix an algebraic closure $\overline{\mathbf{Q}}_{p}$ of \mathbf{Q}_{p}. If K is a finite extension of \mathbf{Q}_{p} contained in $\overline{\mathbf{Q}}_{p}, G_{K}$ denotes the Galois group $\operatorname{Gal}\left(\overline{\mathbf{Q}}_{p} / K\right)$ and K_{0} denotes the absolutely unramified subfield of K. Let $\chi: G_{K} \rightarrow \mathbf{Z}_{p}^{\times}$be the cyclotomic character and let ${ }^{-}: \mathbf{Z}_{p} \rightarrow \mathbf{F}_{p}$ be the reduction modulo p, so that $\bar{\chi}=\left\ulcorner\circ \chi: G_{K} \rightarrow \mathbf{F}_{p}^{\times}\right.$is the $\bmod p$ cyclotomic character. We set $K_{n}=K\left(\mu_{p^{n}}\right) \subset \overline{\mathbf{Q}}_{p}$ for $n \geqslant 1$, and get a tower of fields

$$
K=K_{0} \subset K_{1} \subset \cdots \subset K_{n} \subset \cdots \subset K_{\infty} \subset \overline{\mathbf{Q}}_{p}
$$

where $K_{\infty}=\bigcup_{n \geqslant 1} K_{n}$. We define H_{K} to be the kernel of χ, i.e., $H_{K}=\operatorname{Gal}\left(\overline{\mathbf{Q}}_{p} / K_{\infty}\right)$, and set $\Gamma_{K}=G_{K} / H_{K}=\operatorname{Gal}\left(K_{\infty} / K\right)$. In many cases where there is no possibility of confusion, we will simply write Γ for Γ_{K}, suppressing K. We set $\Gamma_{n}=\Gamma_{K, n}=\operatorname{Gal}\left(K_{\infty} / K_{n}\right)$ for $n \geqslant 1$.

2.1 Fontaine's rings

Here we give a summary of the constructions of some of the rings introduced by Fontaine that we will be using. See [CC98, Col99, Fon94a] for more details. Let \mathbf{C}_{p} denote the p-adic completion of $\overline{\mathbf{Q}}_{p}$ and v_{p} the p-adic valuation normalized by $v_{p}(p)=1$. The set

$$
\widetilde{\mathbf{E}}=\lim _{x \mapsto x^{p}} \mathbf{C}_{p}=\left\{x=\left(x^{(0)}, x^{(1)}, \ldots\right) \mid x^{(i)} \in \mathbf{C}_{p},\left(x^{(i+1)}\right)^{p}=x^{(i)}\right\},
$$

together with the addition and the multiplication defined by

$$
(x+y)^{(i)}=\lim _{j \rightarrow \infty}\left(x^{(i+j)}+y^{(i+j)}\right)^{p^{j}} \quad \text { and } \quad(x y)^{(i)}=x^{(i)} y^{(i)},
$$

is an algebraically closed field of characteristic p, complete for the valuation $v_{\mathbf{E}}$ defined by $v_{\mathbf{E}}(x)=v_{p}\left(x^{(0)}\right)$. We endow $\widetilde{\mathbf{E}}$ a Frobenius φ and the action of $G_{\mathbf{Q}_{p}}$ by

$$
\varphi\left(\left(x^{(i)}\right)\right)=\left(\left(x^{(i)}\right)^{p}\right) \quad \text { and } \quad g\left(\left(x^{(i)}\right)\right)=\left(g\left(x^{(i)}\right)\right)
$$

if $g \in G_{\mathbf{Q}_{p}}$. We denote the ring of integers of $\widetilde{\mathbf{E}}$ by $\widetilde{\mathbf{E}}^{+}$; it is stable under the actions of φ and $G_{\mathbf{Q}_{p}}$. Let $\varepsilon=\left(1, \varepsilon^{(1)}, \ldots, \varepsilon^{(i)}, \ldots\right)$ be an element of $\widetilde{\mathbf{E}}$ such that $\varepsilon^{(1)} \neq 1$, so that $\varepsilon^{(i)}$ is a primitive p^{i} th root of unity for all $i \geqslant 1$. Then $v_{\mathbf{E}}(\varepsilon-1)=p /(p-1)$ and $\mathbf{E}_{\mathbf{Q}_{p}}$ is defined to be the subfield $\mathbf{F}_{p}((\varepsilon-1))$ of $\widetilde{\mathbf{E}}$. We define \mathbf{E} to be the separable closure of $\mathbf{E}_{\mathbf{Q}_{p}}$ in $\widetilde{\mathbf{E}}$, and $\widetilde{\mathbf{E}}^{+}$(respectively $\mathfrak{m}_{\mathbf{E}}$) to be the ring of integers (respectively the maximal ideal) of \mathbf{E}^{+}. The field \mathbf{E} is stable under the action of $G_{\mathbf{Q}_{p}}$ and we have $\mathbf{E}^{H_{\mathbf{Q}_{p}}}=\mathbf{E}_{\mathbf{Q}_{p}}$. The theory of the field of norms shows that $\mathbf{E}_{K}:=\mathbf{E}^{H_{K}}$ is a finite separable extension of $\mathbf{E}_{\mathbf{Q}_{p}}$ of degree $\left|H_{\mathbf{Q}_{p}} / H_{K}\right|=\left[K_{\infty}: \mathbf{Q}_{p}\left(\mu_{p \infty}\right)\right]$ and allows one to identify $\operatorname{Gal}\left(\mathbf{E} / \mathbf{E}_{K}\right)$ with H_{K}. The ring of integers of \mathbf{E}_{K} is denoted by \mathbf{E}_{K}^{+}.

Let $\widetilde{\mathbf{A}}=W(\widetilde{\mathbf{E}})$ be the ring of Witt vectors with coefficients in $\widetilde{\mathbf{E}}$ and let $\widetilde{\mathbf{B}}=\widetilde{\mathbf{A}}[1 / p]=\operatorname{Fr}(\widetilde{\mathbf{A}})$. Then $\widetilde{\mathbf{B}}$ is a complete discrete valuation field with ring of valuation $\widetilde{\mathbf{A}}$ and residue field $\widetilde{\mathbf{E}}$. If $x \in \widetilde{\mathbf{E}},[x]$ denotes Teichmüller representative of x in $\widetilde{\mathbf{A}}$. Then every element of $\widetilde{\mathbf{A}}$ can be written uniquely in the form $\sum_{i \geqslant 0} p^{i}\left[x_{i}\right]$ and that of $\widetilde{\mathbf{B}}$ in the form $\sum_{i \gg \infty} p^{i}\left[x_{i}\right]$. We endow $\widetilde{\mathbf{A}}$ with the topology that makes the map $x \mapsto\left(x_{i}\right)_{i \in \mathbf{N}}$ a homeomorphism $\widetilde{\mathbf{A}} \rightarrow \widetilde{\mathbf{E}}^{\mathbf{N}}$, where $\widetilde{\mathbf{E}}^{\mathbf{N}}$ is endowed with the product topology ($\widetilde{\mathbf{E}}$ is endowed with the topology defined by the valuation $v_{\mathbf{E}}$). We endow $\widetilde{\mathbf{B}}=\bigcup_{i \in \mathbf{N}} p^{-i} \widetilde{\mathbf{A}}$ with the topology of inductive limit. The action of $G_{\mathbf{Q}_{p}}$ on $\widetilde{\mathbf{E}}$ induces continuous actions on $\widetilde{\mathbf{A}}$ and $\widetilde{\mathbf{B}}$ that commute with the Frobenius φ. Let $\pi=[\varepsilon]-1$. Define $\mathbf{A}_{\mathbf{Q}_{p}}$

S. Chang and F. Diamond

to be the closure of $\mathbf{Z}_{p}\left[\pi, \pi^{-1}\right]$ in $\widetilde{\mathbf{A}}$. Then

$$
\mathbf{A}_{\mathbf{Q}_{p}}=\left\{\sum_{i \in \mathbf{Z}} a_{n} \pi^{i} \mid a_{i} \in \mathbf{Z}_{p}, a_{i} \rightarrow 0 \text { as } i \rightarrow-\infty\right\}
$$

and $\mathbf{A}_{\mathbf{Q}_{p}}$ is a complete discrete valuation ring with residue field $\mathbf{E}_{\mathbf{Q}_{p}}$. As

$$
\varphi(\pi)=(1+\pi)^{p}-1 \quad \text { and } \quad \gamma(\pi)=(1+\pi)^{\chi(g)}-1 \quad \text { if } g \in G_{\mathbf{Q}_{p}},
$$

the ring $\mathbf{A}_{\mathbf{Q}_{p}}$ and its field of fractions $\mathbf{B}_{\mathbf{Q}_{p}}=\mathbf{A}_{\mathbf{Q}_{p}}[1 / p]$ are stable under φ and the action of $G_{\mathbf{Q}_{p}}$. Let \mathbf{B} be the closure of the maximal unramified extension of $\mathbf{B}_{\mathbf{Q}_{p}}$ contained in $\widetilde{\mathbf{B}}$, and set $\mathbf{A}=\mathbf{B} \cap \widetilde{\mathbf{A}}$, so that we have $\mathbf{B}=\mathbf{A}[1 / p]$. Then \mathbf{A} is a complete discrete valuation ring with field of fractions \mathbf{B} and residue field \mathbf{E}. The ring \mathbf{A} and the field \mathbf{B} are stable under φ and $G_{\mathbf{Q}_{p}}$. If K is a finite extension of \mathbf{Q}_{p}, we define $\mathbf{A}_{K}=\mathbf{A}^{H_{K}}$ and $\mathbf{B}_{K}=\mathbf{B}^{H_{K}}$, which makes \mathbf{A}_{K} a complete discrete valuation ring with residue field \mathbf{E}_{K} and the field of fractions $\mathbf{B}_{K}=\mathbf{A}_{K}[1 / p]$. When $K=\mathbf{Q}_{p}$, the two definitions of \mathbf{A}_{K} and \mathbf{B}_{K} coincide. If F is a finite extension of K, then \mathbf{B}_{F} is an unramified extension of \mathbf{B}_{K} of degree $\left[F_{\infty}: K_{\infty}\right]$. If the extension F / K is Galois, then the extensions $\widetilde{\mathbf{B}}_{F} / \widetilde{\mathbf{B}}_{K}$ and $\mathbf{B}_{F} / \mathbf{B}_{K}$ are also Galois with Galois group

$$
\operatorname{Gal}\left(\widetilde{\mathbf{B}}_{F} / \widetilde{\mathbf{B}}_{K}\right)=\operatorname{Gal}\left(\mathbf{B}_{F} / \mathbf{B}_{K}\right)=\operatorname{Gal}\left(\mathbf{E}_{F} / \mathbf{E}_{K}\right)=\operatorname{Gal}\left(F_{\infty} / K_{\infty}\right)=H_{K} / H_{F} .
$$

In particular, if K is a finite unramified extension of \mathbf{Q}_{p}, we have

$$
\mathbf{A}_{K}=\left\{\sum_{n \in \mathbf{Z}} a_{n} \pi^{n} \mid a_{n} \in \mathcal{O}_{K}, a_{n} \rightarrow 0 \text { as } n \rightarrow-\infty\right\},
$$

with φ acting as the Frobenius and Γ acting trivially on \mathcal{O}_{K}.
The homomorphism $\theta: \widetilde{\mathbf{A}}^{+} \rightarrow \mathcal{O}_{\mathbf{C}_{p}}, \sum_{n \geqslant 0} p^{n}\left[x_{n}\right] \mapsto \sum_{n \geqslant 0} p^{n} x_{n}^{(0)}$ is surjective and its kernel is a principal ideal generated by $\omega=\pi / \varphi^{-1}(\pi)$. We extend θ to a homomorphism $\widetilde{\mathbf{B}}^{+}=$ $\widetilde{\mathbf{A}}^{+}[1 / p] \rightarrow \mathbf{C}_{p}$ and we set $\mathbf{B}_{\mathrm{dR}}^{+}$to be the ring $\underset{ }{\lim } \widetilde{\mathbf{B}}^{+} /(\operatorname{ker} \theta)^{n}$. Then θ extends by continuity to a homomorphism $\mathbf{B}_{\mathrm{dR}}^{+} \rightarrow \mathbf{C}_{p}$. This makes $\mathbf{B}_{\mathrm{dR}}^{+}$a discrete valuation ring with maximal ideal $\operatorname{ker} \theta$ and residue field \mathbf{C}_{p}. The action of $G_{\mathbf{Q}_{p}}$ on $\widetilde{\mathbf{B}}^{+}$extends by continuity to a continuous action of $G_{\mathbf{Q}_{p}}$ on $\mathbf{B}_{\mathrm{dR}}^{+}$. The series $\log [\varepsilon]=\sum_{n \geqslant 1}(-1)^{n-1} \pi^{n} / n$ converges in $\mathbf{B}_{\mathrm{dR}}^{+}$to an element t, which is a generator of $\operatorname{ker} \theta$ on which $\sigma \in G_{\mathbf{Q}_{p}}$ act via the formula $\sigma(t)=\chi(\sigma) t$. We set $\mathbf{B}_{\mathrm{dR}}=\mathbf{B}_{\mathrm{dR}}^{+}\left[t^{-1}\right]=\mathrm{Fr} \mathbf{B}_{\mathrm{dR}}^{+}$, and \mathbf{B}_{dR} comes with a decreasing, separated and exhaustive filtration $\mathrm{Fil}^{i} \mathbf{B}_{\mathrm{dR}}:=t^{i} \mathbf{B}_{\mathrm{dR}}^{+}$for $i \in \mathbf{Z}$. Let $\mathbf{A}_{\text {cris }}=\left\{x=\sum_{n \geqslant 0} a_{n}\left(\omega^{n} / n!\right) \in \mathbf{B}_{\mathrm{dR}}^{+} \mid a_{n} \in \widetilde{\mathbf{A}}^{+}, a_{n} \rightarrow 0\right\}$. Then $\mathbf{B}_{\text {cris }}^{+}=\mathbf{A}_{\text {cris }}[1 / p]$ is a subring of $\mathbf{B}_{\mathrm{dR}}^{+}$stable by $G_{\mathbf{Q}_{p}}$ and contains t, and the action of φ on $\widetilde{\mathbf{B}}^{+}$ extends by continuity to an action of $\mathbf{B}_{\text {cris }}^{+}$. We have $\varphi(t)=p t$ and we define $\mathbf{B}_{\text {cris }}$ to be the subring $\mathbf{B}_{\text {cris }}^{+}[1 / t]$ of \mathbf{B}_{dR}, and define the filtration Fil $\mathbf{B}_{\text {cris }}:=\mathrm{Fil}{ }^{i} \mathbf{B}_{\mathrm{dR}} \cap \mathbf{B}_{\text {cris }}$.

2.2 Crystalline representations

Let K be a finite extension of \mathbf{Q}_{p}, and let K_{0} denote its maximal absolutely unramified subfield.
Definition 2.1. A p-adic representation of G_{K} is a finite dimensional \mathbf{Q}_{p}-vector space together with a linear and continuous action of G_{K}. A \mathbf{Z}_{p}-representation of G_{K} is a \mathbf{Z}_{p}-module of finite type with a \mathbf{Z}_{p}-linear and continuous action of G_{K}. A modp representation of G_{K} is a finite dimensional \mathbf{F}_{p}-vector space with a linear and continuous action of G_{K}.

Remark 2.2. A \mathbf{Z}_{p}-representation T of G_{K} that is torsion-free over \mathbf{Z}_{p} is naturally identified with a (G_{K}-stable) lattice of the p-adic representation $V:=\mathbf{Q}_{p} \otimes_{\mathbf{Z}_{p}} T$ of G_{K}.

Extensions of rank one (φ, Γ)-modules

If B is a topological \mathbf{Q}_{p}-algebra endowed with a continuous action of G_{K} and if V is a p-adic representation of G_{K}, we define $\mathbf{D}_{B}(V):=\left(B \otimes_{\mathbf{Q}_{p}} V\right)^{G_{K}}$, which is naturally a module over $B^{G_{K}}$. If, in addition, B is G_{K}-regular (i.e., B is a domain, $(\operatorname{Fr} B)^{G_{K}}=B^{G_{K}}$, and every $b \in B-\{0\}$ such that $\mathbf{Q}_{p} b$ is stable under G_{K}-action is a unit), then the map

$$
\alpha_{V}: B \otimes_{B^{G_{K}}} \mathbf{D}_{B}(V) \rightarrow B \otimes_{\mathbf{Q}_{p}} V
$$

induced by the inclusion $D_{B}(V) \rightarrow B \oplus_{Q_{p}} V$ is an injection (see [Fon94b, §1.3]). In particular, we have

$$
\operatorname{dim}_{B^{G_{K}}} \mathbf{D}_{B}(V) \leqslant \operatorname{dim}_{\mathbf{Q}_{p}} V
$$

(If B is G_{K}-regular, $B^{G_{K}}$ is forced to be a field.)
Definition 2.3. If B is G_{K}-regular, we say that a p-adic representation V of G_{K} is B-admissible if $\operatorname{dim}_{B^{G}} \mathbf{D}_{B}(V)=\operatorname{dim}_{\mathbf{Q}_{p}} V$. We say that V is crystalline if it is $\mathbf{B}_{\text {cris }}$-admissible and that V is de Rham if \mathbf{B}_{dR}-admissible.
Remark 2.4. We have the following equivalent conditions (cf. [Fon94b, § 1.4]):
(i) $\operatorname{dim}_{B^{G}} \mathbf{D}_{B}(V)=\operatorname{dim}_{\mathbf{Q}_{p}} V$;
(ii) α_{V} is an isomorphism; and
(iii) $B \otimes_{\mathbf{Q}_{p}} V \simeq B^{\operatorname{dim}_{\mathbf{Q}_{p}} V}$ as $B\left[G_{K}\right]$-modules.

If V is a p-adic representation of $G_{K}, \mathbf{D}_{\mathrm{dR}}(V):=\left(\mathbf{B}_{\mathrm{dR}} \otimes_{\mathbf{Q}_{p}} V\right)^{G_{K}}$ is naturally a filtered K vector space. More precisely, it is a finite dimensional K-vector space with a decreasing, separated and exhaustive filtration $\mathrm{Fil}^{i} \mathbf{D}_{\mathrm{dR}}(V):=\left(\mathrm{Fil}^{i} \mathbf{B}_{\mathrm{dR}} \otimes_{\mathbf{Q}_{p}} V\right)^{G_{K}}$ of K-subspaces for $i \in \mathbf{Z}$. If V is de Rham, a Hodge-Tate weight of V is defined to be an integer $h \in \mathbf{Z}$ such that $\operatorname{Fil}^{h} \mathbf{D}_{\mathrm{dR}}(V) \neq$ $\mathrm{Fil}^{h+1} \mathbf{D}_{\mathrm{dR}}(V)$ with multiplicity $\operatorname{dim}_{K} \operatorname{Fil}^{h} \mathbf{D}_{\mathrm{dR}}(V) / \mathrm{Fil}^{h+1} \mathbf{D}_{\mathrm{dR}}(V)$. So there are $\operatorname{dim}_{\mathbf{Q}_{p}} V$ HodgeTate weights of V counting multiplicities. We remark that this differs from the more standard convention (e.g., [Ber04a]) of defining $-h$ to be a Hodge-Tate weight of V for h as above.

Definition 2.5. A filtered φ-module over K is a finite dimensional K_{0}-vector space D together with a σ-semilinear bijection $\varphi: D \rightarrow D$ and a Z-indexed filtration on $D_{K}:=D \otimes_{K_{0}} K$ of K-subspaces that is decreasing, separated and exhaustive.

If V is a p-adic representation of G_{K}, then $\mathbf{D}_{\text {cris }}(V):=\left(\mathbf{B}_{\text {cris }} \otimes_{\mathbf{Q}_{p}} V\right)^{G_{K}}$ is a filtered φ-module over K. More precisely, the Frobenius on $\mathbf{B}_{\text {cris }}$ induces a Frobenius map $\varphi: \mathbf{D}_{\text {cris }}(V) \rightarrow \mathbf{D}_{\text {cris }}(V)$ and the filtration on \mathbf{B}_{dR} induces a filtration $\mathrm{Fil}^{i} \mathbf{D}_{\text {cris }}(V):=D_{K} \cap\left(\mathrm{Fil}^{i} \mathbf{B}_{\mathrm{dR}} \otimes \mathbf{Q}_{p} V\right)^{G_{K}}$ on $\mathbf{D}_{\text {cris }}(V)$. Moreover, $\mathbf{D}_{\text {cris }}(V)$ has finite dimension over K_{0} and φ is bijective on $\mathbf{D}_{\text {cris }}(V)$. We get a functor

$$
\mathbf{D}_{\text {cris }}: \operatorname{Rep}_{\mathbf{Q}_{p}} G_{K} \rightarrow \mathrm{MF}_{K}^{\varphi}
$$

from the category of p-adic representations of G_{K} to the category of filtered φ-modules over K.
If D is a filtered φ-module over K of finite dimension $d \geqslant 1$, then $\wedge^{d} D$ is a filtered φ-module of dimension one. If $e \in \wedge_{K_{0}}^{d} D-\{0\}$ and $\varphi(e)=\lambda e$ then $\operatorname{val}(\lambda)$ is independent of choice of e and we define $t_{N}(D):=v_{p}(\lambda)$. Also, we define $t_{H}(D)=t_{H}\left(D_{K}\right)$ to be the largest integer such that $\operatorname{Fil}^{t_{H}(D)}\left(\wedge_{K}^{d} D_{K}\right)$ is non-zero, i.e. $\operatorname{Fil}^{i}\left(\wedge_{K}^{d} D_{K}\right)=\wedge_{K}^{d} D_{K}$ for $i \leqslant t_{H}(D)$ and $\operatorname{Fil}^{i}\left(\wedge_{K}^{d} D_{K}\right)=0$ for $i>t_{H}(D)$.

Definition 2.6. Let D be a filtered φ-module over K. We say that D is weakly admissible if $t_{H}(D)=t_{N}(D)$ and $t_{H}\left(D^{\prime}\right) \leqslant t_{N}\left(D^{\prime}\right)$ for every subobject D^{\prime} of D. We say that D is admissible if $D \simeq \mathbf{D}_{\text {cris }}(V)$ for some p-adic representation V of dimension $\operatorname{dim}_{K_{0}} D$.

S. Chang and F. Diamond

One can show that, if V is a crystalline representation of G_{K}, then $\mathbf{D}_{\text {cris }}(V)$ is weakly admissible. The converse was conjectured by Fontaine, and proved by Colmez and Fontaine.

Theorem 2.7 [CF00]. Every weakly admissible filtered φ-module over K is admissible.
In sum, we have an equivalence of categories

$$
\mathbf{D}_{\text {cris }}: \operatorname{Rep}_{\mathbf{Q}_{p}}^{\text {cris }} G_{K} \rightarrow \operatorname{MF}_{K}^{\varphi, \text { w.a. }}
$$

between crystalline representations of G_{K} and weakly admissible filtered φ-modules over K with a quasi-inverse given by $\mathbf{V}_{\text {cris }}(\cdot):=\left(\operatorname{Fil}^{0}(\cdot)\right)^{\varphi=1}$.

$2.3(\varphi, \Gamma)$-modules

Definition 2.8. A (φ, Γ)-module over \mathbf{A}_{K} (respectively $\mathbf{B}_{K}, \mathbf{E}_{K}$) is an \mathbf{A}_{K}-module of finite type (respectively finite dimensional vector space over $\mathbf{B}_{K}, \mathbf{E}_{K}$) endowed with a semilinear and continuous action of Γ_{K} and with a semilinear map φ that commutes with the action of Γ_{K}. We say that a (φ, Γ)-module M over \mathbf{A}_{K} (respectively \mathbf{E}_{K}) is étale if $\varphi(M)$ generates M over \mathbf{A}_{K} (respectively \mathbf{E}_{K}). A (φ, Γ)-module M over \mathbf{B}_{K} is étale if M contains an \mathbf{A}_{K}-lattice that is stable under φ and is étale.

Remark 2.9. We identify a (étale) (φ, Γ)-module over \mathbf{A}_{K} killed by p with the corresponding (étale) (φ, Γ)-modules over \mathbf{E}_{K}.

If T is a \mathbf{Z}_{p}-representation of G_{K}, we define $\mathbf{D}(T)=\left(\mathbf{A} \otimes \mathbf{Z}_{p} T\right)^{H_{K}}$. Then $\mathbf{D}(T)$ is naturally a module over \mathbf{A}_{K} of finite type. The Frobenius φ on \mathbf{A} induces a Frobenius map $\varphi: \mathbf{D}(T) \rightarrow \mathbf{D}(T)$ and the residual action of Γ_{K} on $\mathbf{D}(T)$ commutes with φ. One can also check that $\mathbf{D}(T)$ is étale over \mathbf{A}_{K}. Conversely, if M is an étale (φ, Γ)-module over \mathbf{A}_{K} we define $\mathbf{T}(M)=\left(\mathbf{A} \otimes_{\mathbf{A}_{K}} M\right)^{\varphi=1}$, which is a \mathbf{Z}_{p}-representation of G_{K}.

Theorem 2.10 [Fon90]. The functor $T \mapsto \mathbf{D}(T)$ defines an equivalence of categories

$$
\mathbf{D}: \operatorname{Rep}_{\mathbf{z}_{p}} G_{K} \rightarrow \mathrm{M}_{\mathbf{A}_{K}}^{\varphi, \Gamma, \mathrm{et}}
$$

between \mathbf{Z}_{p}-representations and étale (φ, Γ)-modules over \mathbf{A}_{K} with \mathbf{T} as a quasi-inverse. It induces, by inverting p, an equivalence of categories

$$
\mathbf{D}: \operatorname{Rep}_{\mathbf{Q}_{p}} G_{K} \rightarrow \mathrm{M}_{\mathbf{B}_{K}, \Gamma, \mathrm{et}}^{\varphi,}
$$

between p-adic representations and étale (φ, Γ)-modules over \mathbf{B}_{K} with

$$
M \mapsto \mathbf{V}(M):=\left(\mathbf{B} \otimes_{\mathbf{B}_{K}} D\right)^{\varphi=1}
$$

as a quasi-inverse. Moreover, if T is a \mathbf{Z}_{p}-representation and V a p-adic representation of G_{K}, then

$$
\begin{aligned}
\operatorname{rank}_{\mathbf{Z}_{p}} T & =\operatorname{rank}_{\mathbf{A}_{K}} \mathbf{D}(T), \\
\operatorname{dim}_{\mathbf{Q}_{p}} V & =\operatorname{dim}_{\mathbf{B}_{K}} \mathbf{D}(V) .
\end{aligned}
$$

When we restrict the equivalence to the p-torsion objects we get the following corollary.
Corollary 2.11. The functor $T \mapsto \mathbf{D}(T)$ defines an equivalence of categories between $\bmod p$ representations of G_{K} and étale $\left(\varphi, \Gamma_{K}\right)$-modules over \mathbf{E}_{K}.

Extensions of Rank one (φ, Γ)-modules

Now we introduce coefficients to representations of G_{K} and (φ, Γ)-modules to extend Theorem 2.10 and Corollary 2.11. We assume that K is absolutely unramified (of degree f over \mathbf{Q}_{p}) and let F be a finite extension of \mathbf{Q}_{p} with ring of integers \mathcal{O}_{F}, uniformizer ϖ_{F} and residue field \mathbf{F}. Consider the ring $\mathbf{A}_{K, F}:=\mathcal{O}_{F} \otimes \mathbf{z}_{p} \mathbf{A}_{K}$ with the actions of φ and Γ_{K} extended to $\mathbf{A}_{K, F}$ by linearity, i.e., φ acts as $1 \otimes \varphi$ and $\gamma \in \Gamma_{K}$ as $1 \otimes \gamma$. We assume there is an embedding $\tau_{0}: K \hookrightarrow F$, which we fix once and for all, and put $\tau_{i}=\tau_{0} \circ \varphi^{i}$, where φ is the Frobenius on K. We denote by S the set of all embeddings $K \hookrightarrow F$ and fix the identification $S=\mathbf{Z} / f \mathbf{Z}$ via the map $\tau_{i} \mapsto i$. We can then identify $\mathbf{A}_{K, F}$ with $\mathbf{A}_{\mathbf{Q}_{p}, F}^{S}$ via the isomorphism defined by $a \otimes b \pi^{n} \mapsto\left(a \tau(b) \otimes \pi^{n}\right)_{\tau}$. Note that

$$
\mathbf{A}_{\mathbf{Q}_{p}, F}=\left\{\sum_{n \in \mathbf{Z}} a_{n} \pi^{n} \mid a_{n} \in \mathcal{O}_{F}, a_{n} \rightarrow 0 \text { as } n \rightarrow-\infty\right\},
$$

and the actions of φ and $\gamma \in \Gamma_{K}$ on $\mathbf{A}_{\mathbf{Q}_{p}, F}^{S}$ become

$$
\begin{aligned}
& \varphi\left(g_{0}(\pi), g_{1}(\pi), \ldots, g_{f-1}(\pi)\right)=\left(g_{1}(\varphi(\pi)), \ldots, g_{f-1}(\varphi(\pi)), g_{0}(\varphi(\pi))\right), \\
& \gamma\left(g_{0}(\pi), g_{1}(\pi), \ldots, g_{f-1}(\pi)\right)=\left(g_{0}(\gamma(\pi)), g_{1}(\gamma(\pi)), \ldots, g_{f-1}(\gamma(\pi))\right) .
\end{aligned}
$$

We similarly define $\mathbf{B}_{K, F}=F \otimes_{\mathbf{Q}_{p}} \mathbf{B}_{K}$ and $\mathbf{E}_{K, F}=\mathbf{F} \otimes_{\mathbf{F}_{p}} \mathbf{E}_{K}$ and endow them with actions of φ and Γ. Note that $\mathbf{B}_{K, F}=\mathbf{A}_{K, F}[1 / p]$ and $\mathbf{E}_{K, F}=\mathbf{A}_{K, F} / \varpi_{F} \mathbf{A}_{K, F}$. Again identifying S with the set of embeddings $k \rightarrow \mathbf{F}$, we have the isomorphism $\mathbf{E}_{K, F}=\mathbf{F}((\pi))^{S}$ with the actions of φ and Γ_{K} given by the same formulas as above.

Definition 2.12. An \mathcal{O}_{F}-representation of G_{K} is a finitely generated \mathcal{O}_{F}-module with a continuous \mathcal{O}_{F}-linear action of G_{K}. A $\left(\varphi, \Gamma_{K}\right)$-module over $\mathbf{A}_{K, F}$ is a finitely generated $\mathbf{A}_{K, F^{-}}$ module M endowed with commuting semilinear actions of Γ_{K} and φ. A $\left(\varphi, \Gamma_{K}\right)$-module M over $\mathbf{A}_{K, F}$ is étale if $\varphi(M)$ generates M over \mathbf{A}_{K}, or equivalently over $\mathbf{A}_{K, F}$.

We write $\operatorname{Rep}_{\mathcal{O}_{F}} G_{K}$ for the category of \mathcal{O}_{F}-representations of G_{K}, and $\mathrm{M}_{\mathbf{A}_{K, F}}^{\varphi, \Gamma, \text { et }}$ for that of étale $\left(\varphi, \Gamma_{K}\right)$-modules over $\mathbf{A}_{K, F}$. We use analogous definitions and notation for representations of G_{K} over F and \mathbf{F}, and $\left(\varphi, \Gamma_{K}\right)$-modules over $\mathbf{B}_{K, F}$ and $\mathbf{E}_{K, F}$. The category of étale $\left(\varphi, \Gamma_{K}\right)$ modules over $\mathbf{E}_{K, F}$ is the main category we will be working in. Theorem 2.10 and Corollary 2.11 immediately yield the following corollary.
Corollary 2.13. The functor \mathbf{D} induces equivalences of categories $\operatorname{Rep}_{\mathcal{O}_{F}} G_{K} \rightarrow \mathrm{M}_{\mathbf{A}_{K, F}}^{\varphi, \Gamma, \mathrm{et}}$, $\operatorname{Rep}_{F} G_{K} \rightarrow \mathrm{M}_{\mathbf{B}_{K, F}}^{\varphi, \Gamma, \text { et }}$ and $\operatorname{Rep}_{\mathbf{F}} G_{K} \rightarrow \mathrm{M}_{\mathbf{E}_{K, F}}^{\varphi, \Gamma, \mathrm{et}}$.

For each embedding $\tau: K \hookrightarrow \mathbf{F}$, let $e_{\tau}: \mathbf{A}_{K, F} \rightarrow \mathbf{A}_{\mathbf{Q}_{p}, F}$ denote the projection to the τ component, defined by $a \otimes b \pi^{i} \mapsto a \tau(b) \pi^{i}$. If M is a (φ, Γ)-module over $\mathbf{A}_{K, F}$, then $M=$ $\prod_{\tau \in S} e_{\tau} M$, each $e_{\tau} M$ inherits an action of Γ, and φ induces semilinear morphisms $e_{\tau \circ \varphi} M \rightarrow e_{\tau} M$ compatible with the action of Γ. We use the same notation for (φ, Γ)-modules over $\mathbf{B}_{K, F}$ and $\mathbf{E}_{K, F}$.

Lemma 2.14. If M is an étale (φ, Γ)-module over $\mathbf{A}_{K, F}$, then the following are equivalent:
(i) $\mathbf{T}(M)$ is free over \mathcal{O}_{F} of rank d;
(ii) M is free over \mathbf{A}_{K} of rank $d\left[F: \mathbf{Q}_{p}\right]$; and
(iii) M is free over $\mathbf{A}_{K, F}$ of rank d.

If M is an étale (φ, Γ)-module over $\mathbf{B}_{K, F}$ (respectively $\mathbf{E}_{K, F}$), then M is free over $\mathbf{B}_{K, F}$ (respectively $\mathbf{E}_{K, F}$) of rank $\operatorname{dim}_{F} \mathbf{T}(M)$ (respectively $\operatorname{dim}_{\mathbf{F}} \mathbf{T}(M)$).

S. Chang and F. Diamond

Proof. Suppose that M is étale over $\mathbf{A}_{K, F}$. Then multiplication by p is injective on M if and only if it is injective on $\mathbf{T}(M)$. Thus M is torsion-free, and hence free, over \mathbf{A}_{K} if and only if $\mathbf{T}(M)$ is free over \mathcal{O}_{F}. Since the \mathbf{A}_{K}-rank of M coincides with the \mathbf{Z}_{p}-rank of $\mathbf{T}(M)$, the first two conditions are equivalent.

If M is free of rank d over $\mathbf{A}_{K, F}$, then it is clearly free of $\operatorname{rank} d\left[F: \mathbf{Q}_{p}\right]$ over \mathbf{A}_{K}. Conversely suppose that M is free over \mathbf{A}_{K}. Then each $e_{\tau} M$ is torsion-free, hence free, over the discrete valuation ring $\mathbf{A}_{\mathbf{Q}_{p}, F}$. We need only show that each $e_{\tau} M$ has the same rank. Since M is étale, the maps

$$
e_{\tau \circ \varphi} M \otimes_{\mathbf{A}_{\mathbf{Q}_{p}, F, \varphi}} \mathbf{A}_{\mathbf{Q}_{p}, F} \rightarrow e_{\tau} M
$$

are surjective, so we have $\operatorname{rank}\left(e_{\tau_{i}} M\right) \leqslant \operatorname{rank}\left(e_{\tau_{i+1}} M\right)$ for all $i \in \mathbf{Z} / f \mathbf{Z}$. The equivalence between the last two conditions follows.

The assertions for étale (φ, Γ)-modules over $\mathbf{B}_{K, F}$ and $\mathbf{E}_{K, F}$ are similar, but simpler since \mathbf{B}_{K} and \mathbf{E}_{K} are fields.

Finally, there are tensor products and exact sequences in the various categories of étale (φ, Γ)-modules, compatible via \mathbf{D} with tensor products and exact sequences in the corresponding categories of representations of G_{K}.

2.4 Wach modules

It is very useful to be able to characterize whether a p-adic representation is crystalline in terms of the corresponding (φ, Γ)-module. This can be done via the theory of Wach modules if K is unramified over \mathbf{Q}_{p}.

Let $\mathbf{A}^{+}=\mathbf{A} \cap \widetilde{\mathbf{A}}^{+}=\mathbf{B} \cap \widetilde{\mathbf{A}}^{+}$and $\mathbf{B}^{+}=\mathbf{A}^{+}[1 / p]$. If K is a finite unramified extension of \mathbf{Q}_{p}, we set $\mathbf{A}_{K}^{+}=\left(\mathbf{A}^{+}\right)^{H_{K}}=\mathcal{O}_{K}[[\pi]] \subset \mathbf{A}_{K}$ and $\mathbf{B}_{K}^{+}=\left(\mathbf{B}^{+}\right)^{H_{K}}=\mathbf{A}_{K}^{+}\left[p^{-1}\right] \subset \mathbf{B}_{K}$.

Definition 2.15. Let K be a finite unramified extension of \mathbf{Q}_{p}. We say that a \mathbf{Z}_{p}-representation T (respectively p-adic representation V) of G_{K} is of finite height if there exists a basis of $\mathbf{D}(T)$ (respectively $\mathbf{D}(V)$) such that the matrices describing the action of φ and the action of Γ_{K} are defined over $\mathbf{A}_{K}^{+}\left(\right.$respectively $\left.\mathbf{B}_{K}^{+}\right)$.

Colmez [Col99] proved that every crystalline representation is necessarily of finite height. The converse is not true in general and there are representations of finite height that are not crystalline. However, Wach [Wac96, Wac97] proved that finiteness of height together with a certain condition (existence of a certain $\mathbf{A}_{K^{-}}^{+}$-submodule of the corresponding (φ, Γ)-module) implies crystallinity. Berger [Ber02, Ber04b] then refined the results of Wach and Colmez as summarized below.
Definition 2.16. Suppose $a \leqslant b \in \mathbf{Z}$. A Wach module over \mathbf{A}_{K}^{+}(respectively \mathbf{B}_{K}^{+}) with weights in $[a, b]$ is a free \mathbf{A}_{K}^{+}-module (respectively \mathbf{B}_{K}^{+}-module) N of finite rank, endowed with an action of Γ_{K} that becomes trivial modulo π, and also with a Frobenius map $\varphi: N[1 / \pi] \rightarrow N[1 / \pi]$ that commutes with the action of Γ_{K} and such that $\varphi\left(\pi^{-a} N\right) \subset \pi^{-a} N$ and $\pi^{-a} N / \varphi\left(\pi^{-a} N\right)$ is killed by q^{b-a}, where we define $q:=\varphi(\pi) / \pi$.

Theorem 2.17 [Ber04b]. (i) A p-adic representation V is crystalline with Hodge-Tate weights in $[a, b]$ if and only if $\mathbf{D}(V)$ contains a Wach module $\mathbf{N}(V)$ of rank $\operatorname{dim}_{\mathbf{Q}_{p}} V$ with weights in $[a, b]$. The association $V \mapsto \mathbf{N}(V)$ induces an equivalence of categories between crystalline representations of G_{K} and Wach modules over \mathbf{B}_{K}^{+}, compatible with tensor products, duality and exact sequences.

Extensions of rank one (φ, Γ)-modules

(ii) For a given crystalline representation V, the map $T \mapsto \mathbf{N}(T):=\mathbf{N}(V) \cap \mathbf{D}(T)$ induces a bijection between G_{K}-stable lattices of V and Wach modules over \mathbf{A}_{K}^{+}that are \mathbf{A}_{K}^{+}-lattices contained in $\mathbf{N}(V)$. Moreover $\mathbf{D}(T)=\mathbf{A}_{K} \otimes_{\mathbf{A}_{K}^{+}} \mathbf{N}(T)$.
(iii) If V is a crystalline representation of G_{K}, and if we endow $\mathbf{N}(V)$ with the filtration $\operatorname{Fil}^{i} \mathbf{N}(V)=\left\{x \in \mathbf{N}(V) \mid \varphi(x) \in q^{i} \mathbf{N}(V)\right\}$, then we have an isomorphism $\mathbf{D}_{\text {cris }}(V) \rightarrow$ $\mathbf{N}(V) / \pi \mathbf{N}(V)$ of filtered φ-modules (with the induced filtration on $\mathbf{N}(V) / \pi \mathbf{N}(V)$).

Remark 2.18. If $0 \rightarrow V_{1} \rightarrow V \rightarrow V_{2} \rightarrow 0$ is an exact sequence of crystalline representations of G_{K}, then

$$
0 \rightarrow \mathbf{N}\left(V_{1}\right) \rightarrow \mathbf{N}(V) \rightarrow \mathbf{N}\left(V_{2}\right) \rightarrow 0
$$

is an exact sequence of $\mathbf{B}_{K^{-}}^{+}$-modules. However, \mathbf{N} does not define an exact functor from $G_{K^{-}}$ stable lattices to \mathbf{A}_{K}^{+}-modules; indeed it fails to be right exact. We return to this point in more detail in § 7 .

Again by introducing an action of F to the categories, we get an analogous equivalence of categories between crystalline F-representations and Wach modules over $\mathbf{B}_{K, F}^{+}:=F \otimes \mathbf{Q}_{p} \mathbf{B}_{K}^{+}$. Here, by a crystalline F-representation we mean a finite dimensional F-vector space with a continuous action of G_{K} which is crystalline considered as a \mathbf{Q}_{p}-linear representation (i.e., forgetting F-structure). Similarly, for a fixed crystalline F-representation of G_{K}, we have a corresponding equivalence of categories between G_{K}-stable \mathcal{O}_{F}-lattices and Wach modules over $\mathbf{A}_{K, F}^{+}:=\mathcal{O}_{F} \otimes \mathbf{z}_{p} \mathbf{A}_{K}^{+}$.
Corollary 2.19. Let $k \in \mathbf{Z}_{\geqslant 0}$. An F-representation V of G_{K} is crystalline with Hodge-Tate weights in $[0, k]$ (i.e., positive crystalline) if and only if there exists a $\mathbf{B}_{K, F}^{+}$-module N free of rank $d:=\operatorname{dim}_{F}(V)$ contained in $\mathbf{D}(V)$ such that:
(i) the Γ-action preserves N and is trivial on $N / \pi N$; and
(ii) $\varphi(N) \subset N$ and $N / \varphi^{*}(N)$ is killed by q^{k}.

Moreover, if N is given a filtration by

$$
\operatorname{Fil}^{i}(N):=\left\{x \in N \mid \varphi(x) \in q^{i} N\right\}
$$

for $i \geqslant 0$, then we have an isomorphism

$$
\mathbf{D}_{\text {cris }}(V) \simeq N / \pi N
$$

of filtered φ-modules over $F \otimes \mathbf{Q}_{p} K$, where $N / \pi N$ is endowed with induced filtration.
A standard argument (cf. Lemma 2.14) shows that an F-representation V of G_{K} is crystalline if and only if the filtered φ-module $\mathbf{D}_{\text {cris }}(V)=\left(\mathbf{B}_{\text {cris }} \otimes_{\mathbf{Q}_{p}} V\right)^{G_{K}}$ is free of rank $\operatorname{dim}_{F} V$ over $F \otimes \mathbf{Q}_{p} K$. We have a decomposition $\mathbf{D}_{\text {cris }}(V)=\bigoplus_{\tau: K \hookrightarrow F} e_{\tau} \mathbf{D}_{\text {cris }}(V)$, where $e_{\tau} \mathbf{D}_{\text {cris }}(V)$ is the filtered F-vector space $\mathbf{D}_{\text {cris }}(V) \otimes_{K \otimes{ }_{\mathbf{Q}_{p}} F, e_{\tau}} F$ with the filtration given by $\mathrm{Fil}^{i} e_{\tau} \mathbf{D}_{\text {cris }}(V):=$ $e_{\tau} \mathrm{Fil}^{i} \mathbf{D}_{\text {cris }}(V)$. A labeled Hodge-Tate weight with respect to the embedding $\tau: K \hookrightarrow F$ is an integer $h \in \mathbf{Z}$ such that $\operatorname{Fil}^{h} e_{\tau} \mathbf{D}_{\text {cris }}(V) \neq \operatorname{Fil}^{h+1} e_{\tau} \mathbf{D}_{\text {cris }}(V)$, counted with multiplicity

$$
\operatorname{dim}_{F} \operatorname{Fil}^{h} e_{\tau} \mathbf{D}_{\text {cris }}(V) / \operatorname{Fil}^{h+1} e_{\tau} \mathbf{D}_{\text {cris }}(V)
$$

Lemma 2.20. If N is a Wach module over $\mathbf{A}_{K, F}^{+}$(respectively $\mathbf{B}_{K, F}^{+}$), then N is free over $\mathbf{A}_{K, F}^{+}$ (respectively $\mathbf{B}_{K, F}^{+}$).

S. Chang and F. Diamond

Proof. We just give the proof for Wach modules over $\mathbf{A}_{K, F}^{+}$; the case of $\mathbf{B}_{K, F}^{+}$can be deduced from this or proved similarly.

Let T denote the \mathcal{O}_{F}-representation corresponding to T, and let d denote its rank. The $\mathcal{O}_{F} \otimes_{\mathbf{z}_{p}} \mathcal{O}_{K}$-module $N / \pi N$ is a lattice in $D_{\text {crys }}\left(\mathbf{Q}_{p} \otimes_{\mathbf{z}_{p}} T\right)$, which is free of rank d over $F \otimes_{\mathbf{Q}_{p}} K$. It follows that $N / \pi N$ is free of rank d over $\mathcal{O}_{F} \otimes \mathbf{Z}_{p} \mathcal{O}_{K}$. Since π is in the Jacobson radical of $\mathbf{A}_{K, F}^{+}$, Nakayama's lemma shows that N is generated by d elements over $\mathbf{A}_{K, F}^{+}$. By Lemma 2.14, we know that $\mathbf{A}_{K, F} \otimes_{\mathbf{A}_{K, F}^{+}} N$ is free of rank d over $\mathbf{A}_{K, F}$, so it follows that N is free of rank d over $\mathbf{A}_{K, F}^{+}$.

3. Rank one modules

In this section we give a parametrization of rank one étale (φ, Γ)-modules over $\mathbf{E}_{K, F}$ (with a view toward parametrizing their extensions) and then identify them with the reduction modulo p of Wach modules of rank one over $\mathbf{A}_{K, F}^{+}$.

3.1 A parametrization

Denote by $\operatorname{val}_{\pi}: \mathbf{F}((\pi)) \rightarrow \mathbf{Z}$ the valuation normalized by $\operatorname{val}_{\pi}(\pi)=1$, and let $\lambda_{\gamma} \in \mathbf{F}_{p}[[\pi]]$ be the unique $\left(p^{f}-1\right) /(p-1)$ th root of $\gamma(\pi) / \bar{\chi}(\gamma) \pi$, that is congruent to $1 \bmod \pi$, if $\gamma \in \Gamma$.

Proposition 3.1. For any $C \in \mathbf{F}^{\times}$and any $\vec{c}=\left(c_{0}, \ldots, c_{f-1}\right) \in \mathbf{Z}^{S}$, letting $M=\mathbf{E}_{K, f} e$ with

$$
\begin{aligned}
& \varphi(e)=P e=\left(C \pi^{(p-1) c_{0}}, \pi^{(p-1) c_{1}}, \ldots, \pi^{(p-1) c_{f-1}}\right) e, \\
& \gamma(e)=G_{\gamma} e=\left(\lambda_{\gamma}^{\sum_{0} \vec{c}}, \lambda_{\gamma}^{\sum_{1} \vec{c}}, \ldots, \lambda_{\gamma}^{\sum_{f-1} \vec{c}}\right) e,
\end{aligned}
$$

where $\Sigma_{l}=\Sigma_{l} \vec{c}=\sum c_{i} p^{j}$ summing over $0 \leqslant i, j \leqslant f-1, i-j \equiv l \bmod f$, defines an étale (φ, Γ) module of rank one over $\mathbf{E}_{K, F}$. Conversely, for any rank one étale (φ, Γ)-module M over $\mathbf{E}_{K, F}$ we can choose a basis e so that $M=\mathbf{E}_{K, F} e$ with the action of φ and Γ given as above for some C and some \vec{c}. Two such modules M and M^{\prime} are isomorphic if and only if $C=C^{\prime}$ and $\Sigma_{0} \vec{c} \equiv \Sigma_{0} \vec{c}^{\prime} \bmod p^{f}-1$. In particular, every rank one (φ, Γ)-module over $\mathbf{E}_{K, F}$ can be written uniquely in this form with $0 \leqslant c_{i} \leqslant p-1$ and at least one $c_{i}<p-1$.

Proof. To show that the given formula actually defines an étale (φ, Γ)-module we need to verify that $P \varphi\left(G_{\gamma}\right)=G_{\gamma} \gamma(P)$ and $G_{\gamma \gamma^{\prime}}=G_{\gamma} \gamma\left(G_{\gamma^{\prime}}\right)$. The first identity holds as

$$
\begin{aligned}
\varphi\left(G_{\gamma}\right) / G_{\gamma} & =\left(\lambda_{\gamma}^{p \Sigma_{1}-\Sigma_{0}}, \ldots, \lambda_{\gamma}^{p \Sigma_{0}-\Sigma_{f-1}}\right) \\
& =\left(\lambda_{\gamma}^{c_{0}\left(p^{f}-1\right)}, \ldots, \lambda_{\gamma}^{c_{f-1}\left(p^{f}-1\right)}\right) \\
& =\left(\left(\frac{\gamma(\pi)}{\pi}\right)^{c_{0}(p-1)}, \ldots,\left(\frac{\gamma(\pi)}{\pi}\right)^{c_{f-1}(p-1)}\right)=\gamma(P) / P .
\end{aligned}
$$

To prove the second identity, as Γ acts componentwise, we need to show that $\lambda_{\gamma \gamma^{\prime}}=\lambda \gamma(\lambda)$. But note that

$$
\left(\lambda_{\gamma} \gamma\left(\lambda_{\gamma^{\prime}}\right)\right)^{\left(p^{f}-1\right) /(p-1)}=\frac{\gamma(\pi)}{\pi} \bar{\chi}(\gamma) \gamma\left(\frac{\gamma^{\prime}(\pi)}{\pi} \bar{\chi}\left(\gamma^{\prime}\right)\right)=\frac{\gamma \gamma^{\prime}(\pi)}{\pi} \bar{\chi}\left(\gamma \gamma^{\prime}\right)
$$

and $\lambda_{\gamma} \gamma\left(\lambda_{\gamma^{\prime}}\right) \equiv 1 \bmod \pi$. The claim follows from the uniqueness of the λ_{γ}. Note also that the function $\gamma \mapsto \lambda_{\gamma}$ is continuous since it is the composite of $\gamma(\pi) / \bar{\chi}(\gamma) \pi$ with the inverse of the continuous bijective function $x \mapsto x^{\left(p^{f}-1\right) /(p-1)}$ on the compact Hausdorff space $1+\pi \mathbf{F}_{p}[[\pi]]$; it follows that the Γ-action we have just defined is continuous.

Extensions of rank one (φ, Γ)-modules

We now prove that any rank one module can be written in this form. Suppose we are given a rank one module $M=\mathbf{E}_{K, F} e$ such that $\varphi(e)=\left(h_{0}(\pi), \ldots, h_{f-1}(\pi)\right) e$ and $\gamma(e)=$ $\left(g_{0}(\pi), \ldots, g_{f-1}(\pi)\right) e$. Note that, if $u \in \mathbf{E}_{K, F}^{\times}$, by a change of basis $e^{\prime}=u e$ we get $P^{\prime}=(\varphi(u) / u) P$ and $G_{\gamma}^{\prime}=(\gamma(u) / u) G_{\gamma}$, where $\varphi\left(e^{\prime}\right)=P^{\prime} e^{\prime}$ and $\gamma\left(e^{\prime}\right)=G_{\gamma}^{\prime} e^{\prime}$. If $u=\left(\pi^{j}, \ldots, \pi^{j}\right)$, then $\varphi(u) / u=$ $\left(\pi^{(p-1) j}, \ldots, \pi^{(p-1) j}\right)$. So we can assume that $h_{i}(\pi) \in \mathbf{F}[[\pi]]$ by choosing a large enough $j>0$. We can 'shift' between components by appropriate change of basis: if $u=\left(1, \ldots, 1, u_{i}(\pi), 1, \ldots, 1\right)$, then $\varphi(u) / u=\left(1, \ldots, 1, u_{i-1}\left(\pi^{p}\right), u_{i}(\pi)^{-1}, 1, \ldots, 1\right)$. By successive changes of basis we can make it into a form where $\varphi(e)=(h(\pi), 1, \ldots, 1) e$ with $h(\pi) \in \mathbf{F}[[\pi]]$. Moreover, for some choice of e, $\varphi(e)=\left(C \pi^{v}, 1, \ldots, 1\right) e$ for $C \in \mathbf{F}^{\times}$and $v \geqslant 0$ as

$$
\frac{\varphi\left(u(\pi), u\left(\pi^{p^{f-1}}\right), \ldots, u\left(\pi^{p}\right)\right)}{\left(u(\pi), u\left(\pi^{p^{f-1}}\right), \ldots, u\left(\pi^{p}\right)\right)}=\left(u\left(\pi^{p^{f}}\right) / u(\pi), 1 \ldots, 1\right)
$$

and the map $1+\pi \mathbf{F}[[\pi]] \rightarrow 1+\pi \mathbf{F}[[\pi]], u(\pi) \mapsto u\left(\pi^{p^{f}}\right) / u(\pi)$, is surjective: as the map is multiplicative and $1+\pi \mathbf{F}[[\pi]]$ is complete π-adically, it suffices to prove that, for any $s \geqslant 1$ and $\alpha \in \mathbf{F}^{\times}, 1+\alpha \pi^{s} t(\pi)$ is in the image for some $t(\pi) \in \mathbf{F}[[\pi]]^{\times}$, and indeed $1-\alpha \pi^{s} \mapsto$ $\left(1-\alpha \pi^{s p^{f}}\right) /\left(1-\alpha \pi^{s}\right) \equiv 1+\alpha \pi^{s} \bmod \pi^{s+1}$.

To show that $(p-1) \mid v$, we note that $\varphi \gamma(e)=\gamma \varphi(e)$ if and only if

$$
\frac{\varphi\left(g_{0}, \ldots, g_{f-1}\right)}{\left(g_{0}, \ldots, g_{f-1}\right)}=\frac{\gamma\left(C \pi^{v}, 1, \ldots, 1\right)}{\left(C \pi^{v}, 1, \ldots, 1\right)}
$$

where $G_{\gamma}=\left(g_{0}, \ldots, g_{f-1}\right)$. This is equivalent to

$$
\left(\frac{g_{1}\left(\pi^{p}\right)}{g_{0}(\pi)}, \ldots, \frac{g_{0}\left(\pi^{p}\right)}{g_{f-1}(\pi)}\right)=\left(\left(\frac{\gamma(\pi)}{\pi}\right)^{v}, 1, \ldots, 1\right)
$$

which implies that $(\gamma(\pi) / \pi)^{v}=g_{0}\left(\pi^{p^{f}}\right) / g_{0}(\pi) \equiv 1 \bmod \pi$. If $\delta \in \Gamma$ is such that $\delta \Gamma_{1}$ generates $\Gamma / \Gamma_{1} \simeq \mu_{p-1}$, then $\delta(\pi) / \pi \equiv \chi(\delta) \bmod \pi$. Thus $\delta(\pi) / \pi$ has order $p-1$ modulo π so that $p-1 \mid v$ and $\varphi(e)=\left(C \pi^{(p-1) w}, 1, \ldots, 1\right)$, where $(p-1) w=v$.

To determine the corresponding action of $\gamma \in \Gamma$, we note that $\varphi \gamma(e)=\gamma \varphi(e)$ if and only if

$$
\left(\frac{g_{1}\left(\pi^{p}\right)}{g_{0}(\pi)}, \ldots, \frac{g_{0}\left(\pi^{p}\right)}{g_{f-1}(\pi)}\right)=\left(\left(\frac{\gamma(\pi)}{\pi}\right)^{(p-1) w}, 1, \ldots, 1\right)
$$

if and only if $g_{0}\left(\pi^{p^{f}}\right) / g_{0}(\pi)=(\gamma(\pi) / \pi)^{(p-1) w}=(\gamma(\pi) / \pi \bar{\chi}(\gamma))^{(p-1) w}$ (the order of $\bar{\chi}$ being $p-1$) and $g_{1}(\pi)=g_{2}\left(\pi^{p}\right), \ldots, g_{f-2}(\pi)=g_{f-1}\left(\pi^{p}\right), g_{f-1}(\pi)=g_{0}\left(\pi^{p}\right)$. Thus, to get g_{i} that satisfy the above identity, we just need to define $g_{0}(\pi)$ such that $g_{0}\left(\pi^{p^{f}}\right) / g_{0}(\pi)=(\gamma(\pi) / \pi \bar{\chi}(\gamma))^{(p-1) w}$. If we set $g_{0}(\pi)=\alpha_{\gamma} \lambda_{\gamma}(\pi)^{w}$ with $\alpha_{\gamma} \in \mathbf{F}^{\times}$, we have $g_{0}\left(\pi^{p^{f}}\right) / g_{0}(\pi)=\lambda_{\gamma}\left(\pi^{p^{f}}\right)^{w} / \lambda_{\gamma}(\pi)^{w}=\lambda_{\gamma}(\pi)^{w\left(p^{f}-1\right)}=$ $(\gamma(\pi) / \pi \bar{\chi}(\gamma))^{(p-1) w}$. Conversely if $g_{0}^{\prime}(\pi) \in \mathbf{E}_{K, F}^{\times}$satisfies

$$
g_{0}^{\prime}\left(\pi^{p^{f}}\right) / g_{0}^{\prime}(\pi)=(\gamma(\pi) / \pi \bar{\chi}(\gamma))^{(p-1) w}=g_{0}^{\prime}\left(\pi^{p^{f}}\right) / g_{0}^{\prime}(\pi)
$$

then $h(\pi)=g_{0}^{\prime}(\pi) g_{0}^{-1}(\pi)$ satisfies $h\left(\pi^{p^{f}}\right)=h(\pi)$ and is therefore constant. Thus we see that the identity implies that $g_{0}(\pi)$ has the required form.

S. Chang and F. Diamond

Since $G_{\gamma \gamma^{\prime}}=G_{\gamma} \gamma\left(G_{\gamma}^{\prime}\right)$, the map $\gamma \mapsto \alpha_{\gamma}$ must define a character $\Gamma \rightarrow \mathbf{F}^{\times}$, from which we conclude that $\alpha_{\gamma}=\bar{\chi}(\gamma)^{j_{0}}$ for some $0 \leqslant j_{0}<p-1$. Letting $u=\left(\pi, \pi^{p^{f-1}}, \pi^{p^{f-2}}, \ldots, \pi^{p}\right)$, we have

$$
\begin{aligned}
\frac{\varphi(u)}{u} & =\left(\pi^{p^{f}-1}, 1, \ldots, 1\right), \\
\frac{\gamma(u)}{u} & =\left(\frac{\gamma(\pi)}{\pi},\left(\frac{\gamma(\pi)}{\pi}\right)^{p^{f-1}},\left(\frac{\gamma(\pi)}{\pi}\right)^{p^{f-2}}, \ldots,\left(\frac{\gamma(\pi)}{\pi}\right)^{p}\right) \\
& \equiv(\bar{\chi}(\gamma), \ldots, \bar{\chi}(\gamma)) \bmod \pi,
\end{aligned}
$$

so replacing e by $u^{-j} e$ for some $j \equiv j_{0} \bmod p-1$ gives $M=\mathbf{E}_{K, F} e$ with

$$
\begin{aligned}
\varphi(e) & =\left(C \pi^{(p-1) w}, 1, \ldots, 1\right) e \\
\gamma(e) & =\left(\lambda_{\gamma}(\pi)^{w}, \lambda_{\gamma}\left(\pi^{p^{f-1}}\right)^{w}, \ldots, \lambda_{\gamma}\left(\pi^{p}\right)^{w}\right) e
\end{aligned}
$$

where $0 \leqslant w<p^{f}-1$. Write $w=c_{0}+c_{1} p+\cdots+c_{f-1} p^{f-1}$ with $0 \leqslant c_{i} \leqslant p-1$. Taking $e^{\prime}=u e$ with $u=\left(1, \pi^{(p-1)\left(c_{1}+c_{2} p+\cdots+c_{f-1} p^{p-2}\right)}, 1, \ldots, 1\right)$ yields

$$
\varphi\left(e^{\prime}\right)=\left(C \pi^{(p-1) c_{0}}, \pi^{(p-1)\left(c_{1}+c_{2} p+\cdots+c_{f-1} p^{p-2}\right)}, 1, \ldots, 1\right) e .
$$

Doing this successively gives $\varphi(e)=\left(C \pi^{(p-1) c_{0}}, \pi^{(p-1) c_{1}}, \ldots, \pi^{(p-1) c_{f-1}}\right) e$ for some basis e. It is easily checked that those changes of basis that maintain $G_{\gamma} \equiv(1, \ldots, 1) \bmod \pi$ are $e^{\prime}=u e$ such that $u=\left(u_{0}, \ldots, u_{f-1}\right)$ with $(p-1) \mid \operatorname{val}_{\pi}\left(u_{i}\right)$ and that the corresponding action of $\gamma \in \Gamma$ is given by $\gamma(e)=\left(\lambda_{\gamma}^{\sum_{0} \vec{c}}, \lambda_{\gamma}^{\sum_{1}}{ }^{\vec{c}}, \ldots, \lambda_{\gamma}^{\sum_{f-1} \vec{c}}\right) e$.

Finally, we suppose that M is isomorphic to $M^{\prime}=\mathbf{E}_{K, F} e^{\prime}$ with

$$
\begin{aligned}
& \varphi\left(e^{\prime}\right)=P^{\prime} e^{\prime}=\left(C^{\prime} \pi^{(p-1) c_{0}^{\prime}}, \pi^{(p-1) c_{1}^{\prime}}, \ldots, \pi^{(p-1) c_{f-1}^{\prime}}\right) e^{\prime}, \\
& \gamma\left(e^{\prime}\right)=G_{\gamma}^{\prime} e^{\prime}=\left(\lambda_{\gamma}^{\sum_{0} \vec{c}^{\prime}}, \lambda_{\gamma}^{\sum_{1} \vec{c}^{\prime}}, \ldots, \lambda_{\gamma}^{\sum_{f-1} \vec{c}^{\prime}}\right) e^{\prime},
\end{aligned}
$$

and determine when the two are isomorphic. After appropriate changes of bases we can assume that

$$
\begin{aligned}
\varphi(e) & =P e=\left(C \pi^{(p-1) w}, 1, \ldots, 1\right) e \\
\varphi\left(e^{\prime}\right) & =P^{\prime} e^{\prime}=\left(C^{\prime} \pi^{(p-1) w^{\prime}}, 1, \ldots, 1\right) e^{\prime},
\end{aligned}
$$

where $w=\sum_{0} \vec{c}$ and $w^{\prime}=\sum_{0} \overrightarrow{c^{\prime}}$ satisfy $0 \leqslant w, w^{\prime}<p^{f}-1$.
Suppose that $u=\left(u_{0}, \ldots, u_{f-1}\right) \in \mathbf{E}_{K, F}^{\times}$is such that $P^{\prime}=(\varphi(u) / u) P$ and $G_{\gamma}^{\prime}=(\gamma(u) / u) G_{\gamma}$ for all $\gamma \in \Gamma$. Then $\gamma\left(u_{0}\right) / u_{0} \equiv 1 \bmod \pi \mathbf{F}[[\pi]]$, so $(p-1) \mid \operatorname{val}_{\pi}\left(u_{0}\right)$. It follows that $u=$ $\left(u_{0}(\pi), u_{0}\left(\pi^{p^{f-1}}\right), \ldots, u_{0}\left(\pi^{p}\right)\right)$ with $u_{0}(\pi)=u_{0}^{\prime}(\pi) \pi^{(p-1) j}$ for some $u_{0}^{\prime}(\pi) \in \mathbf{F}[[\pi]]^{\times}$and $j \in \mathbf{Z}$, in which case we have

$$
\varphi(u) / u=\left(\pi^{(p-1)\left(p^{f}-1\right) j} u_{0}^{\prime}(\pi)^{p^{f}-1}, 1, \ldots, 1\right) .
$$

Thus, we conclude that M and M^{\prime} are isomorphic if and only if $C=C^{\prime}$ and $\sum c_{i} p^{i} \equiv \sum c_{i}^{\prime} p^{i}$ $\bmod p^{f}-1$.

The last assertion is clear.
We denote the module defined in the proposition by $M_{C \vec{c}}=M_{C\left(c_{0}, \ldots, c_{f-1}\right)}$. We simply write $M_{\vec{c}}$ for $M_{C \vec{c}}$ if $C=1$. We also put

$$
\begin{aligned}
& \kappa_{\varphi}\left(M_{C \vec{c}}\right)=\kappa_{\varphi}(C, \vec{c})=\left(C \pi^{(p-1) c_{0}}, \pi^{(p-1) c_{1}}, \ldots, \pi^{(p-1) c_{f-1}}\right), \\
& \kappa_{\gamma}\left(M_{C \vec{c}}\right)=\kappa_{\gamma}(C, \vec{c})=\left(\lambda_{\gamma}^{\sum_{0} \vec{c}}, \lambda_{\gamma}^{\sum_{1} \vec{c}}, \ldots, \lambda_{\gamma}^{\sum_{f-1} \vec{c}}\right),
\end{aligned}
$$

and write Σ_{l} for $\Sigma_{l} \vec{c}$, where the c_{i} are understood.

Extensions of rank one (φ, Γ)-modules

3.2 Lifts in characteristic zero

We now construct rank one Wach modules over $\mathbf{A}_{K, F}^{+}$following Dousmanis [Dou08, § 2] and check that these reduce modulo ϖ_{F} to the (φ, Γ)-modules $M_{C \vec{c}}$ over $\mathbf{E}_{K, F}$.

Let $q_{1}=q=\varphi(\pi) / \pi, \quad q_{n}=\varphi^{n-1}(q) \in \mathbf{Z}_{p}[[\pi]]$ and let $\Lambda_{f}=\prod_{j \geqslant 0} q_{1+j f} / p, \quad \Lambda_{\gamma}=\Lambda_{f} / \gamma\left(\Lambda_{f}\right) \in$ $\mathbf{Q}[[\pi]]$. One then has that $\Lambda_{f} \in 1+\pi \mathbf{Q}_{p}[[\pi]]$ and $\Lambda_{\gamma} \in 1+\pi \mathbf{Z}_{p}[[\pi]]$.

Suppose we want to construct a rank one Wach module $N=\mathbf{A}_{K, F}^{+} e$ such that

$$
\begin{aligned}
\varphi(e) & =\left(\tilde{C} q^{c_{0}}, q^{c_{1}}, \ldots, q^{c_{f-1}}\right) e, \\
\gamma(e) & =\left(g_{0}(\pi), \ldots, g_{f-1}(\pi)\right) e
\end{aligned}
$$

if $\gamma \in \Gamma$, where $\tilde{C} \in \mathcal{O}_{F}^{\times}$is any lift of $C \in \mathbf{F}^{\times}$and each $g_{i}(\pi)=g_{\gamma, i}(\pi) \in \mathcal{O}_{F}[[\pi]]$ depends on $\gamma \in \Gamma$. Commutativity of the actions of φ and Γ amounts to the following identities:

$$
\begin{aligned}
\gamma(q)^{c_{0}} g_{0}(\pi) & =q^{c_{0}} \varphi\left(g_{1}(\pi)\right), \\
\gamma(q)^{c_{1}} g_{1}(\pi) & =q^{c_{1}} \varphi\left(g_{2}(\pi)\right), \\
& \vdots \\
\gamma(q)^{c_{f-2}} g_{f-2}(\pi) & =q^{c_{f-2}} \varphi\left(g_{f-1}(\pi)\right), \\
\gamma(q)^{c_{f-1}} g_{f-1}(\pi) & =q^{c_{f-1}} \varphi\left(g_{0}(\pi)\right) .
\end{aligned}
$$

Thus, we are looking for a solution $g_{i}(\pi)$ for each γ of the equation

$$
g_{0}(\pi)=\left(\frac{q}{\gamma(q)}\right)^{c_{0}} \varphi\left(\frac{q}{\gamma(q)}\right)^{c_{1}} \varphi^{2}\left(\frac{q}{\gamma(q)}\right)^{c_{2}} \cdots \varphi^{f-1}\left(\frac{q}{\gamma(q)}\right)^{c_{f-1}} \varphi^{f}\left(g_{0}(\pi)\right) .
$$

It is straightforward to check that

$$
g_{0}(\pi)=\Lambda_{\gamma}^{c_{0}} \varphi\left(\Lambda_{\gamma}\right)^{c_{1}} \varphi^{2}\left(\Lambda_{\gamma}\right)^{c_{2}} \cdots \varphi^{f-1}\left(\Lambda_{\gamma}\right)^{c_{f-1}}
$$

gives the unique solution, that is congruent to 1 modulo π, and that the remaining $g_{i}(\pi)$ are uniquely determined by

$$
\begin{aligned}
g_{1}(\pi) & =\left(\frac{q}{\gamma(q)}\right)^{c_{1}} \varphi\left(\frac{q}{\gamma(q)}\right)^{c_{2}} \cdots \varphi^{f-1}\left(\frac{q}{\gamma(q)}\right)^{c_{f-1}} \varphi^{f-1}\left(g_{0}(\pi)\right), \\
& \vdots \\
g_{f-2}(\pi) & =\left(\frac{q}{\gamma(q)}\right)^{c_{f-2}} \varphi\left(\frac{q}{\gamma(q)}\right)^{c_{f-1}} \varphi^{2}\left(g_{0}(\pi)\right), \\
g_{f-1}(\pi) & =\left(\frac{q}{\gamma(q)}\right)^{c_{f-1}} \varphi\left(g_{0}(\pi)\right) .
\end{aligned}
$$

Dousmanis [Dou08, §6] shows that $N=\mathbf{A}_{K+F}^{+} e$ endowed with the actions of φ and Γ described above defines a Wach module over $\mathbf{A}_{K, F}^{+}$, which we denote by $N_{\tilde{C} \tilde{c}}$. Furthermore, $\left(N_{\tilde{C} \vec{c}} / \pi N_{\tilde{C} \vec{c}}\right) \otimes_{\mathbf{A}_{K, F}^{+}} \mathbf{B}_{K, F}^{+}$is a filtered φ-module corresponding to a positive character $G_{K} \rightarrow \mathbf{F}^{\times}$ with labeled Hodge-Tate weights $\left(c_{f-1}, c_{0}, c_{1}, \ldots, c_{f-2}\right)$. One can check the following by direct computation.

Proposition 3.2. We have an isomorphism $M_{C \vec{c}} \simeq N_{\tilde{C} \vec{c}} \otimes_{\mathbf{A}_{K, F}^{+}} \mathbf{E}_{K, F}$ of (φ, Γ)-modules over $\mathbf{E}_{K, F}$.

Combined with [BDJ10, Lemma 3.8], we obtain the following corollary, where ω_{τ} denotes the fundamental character associated to τ (i.e., $\omega_{\tau}: I_{K} \rightarrow \mathbf{F}^{\times}$is defined by composing τ with

S. Chang and F. Diamond

the homomorphism $I_{K} \rightarrow k^{\times}$obtained from local class field theory, with the convention that uniformizers correspond to geometric Frobenius elements).

Corollary 3.3. If $\psi: G_{K} \rightarrow \mathbf{F}^{\times}$is the character defined by the action on $\mathbf{V}\left(M_{C \vec{c}}\right)$, then $\left.\psi\right|_{I_{K}}=\prod_{\tau \in S} \omega_{\tau}^{-c_{\tau \circ \varphi}-1}$.

4. Bases for the space of extensions

We will assume $p>2$ for the rest of the paper except in $\S \S 6.3$ and 7 . We fix a topological generator η of the pro-cyclic group $\Gamma=\Gamma_{K}$, and set $\xi=\eta^{p-1}$, so that ξ topologically generates Γ_{1}.

Given $C \in \mathbf{F}^{\times}$and $\vec{c}=\left(c_{0}, \ldots, c_{f-1}\right) \in\{0,1, \ldots, p-1\}^{S}$ with some $c_{i}<p-1$, we are going to parametrize the space of extension classes $\operatorname{Ext}^{1}\left(M_{0}, M_{C \vec{c}}\right)$ in the category of étale (φ, Γ) modules over $\mathbf{E}_{K, F}$. Here M_{0} denotes the étale (φ, Γ)-module $\mathbf{E}_{K, F}$ with the usual action of φ and Γ, so $M_{0}=M_{1, \overrightarrow{0}}$ corresponds to the trivial character $G_{K} \rightarrow \mathbf{F}^{\times}$. Recall that $M_{C \vec{c}}, \kappa_{\varphi}\left(M_{C \vec{c}}\right)$ and $\kappa_{\gamma}\left(M_{C \vec{c}}\right)$ were defined at the end of $\S 3.1$; since $M_{C \vec{c}}$ will be fixed in this section, we denote these simply κ_{φ} and κ_{γ}.

We start by noticing that there is an \mathbf{F}-linear isomorphism

$$
\beta: H / H_{0} \rightarrow \operatorname{Ext}^{1}\left(M_{0}, M_{C \vec{c}}\right),
$$

where H is the subgroup of $\mathbf{E}_{K, F} \times\left\{\Gamma \rightarrow \mathbf{E}_{K, F}\right\}$ consisting of elements $\left(\mu_{\varphi},\left(\mu_{\gamma}\right)_{\gamma \in \Gamma}\right)$ such that $\gamma \mapsto \mu_{\gamma}$ is continuous and satisfies: ${ }^{1}$

$$
\begin{gather*}
\left(\kappa_{\varphi} \varphi-1\right)\left(\mu_{\gamma}\right)=\left(\kappa_{\gamma} \gamma-1\right)\left(\mu_{\varphi}\right) \quad \forall \gamma \in \Gamma, \\
\mu_{\gamma \gamma^{\prime}}=\kappa_{\gamma} \gamma\left(\mu_{\gamma^{\prime}}\right)+\mu_{\gamma} \quad \forall \gamma, \gamma^{\prime} \in \Gamma,
\end{gather*}
$$

and $H_{0}=\left\{\left(\kappa_{\varphi} \varphi(b)-b,\left(\kappa_{\gamma} \gamma(b)-b\right)_{\gamma \in \Gamma}\right) \mid b \in \mathbf{F}((\pi))^{S}\right\} \subset H$.
We call elements of H cocyles and those of H_{0} coboundaries. The map β is defined as follows: given a cocycle $\mu=\left(\mu_{\varphi},\left(\mu_{\gamma}\right)_{\gamma \in \Gamma}\right) \in H$, we define an extension

$$
0 \rightarrow M_{C \vec{c}} \rightarrow E \rightarrow M_{0} \rightarrow 0
$$

basis $\left\{e, e^{\prime}\right\}$ such that the action φ and $\gamma \in \Gamma$ are given by the matrices $P=\left(\begin{array}{cc}\kappa_{\varphi} & \mu_{\varphi} \\ 0 & 1\end{array}\right)$ and $G_{\gamma}=\left(\begin{array}{cc}\kappa_{\gamma} & \mu_{\gamma} \\ 0 & 1\end{array}\right)$. It is straightforward to check that the matrices P and G_{γ} define an extension if and only if $\mu \in H$, that every extension arises this way, and that a change of basis for an extension E corresponds to adding an element of H_{0} to μ. If $\mu \in H$, then we write $[\mu]$ for the corresponding extension class $\beta(\mu)$.

By Corollary 2.13, we get an isomorphism $\operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{C \vec{c}}\right) \simeq H^{1}(K, \mathbf{F}(\psi))$ where $\psi: G_{K} \rightarrow$ \mathbf{F}^{\times}is the character defined by the action on $\mathbf{V}\left(M_{C \vec{c}}\right)$.
Lemma 4.1. Via Corollary 2.13, $M_{\overrightarrow{0}}$ corresponds to the trivial character and $M_{\overrightarrow{p-2}}$ to the $\bmod p$ cyclotomic character.

Proof. The assertion is clear for the trivial character. The $\bmod p$ cyclotomic character factors as $G_{K} \rightarrow \mathbf{Z}_{p}^{\times} \rightarrow \mathbf{F}_{p}^{\times} \hookrightarrow \mathbf{F}^{\times}$, where the arrow in the middle is the reduction $\bmod p$. If $T=\mathbf{Z}_{p}(1)$, its Wach module is given by $\mathbf{N}\left(\mathbf{Z}_{p}(1)\right)=\mathbf{A}_{K}^{+} e$, where $\varphi(e)=(\pi / \varphi(\pi)) e$ and $\gamma(e)=(\chi(\gamma) \pi / \gamma(\pi)) e$ if $\gamma \in \Gamma$ (cf. [Ber04b, Appendice A]). Working modulo p and extending

[^1]
Extensions of Rank one (φ, Γ)-modules

scalars to \mathbf{F} we see that the étale (φ, Γ)-module over $\mathbf{E}_{K, F}$ corresponding to the $\bmod p$ cyclotomic character is given by $M=\mathbf{E}_{K, F} e$ with $\varphi(e)=\pi^{1-p} e=\left(\pi^{1-p}, \ldots, \pi^{1-p}\right) e$. By a change of basis $e^{\prime}=u e$ with $u=\left(\pi^{p-1}, \ldots, \pi^{p-1}\right)$, we get $M \simeq M_{\overrightarrow{p-2}}$.

Since

$$
\operatorname{dim}_{\mathbf{F}} H^{1}(K, \mathbf{F}(\psi))= \begin{cases}f+1 & \text { if } \psi=1 \text { or } \bar{\chi}, \\ f & \text { if } \psi \notin\{1, \bar{\chi}\},\end{cases}
$$

we have

$$
\operatorname{dim}_{\mathbf{F}} \operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{C \vec{c}}\right)= \begin{cases}f+1 & \text { if } C=1, \text { and } \vec{c}=\overrightarrow{0} \text { or } \vec{c}=\overrightarrow{p-2}, \\ f & \text { otherwise. }\end{cases}
$$

We are about to define elements $B_{0}, \ldots, B_{f-1} \in H$ such that the associated extension classes form a basis for $\operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{C \vec{c}}\right)$ except for the two cases where $C=1, \vec{c}=\overrightarrow{0}$ or $C=1, \vec{c}=\overrightarrow{p-2}$, for which a separate treatment will be given in $\S 6$. Thanks to the isomorphism β, we only need to define μ_{φ} and the μ_{γ} satisfying the desired properties (\dagger) and (\ddagger). According to whether the parameter c_{i} is equal to $p-1$ or not, the extension B_{i} is constructed in a slightly different manner.

4.1 Construction of B_{i} when $c_{i}<p-1$

Recall that we have fixed a topological generator η for Γ, and we let $\xi=\eta^{p-1}$, a topological generator for Γ_{1}.

Lemma 4.2. Suppose that $\Sigma, s \in \mathbf{Z}$, and $v=v_{p}\left(\Sigma+s\left(p^{f}-1\right) /(p-1)\right)<\infty$. Then

$$
\left(\lambda_{\eta}^{\Sigma} \eta-1\right)\left(\pi^{s}\right) \in\left(\bar{\chi}(\eta)^{s}-1\right) \pi^{s}+\overline{s_{v}} \frac{\bar{\chi}(\eta)^{s}(\bar{\chi}(\eta)-1)}{2} \pi^{s+p^{v}}+\pi^{s+2 p^{v}} \mathbf{F}_{p}\left[\left[\pi^{p^{v}}\right]\right],
$$

where $\Sigma+s\left(p^{f}-1\right) /(p-1)=\sum_{j \geqslant v} s_{j} p^{j}$.
Proof. It is easy to see that in $\mathbf{F}_{p}[[\pi]] / \pi^{p-1}$ we have

$$
\lambda_{\eta}=\lambda_{\eta}^{\left(p^{f}-1\right) /(p-1)}=\frac{\eta(\pi)}{\bar{\chi}(\eta) \pi}=\bar{\chi}(\eta)^{-1} \sum_{j=1}^{d_{0}-1} \frac{d_{0}!}{j!\left(d_{0}-j\right)!} \pi^{j-1}=1+\sum_{j=2}^{d_{0}-1} \frac{d_{0}!}{d_{0} j!\left(d_{0}-j\right)!} \pi^{j-1},
$$

where $\chi(\eta)=\sum_{j \geqslant 0} d_{j} p^{j} \in \mathbf{Z}_{p}^{\times}$. Noting that, if $s \in \mathbf{Z}$, then

$$
\left(\lambda_{\eta}^{\Sigma} \eta-1\right)\left(\pi^{s}\right)=\left(\bar{\chi}(\eta)^{s} \lambda_{\eta}^{\Sigma} \cdot\left(\frac{\eta(\pi)}{\bar{\chi}(\eta) \pi}\right)^{s}-1\right) \pi^{s},
$$

the result follows as

$$
\begin{aligned}
\bar{\chi}(\eta)^{s} \lambda_{\eta}^{\Sigma} \cdot\left(\frac{\eta(\pi)}{\bar{\chi}(\eta) \pi}\right)^{s}-1 & =\bar{\chi}(\eta)^{s} \lambda_{\eta}^{\Sigma+s\left(p^{f}-1\right) /(p-1)}-1 \\
& =\bar{\chi}(\eta)^{s} \lambda_{\eta}^{\sum_{j \geqslant v} s_{j} p^{j}}-1 \\
& =\bar{\chi}(\eta)^{s} \lambda_{\eta}\left(\pi^{p^{v}}\right)^{s_{v}} \lambda_{\eta}\left(\pi^{p^{v+1}}\right)^{s_{v+1}} \cdots-1 \\
& \equiv\left(\bar{\chi}(\eta)^{s}-1\right)+\bar{\chi}(\eta)^{s}\left(\left(1+\frac{\bar{\chi}(\eta)-1}{2} \pi^{p^{v}}\right)^{s_{v}}-1\right) \\
& \equiv\left(\bar{\chi}(\eta)^{s}-1\right)+\overline{s_{v}} \frac{\bar{\chi}(\eta)^{s}(\bar{\chi}(\eta)-1)}{2} \pi^{p^{v}} \quad \bmod \pi^{2 p^{v}}
\end{aligned}
$$

S. Chang and F. Diamond

and

$$
\bar{\chi}(\eta)^{s} \lambda_{\eta}^{\Sigma} \cdot\left(\frac{\eta(\pi)}{\bar{\chi}(\eta) \pi}\right)^{s}-1-\left(\left(\bar{\chi}(\eta)^{s}-1\right)+\overline{s_{v}} \frac{\bar{\chi}(\eta)^{s}(\bar{\chi}(\eta)-1)}{2} \pi^{p^{v}}\right) \in \pi^{2 p^{v}} \mathbf{F}_{p}\left[\left[\pi^{p^{v}}\right]\right] .
$$

We note the following lemma, whose straightforward proof we omit.
Lemma 4.3. If $n \geqslant 1, \gamma \in \Gamma_{n}$ and $\chi(\gamma) \equiv 1+z p^{n} \bmod p^{n+1}$, then $\lambda_{\gamma} \equiv 1+z \pi^{p^{n}-1}+z \pi^{p^{n}} \bmod$ $\pi^{2 p^{n}-2}$.

Lemma 4.4. Let $\chi(\xi) \equiv 1+z p \bmod p^{2}$ with $0<z \leqslant p-1$ and let $\Sigma, s \in \mathbf{Z}$. If $v=v_{p}(\Sigma+$ $\left.s\left(p^{f}-1\right) /(p-1)\right)<\infty$, then

$$
\left(\lambda_{\xi}^{\Sigma} \xi-1\right)\left(\pi^{s}\right) \in \overline{s_{v} z}\left(\pi^{s+(p-1) p^{v}}+\pi^{s+p^{v+1}}\right)+\pi^{s+2 p^{v}(p-1)} \mathbf{F}_{p}\left[\left[\pi^{p^{v}}\right]\right],
$$

where $\Sigma+s\left(p^{f}-1\right) /(p-1)=\sum_{j \geqslant v} s_{j} p^{j}$.
Proof. By Lemma 4.3, we have

$$
\lambda_{\xi} \equiv \frac{\xi(\pi)}{\pi \bar{\chi}(\xi)} \equiv 1+z \pi^{p-1}+z \pi^{p} \quad \bmod \pi^{2 p-2} .
$$

Noting that, if $s \in \mathbf{Z}$, then

$$
\left(\lambda_{\xi}^{\Sigma} \xi-1\right)\left(\pi^{s}\right)=\left(\lambda_{\xi}^{\Sigma} \cdot\left(\frac{\xi(\pi)}{\pi \bar{\chi}(\xi)}\right)^{s}-1\right) \pi^{s},
$$

the result follows as

$$
\begin{aligned}
\lambda_{\xi}^{\Sigma} \cdot\left(\frac{\xi(\pi)}{\pi \bar{\chi}(\xi)}\right)^{s}-1 & =\lambda_{\xi}^{\Sigma+s\left(p^{f}-1\right) /(p-1)}-1 \\
& =\lambda_{\xi}\left(\pi^{p^{v}}\right)^{s_{v}} \lambda_{\xi}\left(\pi^{p^{v+1}}\right)^{s_{v+1}} \cdots-1 \\
& \equiv \lambda_{\xi}\left(\pi^{p^{v}}\right)^{s_{v}}-1 \quad \bmod \pi^{(p-1) p^{v+1}} \\
& \equiv \overline{s_{v}} \bar{z}\left(\pi^{(p-1) p^{v}}+\pi^{p^{v+1}}\right) \quad \bmod \pi^{2(p-1) p^{v}}
\end{aligned}
$$

and

$$
\lambda_{\xi}^{\Sigma} \cdot\left(\frac{\xi(\pi)}{\pi \bar{\chi}(\xi)}\right)^{s}-1-\overline{s_{v} z}\left(\pi^{(p-1) p^{v}}+\pi^{p^{v+1}}\right) \in \pi^{2(p-1) p^{v}} \mathbf{F}_{p}\left[\left[\pi^{p^{v}}\right]\right] .
$$

We now assume $c_{i}<p-1$ and construct an element $B_{i} \in H$. (For the case $c_{i}=p-1$, we will need to use a modified construction described in §4.2.)

Suppose for the moment that we have successfully defined B_{i} with $\mu_{\varphi}\left(B_{i}\right)$ of the form $\left(0, \ldots, 0, H_{i}(\pi), 0, \ldots, 0\right), H_{i}(\pi)$ being the i th component. For each $\gamma \in \Gamma$, by the condition (\dagger) there should exist $\mu_{\gamma}\left(B_{i}\right)=\left(G_{0}(\pi), \ldots, G_{f-1}(\pi)\right)$ such that

$$
\left(\kappa_{\varphi} \varphi-1\right)\left(\mu_{\gamma}\left(B_{i}\right)\right)=\left(\kappa_{\gamma} \gamma-1\right)\left(\mu_{\varphi}\left(B_{i}\right)\right),
$$

i.e.,

$$
\begin{aligned}
& \left(C \pi^{(p-1) c_{0}} G_{1}\left(\pi^{p}\right)-G_{0}(\pi), \pi^{(p-1) c_{1}} G_{2}\left(\pi^{p}\right)-G_{1}(\pi), \ldots, \pi^{(p-1) c_{f-1}} G_{0}\left(\pi^{p}\right)-G_{f-1}(\pi)\right) \\
& \quad=\left(0, \ldots, 0,\left(\lambda_{\gamma}^{\Sigma_{i}} \gamma-1\right)\left(H_{i}(\pi)\right), 0, \ldots, 0\right) .
\end{aligned}
$$

Extensions of rank one (φ, Γ)-modules

This is true if and only if

$$
\begin{aligned}
\left(C \pi^{(p-1) \Sigma_{i}} \Phi-1\right)\left(G_{i}(\pi)\right) & =\left(\lambda_{\gamma}^{\Sigma_{i}} \gamma-1\right)\left(H_{i}(\pi)\right), \\
G_{i+1}(\pi) & =\pi^{(p-1) c_{i+1}} G_{i+2}\left(\pi^{p}\right), \\
& \vdots \\
G_{f-1}(\pi) & =\pi^{(p-1) c_{f-1}} G_{0}\left(\pi^{p}\right), \\
G_{0}(\pi) & =C \pi^{(p-1) c_{0}} G_{1}\left(\pi^{p}\right), \\
G_{1}(\pi) & =\pi^{(p-1) c_{1}} G_{2}\left(\pi^{p}\right), \\
& \vdots \\
G_{i-1}(\pi) & =\pi^{(p-1) c_{i-1}} G_{i}\left(\pi^{p}\right),
\end{aligned}
$$

where $\Phi(G(\pi))=G\left(\pi^{p^{f}}\right)$. Except for the case $C=1, \vec{c}=\overrightarrow{0}$, the map $C \pi^{(p-1) \Sigma_{i}} \Phi-1$ defines a bijection $\mathbf{F}[[\pi]] \rightarrow \mathbf{F}[[\pi]]$. So the trick is to find $H_{i}(\pi)$ so that we have $\left(\lambda_{\gamma}^{\Sigma_{i}} \gamma-1\right)\left(H_{i}(\pi)\right) \in \mathbf{F}[[\pi]]$. The corresponding $G_{i}(\pi)$ and so the $\mu_{\gamma}\left(B_{i}\right)$ are automatically and uniquely determined by the bijectivity. Moreover, since the bijection $C \pi^{(p-1) \Sigma_{i}} \Phi-1$ on the compact Hausdorff space $\mathbf{F}[[\pi]]$ is continuous, so is its inverse, and it follows that $\gamma \mapsto \mu_{\gamma}\left(B_{i}\right)$ is continuous.

To find such $H_{i}(\pi)$, we observe via Lemma 4.2 that 2

$$
\operatorname{val}_{\pi}\left(\lambda_{\eta}^{\Sigma_{i}} \eta-1\right)\left(\pi^{1-p}\right)=2-p \quad \text { and } \quad \operatorname{val}_{\pi}\left(\lambda_{\eta}^{\Sigma_{i}} \eta-1\right)\left(\pi^{s}\right)=s \quad \text { if } 2-p \leqslant s \leqslant-1
$$

Then there exist unique $\epsilon_{2-p}, \ldots, \epsilon_{-1} \in \mathbf{F}_{p}$ such that

$$
\left(\lambda_{\eta}^{\Sigma_{i}} \eta-1\right)\left(\pi^{1-p}+\epsilon_{2-p} \pi^{2-p}+\cdots+\epsilon_{-1} \pi^{-1}\right) \in \mathbf{F}[[\pi]] .
$$

We set

$$
H_{i}(\pi)=\pi^{1-p}+h_{i}(\pi)=\pi^{1-p}+\epsilon_{2-p} \pi^{2-p}+\cdots+\epsilon_{-1} \pi^{-1}
$$

and claim that

$$
\left(\lambda_{\gamma}^{\Sigma_{i}} \gamma-1\right)\left(H_{i}(\pi)\right) \in \mathbf{F}[[\pi]]
$$

for all $\gamma \in \Gamma$. Note that by Lemma 4.3 we have $\lambda_{\gamma_{1}} \equiv 1 \bmod \pi^{p-1}$, so that $\left(\lambda_{\gamma_{1}} \gamma_{1}-1\right)\left(\pi^{s}\right) \equiv$ $0 \bmod \pi^{p-1}$ for all $1-p \leqslant s \leqslant-1$ if $\gamma_{1} \in \Gamma_{1}$. Since any given $\gamma \in \Gamma$ can be written as $\gamma=\eta^{m} \gamma_{1}$, where $m \in \mathbf{N}_{\geqslant 0}$ and $\gamma_{1} \in \Gamma_{1}$, we have

$$
\left(\lambda_{\gamma}^{\Sigma_{i}} \gamma-1\right)\left(H_{i}(\pi)\right) \in \mathbf{F}[[\pi]]
$$

by the following lemma.
Lemma 4.5. Let Σ and v be integers and $H(\pi) \in \mathbf{F}((\pi))$. For any $\gamma, \gamma^{\prime} \in \Gamma$, if the valuations (in π) of $\left(\lambda_{\gamma}^{\Sigma} \gamma-1\right)(H(\pi))$ and $\left(\lambda_{\gamma^{\prime}}^{\Sigma} \gamma^{\prime}-1\right)(H(\pi))$ are at least v, so is that of $\left(\lambda_{\gamma \gamma^{\prime}}^{\Sigma} \gamma \gamma^{\prime}-1\right)(H(\pi))$.
Proof. If both $\lambda_{\gamma}^{\Sigma} \gamma(H(\pi))-H(\pi)$ and $\lambda_{\gamma^{\prime}}^{\Sigma} \gamma^{\prime}(H(\pi))-H(\pi)$ are in $\pi^{v} \mathbf{F}[[\pi]]$, then

$$
\begin{aligned}
\left(\lambda_{\gamma \gamma^{\prime}}^{\Sigma} \gamma \gamma^{\prime}-1\right)(H(\pi)) & =\left(\frac{\gamma \gamma^{\prime}(\pi)}{\pi \bar{\chi}\left(\gamma \gamma^{\prime}\right)}\right)^{(p-1) \Sigma /\left(p^{f}-1\right)} \gamma \gamma^{\prime}(H(\pi))-H(\pi) \\
& =\left(\gamma\left(\frac{\gamma^{\prime}(\pi)}{\pi \bar{\chi}\left(\gamma^{\prime}\right)}\right) \frac{\gamma(\pi)}{\pi \bar{\chi}(\gamma)}\right)^{(p-1) \Sigma /\left(p^{f}-1\right)} \gamma\left(\gamma^{\prime}(H(\pi))\right)-H(\pi) \\
& =\lambda_{\gamma}^{\Sigma} \gamma\left(\lambda_{\gamma^{\prime}}^{\Sigma} \gamma^{\prime}(H(\pi))-H(\pi)\right)+\lambda_{\gamma}^{\Sigma} \gamma(H(\pi))-H(\pi) \in \pi^{v} \mathbf{F}[[\pi]] .
\end{aligned}
$$

[^2]
S. Chang and F. Diamond

So far we have defined $\mu_{\varphi}=\mu_{\varphi}\left(B_{i}\right)$ and $\mu_{\gamma}=\mu_{\gamma}\left(B_{i}\right)$ satisfying the condition (\dagger), and need to verify the condition (\ddagger). It is easily checked that, if $\gamma, \gamma^{\prime} \in \Gamma$, both $\mu_{\gamma \gamma^{\prime}}$ and $\mu_{\gamma \gamma^{\prime}}^{\prime}=\kappa_{\gamma} \gamma\left(\mu_{\gamma^{\prime}}\right)+\mu_{\gamma}$ satisfy (\dagger). Since when we fix μ_{φ} the solution of (\dagger) for $\gamma \gamma^{\prime}$ is unique (by the bijectivity of the map $C \pi^{\Sigma_{i}} \Phi-1$), we must have (\ddagger) $\mu_{\gamma \gamma^{\prime}}=\kappa_{\gamma} \gamma\left(\mu_{\gamma^{\prime}}\right)+\mu_{\gamma}$.

4.2 Construction of B_{i} when $c_{i}=p-1$

Proposition 4.6. If $c_{i}=p-1$ and $c_{i+1} \neq p-2$, we have

$$
\left(\lambda_{\eta}^{\Sigma_{i}} \eta-1\right)\left(\pi^{1-p^{2}}+h_{i}^{\prime \prime}(\pi)+\epsilon\left(\pi^{2-2 p}+h_{i}^{\prime}(\pi)+h_{i}(\pi)\right)\right) \in \mathbf{F}[[\pi]]
$$

for some unique $\epsilon \in \mathbf{F}^{\times}$and some unique Laurent polynomials $h_{i}^{\prime \prime}(\pi)=\sum_{s=1}^{p-2} \epsilon_{s}^{\prime \prime} \pi^{1-p^{2}+s p}, h_{i}^{\prime}(\pi)=$ $\sum_{s=1}^{p-2} \epsilon_{s}^{\prime} \pi^{2-2 p+s}$ and $h_{i}(\pi)=\sum_{s=1}^{p-2} \epsilon_{s} \pi^{1-p+s} \in \mathbf{F}[\pi][1 / \pi]$.

Proof. By Lemma 4.2 we have,

$$
\left(\lambda_{\eta}^{\Sigma_{i}} \eta-1\right)\left(\pi^{1-p^{2}}\right) \in \mathbf{F}^{\times} \pi^{1-p^{2}+p}+\pi^{1-p^{2}+2 p} \mathbf{F}\left[\left[\pi^{p}\right]\right]
$$

and

$$
\left(\lambda_{\eta}^{\Sigma_{i}} \eta-1\right)\left(\pi^{1-p^{2}+s p}\right) \in \mathbf{F}^{\times} \pi^{1-p^{2}+s p}+\sum_{j=1}^{p-s} \mathbf{F} \pi^{1-p^{2}+(s+j) p}+\mathbf{F}[[\pi]]
$$

for $1 \leqslant s \leqslant p-2$. Thus there exist unique $\epsilon_{s}^{\prime \prime}, \nu^{\prime} \in \mathbf{F}$ such that

$$
\left(\lambda_{\eta}^{\Sigma_{i}} \eta-1\right)\left(\pi^{1-p^{2}}+\sum_{s=1}^{p-2} \epsilon_{s}^{\prime \prime} \pi^{1-p^{2}+s p}\right) \in \nu^{\prime} \pi^{1-p}+\mathbf{F}[[\pi]] .
$$

Similarly, there exist unique $\epsilon_{s}^{\prime}, \epsilon_{s}, \nu \in F$ such that

$$
\left(\lambda_{\eta}^{\Sigma_{i}} \eta-1\right)\left(\pi^{2-2 p}+\sum_{s=1}^{p-2} \epsilon_{s}^{\prime} \pi^{2-2 p+s}+\sum_{s=1}^{p-2} \epsilon_{s} \pi^{1-p+s}\right) \in \nu \pi^{1-p}+\mathbf{F}[[\pi]] .
$$

Put $h_{i}^{\prime \prime}(\pi)=\sum_{s=1}^{p-2} \epsilon_{s}^{\prime \prime} \pi^{2-p^{2}+s p}, h_{i}^{\prime}(\pi)=\sum_{s=1}^{p-2} \epsilon_{s}^{\prime} \pi^{2-2 p+s}$ and $h_{i}(\pi)=\sum_{s=1}^{p-2} \epsilon_{s} \pi^{1-p+s}$.
The point then is to show that both ν and ν^{\prime} are non-zero so that

$$
\left(\lambda_{\eta}^{\Sigma_{i}} \eta-1\right)\left(\pi^{1-p^{2}}+h_{i}^{\prime \prime}(\pi)\right)+\epsilon\left(\lambda_{\eta}^{\Sigma_{i}} \eta-1\right)\left(\pi^{2-2 p}+h_{i}^{\prime}(\pi)+h_{i}(\pi)\right) \in \mathbf{F}[[\pi]],
$$

where $\epsilon=-\nu^{\prime} / \nu \in \mathbf{F}-\{0\}$. So let us prove the non-vanishing of ν^{\prime} and ν. Suppose $\nu^{\prime}=0$, so that $\operatorname{val}_{\pi}\left(\lambda_{\eta}^{\Sigma_{i}} \eta-1\right)\left(\pi^{1-p^{2}}+h_{i}^{\prime \prime}(\pi)\right) \geqslant 0$. By Lemma 4.5, recalling that $\xi=\eta^{p-1}$, it follows that $\operatorname{val}_{\pi}\left(\lambda_{\xi}^{\Sigma_{i}} \xi-1\right)\left(\pi^{1-p^{2}}+h_{i}^{\prime \prime}(\pi)\right) \geqslant 0$, However, by Lemma 4.4 we have $\operatorname{val}_{\pi}\left(\lambda_{\eta}^{\Sigma_{i}} \eta-1\right)\left(\pi^{1-p^{2}}+\right.$ $\left.h_{i}^{\prime \prime}(\pi)\right)=1-p$. Thus ν^{\prime} cannot be zero. Similarly, we get $\nu \neq 0$.

Proposition 4.7. If $c_{i}=p-1$, and $r \in\{0, \ldots, f-1\}$ is such that $c_{i+1}=\cdots=c_{i+r}=p-2$ and $c_{i+r+1} \neq p-2$, we have

$$
\left(\lambda_{\eta}^{\Sigma_{i}} \eta-1\right)\left(\pi^{1-p^{r+2}}+\sum_{j=0}^{r+1} h_{i}^{(j)}+\sum_{j=0}^{r} \epsilon^{(j)} h_{i}^{(j)}\right) \in \mathbf{F}[[\pi]]
$$

Extensions of Rank one (φ, Γ)-modules

for some unique Laurent polynomials

$$
\begin{gathered}
h_{i}^{(j)}(\pi)=\sum_{s=1}^{p-2} \epsilon_{s}^{(j)} \pi^{1-p^{j+1}+s p^{j}} \quad(0 \leqslant j \leqslant r+1), \\
h_{i}^{\prime(j)}(\pi)=\pi^{1+p^{j}-2 p^{j+1}}+\sum_{s=1}^{p-2} \epsilon_{s}^{(j)} \pi^{1+p^{j}-2 p^{j+1}+s p^{j}} \quad(0 \leqslant j \leqslant r)
\end{gathered}
$$

in $\mathbf{F}[\pi][1 / \pi]$ with $\epsilon_{1}^{(r+1)}, \epsilon^{(r)} \neq 0$.
Proof. By Lemma 4.2 (with $v=r+1, s_{v}=c_{i+r+1}+2$) we get

$$
\left(\lambda_{\eta}^{\Sigma_{i}} \eta-1\right) \pi^{1-p^{r+2}} \in \mathbf{F}^{\times} \pi^{1-p^{r+2}+p^{r+1}}+\pi^{1-p^{r+2}+2 p^{r+1}} \mathbf{F}\left[\left[\pi^{p^{r+1}}\right]\right]
$$

and

$$
\left(\lambda_{\eta}^{\Sigma_{i}} \eta-1\right) \pi^{1-p^{r+2}+s p^{r+1}} \in \mathbf{F}^{\times} \pi^{1-p^{r+2}+s p^{r+1}}+\sum_{t=1}^{p-s-1} \mathbf{F} \pi^{1-p^{r+2}+(s+t) p^{r+1}}+\mathbf{F}[[\pi]]
$$

for $1 \leqslant s \leqslant p-2$, so that there exist unique $\epsilon_{1}^{(r+1)}, \ldots, \epsilon_{p-2}^{(r+1)}, \nu^{(r+1)} \in \mathbf{F}$ such that

$$
\left(\lambda_{\eta}^{\Sigma_{i}} \eta-1\right)\left(\pi^{1-p^{r+2}}+\sum_{s=1}^{p-2} \epsilon_{s}^{(r+1)} \pi^{1-p^{r+2}+s p^{r+1}}\right) \in \nu^{(r+1)} \pi^{1-p^{r+1}}+\mathbf{F}[[\pi]] .
$$

We set $h_{i}^{(r+1)}=\sum_{s=1}^{p-2} \epsilon_{s}^{(r+1)} \pi^{1-p^{r+2}+s p^{r+1}}$.
Again by Lemma 4.2 we get

$$
\left(\lambda_{\eta}^{\Sigma_{i}} \eta-1\right) \pi^{1-2 p^{r+1}+p^{r}} \in \mathbf{F}^{\times} \pi^{1-2 p^{r+1}+2 p^{r}}+\pi^{1-2 p^{r+1}+3 p^{r}} \mathbf{F}\left[\left[\pi^{p^{r}}\right]\right]
$$

and

$$
\left(\lambda_{\eta}^{\Sigma_{i}} \eta-1\right) \pi^{1-2 p^{r+1}+(1+s) p^{r}} \in \mathbf{F}^{\times} \pi^{1-2 p^{j+1}+(1+s) p^{j}}+\sum_{t=1}^{p-s-2} \mathbf{F} \pi^{1-2 p^{r+1}+(1+s+t) p^{r}}+\pi^{1-p^{r+1}} \mathbf{F}\left[\left[\pi^{p^{r}}\right]\right]
$$

for $1 \leqslant s \leqslant p-2$, so that there exist unique $\epsilon_{1}^{\prime(r)}, \ldots, \epsilon_{p-2}^{\prime(r)}, \nu^{\prime(r)} \in \mathbf{F}$ such that

$$
\left(\lambda_{\eta}^{\Sigma_{i}} \eta-1\right)\left(\sum_{s=0}^{p-2} \epsilon_{s}^{\prime(r)} \pi^{1+p^{r}-2 p^{r+1}+s p^{r}}\right) \in \nu^{\prime(r)} \pi^{1-p^{r+1}}+\pi^{1-p^{r+1}+p^{r}} \mathbf{F}\left[\left[\pi^{p^{r}}\right]\right],
$$

where we have set $\epsilon_{0}^{\prime(r)}=1$.
As in the proof of Proposition 4.6, one can show that both $\nu^{(r+1)}$ and $\nu^{\prime(r)}$ are not zero, so that

$$
\left(\lambda_{\eta}^{\Sigma_{i}} \eta-1\right)\left(\pi^{1-p^{r+2}}+h_{i}^{(r+1)}+\epsilon^{(r)} h_{i}^{\prime(r)}\right) \in \pi^{1-p^{r+1}+p^{r}} \mathbf{F}\left[\left[\pi^{p^{r}}\right]\right],
$$

where $\epsilon^{(r)}=-\nu^{(r+1)} / \nu^{\prime(r)} \neq 0$. Then again

$$
\left(\lambda_{\eta}^{\Sigma_{i}} \eta-1\right)\left(\pi^{1-p^{r+2}}+h_{i}^{(r+1)}+\epsilon^{(r)} h_{i}^{(r)}+h_{i}^{(r)}\right) \in \mathbf{F} \pi^{1-p^{r}}+\mathbf{F}[[\pi]]
$$

for some $h_{i}^{(r)}=\sum_{s=1}^{p-2} \epsilon_{s}^{(r)} \pi^{1-p^{r+1}+s p^{r}}$. Iterating the process proves the proposition.
When $c_{i}=p-1, c_{i+1}=\cdots=c_{i+r}=p-2, c_{i+r+1} \neq p-2$, we define

$$
\mu_{\varphi}\left(B_{i}\right)=\left(0, \ldots, 0, H_{i}(\pi), 0, \ldots, 0\right),
$$

S. Chang and F. Diamond

where

$$
H_{i}(\pi)=\pi^{1-p^{r+2}}+\sum_{j=1}^{r+1} h_{i}^{(j)}(\pi)+\sum_{j=0}^{r} \epsilon^{(j)} h_{i}^{(j)}(\pi)
$$

is the i th component. By Proposition 4.7, we get $\left(\lambda_{\gamma}^{\Sigma_{i}} \gamma-1\right)\left(\mu_{\varphi}\left(B_{i}\right)\right) \in \mathbf{F}[[\pi]]$ and then $\mu_{\gamma}\left(B_{i}\right)$ is determined by bijectivity of the map $C \pi^{(p-1) \Sigma_{i}} \Phi-1: \mathbf{F}[[\pi]] \rightarrow \mathbf{F}[[\pi]]$. The condition (\ddagger) is checked in an analogous fashion as in \S 4.1.

Remark 4.8. The cocycle B_{i} for the case $c_{i}=p-1, c_{i+1}=\cdots=c_{i+r}=p-2, c_{i+r+1} \neq p-2$ is cohomologous to a cocycle B_{i}^{\prime} defined by

$$
\begin{aligned}
\mu_{\varphi}\left(B_{i}^{\prime}\right)= & \left(\epsilon^{(0)} \pi^{2-2 p} \sum_{s=0}^{p-2} \epsilon_{s}^{\prime(0)} \pi^{s}+\pi^{1-p} \sum_{s=1}^{p-2} \epsilon_{s}^{(0)} \pi^{s}\right) e_{i} \\
& +\left(\epsilon^{(1)} \pi^{3-3 p} \sum_{s=0}^{p-2} \epsilon_{s}^{\prime(1)} \pi^{s}+\pi^{2-2 p} \sum_{s=1}^{p-2} \epsilon_{s}^{(1)} \pi^{s}\right) e_{i+1} \\
& \vdots \\
& +\left(\epsilon^{(r)} \pi^{3-3 p} \sum_{s=0}^{p-2} \epsilon_{s}^{\prime(r)} \pi^{s}+\pi^{2-2 p} \sum_{s=1}^{p-2} \epsilon_{s}^{(r)} \pi^{s}\right) e_{i+r} \\
& +\left(\pi^{2-2 p} \sum_{s=0}^{p-2} \epsilon_{s}^{(r+1)} \pi^{s}\right) e_{i+r+1},
\end{aligned}
$$

where $\epsilon_{0}^{\prime(0)}=\epsilon_{0}^{\prime(1)}=\cdots=\epsilon_{0}^{\prime(r)}=\epsilon_{0}^{(r+1)}=1$ and $\epsilon^{(r)} \neq 0$. See Lemma 5.7 for the proof in the case $f=2$.

4.3 Linear independence of the $\left[B_{i}\right]$

Throughout this subsection we assume $C \neq 1$ if $\vec{c}=\overrightarrow{0}$, so that $C \pi^{(p-1) \Sigma_{i}} \Phi-1: \mathbf{F}[[\pi]] \rightarrow \mathbf{F}[[\pi]]$ defines a valuation-preserving bijection for all $i \in S$. From the constructions in $\S \S 4.1$ and 4.2 we have at hand the extensions $\left[B_{0}\right], \ldots,\left[B_{f-1}\right] \in \operatorname{Ext}^{1}\left(M_{0}, M_{C \vec{c}}\right)$ such that, if $i \in S$,

$$
\mu_{\varphi}\left(B_{i}\right)=\left(0, \ldots, 0, H_{i}(\pi), \ldots, 0\right)
$$

has i th component

$$
H_{i}(\pi)=\pi^{1-p^{r+2}}+\sum_{j=0}^{r+1} h_{i}^{(j)}(\pi)+\sum_{j=0}^{r} \epsilon^{(j)} h_{i}^{(j)}(\pi),
$$

where, if $c_{i} \neq p-1$, then we set $r=-1$ and $h_{i}^{(0)}(\pi)=h_{i}(\pi)$ was defined in $\S 4.1$, and, if $c_{i}=p-1$, then r is the least non-negative integer such that $c_{i+r+1} \neq p-2$ and $h_{i}^{(j)}, h_{i}^{(j)}$ and $\epsilon^{\prime(j)}$ were defined in §4.2.

To prove linear independence of the $\left[B_{i}\right]$, suppose that $\beta_{0} B_{0}+\cdots+\beta_{f-1} B_{f-1}$ is a coboundary for some $\beta_{0}, \ldots, \beta_{f-1} \in \mathbf{F}$. We want to show that $\beta_{0}=\cdots=\beta_{f-1}=0$. By the cyclic nature of the indexing, it is enough to show that $\beta_{f-1}=0$. Since $\beta_{0} \mu_{\varphi}\left(B_{0}\right)+\cdots+$ $\beta_{f-1} \mu_{\varphi}\left(B_{f-1}\right)=\left(\beta_{0} H_{0}(\pi), \ldots, \beta_{f-1} H_{f-1}(\pi)\right)$, by adding another coboundary, we see that

$$
\begin{aligned}
& \left(\beta_{0} H_{0}(\pi)+\beta_{1} C \pi^{(p-1) c_{0}} H_{1}\left(\pi^{p}\right)+\cdots+\beta_{f-1} C \pi^{(p-1) \sum_{j=0}^{f-2} c_{j} p^{j}} H_{f-1}\left(\pi^{p^{f-1}}\right), 0, \ldots, 0\right) \\
& \quad=\left(C \pi^{(p-1) c_{0}} b_{1}\left(\pi^{p}\right)-b_{0}(\pi), \pi^{(p-1) c_{1}} b_{2}(\pi)-b_{1}(\pi), \ldots, \pi^{(p-1) c_{f-1}} b_{0}\left(\pi^{p}\right)-b_{f-1}(\pi)\right)
\end{aligned}
$$

Extensions of rank one (φ, Γ)-modules

for some $\left(b_{0}(\pi), \ldots, b_{f-1}(\pi)\right) \in \mathbf{F}((\pi))^{S}$. It follows that

$$
\begin{aligned}
& \beta_{0} H_{0}(\pi)+\beta_{1} C \pi^{(p-1) c_{0}} H_{1}\left(\pi^{p}\right)+\cdots+\beta_{f-1} C \pi^{(p-1) \sum_{j=0}^{f-2} c_{j} p^{j}} H_{f-1}\left(\pi^{p^{f-1}}\right) \\
& \quad=\left(C \pi^{(p-1) \Sigma_{0}} \Phi-1\right)\left(b_{0}(\pi)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
b_{1}(\pi) & =\pi^{(p-1) c_{1}} b_{2}\left(\pi^{p}\right), \\
b_{2}(\pi) & =\pi^{(p-1) c_{2}} b_{3}\left(\pi^{p}\right), \\
& \vdots \\
b_{f-2}(\pi) & =\pi^{(p-1) c_{f-2}} b_{f-1}\left(\pi^{p}\right), \\
b_{f-1}(\pi) & =\pi^{(p-1) c_{f-1}} b_{0}\left(\pi^{p}\right) .
\end{aligned}
$$

As the map $C \pi^{(p-1) \Sigma_{0}} \Phi-1: \mathbf{F}[[\pi]] \rightarrow \mathbf{F}[[\pi]]$ is a bijection, we get a congruence

$$
\begin{aligned}
& \beta_{0} H_{0}(\pi)+\beta_{1} C \pi^{(p-1) c_{0}} H_{1}\left(\pi^{p}\right)+\cdots+\beta_{f-1} C \pi^{(p-1) \sum_{j=0}^{f-2} c_{j} p^{j}} H_{f-1}\left(\pi^{p^{f-1}}\right) \\
& \quad \equiv\left(C \pi^{(p-1) \Sigma_{0}} \Phi-1\right)(b(\pi)) \quad \bmod \mathbf{F}[[\pi]]
\end{aligned}
$$

for some $b(\pi)=b_{-s} \pi^{-s}+\sum_{j=1}^{s-1} b_{-s+j} \pi^{-s+j} \in \mathbf{F}[1 / \pi]$ with $s>0$ and $b_{-s} \neq 0$. Suppose $\beta_{f-1} \neq 0$ and we will get contradictions.

First assume $c_{f-1}=p-1, c_{f}=\cdots=c_{f-1+r}=p-2, c_{f+r} \neq p-2$ with $r>0$, in which case we have

$$
H_{f-1}(\pi)=\pi^{1-p^{r+2}}+\sum_{j=0}^{r+1} h_{i}^{(j)}(\pi)+\sum_{j=0}^{r} \epsilon^{(j)} h_{i}^{(j)}(\pi) .
$$

One can check that the lowest degree term (in π) of the left-hand side of the congruence is

$$
\beta_{f-1} C \pi^{(p-1) \sum_{j=0}^{f-2} c_{j} p^{j}} \pi^{\left(1-p^{r+2}\right) p^{f-1}}
$$

so that the valuation of the left-hand side is $(p-1)\left(\sum_{j=0}^{f-2} c_{j} p^{j}-\left(1+p+\cdots+p^{r+1}\right) p^{f-1}\right)$. On the other hand, we have three possibilities for the right-hand side: $(p-1) \Sigma_{0}-s p^{f}<-s$, $-s<(p-1) \Sigma_{0}-s p^{f}$ and $(p-1) \Sigma_{0}-s p^{f}=-s$.

If $(p-1) \Sigma_{0}-s p^{f}<-s$, the leading term of the right-hand side is $b_{-s} C \pi^{(p-1) \Sigma_{0}} \pi^{-s p^{f}}$ and we have $s=(p-1)\left(2+p+\cdots+p^{r}\right)$ and $\beta_{f-1}=b_{-s}$. Now the term

$$
\beta_{f-1} C \pi^{(p-1)} \sum_{j=0}^{f-2} c_{j} p^{j} \epsilon^{(r)} \pi^{\left(1+p^{r}-2 p^{r+1}\right) p^{f-1}}
$$

survives on the left-hand side and must match a term on the right-hand side. Considering possible matching valuations on the right-hand side we get either

$$
(p-1) \sum_{j=0}^{f-2} c_{j} p^{j}+\left(1+p^{r}-2 p^{r+1}\right) p^{f-1}=-t
$$

or

$$
(p-1) \sum_{j=0}^{f-2} c_{j} p^{j}+\left(1+p^{r}-2 p^{r+1}\right) p^{f-1}=(p-1) \Sigma_{0}-t p^{f}
$$

for some $0<t<s=(p-1)\left(2+p+\cdots+p^{r}\right)$. The former equation contradicts the inequality $t<s$ and the latter implies that $t=2 p^{r}-p^{r-1}+p-2$. Since $p^{f} \nmid t+(p-1) \Sigma_{0}$, there must be a term of degree $-t$ on the left-hand side. However, if $m<r$, then the leading term

S. Chang and F. Diamond

of $\pi^{(p-1) \sum_{j=0}^{m-1} c_{j} p^{j}} H_{m}\left(\pi^{p^{m}}\right)$ has degree greater than $-t$, and, if $m \geqslant r$, then its terms cannot be congruent to $-t \bmod p^{r}$, and we again arrive at a contradiction.

If $-s<(p-1) \Sigma_{0}-s p^{f}$, the leading term of the right-hand side is $-b_{-s} \pi^{-s}$. Then $(p-1) \mid s$ and $s\left(p^{f}-1\right) /(p-1)<\Sigma_{0}<p^{f}-1$, so that $s<1$, which is impossible.

Lastly, if $(p-1) \Sigma_{0}-s p^{f}=-s$, working modulo powers of p, we get $s=c_{0}=\cdots=c_{f-1}=$ $p-1$, a contradiction.

Now we may assume that $\beta_{j}=0$ for all $j \in S$ such that $c_{j}=p-1$ and $c_{j+1}=p-2$. Suppose now that $c_{f-1}=p-1$ and $c_{0} \neq p-2$. We then proceed to show that $\beta_{f-1}=0$ by induction on m, where $m \geqslant 1$ is such that $c_{f-m-1} \neq p-1$ and $c_{f-m}=c_{f-m+1}=\cdots c_{f-1}=p-1$. We may thus assume that $\beta_{f-m}=\cdots=\beta_{f-2}=0$ if $m \geqslant 2$. The argument used in the case $r>0$ then goes through with the following two changes: (1) the induction hypothesis is used to show that the term

$$
\beta_{f-1} C \pi^{(p-1)} \sum_{j=0}^{f-2} c_{j} p^{j} \epsilon^{(0)} \pi^{(2-2 p) p^{f-1}}
$$

is alive on the left-hand side, and (2) the equality

$$
(p-1) \sum_{j=0}^{f-2} c_{j} p^{j}+(2-2 p) p^{f-1}=(p-1) \Sigma_{0}-t p^{f}
$$

immediately gives a contradiction without considering more terms.
Now we may assume that $\beta_{j}=0$ for all $j \in S$ such that $c_{j}=p-1$, and suppose $c_{f-1}<p-1$. The leading term of the left-hand side then is

$$
\beta_{f-1} C \pi^{(p-1) \sum_{j=0}^{f-2} c_{j} p^{j}} \pi^{(1-p) p^{f-1}}
$$

If $(p-1) \Sigma_{0}-s p^{f}<-s, s p^{f}=(p-1)\left(\Sigma_{0}-\sum_{j=0}^{f-2} c_{j} p^{j}+p^{f-1}\right)=(p-1)\left(c_{f-1}+1\right) p^{f-1}$, and so $p \mid\left(c_{f-1}+1\right)$, which is impossible as $0 \leqslant c_{f-1}<p-1$. If $(p-1) \Sigma_{0}-s p^{f} \geqslant-s$, then

$$
-s \leqslant(p-1)\left(\sum_{j=0}^{f-2} c_{j} p^{j}-p^{f-1}\right) \leqslant 1-p,
$$

contradicting that $s\left(p^{f}-1\right) /(p-1) \leqslant \Sigma_{0}<p^{f}-1$.
This completes the proof that the $\left[B_{i}\right]$ are linearly independent, hence form a basis for $\operatorname{Ext}^{1}\left(M_{0}, M_{C \vec{c}}\right)$ (unless $C=1, \vec{c}=\overrightarrow{0}$ or $\left.C=1, \vec{c}=\overline{p-2}\right)$.

5. The space of bounded extensions

In this section we define bounded extensions, which we will later relate to extensions arising from crystalline representations.

5.1 Bounded extensions

Definition 5.1. Suppose $A, B \in \mathbf{F}^{\times}$and $0 \leqslant a_{i}, b_{i} \leqslant p$ with exactly one of a_{i} or b_{i} being zero for each $i \in S$. We say that an extension (class) $E \in \operatorname{Ext}^{1}\left(M_{A \vec{a}}, M_{B \vec{b}}\right)$ is bounded if there exists a basis for E such that the defining matrices P and G_{γ} satisfy the following:
(i) $P=\left(\begin{array}{cc}\kappa_{\varphi}(B, \vec{b}) & * \\ 0 & \kappa_{\varphi}(A, \vec{a})\end{array}\right)$ and $G_{\gamma}=\left(\begin{array}{cc}\kappa_{\gamma}(B, \vec{b}) & * \\ 0 & \kappa_{\gamma}(A, \vec{a})\end{array}\right)$ if $\gamma \in \Gamma$;
(ii) $P \in \mathrm{M}_{2}\left(\mathbf{F}[[\pi]]^{S}\right)$; and
(iii) $G_{\gamma}-I_{2} \in \pi \mathrm{M}_{2}\left(\mathbf{F}[[\pi]]^{S}\right)$ if $\gamma \in \Gamma_{1}$.

Extensions of Rank one (φ, Γ)-modules

Bounded extensions form a subspace, denoted by $\operatorname{Ext}_{\mathrm{bdd}}^{1}\left(M_{A \vec{a}}, M_{B \vec{b}}\right)$, of the full space $\operatorname{Ext}^{1}\left(M_{A \vec{a}}, M_{B \vec{b}}\right)$ of extensions.
Remark 5.2. Note that the space $\operatorname{Ext}_{\mathrm{bdd}}^{1}\left(M_{A \vec{a}}, M_{B \vec{b}}\right)$ depends on \vec{a} and \vec{b} and not just on the isomorphism classes of the (φ, Γ)-modules $M_{A \vec{a}}$ and $M_{B \vec{b}}$.
Lemma 5.3. The condition (iii) in Definition 5.1 can be replaced by a weaker condition (iii') $G_{\xi}-I_{2} \in \pi \mathrm{M}_{2}\left(\mathbf{F}[[\pi]]^{S}\right)$. (Recall that ξ is a topological generator of Γ_{1}.)

Proof. If $\gamma, \gamma^{\prime} \in \Gamma_{1}$, then

$$
G_{\gamma \gamma^{\prime}}=G_{\gamma} \gamma G_{\gamma^{\prime}} \equiv\left(\begin{array}{cc}
1 & \mu_{\gamma}(E)+\gamma \mu_{\gamma^{\prime}}(E) \\
0 & 1
\end{array}\right) \quad \bmod \pi
$$

by Lemma 4.3. So, if $G_{\xi}=I_{2} \bmod \pi$, we have by induction that $G_{\xi^{n}} \equiv I_{2}$ for all $n \geqslant 1$. Since $\langle\xi\rangle$ is dense in Γ_{1}, continuity of the action gives that $G_{\gamma}-I_{2} \in \pi \mathrm{M}_{2}\left(\mathbf{F}[[\pi]]^{S}\right)$ for all $\gamma \in \Gamma_{1}$.

We now describe a way to analyze extensions systematically and to check for boundedness. Given $J \subset S$ and $n \in \mathbf{Z} /\left(p^{f}-1\right) \mathbf{Z}$, we can always find a_{i}, b_{j} for $i \in J, j \in S-J$ with $1 \leqslant a_{i}, b_{j} \leqslant p$ such that

$$
n \equiv \sum_{j \notin J} b_{j} p^{j}-\sum_{i \in J} a_{i} p^{i} \quad \bmod p^{f}-1 .
$$

The congruence has a unique solution if $n \not \equiv n_{J} \bmod p^{f}-1$, and has two solutions if $n \equiv$ $n_{J} \bmod p^{f}-1$, where $n_{J}:=\sum_{i \in J} p^{i+1}-\sum_{i \notin J} p^{i}(c f .[B D J 10, \S 3])$. To compute the solutions explicitly in the double solution case, suppose $n \equiv n_{J} \bmod p^{f}-1$ and we have two solutions a_{i}, b_{j} and $a_{i}^{\prime}, b_{j}^{\prime}$. Then $\Sigma:=\sum_{j \notin J}\left(b_{j}-b_{j}^{\prime}\right) p^{j}-\sum_{i \in J}\left(a_{i}-a_{i}^{\prime}\right) p^{i} \equiv 0 \bmod p^{f}-1$. Note that $|\Sigma| \leqslant p^{f}-1$, as $\left|a_{i}-a_{i}^{\prime}\right|,\left|b_{j}-b_{j}^{\prime}\right| \leqslant p-1$, so that $\Sigma=0$ or $\pm\left(p^{f}-1\right)$, and in the latter case we can exchange \vec{a}, \vec{b} and $\vec{a}^{\prime}, \vec{b}^{\prime}$ if necessary in order to assume $\Sigma=p^{f}-1$. If $\Sigma=0$, then reducing modulo powers of p shows that $\vec{a}=\vec{a}^{\prime}$ and $\vec{b}=\vec{b}^{\prime}$. If $\Sigma=p^{f}-1$, then we have solutions $a_{i}=1, b_{j}=p$ and $a_{i}^{\prime}=p, b_{j}^{\prime}=1(i \in J, j \in S-J)$.

Now fix $J \subset S, C \in \mathbf{F}^{\times}$and $\vec{c} \in\{0,1, \ldots, p-1\}^{S}$ with some $c_{i}<p-1$. If $\Sigma_{0} \vec{c} \not \equiv n_{J}$ $\bmod p^{f}-1$, we can solve the congruence $\Sigma_{0} \vec{c} \equiv \sum_{i \notin J} b_{i} p^{i}-\sum_{i \in J} a_{i} p^{i} \bmod p^{f}-1$ with unique solution, and get an isomorphism

$$
\operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{C \vec{c}}\right) \simeq \operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{C \vec{d}}\right),
$$

where $d_{i}=-a_{i}$ if $i \in J$ and $d_{j}=b_{j}$ if $j \notin J$. The isomorphism is (not canonical but) well-defined up to Aut $M_{C \vec{c}}=\mathbf{F}^{\times}$and the valuations of entries of the matrices defining the (φ, Γ)-module extensions are invariant, which suffices for our purposes. Tensoring $M_{A \vec{a}}$ with the subobject and the quotient of the extension gives an isomorphism

$$
\iota: \operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{C \vec{c}}\right) \rightarrow \operatorname{Ext}^{1}\left(M_{A \vec{a}}, M_{B \vec{b}}\right),
$$

where $C A=B$ and $a_{i}=0$ if $i \notin J$ and $b_{i}=0$ if $i \in J$. Note that, if $J=\emptyset, A=1$ and $c_{i}>0$ for all i, then $M_{A \vec{a}}=M_{0}, M_{B \vec{b}}=M_{C \vec{c}}=M_{C \vec{d}}$ and ι is the identity. In general, we have the following commutative diagram.

S. Chang and F. Diamond

The vertical arrows are the isomorphisms β defined at the beginning of $\S 4$, and the bottom arrow, which we also denote ι, is induced by

$$
\left(\mu_{\varphi},\left(\mu_{\gamma}\right)_{\gamma \in \Gamma}\right) \mapsto\left(\kappa_{\varphi}(A, \vec{a})\langle\vec{c}\rangle_{J} \mu_{\varphi},\left(\kappa_{\gamma}(A, \vec{a})\langle\vec{c}\rangle_{J} \mu_{\gamma}\right)_{\gamma \in \Gamma}\right),
$$

where the isomorphism $\mathbf{E}_{K, F} e=M_{C \vec{c}} \simeq M_{C \vec{d}}=\mathbf{E}_{K, F} e^{\prime}$ is defined by the change of basis $e=$ $\langle\vec{c}\rangle_{J} e^{\prime}$ with $\langle\vec{c}\rangle_{J} \in \mathbf{E}_{K, F}^{\times}$. It is straighforward to check the following formula for $\langle\vec{c}\rangle_{J}$, which we will need in order to compute spaces of bounded extensions:

$$
\langle\vec{c}\rangle_{J}=\left(\pi^{(p-1) \varepsilon_{0}}, \ldots, \pi^{(p-1) \varepsilon_{f-1}}\right),
$$

where $\left(p^{f}-1\right) \varepsilon_{i}=\Sigma_{i}(\vec{c}-\vec{d})$.
We define

$$
V_{J}=\iota^{-1}\left(\operatorname{Ext}_{\mathrm{bdd}}^{1}\left(M_{A \vec{a}}, M_{B \vec{b}}\right)\right) \subset \operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{C \vec{c}}\right),
$$

so that $\operatorname{dim}_{\mathbf{F}} V_{J}=\operatorname{dim}_{\mathbf{F}} \operatorname{Ext}_{\mathrm{bdd}}^{1}\left(M_{A \vec{a}}, M_{B \vec{b}}\right)$.
If $\Sigma_{0} \vec{c} \equiv n_{J} \bmod p^{f}-1$, we can assume that $n_{J}=\sum_{i \notin J} b_{i} p^{i}-\sum_{i \in J} a_{i} p^{i}$ and $n_{J}+1-p^{f}=$ $\sum_{i \notin J} b_{i}^{\prime} p^{i}-\sum_{i \in J} a_{i}^{\prime} p^{i}$ where a_{i}, b_{j} and $a_{i}^{\prime}, b_{j}^{\prime}$ are two solutions. Then we have $a_{i}=p, b_{j}=1$ and $a_{i}^{\prime}=1, b_{j}^{\prime}=p$ (for $i \in J$ and $j \in S-J$).

As in the case of a unique solution, we have isomorphisms (but now there are two)

$$
\begin{aligned}
& \iota_{+}: \operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{C \vec{c}}\right) \rightarrow \operatorname{Ext}^{1}\left(M_{A \vec{a}}, M_{B \vec{b}}\right), \\
& \iota_{-}: \operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{C \vec{c}}\right) \rightarrow \operatorname{Ext}^{1}\left(M_{A \overrightarrow{a^{\prime}}}, M_{B \overrightarrow{b^{\prime}}}\right)
\end{aligned}
$$

and define

$$
\begin{aligned}
& V_{J}^{+}=\iota_{+}^{-1}\left(\operatorname{Ext}_{\mathrm{bdd}}^{1}\left(M_{A \vec{a}}, M_{B \vec{b}}\right)\right) \subset \operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{C \vec{c}}\right), \\
& V_{J}^{-}=\iota_{-}^{-1}\left(\operatorname{Ext}_{\mathrm{bdd}}^{1}\left(M_{A \overrightarrow{a^{\prime}}}, M_{B \vec{b}}\right)\right) \subset \operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{C \vec{c}}\right) .
\end{aligned}
$$

Note that we always use + to denote the case where all $a_{i}=p, b_{j}=1$, and - for the case where all $a_{i}=1$ and $b_{j}=p$.

In the next two subsections we will compute explicitly the spaces of bounded extensions in the generic case and in the case $f=2$.

5.2 Generic case

For each $i \in S$, let $e_{i}: \mathbf{E}_{K, F}=\mathbf{F}((\pi))^{S} \rightarrow \mathbf{F}((\pi))$ denote the projection $\left(g_{0}, \ldots, g_{f-1}\right) \mapsto g_{i}$.
Proposition 5.4. If $0<c_{i}<p-1$ for all $i \in S$, then:
(i) $V_{\{i\}}=\mathbf{F}\left[B_{i+1}\right]$ for all $i \in S$;
(ii) $V_{J}=\bigoplus_{i \in J} V_{\{i\}}$ if $J \subset S$; and
(iii) $V_{S}^{+}=V_{S}^{-}=\operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{C \overrightarrow{p-2}}\right)$ if $C \neq 1, \vec{c}=\overrightarrow{p-2}$.

Remark 5.5. Proposition 5.4 does not say anything about the cyclotomic case $C=1, \vec{c}=\overrightarrow{p-2}$, which will be treated in $\S 6.1$.

Proof. First consider the case $J \neq \emptyset$. We may assume that $f-1 \in J$; even though we do not have complete symmetry due to the presence of the constant C, we will see that the argument goes through independently of which component C lies in. As $0<c_{i}<p-1$ for all $i \in S$ we have $\left(p^{f}-1\right) /(p-1) \leqslant \Sigma_{0} \vec{c} \leqslant(p-2)\left(p^{f}-1\right) /(p-1)$. We claim that the congruence

$$
\Sigma_{0} \vec{c} \equiv \sum_{i \notin J} b_{i} p^{i}-\sum_{i \in J} a_{i} p^{i} \quad \bmod p^{f}-1
$$

Extensions of rank one (φ, Γ)-modules

has a unique solution $a_{i}, b_{j}(i \in J, j \notin J)$ such that $1 \leqslant a_{i}, b_{j} \leqslant p$, except when $J=S$ and $\vec{c}=\overrightarrow{p-2}$. If there were another distinct solution, we have either $\Sigma_{0} \vec{c}=\sum_{j \notin J} p^{j+1}-\sum_{j \in J} p^{j}$ or $\Sigma_{0} \vec{c}=\sum_{j \notin J} p^{j+1}-\sum_{j \in J} p^{j}+p^{f}-1$. The former is impossible since modulo p we have $c_{0} \equiv-1$ if $0 \in J$ and $c_{0} \equiv 0$ if $j \notin J$, and thus $c_{0}=p-1$ or 0 , contradicting the assumption. In the latter case, we have $0 \in J$ and $c_{0}=p-2$. Computations modulo p^{2} show that $1 \in J$ and $c_{1}=p-2$. By induction we get $J=S$ and $c_{i}=p-2$ for all $i \in S$. Thus, unless $J=S, \vec{c}=\overrightarrow{p-2}$, we have unique $a_{i}, b_{j}(i \in J, j \notin J)$ satisfying the equation $\sum_{i=0}^{f-1} c_{i} p^{i}=\sum_{i \notin J} b_{i} p^{i}-\sum_{i \in J} a_{i} p^{i}+p^{f}-1$. Letting $u=\left(\pi^{(p-1) \delta_{f-1 J}}, \pi^{(p-1) \delta_{0 J}}, \ldots, \pi^{(p-1) \delta_{f-2 J}}\right)$ with $\delta_{i J}=1$ if $i \in J$ and $\delta_{i J}=0$ otherwise, one can check that $\mathbf{E}_{K, F} e=M_{C \vec{c}} \simeq M_{C \vec{d}}=\mathbf{E}_{K, F} e^{\prime}$ via the change of basis $e=u e^{\prime}$, where $d_{i}=b_{i}$ if $i \notin J$ and $d_{i}=-a_{i}$ if $i \in J$, and that $\langle\vec{c}\rangle_{J}=u$. Note that

$$
\begin{aligned}
\frac{\varphi\left(\langle\vec{c}\rangle_{J}\right)}{\langle\vec{c}\rangle_{J}} & =\frac{\left(\pi^{(p-1) p \delta_{0 J}}, \pi^{(p-1) p \delta_{1 J}}, \ldots, \pi^{(p-1) p \delta_{f-1 J}}\right)}{\left(\pi^{(p-1) \delta_{f-1 J}}, \pi^{(p-1) \delta_{0 J}}, \ldots, \pi^{\left.(p-1) \delta_{f-2 J}\right)}\right.} \\
& =\left(\pi^{(p-1)\left(p \delta_{0 J}-\delta_{f-1 J}\right)}, \pi^{(p-1)\left(p \delta_{1 J}-\delta_{0 J}\right)}, \ldots, \pi^{(p-1)\left(p \delta_{f-1 J}-\delta_{f-2 J}\right)}\right)
\end{aligned}
$$

and that

$$
\left(p \delta_{0 J}-\delta_{f-1 J}\right)+p\left(p \delta_{1 J}-\delta_{0 J}\right)+\cdots+p^{f-1}\left(p \delta_{f-1 J}-\delta_{f-2 J}\right)=\left(p^{f}-1\right) \delta_{f-1 J}=p^{f}-1
$$

Recall that we have a basis $\left[B_{0}\right], \ldots,\left[B_{f-1}\right]$ for $\operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{C \vec{c}}\right)$ such that

$$
\begin{aligned}
\mu_{\varphi}\left(B_{i}\right) & =\left(0, \ldots, 0, \pi^{1-p}+h_{i}(\pi), 0, \ldots, 0\right), \\
\mu_{\xi}\left(B_{i}\right) & =\left(G_{0}^{(i)}, \ldots, G_{f-1}^{(i)}\right),
\end{aligned}
$$

where $h_{i}(\pi) \in \mathbf{F} \pi^{2-p}+\cdots+\mathbf{F} \pi^{-1}$ and

$$
\begin{aligned}
G_{i}^{(i)}(\pi) & =-\alpha_{i}+g_{i}(\pi), \\
G_{i-1}^{(i)}(\pi) & =\pi^{(p-1) c_{i-1}}\left(-\alpha_{i}+g_{i}\left(\pi^{p}\right)\right), \\
G_{i-2}^{(i)}(\pi) & =\pi^{(p-1)\left(c_{i-2}+c_{i-1} p\right)}\left(-\alpha_{i}+g_{i}\left(\pi^{p^{2}}\right)\right), \\
& \vdots \\
G_{0}^{(i)}(\pi) & =\pi^{(p-1)\left(c_{0}+c_{1} p+\cdots+c_{i-1} p^{i-1}\right)}\left(-\alpha_{i}+g_{i}\left(\pi^{p^{i}}\right)\right), \\
G_{f-1}^{(i)}(\pi) & =\pi^{(p-1)\left(c_{f-1}+c_{0} p+c_{1} p^{2}+\cdots+c_{i-1} p^{i}\right)}\left(-\alpha_{i}+g_{i}\left(\pi^{p^{i+1}}\right)\right), \\
& \vdots \\
G_{i+1}^{(i)}(\pi) & =\pi^{(p-1)\left(c_{i+1}+\cdots+c_{i-1} p^{f-2}\right)}\left(-\alpha_{i}+g_{i}\left(\pi^{p^{f-1}}\right)\right),
\end{aligned}
$$

with $\alpha_{i}=\overline{s_{0} z} \in \mathbf{F}^{\times}$as in Lemma 4.4.
To show that $\iota\left[B_{i+1}\right] \in \operatorname{Ext}^{1}\left(M_{A \vec{a}}, M_{B \vec{b}}\right)$ is bounded if $i \in J$ is straightforward: as $\langle\vec{c}\rangle_{J}=$ $\left(\pi^{(p-1) \delta_{f-1 J}}, \pi^{(p-1) \delta_{0 J}}, \ldots, \pi^{(p-1) \delta_{f-2 J}}\right)$ and $\delta_{i J}=1$, we have

$$
\begin{aligned}
\mu_{\varphi}\left(\iota B_{i+1}\right) & =\kappa_{\varphi}(A, \vec{a})\langle\vec{c}\rangle_{J} \mu_{\varphi}\left(B_{i+1}\right) \\
& =\left(0, \ldots, 0, \pi^{(p-1)\left(a_{i+1}+1\right)}\left(\pi^{1-p}+h_{i+1}(\pi)\right), 0, \ldots, 0\right) \in \mathbf{F}[[\pi]]^{S}
\end{aligned}
$$

with the non-zero entry in the $(i+1)$ th component, and

$$
\mu_{\xi}\left(\iota B_{i+1}\right)=\kappa_{\xi}(A, \vec{a})\langle\vec{c}\rangle_{J} \mu_{\xi}\left(B_{i+1}\right) \in \pi \mathbf{F}[[\pi]]^{S}
$$

as $e_{i+1} \mu_{\xi}\left(\iota B_{i+1}\right)=\lambda_{\xi}^{(p-1) \Sigma_{j+1} \vec{a}} \pi^{p-1} G_{i+1}^{(i)}$ and $e_{j+1} \mu_{\xi}\left(\iota B_{i+1}\right)=\lambda_{\xi}^{(p-1) \Sigma_{j+1} \vec{a}} \pi^{(p-1) \delta_{j J}} G_{j+1}^{(i)}$ is divisible by $\pi^{(p-1) c_{j+1}}$ if $j \neq i$.

S. Chang and F. Diamond

Next we need to show that, if $E=\sum_{j=0}^{f-1} \beta_{j} B_{j}$ and $[E] \in V_{J}$, then $\beta_{i+1}=0$ for all $i \notin J$. Suppose $\iota[E]$ is bounded, $i \notin J$ and $\beta_{i+1} \neq 0$. Then $\mu_{\varphi} \iota(E+B) \in \mathbf{F}[[\pi]]^{S}$ and $\mu_{\xi} \iota(E+B) \in$ $\pi \mathbf{F}[[\pi]]^{S}$ for some coboundary B, for which we have

$$
\begin{aligned}
& \mu_{\varphi}(B)=\left(C \pi^{(p-1) c_{0}} b_{1}\left(\pi^{p}\right)-b_{0}, \pi^{(p-1) c_{1}} b_{2}\left(\pi^{p}\right)-b_{1}, \ldots, \pi^{(p-1) c_{f-1}} b_{0}\left(\pi^{p}\right)-b_{f-1}\right), \\
& \mu_{\xi}(B)=\left(\left(\lambda_{\xi}^{\Sigma_{0}{ }_{c}} \xi-1\right) b_{0}(\pi),\left(\lambda_{\xi}^{\Sigma_{1} \vec{c}^{\prime}} \xi-1\right) b_{1}(\pi) \ldots,\left(\lambda_{\xi}^{\Sigma_{f-1} \vec{c}} \xi-1\right) b_{f-1}(\pi)\right),
\end{aligned}
$$

for some $\left(b_{0}(\pi), \ldots, b_{f-1}(\pi)\right) \in \mathbf{E}_{K, F}$. Note that $\kappa_{\xi}(A, \vec{a}) \equiv 1=(1, \ldots, 1) \bmod \pi$ and $e_{i+1}\langle\vec{c}\rangle_{J}=$ $\pi^{(p-1) \delta_{i J}}=1$. As $\operatorname{val}_{\pi} e_{i+1} \mu_{\xi}(E+B)=\operatorname{val}_{\pi} e_{i+1} \mu_{\xi} \iota(E+B) \geqslant 1$ while $\operatorname{val}_{\pi} e_{i+1} \mu_{\xi}(E)=0$, the valuation of $e_{i+1} \mu_{\xi}(B)=\left(\lambda_{\xi}^{\sum_{i+1}} \xi-1\right) b_{i+1}(\pi)$ has to be zero. Letting $s=\operatorname{val}_{\pi} b_{i+1}(\pi)$, Lemma 4.4 implies that $\left(\lambda_{\xi}^{\Sigma_{i+1} \vec{c}} \xi-1\right) b_{i+1}(\pi) \in \pi \mathbf{F}[[\pi]]$ if $s \geqslant 0$, and $\operatorname{val}_{\pi}\left(\lambda_{\xi}^{\Sigma_{i+1}{ }^{c}} \xi-1\right) b_{i+1}(\pi)=s+(p-1) p^{v}$ if $s<0$ and $\Sigma_{i+1} \vec{c}+s\left(p^{f}-1\right) /(p-1)$ is divisible by p^{v} but not p^{v+1}. Thus val $b_{i+1}(\pi)$ must be negative and divisible by $p-1$. Looking at the i th component, we have

$$
\begin{aligned}
e_{i} \mu_{\varphi}(\iota(E+B)) & =\pi^{(p-1)\left(a_{i}+\delta_{i-1 J}\right)}\left(e_{i} \mu_{\varphi}(E)+e_{i} \mu_{\varphi}(B)\right) \\
& =\pi^{(p-1) \delta_{i-1 J}}\left(\pi^{1-p}+h_{i}(\pi)+\pi^{(p-1) c_{i}} b_{i+1}\left(\pi^{p}\right)-b_{i}(\pi)\right)
\end{aligned}
$$

whose valuation has to be non-negative. Since $(p-1) c_{i}+p \operatorname{val}_{\pi} b_{i+1}(\pi)<1-p=\operatorname{val}_{\pi}\left(\pi^{1-p}+\right.$ $\left.h_{i}(\pi)\right)$, we get $\operatorname{val}_{\pi} b_{i}(\pi)=(p-1) c_{i}+p \operatorname{val}_{\pi} b_{i+1}(\pi)$. Cycling this through all $j \in S$ leads to $\operatorname{val}_{\pi} b_{i+1}(\pi)=(p-1) \Sigma_{i} \vec{c}+p^{f} \operatorname{val}_{\pi} b_{i+1}(\pi)$, so that $\operatorname{val}_{\pi} b_{i+1}(\pi)=-(p-1) \Sigma_{i} \vec{c} /\left(p^{f}-1\right)>1-p$, which is a contradiction.

Now suppose $J=S, C \neq 1, \vec{c}=\overrightarrow{p-2}$. In this case we have two solutions $\vec{a}=\vec{p}, \vec{b}=\overrightarrow{0}$ and $\overrightarrow{a^{\prime}}=\overrightarrow{1}, \overrightarrow{b^{\prime}}=\overrightarrow{0}$ of the congruence and the corresponding isomorphisms

$$
\begin{aligned}
& \iota_{+}: \operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{C \overrightarrow{p-2}}\right) \rightarrow \operatorname{Ext}^{1}\left(M_{A \vec{p}}, M_{B \overrightarrow{0}}\right), \\
& \iota_{-}: \operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{C \overrightarrow{p-2}}\right) \rightarrow \operatorname{Ext}^{1}\left(M_{A \overrightarrow{1}}, M_{B \overrightarrow{0}}\right) .
\end{aligned}
$$

One can show that $V_{J}^{+}=V_{J}^{-}=\operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{C \overrightarrow{p-2}}\right)$ by straightforward computations.
If $J=\emptyset$, the congruence equation has a unique solution unless $\vec{c}=\overrightarrow{1}$, in which case we have two solutions $\vec{a}=\overrightarrow{0}, \vec{b}=\overrightarrow{1}$ and $\overrightarrow{a^{\prime}}=\overrightarrow{0}, \overrightarrow{b^{\prime}}=\vec{p}$. The proof that $V_{\emptyset}=0($ when $\vec{c} \neq \overrightarrow{1})$ and $V_{\emptyset}^{+}=V_{\emptyset}^{-}=0$ (when $\vec{c}=\overrightarrow{1}$) is similar to the case $J \neq \emptyset$.

5.3 Case $f=2$

Throughout this subsection we assume that $f=2,0 \leqslant c_{0}, c_{1} \leqslant p-1$, not both $p-1$. If $\vec{c}=\overrightarrow{0}$ or $\overrightarrow{p-2}$, we further assume $C \neq 1$; the cases $\vec{c}=\overrightarrow{0}$ and $\vec{c}=\overrightarrow{p-2}$ when $C=1$ are dealt with in $\S \S 6.1$ and 6.2. Before determining which extensions are bounded, we describe the basis elements in the form we will need. Recall that we defined a basis $\left\{\left[B_{0}\right],\left[B_{1}\right]\right\}$ for $\operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{C \vec{c}}\right)$, where B_{0} and B_{1} are cocycles of the following form:

$$
\begin{aligned}
\mu_{\varphi}\left(B_{0}\right) & =\left(H_{0}(\pi), 0\right), \\
\mu_{\xi}\left(B_{0}\right) & =\left(G_{0}^{(0)}(\pi), G_{1}^{(0)}(\pi)\right) \\
& =\left(\left(C \pi^{(p-1) \Sigma_{0}} \Phi-1\right)^{-1}\left(\left(\lambda_{\xi}^{\Sigma_{0}} \xi-1\right) H_{0}(\pi)\right), \pi^{(p-1) c_{1}} G_{0}^{(0)}\left(\pi^{p}\right)\right), \\
\mu_{\varphi}\left(B_{1}\right) & =\left(0, H_{1}(\pi)\right), \\
\mu_{\xi}\left(B_{1}\right) & =\left(G_{0}^{(1)}(\pi), G_{1}^{(1)}(\pi)\right) \\
& =\left(\pi^{(p-1) c_{0}} G_{1}^{(1)}\left(\pi^{p}\right),\left(C \pi^{(p-1) \Sigma_{1}} \Phi-1\right)^{-1}\left(\left(\lambda_{\xi}^{\Sigma_{1}} \xi-1\right) H_{1}(\pi)\right)\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& H_{0}(\pi)= \begin{cases}\pi^{1-p}+h_{0} & \text { if } c_{0}<p-1, \\
\pi^{1-p^{2}}+h_{0}^{(1)}+\epsilon^{(0)} h_{0}^{\prime(0)}+h_{0}^{(0)} & \text { if } c_{0}=p-1, c_{1} \neq p-2, \\
\pi^{1-p^{3}}+h_{0}^{(2)}+\epsilon^{(1)} h_{0}^{\prime(1)}+h_{0}^{(1)}+\epsilon^{(0)} h_{0}^{(0)}+h_{0}^{(0)} & \text { if } c_{0}=p-1, c_{1}=p-2,\end{cases} \\
& H_{1}(\pi)= \begin{cases}\pi^{1-p}+h_{1} & \text { if } c_{1}<p-1, \\
\pi^{1-p^{2}}+h_{1}^{(1)}+\epsilon^{(0)} h_{1}^{(0)}+h_{1}^{(0)} & \text { if } c_{1}=p-1, c_{0} \neq p-2, \\
\pi^{1-p^{3}}+h_{1}^{(2)}+\epsilon^{(1)} h_{1}^{(1)}+h_{1}^{(1)}+\epsilon^{(0)} h_{1}^{(0)}+h_{1}^{(0)} & \text { if } c_{1}=p-1, c_{0}=p-2 .\end{cases}
\end{aligned}
$$

Lemma 5.6. Suppose that $i \in\{0,1\}$ is such that $0 \leqslant c_{i}<p-1$. Then for some $\alpha_{i} \in F^{\times}, g_{i}(\pi) \in$ $1+\pi \mathbf{F}[[\pi]]$, we have

$$
\left.\left.\begin{array}{ll}
\mu_{\varphi}\left(B_{0}\right)=\left(\pi^{1-p}+h_{0}(\pi), 0\right), \\
\mu_{\xi}\left(B_{0}\right)=\left(\alpha_{0} g_{0}(\pi), \pi^{(p-1) c_{1}} \alpha_{0} g_{0}\left(\pi^{p}\right)\right)
\end{array}\right\} \quad \text { if } i=0, ~ \begin{array}{ll}
\mu_{\varphi}\left(B_{1}\right)=\left(0, \pi^{1-p}+h_{1}(\pi)\right), \\
\mu_{\xi}\left(B_{1}\right)=\left(C \pi^{(p-1) c_{0}} \alpha_{1} g_{1}\left(\pi^{p}\right), \alpha_{1} g_{1}(\pi)\right)
\end{array}\right\} \quad \text { if } i=1 .
$$

Proof. We assume $i=0$; the case $i=1$ is similar. As in Lemma 4.4, we have

$$
L_{0}(\pi):=\left(\lambda_{\xi}^{\Sigma_{0}} \xi-1\right)\left(\pi^{1-p}+h_{0}(\pi)\right) \equiv \overline{s_{0} z} \quad \bmod \pi \mathbf{F}[[\pi]],
$$

so that $e_{0} \mu_{\xi}\left(B_{0}\right)=\left(C \pi^{(p-1) \Sigma_{0}} \Phi-1\right)^{-1}\left(L_{0}(\pi)\right)=\alpha_{0} g_{0}(\pi)$ for some $g_{0}(\pi) \in 1+\pi \mathbf{F}[[\pi]]$ with $\alpha_{0}=$ $(C-1)^{-1} \overline{s_{0} z}$ if $c_{0}=c_{1}=0$, and $\alpha_{0}=-\overline{s_{0} z}$ otherwise. (Recall that we assume for now that $C \neq 1$ if $c_{0}=c_{1}=0$.)

If $c_{i}=p-1$, we introduce a cocycle B_{i}^{\prime} cohomologous to B_{i}, which we will work with.
Lemma 5.7. Suppose that $\{i, j\}=\{0,1\}$ with $c_{i}=p-1$ and $c_{j}<p-2$. Then there is a cocycle B_{i}^{\prime} such that $\left[B_{i}^{\prime}\right]=\left[B_{i}\right]$ and

$$
\begin{gathered}
\operatorname{val}_{\pi}\left(e_{i} \mu_{\varphi}\left(B_{i}^{\prime}\right)\right)=\operatorname{val}_{\pi}\left(e_{j} \mu_{\varphi}\left(B_{i}^{\prime}\right)\right)=2-2 p \\
\left.\operatorname{val}_{\pi} e_{i} \mu_{\xi}\left(B_{i}^{\prime}\right)\right) \geqslant 0 \quad \text { and } \quad \operatorname{val}_{\pi}\left(e_{j} \mu_{\xi}\left(B_{i}^{\prime}\right)\right)=1-p
\end{gathered}
$$

Proof. Again assume $i=0$, the case $i=1$ being similar. By the very construction of $H_{0}(\pi)$, we have $L_{0}(\pi):=\left(\lambda_{\xi}^{\Sigma_{0}} \xi-1\right) H_{0}(\pi) \in \mathbf{F}[[\pi]]$, so that

$$
g_{0}^{\prime}(\pi):=e_{0} \mu_{\xi}\left(B_{0}\right)=\left(C \pi^{(p-1) \Sigma_{0}} \Phi-1\right)^{-1}\left(L_{0}(\pi)\right) \in \mathbf{F}[[\pi]]
$$

and $\mu_{\xi}\left(B_{0}\right)=\left(g_{0}^{\prime}(\pi), \pi^{(p-1) c_{1}} g_{0}^{\prime}\left(\pi^{p}\right)\right)$. Now let $B_{0}^{\prime}=B_{0}-B$, where B is a coboundary such that

$$
\begin{aligned}
\mu_{\varphi}(B) & =\left(C \pi^{(p-1) c_{0}} b_{1}\left(\pi^{p}\right)-b_{0}(\pi), \pi^{(p-1) c_{1}} b_{0}\left(\pi^{p}\right)-b_{1}(\pi)\right) \\
& =\left(\pi^{1-p^{2}}+h_{0}^{(1)},-C^{-1}\left(\pi^{2-2 p}+\widetilde{h}_{0}^{(1)}\right)\right), \\
\mu_{\xi}(B) & =\left(0,\left(\lambda_{\xi}^{\Sigma_{1}} \xi-1\right) b_{1}(\pi)\right),
\end{aligned}
$$

where $b_{0}(\pi)=0, b_{1}(\pi)=C^{-1}\left(\pi^{2-2 p}+\widetilde{h}_{0}^{(1)}\right)$ with $\widetilde{h}_{0}^{(1)}:=\sum_{s=1}^{p-2} \epsilon_{s}^{(1)} \pi^{2-2 p+s}$. Then

$$
\begin{aligned}
& \mu_{\varphi}\left(B_{0}^{\prime}\right)=\left(\epsilon^{(0)} h_{0}^{(0)}+h_{0}^{(0)}, C^{-1}\left(\pi^{2-2 p}+h_{0}^{(1)}\right)\right) \\
& \mu_{\xi}\left(B_{0}^{\prime}\right)=\left(g_{0}^{\prime}(\pi), \pi^{(p-1) c_{1}} g_{0}^{\prime}\left(\pi^{p}\right)-\left(\lambda_{\xi}^{\Sigma_{1}} \xi-1\right) b_{1}(\pi)\right),
\end{aligned}
$$

so that B_{0}^{\prime} has the required form.

S. Chang and F. Diamond

Lemma 5.8. Suppose that $\{i, j\}=\{0,1\}$ with $c_{i}=p-1$ and $c_{j}=p-2$. Then there is a cocycle B_{i}^{\prime} such that $\left[B_{i}^{\prime}\right]=\left[B_{i}\right]$ and

$$
\begin{gathered}
\operatorname{val}_{\pi}\left(e_{i} \mu_{\varphi}\left(B_{i}^{\prime}\right)\right) \geqslant 2-2 p, \quad \operatorname{val}_{\pi}\left(e_{j} \mu_{\varphi}\left(B_{i}^{\prime}\right)\right)=3-3 p \\
\operatorname{val}_{\pi}\left(e_{i} \mu_{\xi}\left(B_{i}^{\prime}\right)\right)=1-p \quad \text { and } \quad \operatorname{val}_{\pi}\left(e_{j} \mu_{\xi}\left(B_{i}^{\prime}\right)\right) \geqslant 2-2 p .
\end{gathered}
$$

Proof. This is similar to Lemma 5.7 but choose the coboundary B such that

$$
\begin{aligned}
\mu_{\varphi}(B) & =\left(C \pi^{(p-1) c_{0}} b_{1}\left(\pi^{p}\right)-b_{0}(\pi), \pi^{(p-1) c_{1}} b_{0}\left(\pi^{p}\right)-b_{1}(\pi)\right) \\
& =\left(\pi^{1-p^{3}}+\epsilon^{(1)} h_{0}^{(1)}+h_{0}^{(1)}+h_{0}^{(2)}-C^{-1} \widetilde{h}_{0}^{(2)},-C^{-1}\left(\epsilon^{(1)} \widetilde{h}_{0}^{\prime(1)}+\widetilde{h}_{0}^{(1)}\right)\right), \\
\mu_{\xi}(B) & =\left(\left(\lambda_{\xi}^{\Sigma_{0}} \xi-1\right) b_{0}(\pi),\left(\lambda_{\xi}^{\Sigma_{1}} \xi-1\right) b_{1}(\pi)\right),
\end{aligned}
$$

by taking $b_{0}(\pi)=C^{-1} \widetilde{h}_{0}^{(2)}, \quad b_{1}(\pi)=C^{-1}\left(\epsilon^{(1)} \widetilde{h}_{0}^{\prime(1)}+\widetilde{h}_{0}^{(1)}\right)+\pi^{(p-1)(p-2)} b_{0}\left(\pi^{p}\right)$, where $\widetilde{h}_{0}^{(2)}:=$ $\sum_{s=0}^{p-2} \epsilon_{s}^{(2)} \pi^{2-2 p+s} \quad\left(\right.$ with $\left.\epsilon_{0}^{(2)}=1\right), \quad \widetilde{h}_{0}^{\prime(1)}:=\sum_{s=0}^{p-2} \epsilon_{s}^{\prime(1)} \pi^{3-3 p+s} \quad\left(\right.$ with $\left.\quad \epsilon^{\prime(1)}=1\right) \quad$ and $\quad \widetilde{h}_{0}^{(1)}:=$ $\sum_{s=1}^{p-2} \epsilon_{s}^{(1)} \pi^{2-2 p+s}$.

Proposition 5.9. If $f=2$, then

$$
V_{S}=V_{S}^{ \pm}=\operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{C \vec{c}}\right),
$$

with \pm occurring when $\vec{c}=\overrightarrow{p-2}$.
Proof. By straightforward calculations one can check that both $\iota\left[B_{0}\right]$ and $\iota\left[B_{1}\right]$ are bounded in each of the following cases that need to be considered:

- $0 \leqslant c_{0}, c_{1} \leqslant p-2,1 \leqslant a_{0}, a_{1} \leqslant p-1,\langle\vec{c}\rangle_{S}=\left(\pi^{p-1}, \pi^{p-1}\right)$;
- $c_{0}=p-1,0 \leqslant c_{1}<p-2, a_{0}=1,1 \leqslant a_{1}<p-1,\langle\vec{c}\rangle_{S}=\left(\pi^{p-1}, \pi^{2 p-2}\right)$;
- $0 \leqslant c_{0}<p-2, c_{1}=p-1,1 \leqslant a_{0}<p-1, a_{1}=1,\langle\vec{c}\rangle_{S}=\left(\pi^{2 p-2}, \pi^{p-1}\right)$;
- $p-2 \leqslant c_{0}, c_{1} \leqslant p-1, p-1 \leqslant a_{0}, a_{1} \leqslant p,\langle\vec{c}\rangle_{S}=\left(\pi^{2 p-2}, \pi^{2 p-2}\right)$;
- $c_{0}=c_{1}=p-2, a_{0}=a_{1}=p,\langle\vec{c}\rangle_{S}=\left(\pi^{2 p-2}, \pi^{2 p-2}\right)\left(\right.$ for $\left.V_{S}^{+}\right)$; and
- $c_{0}=c_{1}=p-2, a_{0}=a_{1}=1,\langle\vec{c}\rangle_{S}=\left(\pi^{p-1}, \pi^{p-1}\right)\left(\right.$ for $\left.V_{S}^{-}\right)$.

Proposition 5.10. If $f=2$, then

$$
V_{\emptyset}=V_{\emptyset}^{ \pm}=0,
$$

with \pm occurring when $\vec{c}=\overrightarrow{1}$.
Proof. We have the following cases to consider:

- $1 \leqslant c_{0}, c_{1} \leqslant p-1,1 \leqslant b_{0}, b_{1} \leqslant p-1,\langle\vec{c}\rangle_{\emptyset}=(1,1)$;
- $c_{0}=0,2 \leqslant c_{1} \leqslant p-1, b_{0}=p, 1 \leqslant b_{1} \leqslant p-2,\langle\vec{c}\rangle_{\emptyset}=\left(1, \pi^{1-p}\right)$;
- $2 \leqslant c_{0} \leqslant p-1, c_{1}=0,1 \leqslant b_{0} \leqslant p-2, b_{1}=p,\langle\vec{c}\rangle_{\emptyset}=\left(\pi^{1-p}, 1\right)$; and
- $0 \leqslant c_{0}, c_{1} \leqslant 1, p-1 \leqslant b_{0}, b_{1} \leqslant p,\langle\vec{c}\rangle_{\emptyset}=\left(\pi^{1-p}, \pi^{1-p}\right)$.

If E is a cocycle such that $\iota[E]$ is bounded, then there is a coboundary B associated to some $\left(b_{0}(\pi), b_{1}(\pi)\right) \in \mathbf{F}((\pi))^{S}$ such that $\iota(E+B)$ has $\mu_{\varphi} \in \mathbf{F}[[\pi]]^{S}$ and $\mu_{\xi} \in \pi \mathbf{F}[[\pi]]^{S}$. As $\kappa_{\varphi}(A, \vec{a}) \in\left(\mathbf{F}^{\times}\right)^{S}$ and $\langle\vec{c}\rangle_{\emptyset}=\left(\pi^{(1-p) \epsilon_{0}}, \pi^{(1-p) \epsilon_{1}}\right)$ for some $\epsilon_{j} \in\{0,1\}$, we get $\mu_{\varphi}(E+B) \in \mathbf{F}[[\pi]]^{S}$ and $\mu_{\xi}(E+B) \in \pi \mathbf{F}[[\pi]]^{S}$.

First consider the case $0 \leqslant c_{0}, c_{1}<p-1$ and $E=B_{0}+\beta B_{1}$ for some $\beta \in \mathbf{F}^{\times}$. As $\operatorname{val}_{\pi} e_{0} \mu_{\varphi}(E)=1-p$ and $\operatorname{val}_{\pi} e_{1} \mu_{\varphi}(E) \geqslant 1-p$, we have $\operatorname{val}_{\pi}\left(C \pi^{(p-1) c_{0}} b_{1}\left(\pi^{p}\right)-b_{0}(\pi)\right)=1-p$

Extensions of Rank one (φ, Γ)-modules

and $\operatorname{val}_{\pi}\left(\pi^{(p-1) c_{1}} b_{0}\left(\pi^{p}\right)-b_{1}(\pi)\right) \geqslant 1-p$. If $\operatorname{val}_{\pi} b_{0}(\pi)>1-p$, then $(p-1) c_{0}+p \operatorname{val}_{\pi} b_{1}(\pi)=1-$ p, which implies $p \mid\left(c_{0}+1\right)$, contradicting $c_{0}<p-1$. If $\operatorname{val}_{\pi} b_{0}(\pi) \leqslant 1-p$, then $(p-1) c_{1}+$ $p \operatorname{val}_{\pi} b_{0}(\pi)<1-p$, which implies that $\operatorname{val}_{\pi} b_{1}(\pi)=(p-1) c_{1}+p \operatorname{val}_{\pi} b_{0}(\pi)<1-p$, which in turn implies $(p-1) c_{0}+p \operatorname{val}_{\pi} b_{1}(\pi)<1-p$, so that $\operatorname{val}_{\pi} b_{0}(\pi)=(p-1) c_{0}+p \operatorname{val}_{\pi} b_{1}(\pi)=(p-1) \Sigma_{0}+$ $p^{2} \operatorname{val}_{\pi} b_{0}(\pi)$, yielding a contradiction. The proof that $\iota\left[B_{1}\right]$ is not bounded is the same.

Next suppose $c_{0}=p-1$ and $0<c_{1}<p-2$. First consider the case $E=B_{0}^{\prime}+\beta B_{1}$. As $\operatorname{val}_{\pi} e_{1} \mu_{\xi}(E)=1-p$, we have $\operatorname{val}_{\pi}\left(\lambda_{\xi}^{\Sigma_{1}} \xi-1\right) b_{1}(\pi)=1-p$, so that $\operatorname{val}_{\pi} b_{1}(\pi) \leqslant 2-2 p$. Then $\operatorname{val}_{\pi} \pi^{(p-1) c_{0}} b_{1}\left(\pi^{p}\right)=(p-1) c_{0}+p \operatorname{val}_{\pi} b_{1}(\pi)<(1-p)(1+p)<2-2 p=\operatorname{val}_{\pi} e_{0} \mu_{\varphi}(E)$, and so $\operatorname{val}_{\pi} b_{0}(\pi)=\operatorname{val}_{\pi} \pi^{(p-1) c_{0}} b_{1}\left(\pi^{p}\right)=(p-1) c_{0}+p \operatorname{val}_{\pi} b_{1}(\pi)$. Then again $\operatorname{val}_{\pi} \pi^{(p-1) c_{1}} b_{0}\left(\pi^{p}\right)=$ $(p-1) \Sigma_{1}+p^{2} \operatorname{val}_{\pi} b_{1}(\pi)<2-2 p=\operatorname{val}_{\pi} e_{1} \mu_{\varphi}(E), \quad$ so \quad that $\quad \operatorname{val}_{\pi} b_{1}(\pi)=\operatorname{val}_{\pi} \pi^{(p-1) c_{1}} b_{0}\left(\pi^{p}\right)=$ $(p-1) \Sigma_{1}+p^{2} \operatorname{val}_{\pi} b_{1}(\pi)$, or $\operatorname{val}_{\pi} b_{1}(\pi)=-(p-1) \Sigma_{1} /\left(p^{2}-1\right)>2-2 p$, a contradiction. The proof that $\iota\left[B_{1}\right]$ is not bounded is the same as in the case $c_{0}<p-1$.

If $c_{0}=p-1, c_{1}=p-2$, the proof is similar to the preceding case, except that we start by noting that $\operatorname{val}_{\pi} e_{0} \mu_{\xi}(E)=1-p$ if $E=B_{0}^{\prime}+\beta B_{1}$.

The proof in the case that $c_{1}=p-1$ is the same as the case $c_{0}=p-1$.
Proposition 5.11. If $f=2$, then

$$
\begin{aligned}
V_{\{1\}} & = \begin{cases}\mathbf{F}\left[B_{1}\right] & \text { if } c_{0}=p-1, \\
\mathbf{F}\left[\alpha_{1} B_{0}-\alpha_{0} B_{1}\right] & \text { if } 0<c_{0}<p-1, c_{1}=0, \\
\mathbf{F}\left[B_{0}\right] & 0 \leqslant c_{0}<p-1,0<c_{1} \leqslant p-1,\end{cases} \\
V_{\{1\}}^{+} & =\mathbf{F}\left[\alpha_{1} B_{0}-\alpha_{0} B_{1}\right],
\end{aligned} V_{\{1\}}^{-}=0, ~ \$
$$

with \pm occurring when $\vec{c}=\overrightarrow{0}$. (See Lemma 5.6 for the definition of the α_{i}.)
Proof. Unless $\vec{c}=\overrightarrow{0}, \vec{c}$ gives rise to unique $\vec{a}=\left(0, a_{1}\right), \vec{b}=\left(b_{0}, 0\right)$ with $1 \leqslant a_{1}, b_{0} \leqslant p$. If $\vec{c}=\overrightarrow{0}$, we have $\vec{a}=(0, p), \vec{b}=(1,0)$ (for V_{J}^{+}) or $\vec{a}=(0,1), \vec{b}=(p, 0)$ (for V_{J}^{-}). We always have $\langle\vec{c}\rangle_{\{1\}}=$ $\left(\pi^{p-1}, 1\right)$ except when $\vec{c}=\overrightarrow{0}, b_{0}=p, a_{0}=1$, in which case we have $\langle\vec{c}\rangle_{\{1\}}=\left(1, \pi^{1-p}\right)$.
(i) Assume $c_{0}=p-1$. It is straightforward to check that $\iota\left[B_{1}+\beta B\right]$ is bounded for some $\beta \in \mathbf{F}^{\times}$, where B is a coboundary such that

$$
\mu_{\varphi}(B)=\left(C \pi^{(p-1) c_{0}} \pi^{(1-p) p},-\pi^{1-p}\right) \quad \text { and } \quad \mu_{\xi}(B)=\left(0,\left(\lambda_{\xi}^{\Sigma_{1}} \xi-1\right)\left(\pi^{1-p}\right)\right) .
$$

Suppose $\iota\left[B_{0}^{\prime}\right]$ is bounded. There exists a coboundary B such that $\mu_{\varphi} \iota\left(B_{0}^{\prime}+B\right) \in \mathbf{F}[[\pi]]^{S}$, $\mu_{\xi} \iota\left(B_{0}^{\prime}+B\right) \in \pi \mathbf{F}[[\pi]]^{S}$, and so

$$
\begin{gathered}
\mu_{\varphi}\left(B_{0}^{\prime}\right)+\left(C \pi^{(p-1) c_{0}} b_{1}\left(\pi^{p}\right)-b_{0}(\pi), \pi^{(p-1) c_{1}} b_{0}\left(\pi^{p}\right)-b_{1}(\pi)\right) \in \pi^{1-p} \mathbf{F}[[\pi]] \times \pi^{(1-p) a_{1}} \mathbf{F}[[\pi]], \\
\mu_{\xi}\left(B_{0}^{\prime}\right)+\left(\left(\lambda_{\xi}^{\Sigma_{0}} \xi-1\right) b_{0}(\pi),\left(\lambda_{\xi}^{\Sigma_{1}} \xi-1\right) b_{1}(\pi)\right) \in \pi^{2-p} \mathbf{F}[[\pi]] \times \pi \mathbf{F}[[\pi]]
\end{gathered}
$$

for some $b_{0}(\pi), b_{1}(\pi) \in \mathbf{F}((\pi))$.
If $c_{1}<p-2$, we have $\operatorname{val}_{\pi}\left(\lambda_{\xi}^{\Sigma_{1}} \xi-1\right) b_{1}(\pi)=1-p$ as $\operatorname{val}_{\pi} e_{1} \mu_{\xi}\left(B_{0}^{\prime}\right)=1-p$, so that $\operatorname{val}_{\pi} b_{1}(\pi) \leqslant 2-2 p$. Then

$$
\operatorname{val}_{\pi}\left(\pi^{(p-1) c_{0}} b_{1}\left(\pi^{p}\right)\right)=(p-1) c_{0}+p \operatorname{val}_{\pi} b_{1}(\pi)<(1-p)(1+p)<\operatorname{val}_{\pi} e_{0} \mu_{\varphi}\left(B_{0}^{\prime}\right)
$$

and so $\operatorname{val}_{\pi} b_{0}(\pi)=(p-1) c_{0}+p \operatorname{val}_{\pi} b_{1}(\pi)$. Then again

$$
\begin{aligned}
\operatorname{val}_{\pi} \pi^{(p-1) c_{1}} b_{0}\left(\pi^{p}\right) & =(p-1) c_{1}+p \operatorname{val}_{\pi} b_{0}(\pi)=(p-1) \Sigma_{1}+p^{2} \operatorname{val}_{\pi} b_{1}(\pi) \\
& <(1-p)(1+p)<(1-p) a_{1}
\end{aligned}
$$

S. Chang and F. Diamond

so that $\operatorname{val}_{\pi} b_{1}(\pi)=(p-1) \Sigma_{1}+p^{2} \operatorname{val}_{\pi} b_{1}(\pi)$, or $\operatorname{val}_{\pi} b_{1}(\pi)=-(p-1) \Sigma_{1} /\left(p^{2}-1\right)>1-p$, a contradiction.

If $c_{1}=p-2$, start with $\operatorname{val}_{\pi}\left(\lambda_{\xi}^{\Sigma_{0}} \xi-1\right) b_{0}(\pi)=1-p$ and the same argument as above (for the case $\left.c_{1}<p-2\right)$ goes through.
(ii) Assume $0<c_{0}<p-1, c_{1}=0$. Straightforward calculations show that $\mu_{\varphi} \iota B_{0}, \mu_{\varphi} \iota B_{1} \in$ $\mathbf{F}[[\pi]]^{S}$ but $\mu_{\xi} \iota B_{0}(\pi), \mu_{\xi} \iota B_{1} \notin \pi \mathbf{F}[[\pi]]^{S}$. If, however, we take $\alpha_{1} B_{0}-\alpha_{0} B_{1}$, it has μ_{φ} obviously in $\mathbf{F}[[\pi]]^{S}$ and $\mu_{\xi}=\kappa_{\xi}(A, \vec{a})\left(\pi^{p-1} \alpha_{0} \alpha_{1}\left(g_{0}(\pi)-C \pi^{(p-1) c_{0}} g_{1}\left(\pi^{p}\right)\right), \alpha_{0} \alpha_{1}\left(g_{0}\left(\pi^{p}\right)-g_{1}(\pi)\right)\right) \in \pi \mathbf{F}[[\pi]]^{S}$.

Now suppose $\iota\left[B_{1}\right]$ is bounded, and so we have, for some coboundary B, that $\mu_{\varphi} \iota\left(B_{1}+B\right) \in$ $\mathbf{F}[[\pi]]^{S}$ and $\mu_{\xi} \iota\left(B_{1}+B\right) \in \pi \mathbf{F}[[\pi]]^{S}$, which implies

$$
\begin{gathered}
\mu_{\varphi}\left(B_{1}\right)+\left(C \pi^{(p-1) c_{0}} b_{1}\left(\pi^{p}\right)-b_{0}(\pi), \pi^{(p-1) c_{1}} b_{0}\left(\pi^{p}\right)-b_{1}(\pi)\right) \in \pi^{1-p} \mathbf{F}[[\pi]] \times \pi^{(1-p) a_{1}} \mathbf{F}[[\pi]], \\
\mu_{\xi}\left(B_{1}\right)+\left(\left(\lambda_{\xi}^{\Sigma_{0}} \xi-1\right) b_{0}(\pi),\left(\lambda_{\xi}^{\Sigma_{1}} \xi-1\right) b_{1}(\pi)\right) \in \pi^{2-p} \mathbf{F}[[\pi]] \times \pi \mathbf{F}[[\pi]]
\end{gathered}
$$

for some $b_{0}(\pi), b_{1}(\pi) \in \mathbf{F}((\pi))$.
We have $\operatorname{val}_{\pi}\left(\lambda_{\xi}^{\Sigma_{1}} \xi-1\right) b_{1}(\pi)=0$ and so $\operatorname{val}_{\pi} b_{1}(\pi) \leqslant 1-p$, so that $\operatorname{val}_{\pi} \pi^{(p-1) c_{0}} b_{1}\left(\pi^{p}\right)=$ $(p-1) c_{0}+p \operatorname{val}_{\pi} b_{1}(\pi)<1-p$. Then $\operatorname{val}_{\pi} b_{0}(\pi)=(p-1) c_{0}+p \operatorname{val}_{\pi} b_{1}(\pi)$ and $\operatorname{val}_{\pi} \pi^{(p-1) c_{1}} b_{0}\left(\pi^{p}\right)=$ $(p-1) \Sigma_{1}+p^{2} \operatorname{val}_{\pi} b_{1}(\pi)<(1-p) a_{1}$, so that $\operatorname{val}_{\pi} b_{1}(\pi)=\Sigma_{1}+p^{2} \operatorname{val}_{\pi} b_{1}(\pi)$, or $\operatorname{val}_{\pi} b_{1}(\pi)=$ $-(p-1) /\left(p^{2}-1\right) \Sigma_{1}>1-p$, a contradiction.
(iii) Assume $0 \leqslant c_{0}<p-1,0<c_{1} \leqslant p-1$. It is straightforward to check that $\iota\left[B_{0}\right]$ is bounded:

$$
\begin{aligned}
& \mu_{\varphi} \iota\left(B_{0}\right)=\left(A, \pi^{(p-1) a_{1}}\right)\left(\pi^{p-1}, 1\right)\left(\pi^{1-p}+h_{0}(\pi)\right) \in \mathbf{F}[[\pi]]^{S}, \\
& \mu_{\xi \iota} \iota\left(B_{0}\right)=\kappa_{\xi}(A, \vec{a})\left(\pi^{p-1}, 1\right)\left(\alpha_{0} g(\pi), \pi^{(p-1) c_{1}} \alpha_{0} g_{0}\left(\pi^{p}\right)\right) \in \pi \mathbf{F}[[\pi]]^{S}
\end{aligned}
$$

as $c_{1}>0$.
Now suppose $\iota\left[B_{1}\right]$ is bounded. Then there exists a coboundary B such that $\mu_{\varphi} \iota\left(B_{1}+B\right) \in$ $\mathbf{F}[[\pi]]^{S}, \mu_{\xi} \iota\left(B_{1}+B\right) \in \pi \mathbf{F}[[\pi]]^{S}$, and so

$$
\begin{gathered}
\mu_{\varphi}\left(B_{1}+B\right)+\left(C \pi^{(p-1) c_{0}} b_{1}\left(\pi^{p}\right)-b_{0}(\pi), \pi^{(p-1) c_{1}} b_{0}\left(\pi^{p}\right)-b_{1}(\pi)\right) \in \pi^{1-p} \mathbf{F}[[\pi]] \times \pi^{(1-p) a_{1}} \mathbf{F}[[\pi]], \\
\mu_{\xi}\left(B_{1}+B\right)+\left(\left(\lambda_{\xi}^{\Sigma_{0}} \xi-1\right) b_{0}(\pi),\left(\lambda_{\xi}^{\Sigma_{1}} \xi-1\right) b_{1}(\pi)\right) \in \pi^{2-p} \mathbf{F}[[\pi]] \times \pi \mathbf{F}[[\pi]] .
\end{gathered}
$$

If $c_{1}<p-1$, then the argument is the same as in case (ii).
If $c_{1}=p-1, c_{0}<p-2$, then as $\operatorname{val}_{\pi} e_{0} \mu_{\xi}\left(B_{1}^{\prime}+B\right) \geqslant 2-p$ and $\operatorname{val}_{\pi} e_{0} \mu_{\xi}\left(B_{1}^{\prime}\right)=1-p$, we have $\operatorname{val}_{\pi} e_{0} \mu_{\xi}(B)=\operatorname{val}_{\pi}\left(\lambda_{\xi}^{\Sigma_{0}} \xi-1\right) b_{0}(\pi)=1-p$, so that $\operatorname{val}_{\pi} b_{0}(\pi) \leqslant 2-2 p$. Then

$$
\begin{aligned}
\operatorname{val}_{\pi} \pi^{(p-1) c_{1}} b_{0}\left(\pi^{p}\right) & =(p-1) c_{1}+p \operatorname{val}_{\pi} b_{0}(\pi) \\
& \leqslant(1-p)(1+p)<\min \left(\operatorname{val}_{\pi} e_{1} \mu_{\varphi} B_{1}^{\prime},(1-p) a_{1}\right),
\end{aligned}
$$

so that $\operatorname{val}_{\pi} b_{1}(\pi)=(p-1) c_{1}+p \operatorname{val}_{\pi} b_{0}(\pi)$. So

$$
\operatorname{val}_{\pi} \pi^{(p-1) c_{0}} b_{1}\left(\pi^{p}\right)=(p-1) \Sigma_{0}+p^{2} \operatorname{val}_{\pi} b_{0}(\pi)<(1-p)(1+p)<\operatorname{val}_{\pi} e_{0} \mu_{\varphi}\left(B_{1}^{\prime}\right),
$$

which implies $\operatorname{val}_{\pi} b_{0}(\pi)=(p-1) \Sigma_{0}+p^{2} \operatorname{val}_{\pi} b_{0}(\pi)$, or $\operatorname{val}_{\pi} b_{0}(\pi)=-(p-1) \Sigma_{0} /\left(p^{2}-1\right)>1-p$, a contradiction.

If $c_{1}=p-1, c_{0}=p-2$, then as $\operatorname{val}_{\pi} e_{1} \mu_{\xi}\left(B_{1}^{\prime}+B\right) \geqslant 1$ and $\operatorname{val}_{\pi} e_{1} \mu_{\xi}\left(B_{1}^{\prime}\right)=1-p$, we have $\operatorname{val}_{\pi} e_{1} \mu_{\xi}(B)=\operatorname{val}_{\pi}\left(\lambda_{\xi}^{\Sigma_{1}} \xi-1\right) b_{1}(\pi)=1-p$, so that $\operatorname{val}_{\pi} b_{1}(\pi) \leqslant 2-2 p$. Then

$$
\operatorname{val}_{\pi} \pi^{(p-1) c_{0}} b_{1}\left(\pi^{p}\right)=(p-1) c_{0}+p \operatorname{val}_{\pi} b_{1}(\pi) \leqslant(1-p)(1+p)<\operatorname{val}_{\pi} e_{0} \mu_{\varphi} B_{1}^{\prime},
$$

Extensions of Rank one (φ, Γ)-modules

so that $\operatorname{val}_{\pi} b_{0}(\pi)=(p-1) c_{0}+p \operatorname{val}_{\pi} b_{1}(\pi)$. So

$$
\operatorname{val}_{\pi} \pi^{(p-1) c_{1}} b_{0}\left(\pi^{p}\right)=(p-1) \Sigma_{1}+p^{2} \operatorname{val}_{\pi} b_{1}(\pi)<(1-p)(1+p)<\operatorname{val}_{\pi} e_{1} \mu_{\varphi}\left(B_{1}^{\prime}\right),
$$

which implies $\operatorname{val}_{\pi} b_{1}(\pi)=(p-1) \Sigma_{1}+p^{2} \operatorname{val}_{\pi} b_{1}(\pi)$, or $\operatorname{val}_{\pi} b_{1}(\pi)=-(p-1) \Sigma_{1} /\left(p^{2}-1\right)>1-p$, a contradiction.
(iv) Assume $c_{0}=c_{1}=0, b_{0}=1, a_{1}=p$. Straightforward calculations show that $\mu_{\varphi} \iota B_{0}(\pi)$, $\mu_{\varphi} \iota B_{1} \in \mathbf{F}[[\pi]]^{S}$ but $\mu_{\xi} \iota B_{0}(\pi), \mu_{\xi} \iota B_{1} \notin \pi \mathbf{F}[[\pi]]^{S}$. If, however, we take $\alpha_{1} B_{0}-\alpha_{0} B_{1}$, it has μ_{φ} obviously in $\mathbf{F}[[\pi]]^{S}$ and

$$
\mu_{\xi}=\left(\pi^{p-1} \alpha_{0} \alpha_{1}\left(g_{0}(\pi)-C g_{1}\left(\pi^{p}\right)\right), \alpha_{0} \alpha_{1}\left(g_{0}\left(\pi^{p}\right)-g_{1}(\pi)\right)\right) \in \pi \mathbf{F}[[\pi]]^{S} .
$$

Now suppose $\iota\left[B_{1}\right]$ is bounded, and so we have, for some coboundary B, that $\mu_{\varphi} \iota\left(B_{1}+B\right) \in$ $\mathbf{F}[[\pi]]^{S}$ and $\mu_{\xi} \iota\left(B_{1}+B\right) \in \pi \mathbf{F}[[\pi]]^{S}$, which implies

$$
\begin{aligned}
\mu_{\varphi}\left(B_{0}\right)+\left(C b_{1}\left(\pi^{p}\right)-b_{0}(\pi), b_{0}\left(\pi^{p}\right)-b_{1}(\pi)\right) & \in \pi^{1-p} \mathbf{F}[[\pi]] \times \pi^{(1-p) p} \mathbf{F}[[\pi]], \\
\mu_{\xi}\left(B_{0}\right)+\left((\xi-1) b_{0}(\pi),(\xi-1) b_{1}(\pi)\right) & \in \pi^{2-p} \mathbf{F}[[\pi]] \times \pi \mathbf{F}[[\pi]]
\end{aligned}
$$

for some $b_{0}(\pi), b_{1}(\pi) \in \mathbf{F}((\pi))$. We have $\operatorname{val}_{\pi}(\xi-1) b_{1}(\pi)=0$ and so $\operatorname{val}_{\pi} b_{1}(\pi) \leqslant 1-p$, so that $\operatorname{val}_{\pi} b_{1}\left(\pi^{p}\right)=p \operatorname{val}_{\pi} b_{1}(\pi)<1-p$. Then $\operatorname{val}_{\pi} b_{0}(\pi)=p \operatorname{val}_{\pi} b_{1}(\pi)$ and $\operatorname{val}_{\pi} b_{0}\left(\pi^{p}\right)=p^{2} \operatorname{val}_{\pi} b_{1}(\pi)<$ $(1-p) p<\operatorname{val}_{\pi} e_{0} \mu_{\varphi}\left(B_{1}\right)$, giving $\operatorname{val}_{\pi} b_{1}(\pi)=0$ and a contradiction.
(v) Assume $c_{0}=c_{1}=0, b_{0}=p, a_{1}=1$. Suppose $\iota\left[B_{0}+\beta B_{1}\right]$ is bounded for some $\beta \in \mathbf{F}$. There exists a coboundary B such that $\mu_{\varphi} \iota\left(B_{0}+\beta B_{1}+B\right) \in \mathbf{F}[[\pi]]^{S}$ and $\mu_{\xi} \iota\left(B_{0}+\beta B_{1}+B\right) \in$ $\pi \mathbf{F}[[\pi]]^{S}$. As $\kappa_{\varphi}(A, \vec{a})\langle\vec{c}\rangle \in\left(\mathbf{F}^{\times}\right)^{S}$, we have

$$
\begin{aligned}
& \mu_{\varphi}\left(B_{0}+\beta B_{1}+B\right)=\mu_{\varphi}\left(B_{0}+\beta B_{1}\right)+\left(C b_{1}\left(\pi^{p}\right)-b_{0}(\pi), b_{0}\left(\pi^{p}\right)-b_{1}(\pi)\right) \in \mathbf{F}[[\pi]]^{S}, \\
& \mu_{\xi}\left(B_{0}+\beta B_{1}+B\right)=\mu_{\xi}\left(B_{0}+\beta B_{1}\right)+\left((\xi-1) b_{0}(\pi),(\xi-1) b_{1}(\pi)\right) \in \pi \mathbf{F}[[\pi]]^{S}
\end{aligned}
$$

for some $b_{0}(\pi), b_{1}(\pi) \in \mathbf{F}((\pi))$.
Note that

$$
\begin{aligned}
& \operatorname{val}_{\pi} e_{0} \mu_{\varphi}\left(B_{0}+\beta B_{1}\right)=1-p \leqslant \operatorname{val}_{\pi} e_{1} \mu_{\varphi}\left(B_{0}+\beta B_{1}\right), \\
& \operatorname{val}_{\pi} e_{0} \mu_{\xi}\left(B_{0}+\beta B_{1}\right) \geqslant 0, \quad \operatorname{val}_{\pi} e_{1} \mu_{\xi}\left(B_{0}+\beta B_{1}\right) \geqslant 0 .
\end{aligned}
$$

Then $\operatorname{val}_{\pi} e_{0} \mu \varphi(B)=\operatorname{val}_{\pi}\left(C b_{1}\left(\pi^{p}\right)-b_{0}(\pi)\right)=1-p$, and we get either $\operatorname{val}_{\pi} b_{0}(\pi)=1-p<$ $\operatorname{val}_{\pi} b_{1}\left(\pi^{p}\right)$ or $\operatorname{val}_{\pi} b_{1}\left(\pi^{p}\right)=\operatorname{val}_{\pi} b_{0}(\pi)<1-p$. In either case, we have $\operatorname{val}_{\pi} b_{0}\left(\pi^{p}\right)<1-p$, so $\operatorname{val}_{\pi} b_{0}\left(\pi^{p}\right)=\operatorname{val}_{\pi} b_{1}(\pi)$, giving a contradiction. The same argument proves that $\iota\left[B_{1}\right]$ is not bounded.

Similarly one proves the following proposition.
Proposition 5.12. If $f=2$, then

$$
\begin{aligned}
V_{\{0\}} & = \begin{cases}\mathbf{F}\left[B_{0}\right] & \text { if } c_{1}=p-1, \\
\mathbf{F}\left[C \alpha_{1} B_{0}-\alpha_{0} B_{1}\right] & \text { if } c_{0}=0,0<c_{1}<p-1, \\
\mathbf{F}\left[B_{1}\right] & 0<c_{0} \leqslant p-1,0 \leqslant c_{1}<p-1,\end{cases} \\
V_{\{0\}}^{+} & =\mathbf{F}\left[C \alpha_{1} B_{0}-\alpha_{0} B_{1}\right], \\
V_{\{0\}}^{-} & =0,
\end{aligned}
$$

with \pm occurring when $\vec{c}=\overrightarrow{0}$. (See Lemma 5.6 for the definition of the α_{i}.)
In proving Propositions 5.11 and 5.12 we have shown the following, which exhibits instances of coincidence of the V_{J} for distinct J.

S. Chang and F. Diamond

Corollary 5.13. Suppose $f=2$ and recall $\left(c_{0}, c_{1}\right) \neq(p-1, p-1)$.
(i) If $c_{0}=p-1$, then $V_{\{1\}}=V_{\{0\}}=\mathbf{F}\left[B_{1}\right]$.
(ii) If $c_{1}=p-1$, then $V_{\{1\}}=V_{\{0\}}=\mathbf{F}\left[B_{0}\right]$.
(iii) If $c_{0}=c_{1}=0$, then $V_{\{1\}}^{+}$and $V_{\{0\}}^{+}$are distinct and one-dimensional, and $V_{\{1\}}^{-}=V_{\{0\}}^{-}=0$.
(iv) In all other cases, $V_{\{1\}}$ and $V_{\{0\}}$ are distinct and one-dimensional.

6. Exceptional cases

6.1 Cyclotomic character

Assume $C=1, \vec{c}=\overrightarrow{p-2}$, so that

$$
\begin{aligned}
& \kappa_{\varphi}(C, \vec{c})=\left(\pi^{(p-1)(p-2)}, \ldots, \pi^{(p-1)(p-2)}\right), \\
& \kappa_{\gamma}(C, \vec{c})=\left(\left(\frac{\gamma(\pi)}{\pi \bar{\chi}(\gamma)}\right)^{p-2}, \ldots,\left(\frac{\gamma(\pi)}{\pi \bar{\chi}(\gamma)}\right)^{p-2}\right)
\end{aligned}
$$

if $\gamma \in \Gamma$. Recall that the B_{i} for all $i \in S$ have already been constructed in $\S 4.1$ and we just need to construct an additional basis element, which we will denote B_{tr} (for très ramifié). Before we do this for arbitrary $f \geqslant 1$, let us first consider the situation where $f=1$ (i.e., $K=\mathbf{Q}_{p}$) and $\mathbf{F}=\mathbf{F}_{p}$ as a foundation for the general construction. (We will go back to the general case $f \geqslant 1$ in the paragraph preceding Lemma 6.4.)
Lemma 6.1. Let $\eta \in \Gamma$ be such that $\eta \Gamma_{1}$ generates $\Gamma / \Gamma_{1} \simeq \mathbf{F}_{p}^{\times}$and let $\chi(\xi) \equiv 1+z p \bmod p^{2}$ with $0<z \leqslant p-1$. If $s \in \mathbf{Z}$ is divisible by p^{v} but not by p^{v+1} for some $v \in \mathbf{Z}$, then

$$
\begin{gathered}
\bar{\chi}(\eta) \eta\left(\pi^{s}\right)-\pi^{s} \in\left(\bar{\chi}(\eta)^{s+1}-1\right) \pi^{s}+\overline{s_{v}} \frac{\bar{\chi}(\eta)^{s+1}(\bar{\chi}(\eta)-1)}{2} \pi^{s+p^{v}}+\pi^{s+2 p^{v}} \mathbf{F}_{p}\left[\left[\pi^{p^{v}}\right]\right], \\
\bar{\chi}(\xi) \xi\left(\pi^{s}\right)-\pi^{s} \in \overline{s_{v} z}\left(\pi^{s+(p-1) p^{v}}+\pi^{s+p^{v+1}}\right)+\pi^{s+p^{v+1}(p-1)} \mathbf{F}_{p}\left[\left[\pi^{p^{v}}\right]\right],
\end{gathered}
$$

where $s=\sum_{j \geqslant v} s_{j} p^{j}$.
Proof. This is similar to the proofs of Lemmas 4.2 and 4.4.
Lemma 6.2. There exists $h^{\prime}(\pi) \in \pi^{1-2 p}+\pi^{2-2 p} \mathbf{F}[[\pi]]$ such that

$$
(\bar{\chi}(\eta) \eta-1)\left(h^{\prime}(\pi)\right) \in \mathbf{F}\left(\pi^{-p}-\pi^{-1}\right)+\pi \mathbf{F}[[\pi]] .
$$

(Recall that η is a topological generator of Γ.)
Proof. By Lemma 6.1, there exist $\epsilon_{2-2 p}, \ldots, \epsilon_{-1}, \epsilon_{0} \in \mathbf{F}$ (unique if we set $\epsilon_{-p}=\epsilon_{-1}=0$) such that

$$
(\bar{\chi}(\eta) \eta-1)\left(\pi^{1-2 p}+\epsilon_{2-2 p} \pi^{2-2 p}+\cdots+\epsilon_{-1} \pi^{-1}+\epsilon_{0}\right) \in \mathbf{F} \pi^{-p}+\mathbf{F} \pi^{-1}+\pi \mathbf{F}[[\pi]] .
$$

Set $h^{\prime}(\pi)=\pi^{1-2 p}+\epsilon_{2-2 p} \pi^{2-2 p}+\cdots+\epsilon_{-1} \pi^{-1}+\epsilon_{0}$, so

$$
(\bar{\chi}(\eta) \eta-1)\left(h^{\prime}(\pi)\right) \in \alpha \pi^{-p}+\beta \pi^{-1}+\pi \mathbf{F}[[\pi]]
$$

for some $\alpha, \beta \in \mathbf{F}$. Writing $(\bar{\chi}(\xi) \xi-1)=\left(\sum_{i=0}^{p-2} \bar{\chi}(\eta)^{i} \eta^{i}\right)(\bar{\chi}(\eta) \eta-1)$ we find that

$$
(\bar{\chi}(\xi) \xi-1)\left(h^{\prime}(\pi)\right) \in-\left(\alpha \pi^{-p}+\beta \pi^{-1}\right)+\mathbf{F}[[\pi]] .
$$

On the other hand, a direct computation shows that

$$
(\bar{\chi}(\xi) \xi-1)\left(h^{\prime}(\pi)\right) \in z\left(\pi^{-p}-\pi^{-1}\right)+\mathbf{F}[[\pi]],
$$

where $z \in \mathbf{F}^{\times}$, so that $\alpha=\beta=-z$ and the lemma follows.

Extensions of Rank one (φ, Γ)-modules

Let $h^{\prime}(\pi)$ be as in the lemma. Since $\varphi-1$ is bijective on $\pi \mathbf{F}[[\pi]]$, it follows that

$$
(\bar{\chi}(\eta) \eta-1)\left(h^{\prime}(\pi)\right) \in(\varphi-1)\left(g_{\eta}^{\prime}(\pi)\right)
$$

for a unique $g_{\eta}^{\prime} \in-z^{-1} \pi^{-1}+\pi \mathbf{F}[[\pi]]$. We now extend the definition to construct elements $g_{\gamma}^{\prime}(\pi) \in \pi^{-1} \mathbf{F}[[\pi]]$ for all $\gamma \in \Gamma$. We let

$$
g_{\eta^{n}}^{\prime}(\pi)=\sum_{i=0}^{n-1} \bar{\chi}(\eta)^{i} \eta^{i}\left(g_{\eta}^{\prime}(\pi)\right)
$$

for $n \in \mathbf{N}$. If $\gamma^{\prime} \in \Gamma_{2}$, then $\left(\bar{\chi}\left(\gamma^{\prime}\right) \gamma^{\prime}-1\right)\left(h^{\prime}(\pi)\right)$ is in $\pi \mathbf{F}[[\pi]]$ and can therefore be written as $(\varphi-1)\left(g_{\gamma^{\prime}}^{\prime}(\pi)\right)$ for a unique $g_{\gamma^{\prime}}^{\prime}(\pi) \in \pi \mathbf{F}[[\pi]]$. If $\eta^{n} \in \Gamma_{2}$, then $p(p-1) \mid n$ and the definitions coincide. Moreover, an arbitrary $\gamma \in \Gamma$ can be written as $\gamma^{\prime} \eta^{n}$ for some $\gamma^{\prime} \in \Gamma_{2}$ and $n \in \mathbf{N}$, and

$$
g_{\gamma}^{\prime}(\pi):=g_{\gamma^{\prime}}^{\prime}(\pi)+\gamma^{\prime}\left(g_{\eta^{n}}^{\prime}(\pi)\right)
$$

is independent of the choice of γ^{\prime} and n.
One can then check that $\mu=\left(h^{\prime}(\pi),\left(g_{\gamma}^{\prime}(\pi)\right)_{\gamma^{\prime} \in \Gamma}\right)$ satisfies conditions (\dagger) and (\ddagger), giving an extension

$$
0 \rightarrow M_{\mathrm{cyc}} \rightarrow E^{\prime} \rightarrow M_{0} \rightarrow 0
$$

in the category of étale (φ, Γ)-modules over \mathbf{E}_{K}, where $M_{\mathrm{cyc}}=\mathbf{E}_{K} e_{1}$ is a rank one object defined by $\varphi\left(e_{1}^{\prime}\right)=e_{1}^{\prime}$ and $\gamma\left(e_{1}^{\prime}\right)=\chi(\gamma) e_{1}^{\prime}$ if $\gamma \in \Gamma$ (and, of course, $M_{0}=\mathbf{E}_{K} e_{0}$ by $\varphi\left(e_{0}\right)=e_{0}$ and $\left.\gamma\left(e_{0}\right)=e_{0}\right)$. Using the isomorphism $M_{\mathrm{cyc}} \simeq M_{p-2}=\mathbf{E}_{K} e_{1}$ defined by $e_{1}^{\prime}=\pi^{2-p} e_{1}$ we get an extension

$$
0 \rightarrow M_{p-2} \rightarrow E \rightarrow M_{0} \rightarrow 0
$$

defined by the cocycle $\mu=\left(\pi^{3(1-p)} h(\pi),\left(\pi^{1-p} g_{\gamma}(\pi)\right)_{\gamma \in \Gamma}\right)$ with $h(\pi)=\pi^{2 p-1} h^{\prime}(\pi), g_{\gamma}(\pi)=$ $\pi g_{\gamma}^{\prime}(\pi)$.

Now we go back to the context of arbitrary $f \geqslant 1$, and define $\mu_{\varphi}\left(B_{\text {tr }}\right)=\left(\pi^{3(1-p)} h(\pi), \ldots\right.$, $\left.\pi^{3(1-p)} h(\pi)\right)$ and $\mu_{\gamma}\left(B_{\text {tr }}\right)=\left(\pi^{1-p} g_{\gamma}(\pi), \ldots, \pi^{1-p} g_{\gamma}(\pi)\right)$ for all $\gamma \in \Gamma$. It is straightforward to check that $B_{\mathrm{tr}} \in H$, so that $\left[B_{\mathrm{tr}}\right] \in \operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{\overrightarrow{p-2}}\right)$.
Remark 6.3. The class [B_{tr}] is not canonical. Choosing $\epsilon_{-p}=-\epsilon_{-1} \neq 0$ in the proof of Lemma 6.2 gives different extension classes $\left[B_{\mathrm{tr}}\right]$ differing by a multiple of $\left[B_{0}\right]+\left[B_{1}\right]+\cdots+\left[B_{f-1}\right]$.
Lemma 6.4. The extensions $\left[B_{0}\right], \ldots,\left[B_{f-1}\right],\left[B_{\mathrm{tr}}\right] \in \operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{\overrightarrow{p-2}}\right)$ are linearly independent, and therefore form a basis.

Proof. It suffices to show that $\left[B_{\mathrm{tr}}\right]$ is not contained in the span of the $\left[B_{i}\right]$. Suppose that $B_{\mathrm{tr}}=\beta_{0} B_{0}+\cdots+\beta_{f-1} B_{f-1}$ for some $\beta_{i} \in \mathbf{F}$. Then $E:=B_{\mathrm{tr}}-\left(\beta_{0} B_{0}+\cdots+\beta_{f-1} B_{f-1}\right)$ is a coboundary, so that

$$
\mu_{\varphi}(E)=\left(\pi^{(p-1)(p-2)} b_{1}\left(\pi^{p}\right)-b_{0}(\pi), \ldots, \pi^{(p-1)(p-2)} b_{0}\left(\pi^{p}\right)-b_{f-1}(\pi)\right)
$$

for some $b_{i}(\pi) \in \mathbf{F}((\pi))$. As

$$
\begin{aligned}
\mu_{\varphi}\left(B_{\mathrm{tr}}\right) & =\left(\pi^{3(1-p)} h(\pi), \ldots, \pi^{3(1-p)} h(\pi)\right) \\
\mu_{\xi}\left(B_{\mathrm{tr}}\right) & =\left(\pi^{1-p} g_{\xi}(\pi), \ldots, \pi^{1-p} g_{\xi}(\pi)\right),
\end{aligned}
$$

where $h(\pi), g_{\xi}(\pi) \in \mathbf{F}[[\pi]]^{\times}$, we have $\operatorname{val}_{\pi} e_{i} \mu_{\varphi}(E)=\operatorname{val}_{\pi}\left(\pi^{(p-1)(p-2)} b_{i+1}\left(\pi^{p}\right)-b_{i}(\pi)\right)=3(1-p)$ for all $i \in S$. For each $i \in S$, letting $s_{i}:=\operatorname{val}_{\pi}\left(b_{i}(\pi)\right)$, we have $s_{i} \leqslant 3(1-p)$ or $(p-1)(p-2)+$ $s_{i+1} p=3(1-p)$. The latter is impossible looking at divisibility by p, and so $s_{i} \leqslant 3(1-p)$ for all $i \in S$, which yields a contradiction after cycling.

S. Chang and F. Diamond

The determination of which linear combinations of $\left[B_{0}\right],\left[B_{1}\right], \ldots,\left[B_{f-1}\right]$ are bounded is exactly as in the generic case. We now extend this to include $\left[B_{\mathrm{tr}}\right]$.

Proposition 6.5. Suppose that $C=1, \vec{c}=\overrightarrow{p-2}$ and $A \in \mathbf{F}^{\times}$;
(i) if $J=S$, then

$$
\iota\left[B_{\mathrm{tr}}\right] \in \operatorname{Ext}_{\mathrm{bdd}}^{1}\left(M_{A \vec{p}}, M_{A \overrightarrow{0}}\right),
$$

so that $V_{S}^{+}=\operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{\overrightarrow{p-2}}\right)$;
(ii) $V_{S}^{-}=\bigoplus_{i \in S} \mathbf{F}\left[B_{i}\right]$, and if $J \neq S$, then $V_{J}=\bigoplus_{i \in J} \mathbf{F}\left[B_{i+1}\right]$.

Proof. (i) This is straightforward: as $\vec{a}=\vec{p}$ and $\langle\vec{c}\rangle_{S}=\left(\pi^{2(p-1)}, \ldots, \pi^{2(p-1)}\right)$, we have

$$
\begin{aligned}
& \mu_{\varphi}\left(\iota B_{\mathrm{tr}}\right)=\left(A \pi^{(p-1)^{2}} h(\pi), \pi^{(p-1)^{2}} h(\pi), \ldots, \pi^{(p-1)^{2}} h(\pi)\right) \in \mathbf{F}[[\pi]]^{S}, \\
& \mu_{\xi}\left(\iota B_{\text {tr }}\right)=\left(\lambda_{\xi}^{(p-2)\left(p^{f}-1\right) /(p-1)}, \ldots, \lambda_{\xi}^{(p-2)\left(p^{f}-1\right) /(p-1)}\right)\left(\pi^{p-1} g_{\xi}(\pi), \ldots, \pi^{p-1} g_{\xi}(\pi)\right) \in \pi \mathbf{F}[[\pi]]^{S} .
\end{aligned}
$$

(ii) Let $E:=\beta_{0} B_{0}+\cdots+\beta_{f-1} B_{f-1}+B_{\text {tr }}$ for some $\beta_{0}, \ldots, \beta_{f-1} \in \mathbf{F}$. We must show that, in all other cases where $\iota: \operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{\overrightarrow{p-2}}\right) \rightarrow \operatorname{Ext}^{1}\left(M_{A \vec{a}}, M_{A \vec{b}}\right)$ was defined, we have that $\iota[E]$ is not bounded.

So suppose that $\iota[E]$ is bounded. Then there exists a coboundary B defined by $\left(b_{0}(\pi), \ldots, b_{f-1}(\pi)\right)$ such that $\mu_{\varphi}(\iota(E+B)) \in \mathbf{F}[[\pi]]^{S}$ and $\mu_{\xi}(\iota(E+B)) \in \pi \mathbf{F}[[\pi]]^{S}$. We have $e_{i}\langle\vec{c}\rangle_{J}=1$ or π^{p-1} and $\operatorname{val}_{\pi} e_{i} \mu_{\xi}(\iota E) \leqslant 0$. It follows that $\operatorname{val}_{\pi} e_{i} \mu_{\xi}(B)=\operatorname{val}_{\pi} e_{i} \mu_{\xi}(E)=1-p$, so by Lemma 4.4, we must have $s_{i}:=\operatorname{val}_{\pi}\left(b_{i}(\pi)\right) \leqslant 2(1-p)$. Then we have $\operatorname{val}_{\pi}\left(\pi^{(p-1) c_{i}} b_{i}\left(\pi^{p}\right)\right)=$ $(p-1)(p-2)+s_{i} p \leqslant(1-p)(p+2)$, so that $s_{i-1}=(p-1)(p-2)+s_{i} p$. Cycling this through indices leads to a contradiction.

6.2 Trivial character

In this subsection, we assume that $C=1, \vec{c}=\overrightarrow{0}$, so that $\kappa_{\varphi}(C, \vec{c})=\kappa_{\gamma}(C, \vec{c})=(1, \ldots, 1) \in$ $\mathbf{F}((\pi))^{S}$.

Using Lemma 4.2 we can find unique $\epsilon_{2-p}, \ldots, \epsilon_{-1} \in \mathbf{F}$ such that

$$
(\eta-1)\left(\pi^{1-p}+\epsilon_{2-p} \pi^{2-p}+\cdots+\epsilon_{-1} \pi^{-1}\right) \in \mathbf{F}[[\pi]] .
$$

Set $H(\pi)=\pi^{1-p}+\epsilon_{2-p} \pi^{2-p}+\cdots+\epsilon_{-1} \pi^{-1}$. By Lemma 4.4, we get

$$
(\xi-1)(H(\pi)) \in \mathbf{F}^{\times}+\pi \mathbf{F}[[\pi]],
$$

which implies, via Proposition 4.6, that

$$
(\eta-1)(H(\pi)) \in \nu+\pi \mathbf{F}[[\pi]]
$$

for some $\nu \in \mathbf{F}-\{0\}$. Likewise we have

$$
(\eta-1)\left(H\left(\pi^{p}\right)\right) \in \nu+\pi \mathbf{F}[[\pi]],
$$

so that

$$
(\eta-1)\left(-H\left(\pi^{p}\right)+H(\pi)\right) \in \pi \mathbf{F}[[\pi]] .
$$

Note that, if $\gamma^{\prime} \in \Gamma_{2}$, then $\left(\gamma^{\prime}-1\right)(H(\pi)) \in \pi \mathbf{F}[[\pi]]$, and it follows that $\left(\gamma^{\prime}-1\right)\left(-H\left(\pi^{p}\right)+\right.$ $H(\pi)) \in \pi \mathbf{F}[[\pi]]$. Now for each $\gamma \in \Gamma$, writing $\gamma=\eta^{n} \gamma^{\prime}$ where $\gamma^{\prime} \in \Gamma_{2}$, we get by Lemma 4.5 that

$$
(\gamma-1)\left(-H\left(\pi^{p}\right)+H(\pi)\right) \in \pi \mathbf{F}[[\pi]] .
$$

Extensions of Rank one (φ, Γ)-modules

As the map $g(\pi) \mapsto g\left(\pi^{p^{f}}\right)-g(\pi)$ defines a bijection $\pi \mathbf{F}[[\pi]] \rightarrow \pi \mathbf{F}[[\pi]]$, for each $\gamma \in \Gamma$ there exists a unique $g_{\gamma}(\pi) \in \pi \mathbf{F}[[\pi]]$ such that

$$
g_{\gamma}\left(\pi^{p^{f}}\right)-g_{\gamma}(\pi)=(\gamma-1)\left(-H\left(\pi^{p}\right)+H(\pi)\right)
$$

or equivalently

$$
(\varphi-1)\left(g_{\gamma}(\pi), g_{\gamma}\left(\pi^{p^{f-1}}\right), \ldots, g_{\gamma}\left(\pi^{p}\right)\right)=(\gamma-1)\left(-H\left(\pi^{p}\right)+H(\pi), 0, \ldots, 0\right) .
$$

If we set

$$
\begin{aligned}
& \mu_{\varphi}\left(B_{0}\right)=\left(-H\left(\pi^{p}\right)+H(\pi), 0, \ldots, 0\right), \\
& \mu_{\gamma}\left(B_{0}\right)=\left(g_{\gamma}(\pi), g_{\gamma}\left(\pi^{p^{f-1}}\right), \ldots, g_{\gamma}\left(\pi^{p}\right)\right),
\end{aligned}
$$

$\mu\left(B_{0}\right)=\left(\mu_{\varphi}\left(B_{0}\right),\left(\mu_{\gamma}\left(B_{0}\right)\right)_{\gamma \in \Gamma}\right)$ satisfies the condition (\dagger) by the considerations above. We note that $\mu_{\gamma}\left(B_{0}\right)$ are uniquely determined so that they satisfy (\dagger). As both $\mu_{\gamma \gamma^{\prime}}\left(B_{0}\right)$ and $\mu_{\gamma \gamma^{\prime}}^{\prime}:=\gamma\left(\mu_{\gamma^{\prime}}\left(B_{0}\right)\right)+\mu_{\gamma}\left(B_{0}\right)$ satisfy (\dagger) for $\gamma \gamma^{\prime}$, they must coincide, so that (\ddagger) is satisfied.

For each $1 \leqslant i \leqslant f-1$, we construct $\left[B_{i}\right] \in \operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{\overrightarrow{0}}\right)$ in a similar way, i.e., by setting

$$
\begin{aligned}
& \mu_{\varphi}\left(B_{i}\right)=\left(0, \ldots, 0,-H\left(\pi^{p}\right)+H(\pi), 0, \ldots, 0\right), \\
& \mu_{\gamma}\left(B_{i}\right)=\left(g_{\gamma}\left(\pi^{p^{i}}\right), \ldots, g_{\gamma}\left(\pi^{p}\right), g_{\gamma}(\pi), g_{\gamma}\left(\pi^{p^{f-1}}\right), \ldots, g_{\gamma}\left(\pi^{p^{i+1}}\right)\right) .
\end{aligned}
$$

Remark 6.6. For each $0 \leqslant i \leqslant f-1$, consider the coboundary $B_{i}^{\prime \prime}$ by

$$
\begin{aligned}
& \mu_{\varphi}\left(B_{i}^{\prime \prime}\right)=\left(0, \ldots, 0, H\left(\pi^{p}\right),-H(\pi), 0, \ldots, 0\right), \\
& \mu_{\gamma}\left(B_{i}^{\prime \prime}\right)=(0, \ldots, 0,0,(\gamma-1)(H(\pi)), 0, \ldots, 0),
\end{aligned}
$$

where $H(\pi)$ is the i th component and $-H(\pi)$ is the $(i+1)$ th component of $\mu_{\varphi}\left(B_{i}^{\prime \prime}\right)$ and $(\gamma-1)(H(\pi))$ is the $(i+1)$ th component of $\mu_{\gamma}\left(B_{i}^{\prime \prime}\right)$. Define $B_{i}^{\prime}=B_{i}+B_{i}^{\prime \prime}$ for each $0 \leqslant i \leqslant f-1$. Then $\mathbf{F}\left[B_{i}\right]=\mathbf{F}\left[B_{i}^{\prime}\right]$ in $\operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{\overrightarrow{0}}\right)$ for all $0 \leqslant i \leqslant f-1$, where we have

$$
\begin{aligned}
& \mu_{\varphi}\left(B_{i}^{\prime}\right)=(0, \ldots, 0, H(\pi),-H(\pi), 0, \ldots, 0), \\
& \mu_{\gamma}\left(B_{i}^{\prime}\right)=\left(g_{\gamma}\left(\pi^{p^{2}}\right), \ldots, g_{\gamma}\left(\pi^{p}\right), g_{\gamma}(\pi), g_{\gamma}\left(\pi^{p^{f-1}}\right)+(\gamma-1) H(\pi), g_{\gamma}\left(\pi^{p^{f-2}}\right), \ldots, g_{\gamma}\left(\pi^{p^{i+1}}\right)\right) .
\end{aligned}
$$

Next, we define B_{nr} (for non-ramifié) by setting

$$
\begin{aligned}
& \mu_{\varphi}\left(B_{\mathrm{nr}}\right)=(1,0, \ldots, 0), \\
& \mu_{\gamma}\left(B_{\mathrm{nr}}\right)=(0,0, \ldots, 0)
\end{aligned}
$$

for all $\gamma \in \Gamma$. It is straightforward to check that this defines an extension $\left[B_{\mathrm{nr}}\right] \in$ $\operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{\overrightarrow{0}}\right)$. We can 'move' the 1 in μ_{φ} to any component, i.e., taking any of $(1,0, \ldots, 0)$, $(0,1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)$ to be μ_{φ} defines the same cocycle class (up to coboundaries).

Set $B_{\mathrm{cyc}}=\sum_{i=0}^{f-1} B_{i}^{\prime}$. Then we have

$$
\begin{aligned}
& \mu_{\varphi}\left(B_{\mathrm{cyc}}\right)=(0, \ldots, 0), \\
& \mu_{\gamma}\left(B_{\mathrm{cyc}}\right)=\left(g_{\gamma}^{\prime}(\pi), \ldots, g_{\gamma}^{\prime}(\pi)\right)
\end{aligned}
$$

for some $g_{\gamma}^{\prime} \in \mathbf{F}[[\pi]]$. Since $(\varphi-1) g_{\gamma}^{\prime}(\pi)=0$, we must have in fact $g_{\gamma}^{\prime}(\pi)=g_{\gamma}^{\prime} \in \mathbf{F}$. In particular, $g_{\eta}^{\prime}=\nu$. Moreover, $\gamma \mapsto g_{\gamma}^{\prime}$ defines a homomorphism $\Gamma \rightarrow \mathbf{F}$. Thus if $\gamma=\eta^{n_{\gamma}}$ modulo Γ_{2}, then

$$
\mu_{\gamma}\left(B_{\mathrm{cyc}}\right)=\nu \bar{n}_{\gamma}(1, \ldots, 1) .
$$

Lemma 6.7. The extensions $\left[B_{\mathrm{nr}}\right],\left[B_{0}\right], \ldots,\left[B_{f-1}\right] \in \operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{\overrightarrow{0}}\right)$ are linearly independent, and therefore form a basis.

S. Chang and F. Diamond

Proof. Suppose that $E=\beta B_{\mathrm{nr}}+\beta_{0} B_{0}+\cdots+\beta_{f-1} B_{f-1}$ is a coboundary. By adding some coboundary B we have

$$
\begin{aligned}
e_{0} \mu_{\varphi}(E+B)= & \beta+\beta_{0}\left(-H\left(\pi^{p}\right)+H(\pi)\right)+\beta_{1}\left(-H\left(\pi^{p^{2}}\right)+H\left(\pi^{p}\right)\right)+\cdots \\
& +\beta_{f-2}\left(-H\left(\pi^{p^{f-1}}\right)+H\left(\pi^{p^{f-2}}\right)\right)+\beta_{f-1}\left(-H\left(\pi^{p^{f}}\right)+H\left(\pi^{p^{f-1}}\right)\right) \\
= & \beta+\beta_{0} H(\pi)+\left(\beta_{1}-\beta_{0}\right) H\left(\pi^{p}\right)+\cdots \\
& +\left(\beta_{f-1}-\beta_{f-2}\right) H\left(\pi^{p^{f-1}}\right)-\beta_{f-1} H\left(\pi^{p^{f}}\right) \\
= & (\Phi-1)\left(\sum_{j \geqslant s} b_{j} \pi^{j}\right)
\end{aligned}
$$

for some $\sum_{j \geqslant s} b_{j} \pi^{j} \in \mathbf{F}((\pi))$. Equating constant terms gives $\beta=0$. If $\beta_{f-1} \neq 0$, then $s=$ $1-p, \beta_{0} H(\pi)=-\left(b_{1-p} \pi^{1-p}+\cdots+b_{-1} \pi^{-1}\right)$ and $\beta_{0}=\beta_{1}=\cdots=\beta_{f-1}$. It follows that $E=$ $\beta_{f-1} \sum_{i=0}^{f-1} B_{i}$ is cohomologous to $\beta_{f-1} B_{\mathrm{cyc}}$, and therefore that B_{cyc} is a coboundary. Thus there exists $\left(b_{0}(\pi), \ldots, b_{f-1}(\pi)\right) \in \mathbf{F}((\pi))^{S}$ such that

$$
\begin{aligned}
(\varphi-1)\left(b_{0}(\pi), \ldots, b_{f-1}(\pi)\right) & =(0, \ldots, 0) \\
(\xi-1)\left(b_{0}(\pi), \ldots, b_{f-1}(\pi)\right) & =-\nu(1, \ldots, 1),
\end{aligned}
$$

which is impossible, as the former implies that $b_{0}(\pi)=\cdots=b_{f-1}(\pi) \in \mathbf{F}$, so that we get $(\xi-1)\left(b_{0}(\pi), \ldots, b_{f-1}(\pi)\right)=0$. Thus, $\beta_{f-1}=0$.

If $0 \leqslant i \leqslant f-2$ is the largest such that $\beta_{i} \neq 0$, then $\operatorname{val}_{\pi}\left(e_{0} \mu_{\varphi}(E+B)\right)=p^{i+1}(1-p)$, which leads to an easy contradiction. Thus, $\beta_{i}=0$ for all $0 \leqslant i \leqslant f-2$.

We now assume $f=2$ and compute the spaces of bounded extensions. We then have the following cases to consider:

- $J=S, a_{0}=a_{1}=p-1$;
- $J=\{1\}, b_{0}=1, a_{1}=p$ (for V_{J}^{+});
- $J=\{1\}, b_{0}=p, a_{1}=1$ (for V_{J}^{-});
- $J=\{0\}, a_{0}=p, b_{1}=1$ (for $\left.V_{J}^{+}\right)$;
- $J=\{0\}, a_{0}=1, b_{1}=p$ (for V_{J}^{-});
- $J=\emptyset, b_{0}=b_{1}=p-1$.

Proposition 6.8. If $f=2, C=1, \vec{c}=\overrightarrow{0}$ and $A \in \mathbf{F}^{\times}$then:
(i) $V_{S}=\operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{\overrightarrow{0}}\right)$;
(ii) $V_{\{i\}}^{+}=\left\langle\left[B_{\mathrm{nr}}\right],\left[B_{i}\right]\right\rangle$ for $i=0,1$;
(iii) $V_{\{i\}}^{-}=\left\langle\left[B_{\mathrm{nr}}\right]\right\rangle$ for $i=0,1$;
(iv) $V_{\emptyset}=\{0\}$.

Proof. (i) We have $\langle\vec{c}\rangle_{S}=\left(\pi^{p-1}, \pi^{p-1}\right)$ and it is straightforward to check that $\iota\left[B_{0}\right], \iota\left[B_{1}\right]$ and $\iota\left[B_{\mathrm{nr}}\right]$ are bounded.
(ii) Suppose $J=\{1\}$. Then $b_{0}=1, a_{1}=p$ and $\langle\vec{c}\rangle_{\{1\}}=\left(\pi^{p-1}, 1\right)$ and it is straightforward to check that $\iota\left[B_{1}\right]$ and $\iota\left[B_{\mathrm{nr}}\right]$ are bounded. Therefore, it suffices to prove that $\iota\left[B_{\mathrm{cyc}}\right]$ is not bounded. So suppose that B is a coboundary such that $\iota\left(B_{\mathrm{cyc}}+B\right)$ has $\mu_{\varphi} \in \mathbf{F}[[\pi]]^{S}$ and $\mu_{\xi} \in \pi \mathbf{F}[[\pi]]^{S}$. Then

$$
\mu_{\varphi}\left(B_{\mathrm{cyc}}+B\right)=\mu_{\varphi}(B)=\left(b_{1}\left(\pi^{p}\right)-b_{0}(\pi), b_{0}\left(\pi^{p}\right)-b_{1}(\pi)\right)
$$

Extensions of Rank one (φ, Γ)-modules

for some $b_{0}(\pi), b_{1}(\pi) \in \mathbf{F}((\pi))$, and $\left(A \pi^{p-1}, \pi^{p(p-1)}\right) \mu_{\varphi}(B) \in \mathbf{F}[[\pi]]^{S}$. Letting $v_{0}=\operatorname{val}_{\pi}\left(b_{0}(\pi)\right)$ and $v_{1}=\operatorname{val}_{\pi}\left(b_{1}(\pi)\right)$, we see that $v_{0} \geqslant 1-p$ and $v_{1} \geqslant 0$. Therefore

$$
\mu_{\xi}\left(B_{\mathrm{cyc}}+B\right)=\left(-\nu+(\xi-1) b_{0}(\pi),-\nu+(\xi-1) b_{1}(\pi)\right),
$$

and since $-\nu+(\xi-1) b_{1}(\pi)$ has constant term $-\nu$, we arrive at a contradiction.
The case $J=\{0\}$ is the same.
(iii) Suppose again that $J=\{1\}$. Now we have $b_{0}=p, a_{1}=1$ and $\langle\vec{c}\rangle_{\{1\}}=\left(1, \pi^{1-p}\right)$ and it is clear that $\iota\left[B_{\mathrm{mr}}\right]$ is bounded. Therefore, it suffices to prove that, if $E=\beta_{0} B_{0}+\beta_{1} B_{1}$ with β_{0}, β_{1} such that $\iota[E]$ is bounded, then $\beta_{0}=\beta_{1}=0$. The argument in the proof of Lemma 6.7 shows that $\beta_{0}=\beta_{1}$, so we are reduced to proving that $\iota\left[B_{\text {cyc }}\right]$ is not bounded. The proof of this is similar to the proof of part (ii).

The case $J=\{0\}$ is the same.
(iv) Now we have $\langle\vec{c}\rangle_{\emptyset}=\left(\pi^{1-p}, \pi^{1-p}\right)$, and if $\iota[E]$ is bounded then $\mu_{\varphi}(E+B) \in \pi^{p-1} \mathbf{F}[[\pi]]^{S}$ for some coboundary B. The proof of Lemma 6.7 then shows that E is cohomologous to a multiple of B_{cyc}, and the boundedness of $\iota\left[B_{\mathrm{cyc}}\right]$ yields a contradiction as above.

6.3 Case $\boldsymbol{p}=\mathbf{2}$

We assume $p=2$ throughout this section. Now Γ is not pro-cyclic; we write $\Gamma=\Delta \times \Gamma_{2}$, where $\Delta=\langle\eta\rangle$ with $\chi(\eta)=-1$, so Δ has order 2 , and we choose a topological generator ξ of Γ_{2}.

Lemma 6.9. We have $\lambda_{\eta} \equiv 1+\pi \bmod \pi^{2^{f}} \mathbf{F}[[\pi]]$. If $\gamma \in \Gamma_{2}$, then $\lambda_{\gamma} \equiv 1 \bmod \pi^{3} \mathbf{F}[[\pi]]$.
Proof. The first assertion follows from the fact that

$$
\lambda_{\eta}^{2^{f}-1}=\eta(\pi) / \pi=(1+\pi)^{-1} .
$$

For the second assertion, note that, if $\gamma \in \Gamma_{2}$, then $\chi(\gamma) \equiv 1 \bmod 4$, so $\gamma(\pi) / \pi \equiv 1 \bmod \pi^{3} \mathbf{F}[[\pi]]$.
Let $C \in \mathbf{F}^{\times}$and $\vec{c}=\left(c_{0}, \ldots, c_{f-1}\right) \in\{0,1\}^{S}$ with some $c_{j}=0$ be given. First assume that $C \neq 1$ if $\vec{c}=\overrightarrow{0}$, so that $C \pi^{\Sigma_{j} \vec{c}} \Phi-1: \mathbf{F}[[\pi]] \rightarrow \mathbf{F}[[\pi]]$ defines a valuation-preserving bijection for all $j \in S$. As in the case $p>2$, we will define for each $i \in S$ an element $H_{i}(\pi) \in \mathbf{F}((\pi))$ such that

$$
\left(\lambda_{\gamma}^{\Sigma_{i} \vec{c}} \gamma-1\right) H_{i}(\pi) \in \mathbf{F}[[\pi]]
$$

for all $\gamma \in \Gamma$. If $c_{i}=0$, we let $H_{i}(\pi)=\pi^{-1}$; otherwise we use the following lemma.
Lemma 6.10. Suppose that $c_{i}=1$, and $r \in 0, \ldots, f-1$ is such that $c_{i+1}=\cdots=c_{i+r}=0$ and $c_{i+r+1}=1$. Let

$$
H_{i}(\pi)=\pi^{1-2^{r+2}}+\pi^{1+2^{r}-2^{r+2}} .
$$

Then $\left(\lambda_{\gamma}^{\Sigma_{i} \vec{c}} \gamma-1\right) H_{i}(\pi) \in \mathbf{F}[[\pi]]$ for all $\gamma \in \Gamma$.
Proof. Note that we can assume $f \geqslant 2$. We have

$$
\lambda_{\gamma}^{\Sigma_{i}} \gamma \pi^{1-2^{r+2}}=\lambda_{\gamma}^{\Sigma_{i}}\left(\frac{\gamma(\pi)}{\pi}\right)^{1-2^{r+2}} \pi^{1-2^{r+2}}=\lambda_{\gamma}^{\Sigma_{i}+\left(2^{f}-1\right)\left(1-2^{r+2}\right)} \pi^{1-2^{r+2}} .
$$

Note that $\Sigma_{i}=1$ if $r=f-1$ and $\Sigma_{i} \equiv 1+2^{r+1} \bmod 2^{r+2}$ otherwise. In either case we have $\Sigma_{i}+\left(2^{f}-1\right)\left(1-2^{r+2}\right) \equiv 2^{r+1} \bmod 2^{r+2}$. It follows that

$$
\left(\lambda_{\gamma}^{\Sigma_{i}} \gamma-1\right)\left(\pi^{1-2^{r+2}}\right) \equiv\left(\lambda_{\gamma}^{r^{r+1}}-1\right) \pi^{1-2^{r+2}} \bmod \mathbf{F}[[\pi]] .
$$

S. Chang and F. Diamond

Similarly we find that

$$
\left(\lambda_{\gamma}^{\Sigma_{i}} \gamma-1\right)\left(\pi^{1+2^{r}-2^{r+2}}\right) \equiv\left(\lambda_{\gamma}^{2^{r}}-1\right) \pi^{1+2^{r}-2^{r+2}} \bmod \mathbf{F}[[\pi]] .
$$

Lemma 6.9 gives $\lambda_{\eta}^{2^{s}} \equiv 1+\pi^{2^{s}} \bmod \pi^{2^{s+f}}$ for $s \geqslant 0$, and it follows that

$$
\left(\lambda_{\eta}^{2^{r+1}}-1\right) \pi^{1-2^{r+2}} \equiv\left(\lambda_{\eta}^{2^{r}}-1\right) \pi^{1+2^{r}-2^{r+2}} \equiv \pi^{1+2^{r+1}-2^{r+2}} \bmod \mathbf{F}[[\pi]] .
$$

Therefore the lemma holds for $\gamma=\eta$. We also get that $\lambda_{\gamma}^{2^{s}} \equiv 1 \bmod \pi^{3 \times 2^{s}}$ for $\gamma \in \Gamma_{2}$, from which it follows that $\left(\lambda_{\gamma}^{2^{r+1}}-1\right) \pi^{1-2^{r+2}}$ and $\left(\lambda_{\gamma}^{2^{r}}-1\right) \pi^{1+2^{r}-2^{r+2}}$ are in $\mathbf{F}[[\pi]]$. The lemma therefore holds for $\gamma \in \Gamma_{2}$ as well, and we deduce from Lemma 4.5 that it holds for all $\gamma \in \Gamma$.

By the bijectivity of $C \pi^{\Sigma_{0} \vec{c}} \Phi-1$, for each $\gamma \in \Gamma$ we have a unique $G_{i}(\pi)=G_{i, \gamma}(\pi) \in \mathbf{F}[[\pi]]$ such that $\left(C \pi^{\Sigma_{0} \vec{c}} \Phi-1\right)\left(G_{i}(\pi)\right)=\left(\lambda_{\gamma}^{\Sigma_{i} \vec{c}} \gamma-1\right)\left(H_{i}(\pi)\right)$. Then letting

$$
\begin{aligned}
& \mu_{\varphi}\left(B_{i}\right)=\left(0, \ldots, 0, H_{i}(\pi), 0, \ldots, 0\right) \\
& \mu_{\gamma}\left(B_{i}\right)=\left(G_{0}(\pi), \ldots, G_{i}(\pi), \ldots, G_{f-1}(\pi)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
G_{0}(\pi) & =C \pi^{c_{0}+2 c_{1}+\cdots+2^{i-1} c_{i-1}} G_{i}\left(\pi^{2^{i}}\right), \\
G_{1}(\pi) & =\pi^{c_{1}+2 c_{2}+\cdots+2^{i-2} c_{i-1}} G_{i}\left(\pi^{2^{i-1}}\right), \\
& \vdots \\
G_{i-1}(\pi) & =\pi^{c_{i-1}} G_{i}\left(\pi^{2}\right), \\
G_{i+1}(\pi) & =C \pi^{c_{i+1}+2 c_{i+2} \cdots+2^{f-2} c_{i-1}} G_{i}\left(\pi^{2{ }^{f-1}}\right), \\
& \vdots \\
G_{f-1}(\pi) & =C \pi^{c_{f-1}+2 c_{0}+\cdots+2^{i} c_{i-1}} G_{i}\left(\pi^{2^{i+1}}\right),
\end{aligned}
$$

gives rise to an extension $\left[B_{i}\right] \in \operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{C \vec{c}}\right)$. By almost identical arguments to the case $p>2$, one finds that $\left[B_{0}\right], \ldots,\left[B_{f-1}\right]$ are linearly independent, so that they form a basis.

Now suppose that $C=1$ and $\vec{c}=\overrightarrow{0}$. We can define, similarly to the $p>2$ case, $\left[B_{0}\right], \ldots,\left[B_{f-2}\right],\left[B_{f-1}\right]$ such that

$$
\begin{aligned}
\mu_{\varphi}\left(B_{0}\right) & =\left(\pi^{-2}+\pi^{-1}, 0, \ldots, 0\right), \\
\mu_{\varphi}\left(B_{1}\right) & =\left(0, \pi^{-2}+\pi^{-1}, 0, \ldots, 0\right), \\
& \vdots \\
\mu_{\varphi}\left(B_{f-1}\right) & =\left(0, \ldots, 0, \pi^{-2}+\pi^{-1}\right) .
\end{aligned}
$$

As before, each B_{i} is cohomologous to B_{i}^{\prime} with

$$
\mu_{\varphi}\left(B_{i}\right)=\left(0, \ldots, 0, \pi^{-1}, \pi^{-1}, 0, \ldots, 0\right),
$$

the non-zero entries being in the $i, i+1$ coordinates (unless $f=1$, in which case $\mu_{\varphi}\left(B_{0}\right)=0$). We again set $B_{\mathrm{cyc}}=\sum_{i=0}^{f-1} B_{i}^{\prime}$, and define a cocycle B_{nr} by setting

$$
\begin{aligned}
& \mu_{\varphi}\left(B_{\mathrm{nr}}\right)=(1,0, \ldots, 0) \\
& \mu_{\gamma}\left(B_{\mathrm{nr}}\right)=(0,0, \ldots, 0)
\end{aligned}
$$

for all $\gamma \in \Gamma$.

Extensions of rank one (φ, Γ)-modules

The difference now is that, if $p=2$, then $\operatorname{dim}_{\mathbf{F}} \operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{\overrightarrow{0}}\right)=f+2$, so we need one more basis element. We define $B_{\text {tr }}$ by

$$
\begin{aligned}
\mu_{\varphi}\left(B_{\mathrm{nr}}\right) & =(0,0, \ldots, 0), \\
\mu_{\gamma}\left(B_{\mathrm{nr}}\right) & =n_{\gamma}(1,1, \ldots, 1),
\end{aligned}
$$

where $n_{\gamma}=0$ if $\gamma \in \Gamma_{3} \cup \eta \Gamma_{3}$, and $n_{\gamma}=1$ otherwise (so $\gamma \mapsto n_{\gamma}$ defines a homomorphism $\Gamma \rightarrow \mathbf{F}$). One can check as in the case $p>2$ that the elements $\left[B_{\mathrm{nr}}\right],\left[B_{0}\right],\left[B_{1}\right], \ldots,\left[B_{f-1}\right],\left[B_{\mathrm{tr}}\right]$ are linearly independent, hence form a basis for $\operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{\overrightarrow{0}}\right)$.

Finally we assume $f=2$ and compute the spaces of bounded extensions. There are three possibilities to consider:
(i) $\vec{c}=(0,1)$ or $(1,0)$;
(ii) $\vec{c}=(0,0)$ and $C \neq 1$;
(iii) $\vec{c}=(0,0)$ and $C=1$.

We omit the proofs of the following which are essentially the same as for $p>2$.
Proposition 6.11. If $\vec{c}=(0,1)$ or $(1,0)$, then:

- $V_{S}=\operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{C \vec{c}}\right)$;
- if $\vec{c}=(0,1)$, then $V_{\{0\}}=V_{\{1\}}=\mathbf{F}\left[B_{0}\right]$;
- if $\vec{c}=(1,0)$, then $V_{\{0\}}=V_{\{1\}}=\mathbf{F}\left[B_{1}\right]$;
- $V_{\emptyset}=0$.

Proposition 6.12. If $\vec{c}=(0,0)$ and $C \in \mathbf{F}^{\times}$with $C \neq 1$, then:

- $V_{S}^{+}=V_{S}^{-}=\operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{C \overrightarrow{0}}\right)$;
- $V_{\{1\}}^{+}=\mathbf{F}\left[B_{0}+B_{1}\right]$;
- $V_{\{0\}}^{+}=\mathbf{F}\left[C B_{0}+B_{1}\right]$;
- $V_{\{1\}}^{-}=V_{\{0\}}^{-}=V_{\emptyset}^{+}=V_{\emptyset}^{-}=0$.

Proposition 6.13. If $\vec{c}=(0,0)$ and $C=1$, then:

- $V_{S}^{+}=V_{S}^{-}=\operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{\overrightarrow{0}}\right)$;
- $V_{\{i\}}^{+}=\mathbf{F}\left[B_{\mathrm{nr}}\right] \oplus \mathbf{F}\left[B_{i}\right]$ for $i=0,1$;
- $V_{\{i\}}^{-}=\mathbf{F}\left[B_{\mathrm{nr}}\right]$ for $i=0,1$;
- $V_{\emptyset}^{+}=V_{\emptyset}^{-}=0$.

Remark 6.14. With a view towards relating bounded extensions to crystalline ones, we would have liked $V_{S}^{-}=\mathbf{F}\left[B_{\mathrm{nr}}\right] \oplus \mathbf{F}\left[B_{0}\right] \oplus \mathbf{F}\left[B_{1}\right]$ in the trivial case. This could have been achieved with a more restrictive definition of boundedness, requiring for example that $\mu_{\gamma} \in \pi^{2} \mathbf{F}[[\pi]]^{S}$ for $\gamma \in \Gamma_{2}$ if $p=2$. However, we opted instead for the definition we found most uniform and easiest to work with.

7. Crystalline \Rightarrow bounded

The paper [BDJ10] formulates conjectures concerning weights of $\bmod p$ Hilbert modular forms in terms of the associated local Galois representations $G_{K} \rightarrow \mathrm{GL}_{2}(\mathbf{F})$. When the local representation is reducible, i.e., of the form $\left(\begin{array}{cc}\chi_{1} & * \\ 0 & \chi_{2}\end{array}\right)$, the set of weights is determined by the associated class

S. Chang and F. Diamond

in $H^{1}\left(G_{K}, \mathbf{F}\left(\chi_{1} \chi_{2}^{-1}\right)\right)$, or more precisely whether the class lies in certain distinguished subspaces. These subspaces are defined in terms of reductions of crystalline extensions of crystalline characters. Our aim is to relate these to the spaces of bounded extensions we computed in the preceding sections. The idea is to show that Wach modules over $\mathbf{A}_{K, F}^{+}$associated to crystalline extensions have bounded reductions. This is easily seen to be true when the Wach module itself is the extension of two Wach modules; the problem is that this is not always the case. Recall that Theorem 2.17 establishes an equivalence of categories between crystalline representations and Wach modules over \mathbf{B}_{K}^{+}. We note however that \mathbf{N} does not define an exact functor from G_{K}-stable lattices to \mathbf{A}_{K}^{+}-modules.

Example 7.1. Let $K=\mathbf{Q}_{p}$ and $V=\mathbf{Q}_{p}(1-p) \oplus \mathbf{Q}_{p}$. The corresponding Wach module is $\mathbf{N}(V)=$ $\mathbf{B}_{\mathbf{Q}_{p}}^{+} e_{1} \oplus \mathbf{B}_{\mathbf{Q}_{p}}^{+} e_{2}$ with:

- $\varphi\left(e_{1}\right)=q^{p-1} e_{1}$ and $\gamma\left(e_{1}\right)=(\gamma(\pi) / \chi(\gamma) \pi)^{p-1} e_{1}$ for $\gamma \in \Gamma$;
- φ and Γ acting trivially on e_{2}.

Let $f_{1}=p^{-1}\left(e_{1}-\pi^{p-1} e_{2}\right)$ and consider the $\mathbf{A}_{\mathbf{Q}_{p}}^{+}$-lattice $N=\mathbf{A}_{\mathbf{Q}_{p}}^{+} f_{1} \oplus \mathbf{A}_{\mathbf{Q}_{p}}^{+} e_{2}$ in $\mathbf{N}(V)$. Then it is straightforward to check that N is a Wach module over $\mathbf{A}_{\mathbf{Q}_{p}}^{+}$, hence corresponds to a $G_{\mathbf{Q}_{p}}$-stable lattice T in V. Such a lattice necessarily fits into an exact sequence

$$
0 \rightarrow \mathbf{Z}_{p}(1-p) \rightarrow T \rightarrow \mathbf{Z}_{p} \rightarrow 0
$$

of \mathbf{Z}_{p}-representations of $G_{\mathbf{Q}_{p}}$, but there is no surjective morphism $\alpha: N \rightarrow \mathbf{A}_{\mathbf{Q}_{p}}^{+}$. Indeed, the image would have to be generated over $\mathbf{A}_{\mathbf{Q}_{p}}^{+}$by elements $\alpha\left(f_{1}\right)$ and $\alpha\left(e_{2}\right)$ satisfying $p \alpha\left(f_{1}\right)=$ $-\pi^{p-1} \alpha\left(e_{2}\right)$, and hence could not be free over $\mathbf{A}_{\mathbf{Q}_{p}}^{+}$. This example is somewhat special since V is split and T can also be written as an extension

$$
0 \rightarrow \mathbf{Z}_{p} \rightarrow T \rightarrow \mathbf{Z}_{p}(1-p) \rightarrow 0
$$

which does correspond to an extension of Wach modules. However, it illustrates the problem, which we shall see also occurs for lattices in non-split extensions of \mathbf{Q}_{p}-representations.

We will prove under certain hypotheses that the relevant extensions of \mathbf{Z}_{p}-representations do in fact correspond to extensions of Wach modules. In particular, we will show this holds in the generic case, and in all but a few special cases when $f=2$. As a result, we will be able to give a complete description of the distinguished subspaces in [BDJ10] in terms of (φ, Γ)-modules in the generic case and the case $f=2$.

7.1 The extension lemma

We first establish a general criterion for a Wach module over $\mathbf{A}_{K, F}^{+}$to arise from an extension of two Wach modules. We consider extensions of crystalline representations of arbitrary dimension since it is no more difficult than the case of one-dimensional representations.

Suppose that we have an exact sequence

$$
0 \rightarrow V_{1} \rightarrow V \rightarrow V_{2} \rightarrow 0
$$

of crystalline \mathbf{Q}_{p}-representations of G_{K} with Hodge-Tate weights in $[0, b]$ for some $b \geqslant 0$. We shall identify V_{1} with a subrepresentation of V. By Theorem 2.17, we have an exact sequence of corresponding Wach modules over \mathbf{B}_{K}^{+}:

$$
0 \rightarrow M_{1} \rightarrow M \rightarrow M_{2} \rightarrow 0,
$$

where $M=\mathbf{N}(V), M_{1}=\mathbf{N}\left(V_{1}\right)=\mathbf{N}(V) \cap \mathbf{D}\left(V_{1}\right)$ and M_{2} is the image of $\mathbf{N}(V)$ in $\mathbf{D}\left(V_{2}\right)$. Now suppose that T is a G_{K}-stable lattice in V. Letting $T_{1}=T \cap V_{1}$ and $T_{2}=T / T_{1}$, we have an exact sequence

$$
0 \rightarrow T_{1} \rightarrow T \rightarrow T_{2} \rightarrow 0
$$

of \mathbf{Z}_{p}-representations of G_{K}. Letting $N=\mathbf{N}(T)=M \cap \mathbf{D}(T)$ be the Wach module in $M=\mathbf{N}(V)$ corresponding to T, we see that $N_{1}:=N \cap M_{1}=\mathbf{N}\left(T_{1}\right)$ since

$$
N \cap M_{1}=\mathbf{N}(T) \cap \mathbf{D}\left(V_{1}\right)=\mathbf{D}(T) \cap \mathbf{N}(V) \cap \mathbf{D}\left(V_{1}\right)=\mathbf{D}(T) \cap \mathbf{N}\left(V_{1}\right)=\mathbf{D}\left(T_{1}\right) \cap \mathbf{N}\left(V_{1}\right) .
$$

The quotient $N_{2}:=N / N_{1}$ is a finitely generated torsion-free \mathbf{A}_{K}^{+}-module with an action of φ and Γ such that $q^{b} N_{2} \subset \varphi^{*}\left(N_{2}\right)$ and Γ acts trivially on $N_{2} / \pi N_{2}$. (Note that N_{2} is torsion-free since $N / N_{1} \hookleftarrow M_{2}$, but N_{2} is not necessarily free, as we will see below.) Furthermore $\mathbf{N}(T) \rightarrow \mathbf{N}\left(T_{2}\right)$ induces an injective homomorphism $N_{2} \rightarrow \mathbf{N}\left(T_{2}\right)$, which becomes an isomorphism on tensoring with \mathbf{B}_{K}^{+}.

Letting $\mathbf{E}_{K}^{+}=\mathbf{A}_{K}^{+} / p \mathbf{A}_{K}^{+}, \bar{N}=N / p N$ and $\bar{N}_{i}=N_{i} / p N_{i}$, we know also that

$$
\bar{N}[1 / \pi]=\mathbf{E}_{K} \otimes_{\mathbf{E}_{K}^{+}} \bar{N} \quad \text { and } \quad \bar{N}_{i}[1 / \pi]=\mathbf{E}_{K} \otimes_{\mathbf{E}_{K}^{+}} \bar{N}_{i}
$$

for $i=1,2$ are the (φ, Γ)-modules over \mathbf{E}_{K} corresponding to the reductions $\bmod p$ of the corresponding G_{K}-stable lattices. Moreover \bar{N}_{1} and \bar{N} are free over \mathbf{E}_{K}^{+}and the homomorphism $\bar{N}_{1} \rightarrow \bar{N}$ is injective; we identify \bar{N}_{1} with a submodule of \bar{N}.
Lemma 7.2. The following are equivalent:
(i) the homomorphism $\mathbf{N}(T) \rightarrow \mathbf{N}\left(T_{2}\right)$ is surjective;
(ii) $N_{2}=\mathbf{N}(T) / \mathbf{N}\left(T_{1}\right)$ is free over \mathbf{A}_{K}^{+}; and
(iii) $\bar{N}_{1}=\bar{N} \cap \mathbf{D}\left(T_{1} / p T_{1}\right)$.

Proof. If $\mathbf{N}(T) \rightarrow \mathbf{N}\left(T_{2}\right)$ is surjective, then $N_{2} \cong \mathbf{N}\left(T_{2}\right)$ is free over \mathbf{A}_{K}^{+}. Conversely, if N_{2} is free, then $\mathbf{N}(T)$ maps onto a Wach module over \mathbf{A}_{K}^{+}in $\mathbf{N}\left(V_{2}\right)$, which by Theorem 2.17 is of the form $\mathbf{N}\left(T_{2}^{\prime}\right)$ for some G_{K}-stable lattice T_{2}^{\prime} in V_{2}; moreover $\mathbf{N}\left(T_{2}^{\prime}\right) \subset \mathbf{N}\left(T_{2}\right)$ implies that $T_{2}^{\prime} \subset T_{2}$. On the other hand, since $\mathbf{N}(T)$ maps to $\mathbf{N}\left(T_{2}^{\prime}\right), \mathbf{D}(T)$ maps to $\mathbf{D}\left(T_{2}^{\prime}\right)$, hence T maps to T_{2}^{\prime}, and therefore $T_{2}=T_{2}^{\prime}$.

Since $\mathbf{B}_{K}^{+} \otimes_{\mathbf{A}_{K}^{+}} N_{2} \cong \mathbf{N}\left(V_{2}\right)$ is free of rank $d_{2}:=\operatorname{dim}_{\mathbf{Q}_{p}} V_{2}$ over B_{K}^{+}, it follows from Nakayama's lemma that N_{2} is free over \mathbf{A}_{K}^{+}if and only if $N_{2} / p N_{2}=\bar{N} / \bar{N}_{1}$ is free of rank d_{2} over \mathbf{E}_{K}^{+}. Since \bar{N} and \bar{N}_{1} are free over \mathbf{E}_{K}^{+}and the difference of their ranks is d_{2}, this in turn is equivalent to \bar{N} / \bar{N}_{1} being torsion-free over \mathbf{E}_{K}^{+}, which in turn is equivalent to $\bar{N}_{1}=\bar{N} \cap \bar{N}_{1}[1 / \pi]$.

Example 7.3. Returning to Example 7.1, note that, since $e_{1}-\pi^{p-1} e_{2} \in p N$, we have $\pi^{p-1} \bar{e}_{2}=$ $-\bar{e}_{1} \in \bar{N}$, so $\bar{e}_{2}=-\pi^{1-p} \bar{e}_{1} \in \bar{N}_{1}^{\prime}$, where $\bar{N}_{1}^{\prime}=\bar{N} \cap \bar{N}_{1}[1 / \pi]$. Thus we find in this case that $\bar{N}_{1}=\mathbf{F}_{p}[[\pi]] \bar{e}_{1}$, but $\bar{N}_{1}^{\prime}=\pi^{1-p} \mathbf{F}_{p}[[\pi]] \bar{e}_{1}$, so the criterion of the lemma is not satisfied.

We remark that everything above holds with coefficients; in particular, if

$$
0 \rightarrow T_{1} \rightarrow T \rightarrow T_{2} \rightarrow 0
$$

is an exact sequence of G_{K}-stable \mathcal{O}_{F}-lattices in crystalline representations, then the sequence

$$
0 \rightarrow \mathbf{N}\left(T_{1}\right) \rightarrow \mathbf{N}(T) \rightarrow \mathbf{N}\left(T_{2}\right) \rightarrow 0
$$

of $\mathbf{A}_{K, F}^{+}$-modules is exact if and only if

$$
\mathbf{N}\left(T_{1}\right) / \varpi_{F} \mathbf{N}\left(T_{1}\right)=\left(\mathbf{N}(T) / \varpi_{F} \mathbf{N}(T)\right) \cap \mathbf{D}\left(T_{1} / \varpi_{F} T_{1}\right)
$$

S. Chang and F. Diamond

7.2 Extensions of rank one modules

We now specialize to the case where V_{1} and V_{2} are one-dimensional over F, with labeled HodgeTate weights $\left(b_{f-1}, b_{0}, \ldots, b_{f-2}\right)$ and $\left(a_{f-1}, a_{0}, \ldots, a_{f-2}\right)$ where each $a_{i}, b_{i} \geqslant 0$. Suppose that we have an exact sequence

$$
0 \rightarrow V_{1} \rightarrow V \rightarrow V_{2} \rightarrow 0
$$

of crystalline F-representations of G_{K}, and T is a G_{K}-stable \mathcal{O}_{F}-lattice in V. We thus have exact sequences

$$
0 \rightarrow T_{1} \rightarrow T \rightarrow T_{2} \rightarrow 0 \quad \text { and } \quad 0 \rightarrow \bar{T}_{1} \rightarrow \bar{T} \rightarrow \bar{T}_{2} \rightarrow 0
$$

where each T_{i} is a G_{K}-stable \mathcal{O}_{F}-lattices in V_{i} and \cdot denotes reduction modulo ϖ_{F}. We let $N=\mathbf{N}(T)$ be the Wach module over $\mathbf{A}_{K, F}^{+}$corresponding to T, and \bar{N} its reduction modulo ϖ_{F}. Thus \bar{N} is a free rank two $\mathbf{E}_{K, F}^{+}$-module with an action of φ and Γ such that Γ acts trivially modulo $\bar{N} / \pi \bar{N}$. Furthermore $\mathbf{E}_{K, F} \otimes_{\mathbf{E}_{K, F}^{+}} \bar{N} \cong \mathbf{D}(\bar{T})$ as (φ, Γ)-modules over $\mathbf{E}_{K, F}$. Letting $\bar{N}_{1}^{\prime}=\mathbf{D}\left(\bar{T}_{1}\right) \cap \bar{N}$ and $\bar{N}_{2}^{\prime}=\bar{N} / \bar{N}_{1}^{\prime}$, we see that each \bar{N}_{i}^{\prime} is an $\mathbf{E}_{K, F^{\prime}}^{+}$-lattice in $\mathbf{D}\left(\bar{T}_{i}\right)$, stable under φ and Γ with Γ acting trivially modulo π.

From the classification of rank one (φ, Γ)-modules over $\mathbf{E}_{K, F}$, we know that $\mathbf{D}\left(\bar{T}_{1}\right) \cong M_{C \vec{c}}=$ $\mathbf{E}_{K, F} e$ for some $C \in \mathbf{F}^{\times}$and $\vec{c} \in \mathbf{Z}^{S}$. Under this isomorphism, \bar{N}_{1}^{\prime} corresponds to a submodule of the form $\left(\pi^{r_{0}}, \pi^{r_{1}}, \ldots, \pi^{r_{f-1}}\right) \mathbf{E}_{K, F}^{+} e$. Since Γ acts trivially on $\mathbf{E}_{K, F}^{+} e / \pi \mathbf{E}_{K, F}^{+} e$ and on $\bar{N}_{1}^{\prime} / \pi \bar{N}_{1}^{\prime}$, we see that $(p-1) \mid r_{i}$ for $i=0, \ldots, f-1$. Moreover,

$$
\varphi^{*}\left(\bar{N}_{1}^{\prime}\right)=\left(\pi^{(p-1) b_{0}^{\prime}}, \ldots, \pi^{\left.(p-1) b_{f-1}^{\prime}\right)} \bar{N}_{1}^{\prime}\right.
$$

for some $b_{0}^{\prime}, \ldots, b_{f-1}^{\prime}$, all non-negative since \bar{N}_{1}^{\prime} is stable under φ. Similarly we have

$$
\varphi^{*}\left(\bar{N}_{2}^{\prime}\right)=\left(\pi^{(p-1) a_{0}^{\prime}}, \ldots, \pi^{(p-1) a_{f-1}^{\prime}}\right) \bar{N}_{2}^{\prime}
$$

for some $a_{0}^{\prime}, \ldots, a_{f-1}^{\prime} \geqslant 0$.
For the following proposition, recall that $\Sigma_{j}(\vec{c})=\sum_{i=0}^{f-1} c_{i+j} p^{i}$, where c_{k} is defined for $k \in \mathbf{Z}$ by setting $c_{k}=c_{k^{\prime}}$ if $k \equiv k^{\prime} \bmod f$. We also define a partial ordering on \mathbf{Z}^{S} by $\vec{c} \leqslant \vec{c}^{\prime}$ if $c_{i} \leqslant c_{i}^{\prime}$ for all i.

Proposition 7.4. With the above notation, we have:
(i) $\min \left(a_{i}, b_{i}\right) \leqslant a_{i}^{\prime} \leqslant \max \left(a_{i}, b_{i}\right), \min \left(a_{i}, b_{i}\right) \leqslant b_{i}^{\prime} \leqslant \max \left(a_{i}, b_{i}\right)$ and $a_{i}^{\prime}+b_{i}^{\prime}=a_{i}+b_{i}$ for $i=$ $0, \ldots, f-1$;
(ii) if $\vec{a} \leqslant \vec{b}$ or $\vec{b} \leqslant \vec{a}$, then $\{\vec{a}, \vec{b}\}=\left\{\vec{a}^{\prime}, \vec{b}^{\prime}\right\}$;
(iii) $\Sigma_{j}\left(\vec{a}^{\prime}\right) \geqslant \Sigma_{j}(\vec{a}), \quad \Sigma_{j}\left(\vec{b}^{\prime}\right) \leqslant \Sigma_{j}(\vec{b}), \quad \Sigma_{j}\left(\vec{a}^{\prime}\right) \equiv \Sigma_{j}(\vec{a}) \bmod \left(p^{f}-1\right) \quad$ and $\quad \Sigma_{j}\left(\vec{b}^{\prime}\right) \equiv \Sigma_{j}(\vec{b}) \bmod$ ($p^{f}-1$) for $j=0, \ldots, f-1$; and
(iv) $\vec{a}=\vec{a}^{\prime}$ if and only if $\vec{b}=\vec{b}^{\prime}$ if and only if $\mathbf{N}(T) \rightarrow \mathbf{N}\left(T_{2}\right)$ is surjective.

Proof. (i) We first prove that $a_{i}^{\prime}+b_{i}^{\prime}=a_{i}+b_{i}$ for $i=0, \ldots, f-1$. The $\mathbf{A}_{K, F^{+}}^{+}$module $\wedge_{\mathbf{A}_{K, F}^{+}}^{2} \mathbf{N}(T)$ inherits actions of φ and Γ, making it a Wach module in $\wedge_{\mathbf{B}_{K, F}^{+}}^{2} \mathbf{N}(V) \cong \mathbf{N}\left(\wedge_{F}^{2} V\right)$, hence it corresponds to an \mathcal{O}_{F}-lattice in $\wedge_{F}^{2} V$. The same is true of $\mathbf{N}\left(T_{1}\right) \otimes_{\mathbf{A}_{K, F}^{+}} \mathbf{N}\left(T_{2}\right)$; since any two such lattices are scalar multiples of each other, it follows that the corresponding Wach modules over $\mathbf{A}_{K, F}^{+}$are isomorphic, and hence that

$$
\bar{N}_{1}^{\prime} \otimes_{\mathbf{E}_{K, F}^{+}} \bar{N}_{2}^{\prime} \cong \wedge_{\mathbf{E}_{K, F}^{+}}^{2} \bar{N} \cong\left(\mathbf{N}\left(T_{1}\right) / \varpi_{F} \mathbf{N}\left(T_{1}\right)\right) \otimes_{\mathbf{E}_{K, F}^{+}}\left(\mathbf{N}\left(T_{2}\right) / \varpi_{F} \mathbf{N}\left(T_{2}\right)\right)
$$

Extensions of Rank one (φ, Γ)-modules

as $\mathbf{E}_{K, F}^{+}$-modules. Moreover, the isomorphisms are compatible with the action of φ, so $a_{i}^{\prime}+b_{i}^{\prime}=$ $a_{i}+b_{i}$ for all i.

For the inequalities, suppose first that $\min \left(a_{i}, b_{i}\right)=0$ for each i. Since $a_{i}+b_{i}=a_{i}^{\prime}+b_{i}^{\prime}$, we know that $a_{i}^{\prime}+b_{i}^{\prime} \leqslant \max \left(a_{i}, b_{i}\right)$ for each i, and the result follows. The general case follows by twisting T by a character with the correct Hodge structure and $\mathbf{N}(T)$ by the corresponding Wach module.
(ii) By twisting we can again reduce to the case where $\min \left(a_{i}, b_{i}\right)=0$ for each i. The condition $\vec{a} \leqslant \vec{b}$ or $\vec{b} \leqslant \vec{a}$ becomes \vec{a} or $\vec{b}=\overrightarrow{0}$, and we must show that \vec{a}^{\prime} or $\overrightarrow{b^{\prime}}=\overrightarrow{0}$. The result then follows from the equality $\vec{a}+\vec{b}=\vec{a}^{\prime}+\vec{b}^{\prime}$ proved in (i).

If $\vec{a}^{\prime} \neq \overrightarrow{0}$ and $\overrightarrow{b^{\prime}} \neq \overrightarrow{0}$, then $\varphi^{f}\left(\bar{N}_{i}^{\prime}\right) \subset \pi \bar{N}_{i}^{\prime}$ for $i=1,2$, so that $\varphi^{2 f}(\bar{N}) \subset \pi \bar{N}$. This means that φ is topologically nilpotent on N in the sense that $\varphi(N) \subset\left(\pi, \varpi_{F}\right) N$ for some $n>0$.

On the other hand, the F-representation V of G_{K} is ordinary in the sense that there is an exact sequence

$$
0 \rightarrow V_{0} \rightarrow V \rightarrow V / V_{0} \rightarrow 0,
$$

where V_{0} is unramified, V / V_{0} is positive crystalline and each is one-dimensional over F. (If $\vec{b}=\overrightarrow{0}$, then take $V_{0}=V_{1}$; if $\vec{b} \neq \overrightarrow{0}$ and $\vec{a}=\overrightarrow{0}$, then the sequence $0 \rightarrow V_{1} \rightarrow V \rightarrow V_{2} \rightarrow 0$ splits and we can take V_{0} to be the image of V_{2}.) Since $\mathbf{D}_{\text {crys }}\left(V_{0}\right) \subset \mathbf{D}_{\text {crys }}(V) \cong \mathbf{N}(V) / \pi \mathbf{N}(V)$ and $N / \pi N$ is a φ-stable lattice in $\mathbf{N}(V) / \pi \mathbf{N}(V)$, we see that there is an element $e_{0} \in N / \pi N$ such that $e_{0} \notin \varpi_{F}(N / \pi N)$ and $\phi\left(e_{0}\right)=u e_{0}$ for some $u \in\left(\mathcal{O}_{F} \otimes \mathcal{O}_{K}\right)^{\times}$. Choosing a lift $\tilde{e}_{0} \in N$ of e_{0}, we have that $\varphi\left(\tilde{e}_{0}\right) \in u \tilde{e}_{0}+\left(\pi, \varpi_{F}\right) N$, contradicting that φ is topologically nilpotent on N.
(iii) Since $\bar{N}_{1}=\mathbf{N}\left(T_{1}\right) / \varpi_{F} \mathbf{N}\left(T_{1}\right)$ is contained in \bar{N}_{1}^{\prime}, we can write $\bar{N}_{1}=\left(\pi^{t_{0}}, \pi^{t_{1}}, \ldots, \pi^{t_{f-1}}\right) \bar{N}_{1}^{\prime}$ for some integers $t_{0}, t_{1}, \ldots, t_{f-1} \geqslant 0$. We therefore have

$$
\begin{aligned}
\phi^{*}\left(\overline{N_{1}}\right) & =\left(\pi^{p t_{1}}, \pi^{p t_{2}}, \ldots, \pi^{p t_{f-1}}, \pi^{p t_{0}}\right) \phi^{*}\left(\bar{N}_{1}^{\prime}\right) \\
& =\left(\pi^{b_{0}^{\prime}+p t_{1}}, \pi^{b_{1}^{\prime}+p t_{2}}, \ldots, \pi^{b_{f-2}^{\prime}+p t_{f-1}}, \pi^{b_{f-1}^{\prime}+p t_{0}}\right) \overline{N_{1}^{\prime}} .
\end{aligned}
$$

On the other hand, we also have

$$
\begin{aligned}
\phi^{*}\left(\overline{N_{1}}\right) & =\left(\pi^{b_{0}}, \pi^{b_{1}}, \ldots, \pi^{b_{f-1}}\right)\left(\overline{N_{1}}\right) \\
& =\left(\pi^{b_{0}+t_{0}}, \pi^{b_{1}+t_{1}}, \ldots, \pi^{b_{f-1}+t_{f-1}}\right) \overline{N_{1}^{\prime}} .
\end{aligned}
$$

It follows that $b_{j}+t_{j}=b_{j}^{\prime}+p t_{j+1}$ and thus $\Sigma_{j}(\vec{b})+\sum_{i=0}^{f-1} t_{i+j} p^{i}=\Sigma_{j}\left(\vec{b}^{\prime}\right)+\sum_{i=0}^{f-1} t_{i+j+1} p^{i+1}$, and therefore that $\Sigma_{j}(\vec{b})=t_{j}\left(p^{f}-1\right)+\Sigma_{j}\left(\overrightarrow{b^{\prime}}\right)$. The assertions concerning $\Sigma_{j}\left(\overrightarrow{b^{\prime}}\right)$ follow, and those concerning $\Sigma_{j}\left(\vec{a}^{\prime}\right)$ then follow using (i).
(iv) We see from the proof of (iii) that the hypotheses of Lemma 7.2 are satisfied if and only if $\bar{N}_{1}=\bar{N}_{1}^{\prime}$ if and only if $\vec{t}=0$. On the other hand, $\vec{b}=\vec{b}^{\prime}$ if and only if $t_{i}=p t_{i+1}$ for $i=0, \ldots, f-1$, which implies that $t_{i}=p^{f} t_{i}$ for $i=0, \ldots, f-1$, hence is equivalent to $\vec{t}=\overrightarrow{0}$. That $\vec{a}=\vec{a}^{\prime}$ if and only if $\vec{b}=\vec{b}^{\prime}$ follows from (i).

7.3 Generic case

In this subsection, we specialize to the generic case in the sense of $\S 5.2$, namely $0<c_{i}<p-1$ for all i. Recall that if $J \subset S$, then there are integers a_{i} and b_{i} for $i \in S$ such that:

- $1 \leqslant a_{i} \leqslant p$ if $i \in J$, and $a_{i}=0$ if $i \notin J ;$
- $1 \leqslant b_{i} \leqslant p$ if $i \notin J$, and $b_{i}=0$ if $i \in J$; and
- $\sum_{i \in S} b_{i} p^{i}-\sum_{i \in S} a_{i} p^{i} \equiv \sum_{i \in S} c_{i} p^{i} \bmod p^{f}-1$.

S. Chang and F. Diamond

Moreover, the a_{i} and b_{i} are uniquely determined by \vec{c} and J except in the case where we can take either $a_{i}=p$ for $i \in J$ and $b_{i}=1$ for $i \notin J$, or $a_{i}=1$ for $i \in J$ and $b_{i}=p$ for $i \notin J$.

Lemma 7.5. Suppose that $0<c_{i}<p-1$ for all i. Then $a_{i}<p$ and $b_{i}<p$ for all i unless $\vec{c}=\overrightarrow{1}$, $J=\emptyset$ and $\vec{b}=\vec{p}$, or $\vec{c}=\overrightarrow{p-2}, J=S$ and $\vec{a}=\vec{p}$. In particular, \vec{a} and \vec{b} are uniquely determined by \vec{c} and J except in the above two cases where we can also have \vec{b} or $\vec{a}=\overrightarrow{1}$ instead of \vec{p}.

Proof. Suppose that $b_{i}=p$ and consider $\Sigma_{i}(\vec{c})$. We have $\Sigma_{i}(\vec{c}) \equiv \Sigma_{i}(\vec{b})-\Sigma_{i}(\vec{a}) \bmod \left(p^{f}-1\right)$ and

$$
1+p+\cdots+p^{f-1} \leqslant \Sigma_{i}(\vec{c}) \leqslant\left(p^{f}-1\right)-\left(1+p+\cdots+p^{f-1}\right) .
$$

If $\Sigma_{i}(\vec{b})-\Sigma_{i}(\vec{a}) \in\left[0, p^{f}-1\right)$, then $\Sigma_{i}(\vec{c})=\Sigma_{i}(\vec{b})-\Sigma_{i}(\vec{a}) \equiv 0 \bmod p$, so $c_{i}=0$, giving a contradiction. If $\Sigma_{i}(\vec{b})-\Sigma_{i}(\vec{a}) \in\left[1-p^{f}, 0\right)$, then $\Sigma_{i}(\vec{c})=p^{f}-1+\Sigma_{i}(\vec{b})-\Sigma_{i}(\vec{a}) \equiv p-1 \bmod p$, so $c_{i}=p-1$, giving a contradiction. If $\Sigma_{i}(\vec{b})-\Sigma_{i}(\vec{a}) \geqslant p^{f}-1$, then $0 \leqslant \Sigma_{i}(\vec{b})-\Sigma_{i}(\vec{a})-\left(p^{f}-\right.$ $1) \leqslant 1+\cdots+p^{f-1}$, giving $\Sigma_{i}(\vec{c})=1+\cdots+p^{f-1}$, so that $\vec{c}=\overrightarrow{1}, J=\emptyset$ and $\vec{b}=\vec{p}$. If $\Sigma_{i}(\vec{b})-$ $\Sigma_{i}(\vec{a}) \leqslant 1-p^{f}$, then similar considerations give a contradiction. The proof in the case $a_{i}=p$ is similar (in fact, one can exchange \vec{c} with $\overrightarrow{p-1}-\vec{c}, J$ with its complement and \vec{a} with \vec{b}), giving $\vec{c}=\overrightarrow{p-2}, J=S$ and $\vec{a}=\vec{p}$.

Suppose that $V_{1}=F\left(\chi_{1}\right)$ and $V_{2}=F\left(\chi_{2}\right)$, where χ_{1} and χ_{2} are crystalline characters of G_{K} with labeled Hodge-Tate weights $\left(b_{f-1}, b_{0}, \ldots, b_{f-2}\right)$ and $\left(a_{f-1}, a_{0}, \ldots, a_{f-2}\right)$ respectively, V is an extension

$$
0 \rightarrow V_{1} \rightarrow V \rightarrow V_{2} \rightarrow 0
$$

of representations of G_{K} over F, and T is a G_{K}-stable \mathcal{O}_{F}-lattice in V. Letting $T_{1}=T \cap V_{1}$ and $T_{2}=T / T_{1}$, we have

$$
0 \rightarrow T_{1} \rightarrow T \rightarrow T_{2} \rightarrow 0
$$

Lemma 7.6. Suppose that $\vec{c} \in \mathbf{Z}^{S}$ is generic and $\vec{a}, \vec{b} \in \mathbf{Z}^{S}$ are as above. If V is crystalline, then

$$
0 \rightarrow \mathbf{N}\left(T_{1}\right) \rightarrow \mathbf{N}(T) \rightarrow \mathbf{N}\left(T_{2}\right) \rightarrow 0
$$

is exact.
Proof. Since V is crystalline, there is a Wach module $N=\mathbf{N}(T)$ over $\mathbf{A}_{K, F}^{+}$corresponding to T. Since \vec{c} is generic, we have $\max \left(a_{i}, b_{i}\right) \leqslant p-1$ for all i, unless $\{\vec{a}, \vec{b}\}=\{\overrightarrow{0}, \vec{p}\}$. If $\max \left(a_{i}, b_{i}\right) \leqslant p-1$ for all i, then by Proposition 7.4(i) and (iii), we have:

- $0 \leqslant a_{i}^{\prime} \leqslant \max \left(a_{i}, b_{i}\right) \leqslant p-1$ for all i; and
- $\sum_{i=0}^{f-1} a_{i}^{\prime} p^{i} \equiv \sum_{i=0}^{f-1} a_{i} p^{i} \bmod \left(p^{f}-1\right)$.

These conditions imply that $\vec{a}=\vec{a}^{\prime}$ (unless $\left\{\vec{a}, \vec{a}^{\prime}\right\}=\{\overrightarrow{0}, \overrightarrow{p-1}\}$, which would give $\{\vec{a}, \vec{b}\}=$ $\{\overrightarrow{0}, \overrightarrow{p-1}\}$ and hence that $\vec{c}=\overrightarrow{0}$ is not generic). If $\{\vec{a}, \vec{b}\}=\{\overrightarrow{0}, \vec{p}\}$, then we instead use parts (ii) and (iii) of Proposition 7.4 to conclude that $\vec{a}=\vec{a}^{\prime}$. Thus in either case, we conclude from part (iv) of the proposition that $\mathbf{N}(T) \rightarrow \mathbf{N}\left(T_{2}\right)$ is surjective, and therefore the sequence of Wach modules is exact.

Now consider a character $\psi: G_{K} \rightarrow \mathbf{F}^{\times}$. By the classification of rank one (φ, Γ)-modules over $\mathbf{E}_{K, F}$, there is a unique pair $C \in \mathbf{F}^{\times}, \vec{c} \in \mathbf{Z}^{S}$ with $0 \leqslant c_{i} \leqslant p-1$ and some $c_{i}<p-1$, such that $\mathbf{D}(\mathbf{F}(\psi)) \cong M_{C \vec{c}}$. Suppose that $J \subset S$ and $\vec{a}, \vec{b} \in \mathbf{Z}^{S}$ satisfying the usual conditions, and that $A, B \in \mathbf{F}^{\times}$with $B A^{-1}=C$. Recall then that we have defined a subspace $\operatorname{Ext}_{\mathrm{bdd}}^{1}\left(M_{A \vec{a}}, M_{B \vec{b}}\right)$

Extensions of rank one (φ, Γ)-modules

of $\operatorname{Ext}^{1}\left(M_{A \vec{a}}, M_{B \vec{b}}\right)$ and an isomorphism

$$
\iota: \operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{C \vec{c}}\right) \rightarrow \operatorname{Ext}^{1}\left(M_{A \vec{a}}, M_{B \vec{b}}\right),
$$

well-defined up to an element of \mathbf{F}^{\times}. We then define V_{J} as the preimage of $\operatorname{Ext}_{\mathrm{bdd}}^{1}\left(M_{A \vec{a}}, M_{B \vec{b}}\right)$. This space is independent of the choices of A and B such that $B A^{-1}=C$, but for certain J there are two choices for the pair \vec{a}, \vec{b}; we denote by V_{J}^{+}the space obtained by taking $a_{i}=p$ for all $i \in J$ and $b_{i}=1$ for all $i \notin J$, and by V_{J}^{-}the one obtained by taking $a_{i}=1$ for all $i \in J$ and $b_{i}=p$ for all $i \notin J$.

We now also recall the definition of the subspaces of $H^{1}\left(G_{K}, \mathbf{F}(\psi)\right)$ used in [BDJ10], but we modify the notation from there to be more consistent with this paper. (For the translation between the notations, see the remark below.) For $\psi, J, \vec{a}, \vec{b}$ as above, we consider a crystalline lift $\tilde{\psi}_{J}: G_{K} \rightarrow F^{\times}$of ψ with labeled Hodge-Tate weights $\left(h_{f-1}, h_{0}, \ldots, h_{f-2}\right)$, where $h_{i}=-a_{i}$ if $i \in J$ and $h_{i}=b_{i}$ if $i \notin J$. Such a character $\tilde{\psi}_{J}$ is uniquely determined up to an unramified twist, which we specify by requiring that $\tilde{\psi}_{J}(g)$ be the Teichmüller lift of $\psi(g)$ for $g \in G_{K}$ corresponding via local class field theory to the uniformizer $p \in K^{\times}$. When (\vec{a}, \vec{b}) is not uniquely determined by J, we adopt the notation $\tilde{\psi}_{J}^{ \pm}$as usual. Recall that $H_{f}^{1}\left(G_{K}, F\left(\tilde{\psi}_{J}\right)\right)$ denotes the space of cohomology classes corresponding to crystalline extensions

$$
0 \rightarrow F\left(\tilde{\psi}_{J}\right) \rightarrow V \rightarrow F \rightarrow 0 .
$$

We then define the space L_{J}^{\prime} as the image in $H^{1}\left(G_{K}, \mathbf{F}(\psi)\right)$ of the preimage in $H^{1}\left(G_{K}, \mathcal{O}_{F}\left(\tilde{\psi}_{J}\right)\right)$ of $H_{f}^{1}\left(G_{K}, F\left(\tilde{\psi}_{J}\right)\right)$. We set $L_{J}=L_{J}^{\prime}$ except in the following two cases.

- If ψ is cyclotomic, $J=S$ and $\vec{a}=\vec{p}$, we let $L_{J}=H^{1}\left(G_{K}, \mathbf{F}(\psi)\right)$.
- If ψ is trivial and $J \neq S$, we let L_{J} be the span of L_{J}^{\prime} and the unramified class.

As usual we disambiguate using the notation $L_{J}^{ \pm}$. More precisely, we define $\tilde{\psi}_{J}^{ \pm}$as above, taking all $a_{i}=p$ and $b_{j}=1$ for $\tilde{\psi}_{J}^{+}$, and all $a_{i}=1$ and $b_{j}=p$ for $\tilde{\psi}_{J}^{-}$. We then define $\left(L_{J}^{\prime}\right)^{ \pm}$as the image in $H^{1}\left(G_{K}, \mathbf{F}(\psi)\right)$ of the preimage in $H^{1}\left(G_{K}, \mathcal{O}_{F}\left(\tilde{\psi}_{J}^{ \pm}\right)\right)$of $H_{f}^{1}\left(G_{K}, F\left(\tilde{\psi}_{J}\right)^{ \pm}\right)$. We then make the same modifications as above in the same exceptional cases to obtain the space $L_{J}^{ \pm}$. In particular, the first exceptional case above actually only applies to L_{J}^{+}. We identify L_{J} (or $L_{J}^{ \pm}$) with subspaces of $\operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{C \vec{c}}\right)$ via the isomorphisms

$$
H^{1}\left(G_{K}, \mathbf{F}(\psi)\right) \cong \operatorname{Ext}_{\mathbf{F}\left[G_{K}\right]}^{1}(\mathbf{F}, \mathbf{F}(\psi)) \cong \operatorname{Ext}^{1}(\mathbf{D}(\mathbf{F}), \mathbf{D}(\mathbf{F}(\psi))) \cong \operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{C \vec{c}}\right),
$$

the last of these given by an isomorphism $\mathbf{D}(\mathbf{F}(\psi)) \cong M_{C \vec{c}}$ that is unique up to an element of \mathbf{F}^{\times}.
Remark 7.7. The article [BDJ10] (after Lemma 3.9) defines spaces $L_{\alpha} \subset H^{1}\left(G_{K}, \overline{\mathbf{F}}_{p}(\psi)\right)$ for certain pairs (V, J) where $J \subset S$ and V is an irreducible representation of $\mathrm{GL}_{2}(k)$. The relation between the spaces is that $L_{\left(V, J^{\prime}\right)}=L_{J} \otimes_{\mathbf{F}} \overline{\mathbf{F}}_{p}$, where $J=\left\{i \mid i-1 \in J^{\prime}\right\}$ and if $V \cong$ $\otimes_{i \in S}\left(\operatorname{det}^{m_{i}} \otimes_{k} \operatorname{Sym}^{n_{i}-1} k^{2} \otimes_{k, \tau_{i}} \overline{\mathbf{F}}_{p}\right)$, then we take $a_{i}=n_{i-1}$ if $i \in J$ and $b_{i}=n_{i-1}$ if $i \notin J$. (The space $L_{\left(V, J^{\prime}\right)}$ is in fact independent of \vec{m}, and when there are two choices of \vec{n} compatible with ψ and J^{\prime}, the resulting spaces $L_{\left(V, J^{\prime}\right)}$ are obtained from $L_{J}^{ \pm}$in the evident way.)

We now prove our main result in the generic case.
Theorem 7.8. Suppose that \vec{c} is generic.
(i) Suppose that $J \neq S$ (respectively $J \neq \emptyset$) if $\vec{c}=\overrightarrow{p-2}$ (respectively $\vec{c}=\overrightarrow{1}$). Then $V_{J}=L_{J}$, so $L_{J}=\bigoplus_{i \in J} L_{\{i\}}$.

S. Chang and F. Diamond

(ii) If $\vec{c}=\overrightarrow{p-2}$ and $J=S$, then $V_{J}^{ \pm}=L_{J}^{ \pm}$, so $L_{J}^{-}=\bigoplus_{i \in J} L_{\{i\}}$ if $f>1$.
(iii) If $\vec{c}=\overrightarrow{1}$ and $J=\emptyset$, then $V_{J}^{ \pm}=L_{J}^{ \pm}=\{0\}$.

Proof. We first prove part (i). Suppose that $x \in L_{J}$, so x is a class of extensions

$$
0 \rightarrow M_{C \vec{c}} \rightarrow E \rightarrow M_{\overrightarrow{0}} \rightarrow 0
$$

corresponding via \mathbf{D} to a class of extensions of Galois representations

$$
0 \rightarrow \mathbf{F}(\psi) \rightarrow \bar{T} \rightarrow \mathbf{F} \rightarrow 0
$$

The assumption that $x \in L_{J}$ means that there is an extension

$$
0 \rightarrow \mathcal{O}_{F}\left(\tilde{\psi}_{J}\right) \rightarrow T \rightarrow \mathcal{O}_{F} \rightarrow 0
$$

whose reduction $\bmod \varpi_{F}$ is \bar{T} and such that $F \otimes_{\mathcal{O}_{F}} T$ is crystalline. Let $\psi_{2}: G_{K} \rightarrow F^{\times}$be a crystalline character with labeled Hodge-Tate weights ($a_{f-1}, a_{0}, \ldots, a_{f-2}$) and let $\psi_{1}=\tilde{\psi}_{J} \psi_{2}$. (Recall that $a_{i}=0$ if $i \notin J$ and $b_{i}=0$ if $i \in J$.) Then ψ_{1} is crystalline with Hodge-Tate weights $\left(b_{f-1}, b_{0}, \ldots, b_{f-2}\right)$ and we have an exact sequence

$$
0 \rightarrow T_{1} \rightarrow T\left(\psi_{2}\right) \rightarrow T_{2} \rightarrow 0
$$

where $T_{i}=\mathcal{O}_{F}\left(\psi_{i}\right)$ and $F \otimes_{\mathcal{O}_{F}} T\left(\psi_{2}\right)$ is crystalline. By Lemma 7.6 , the corresponding sequence of Wach modules over $\mathbf{A}_{K, F}^{+}$,

$$
0 \rightarrow \mathbf{N}\left(T_{1}\right) \rightarrow N \rightarrow \mathbf{N}\left(T_{2}\right) \rightarrow 0
$$

is exact. Reducing mod ϖ_{F}, we obtain an exact sequence of free $\mathbf{E}_{K, F}^{+}$-modules with commuting φ and Γ actions such that Γ acts trivially $\bmod \pi$. Tensoring with $\mathbf{E}_{K, F}$ yields an exact sequence

$$
0 \rightarrow M_{B \vec{b}} \rightarrow E^{\prime} \rightarrow M_{A \vec{a}} \rightarrow 0
$$

of (φ, Γ)-modules, bounded with respect to a basis for \bar{N}. It follows that E^{\prime} defines an element of $\operatorname{Ext}_{\mathrm{bdd}}^{1}\left(M_{A \vec{a}}, M_{B \vec{b}}\right)$. Moreover, this exact sequence is obtained from the one defining x by twisting with $M_{A \vec{a}}$, so we have shown that $\iota(x)$ is bounded, and hence that $x \in V_{J}$. Thus $L_{J} \subset V_{J}$.

By Proposition 5.4 of this paper and Lemma 3.10 of [BDJ10], we have that $\operatorname{dim}_{\mathbf{F}} V_{J}=|J|=$ $\operatorname{dim}_{\mathbf{F}} L_{J}=|J| ;$ therefore $L_{J}=V_{J}$. The assertion that $L_{J}=\bigoplus_{i \in J} L_{\{i\}}$ then also follows from Proposition 5.4.

The proofs of parts (ii) and (iii) are exactly the same as that for part (i), except that for part (ii) in the cyclotomic case one uses Proposition 6.5.

Remark 7.9. We see from the proof of the theorem that, in the definition of $L_{J}, \tilde{\psi}_{J}$ can be replaced by its twist by any unramified character $G_{K} \rightarrow \mathcal{O}_{F}^{\times}$with trivial reduction $\bmod \varpi_{F}$. This can also be proved using Fontaine-Laffaille theory.

However, in the case where ψ is cyclotomic, $J=S$ and $\vec{a}=\vec{p}$, we defined L_{J} as $H^{1}\left(G_{K}, \mathbf{F}(\psi)\right)$ rather than L_{J}^{\prime}. In fact L_{J}^{\prime} has codimension one and depends on the unramified twist, as the next proof shows.

As a further application, we show that, in the generic case, bounded extensions 'lift' to extensions of Wach modules.
Corollary 7.10. Suppose that $\vec{c} \in \mathbf{Z}^{S}$ is generic and $\vec{a}, \vec{b} \in \mathbf{Z}^{S}$ are as above and that

$$
0 \rightarrow M_{B \vec{b}} \rightarrow E \rightarrow M_{A \vec{a}} \rightarrow 0
$$

Extensions of Rank one (φ, Γ)-modules

is a bounded extension of (φ, Γ)-modules over $\mathbf{E}_{K, F}$. In the case $A=B, \vec{c}=\overrightarrow{p-2}$ and $\vec{a}=\vec{p}$, assume F is ramified. Then the extension E arises by applying $\mathbf{E}_{K, F} \otimes_{\mathbf{A}_{K, F}^{+}}$to an exact sequence over $\mathbf{A}_{K, F}^{+}$of Wach modules of the form

$$
0 \rightarrow \mathbf{N}\left(\psi_{1}\right) \rightarrow N \rightarrow \mathbf{N}\left(\psi_{2}\right) \rightarrow 0
$$

where ψ_{1} (respectively ψ_{2}) is a crystalline character with labeled Hodge-Tate weights $\left(b_{f-1}, b_{0}, \ldots, b_{f-2}\right)$ (respectively $\left(a_{f-1}, a_{0}, \ldots, a_{f-2}\right)$).

Proof. First assume we are not in the exceptional case where $A=B, \vec{c}=\overrightarrow{p-2}$ and $\vec{a}=\vec{p}$. Since the extension class defined by E is bounded, the equality $V_{J}=L_{J}$ of the preceding theorem shows that E arises by applying \mathbf{D} to the reduction $\bmod \varpi_{F}$ of a crystalline extension

$$
0 \rightarrow \mathcal{O}_{F}\left(\psi_{1}\right) \rightarrow T \rightarrow \mathcal{O}_{F}\left(\psi_{2}\right) \rightarrow 0
$$

where ψ_{1} and ψ_{2} have the required Hodge-Tate weights. Lemma 7.6 then gives the desired extension of Wach modules over $\mathbf{A}_{K, F}^{+}$.

Suppose now that $A=B, \quad \vec{c}=\overrightarrow{p-2}$ and $\vec{a}=\vec{p}$. Consider the class $x:=\iota(E) \in$ $\operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{\overrightarrow{p-2}}\right) \cong H^{1}\left(G_{K}, \mathbf{F}(\chi)\right)$, where χ denotes the cyclotomic character. We claim that there is an unramified character $\mu: G_{K} \rightarrow \mathcal{O}_{F}^{\times}$with trivial reduction $\bmod \varpi_{F}$ so that x is in the image of $H^{1}\left(G_{K}, \mathcal{O}_{F}\left(\chi^{p} \mu\right)\right.$). (This is essentially proved in [KW09a, Proposition 3.5] or [KW09b, $\S 3.2 .7]$, but there it is assumed that x is très ramifié, so we recall the argument here.) The long exact sequence associated to

$$
0 \rightarrow \mathcal{O}_{F}\left(\chi^{p} \mu\right) \xrightarrow{\varpi_{F}} \mathcal{O}_{F}\left(\chi^{p} \mu\right) \rightarrow \mathbf{F}(\chi) \rightarrow 0
$$

shows that the image of $H^{1}\left(G_{K}, \mathcal{O}_{F}\left(\chi^{p} \mu\right)\right)$ is the kernel of the connecting homomorphism

$$
H^{1}\left(G_{K}, \mathbf{F}(\chi)\right) \rightarrow H^{2}\left(G_{K}, \mathcal{O}_{F}\left(\chi^{p} \mu\right)\right)
$$

By Tate duality, this is the space orthogonal to the image of the connecting homomorphism

$$
H^{0}\left(G_{K},\left(F / \mathcal{O}_{F}\right)\left(\chi^{1-p} \mu^{-1}\right)\right) \rightarrow H^{1}\left(G_{K}, \mathbf{F}\right)
$$

arising from the dual short exact sequence. Letting α denote the homomorphism $G_{K} \rightarrow \mathbf{F}$ defined by $\left(\chi^{1-p}-1\right) / p$, and β the unramified homomorphism sending Frob $_{K}$ to 1 , we find that the image of the connecting homomorphism is spanned by β if $\mu \not \equiv 1 \bmod p \mathcal{O}_{F}$ (which is possible as F is ramified over $\left.\mathbf{Q}_{p}\right)$ and by $\alpha+\lambda \beta$ if $\mu\left(\operatorname{Frob}_{K}\right) \equiv 1+p \lambda \bmod p \varpi_{F} \mathcal{O}_{F}$. If $x \cup \beta=0$ then we can take $\mu \not \equiv 1 \bmod p \mathcal{O}_{F}$, and if $x \cup \beta \neq 0$ then there is a unique λ so that $\lambda(x \cup \beta)=-x \cup \alpha$ and we choose μ accordingly. Now since $H^{1}\left(G_{K}, F\left(\chi^{p} \mu\right)\right)=H_{f}^{1}\left(G_{K}, F\left(\chi^{p} \mu\right)\right)$, we see that E arises from the reduction of a crystalline extension of the required form, and the result again follows from Lemma 7.6.

7.4 Case $f=2$

In this subsection we will show that, if $f=2$, then $L_{J}=V_{J}$ (or $L_{J}^{ \pm}=V_{J}^{ \pm}$) unless $\vec{c}=\overrightarrow{0}$; in other words, the space of bounded extensions coincides with the one obtained from reductions of crystalline extensions of the corresponding weights unless the ratio of the characters is unramified. Furthermore, we give a complete description in this exceptional case.

Before treating the case $f=2$, we note what happens in the case $f=1$. The case $\vec{c} \neq \overrightarrow{0}$ is already treated by the results of the preceding section. Assume for the moment that $p>2$. Then the proof goes through just the same if $\vec{c}=\overrightarrow{0}$ and $J=S=\{0\}$. Suppose then that $\vec{c}=\overrightarrow{0}$ and $J=\emptyset$.

S. Chang and F. Diamond

If $C \neq 1$, then $V_{\emptyset}=L_{\emptyset}=\{0\}$, so there is nothing to prove. If $C=1$, then we have $V_{\emptyset}=\{0\}$, but $L_{\emptyset}=H^{1}\left(G_{\mathbf{Q}_{p}}, \mathbf{F}\right)$. Indeed, all such classes arise as reductions of lattices in representations of the form $\mathbf{Q}_{p} \oplus \mathbf{Q}_{p}\left(\chi^{1-p} \mu\right)$ with μ unramified; the corresponding Wach module is described just as in Example 7.1 and so does not give rise to a bounded extension. If $p=2$, there are differences in the case $C=1$ (see Remark 6.14). In that case

$$
V_{S}^{+}=V_{S}^{-}=L_{S}^{+}=H^{1}\left(G_{\mathbf{Q}_{2}}, \mathbf{F}\right)=\left\langle B_{\mathrm{nr}}, B_{\mathrm{cyc}}, B_{\mathrm{tr}}\right\rangle
$$

and $V_{\emptyset}^{+}=V_{\emptyset}^{-}=\{0\}$, but $L_{S}^{-}=L_{\emptyset}^{-}=\left\langle B_{\mathrm{nr}}, B_{\mathrm{cyc}}\right\rangle$ and $L_{\emptyset}^{+}=\left\langle B_{\mathrm{nr}}, B_{\mathrm{tr}}\right\rangle$. (For the explicit descriptions, note that the extensions of Galois representations are unramified twists of ones on which H_{K} acts trivially, and if H_{K} acts trivially on T, then $\mathbf{D}(T)=\mathbf{E}_{K} \otimes T$.)

We now turn our attention to $f=2$. We maintain the notation of the preceding section, without the assumption that \vec{c} is generic. In particular, $J \subset S$ and \vec{a}, \vec{b} satisfy the usual conditions, V_{1} and V_{2} are one-dimensional crystalline representations with labeled Hodge-Tate weights $\left(b_{1}, b_{0}\right)$ and $\left(a_{1}, a_{0}\right), V$ is an extension of V_{2} by V_{1}, T is a G_{K}-stable \mathcal{O}_{F}-lattice in $V, T_{1}=T \cap V_{1}$ and $T_{2}=T / T_{1}$. The refinement of Lemma 7.6 is the following lemma.

Lemma 7.11. Suppose that $f=2$ and $\vec{c} \neq \overrightarrow{0}$. If V is crystalline, then

$$
0 \rightarrow \mathbf{N}\left(T_{1}\right) \rightarrow \mathbf{N}(T) \rightarrow \mathbf{N}\left(T_{2}\right) \rightarrow 0
$$

is exact.

Proof. Since the generic case is covered by Lemma 7.6, we can assume (interchanging embeddings if necessary) that $\vec{c}=(i, 0)$ for some $i \in\{1, \ldots, p-2\}$ or that $\vec{c}=(i, p-1)$ for some $i \in$ $\{0, \ldots, p-2\}$. The cases where $J=\emptyset$ or $J=S$ are covered by the same argument (using parts (ii), (iii) and (iv) of Proposition 7.4), as are the cases where $\vec{c}=(i, 0)$ or $J=\{1\}$ (using parts (i), (iii) and (iv) of the proposition). We are thus left with the case where $\vec{c}=(i, p-1)$ for some $i \in\{0, \ldots, p-2\}$ and $J=\{0\}$, in which case $\vec{a}=(p-i, 0)$ and $\vec{b}=(0, p)$. In the notation of Proposition 7.4, the possible values of \vec{b}^{\prime} are $(0, p)$ and $(1,0)$. To complete the proof, we must rule out the latter possibility, which we accomplish by considering the reduction of $\mathbf{N}(T)$ modulo p^{2}. From the exact sequence

$$
0 \rightarrow \mathbf{D}\left(T_{1}\right) \rightarrow \mathbf{D}(T) \rightarrow \mathbf{D}\left(T_{2}\right) \rightarrow 0
$$

and the description in [Dou08] of rank one (φ, Γ)-modules recalled in §3, we see that there is a basis $\left\{e_{1}, e_{2}\right\}$ for $\mathbf{D}(T)$ over $\mathbf{A}_{K, F}$ in terms of which the matrices describing the actions of φ and $\gamma \in \Gamma$ are

$$
P=\left(\begin{array}{cc}
\left(\tilde{B}, q^{p}\right) & * \\
0 & \left(\tilde{A} q^{p-i}, 1\right)
\end{array}\right) \quad \text { and } \quad G_{\gamma}=\left(\begin{array}{cc}
\left(\varphi\left(\Lambda_{\gamma}^{p}\right), \Lambda_{\gamma}^{p}\right) & * \\
0 & \left(\Lambda_{\gamma}^{p-i}, \varphi\left(\Lambda_{\gamma}\right)^{p-i}\right)
\end{array}\right)
$$

for some $\tilde{A}, \tilde{B} \in \mathcal{O}_{F}^{\times}$. On the other hand, since V is crystalline, there is a basis $\left\{e_{1}^{\prime}, e_{2}^{\prime}\right\}$ for $\mathbf{D}(T)$ over $\mathbf{A}_{K, F}$ in terms of which the matrices P^{\prime} and G_{γ}^{\prime} describing these actions lie in $\mathrm{GL}_{2}\left(\mathbf{A}_{K, F}^{+}\right)$, with $G_{\gamma}^{\prime} \equiv I \bmod \pi \mathrm{M}_{2}\left(A_{K, F}^{+}\right)$. If we assume further that $\vec{b}^{\prime}=(1,0)$ (and so $\vec{a}^{\prime}=(p-i-1, p)$), then we can choose $e_{1}^{\prime}, e_{2}^{\prime}$ such that

$$
\bar{P}^{\prime} \equiv\left(\begin{array}{cc}
\left(B \pi^{p-1}, 1\right) & * \\
0 & \left(A \pi^{(p-i-1)(p-1)}, \pi^{p(p-1)}\right)
\end{array}\right) \quad \text { and } \quad \bar{G}_{\gamma}^{\prime}=\left(\begin{array}{cc}
\left(\lambda_{\gamma}, \lambda_{\gamma}^{p}\right) & * \\
0 & \left(\lambda_{\gamma}^{p^{2}+p-i-1}, \lambda_{\gamma}^{p^{2}-i p}\right)
\end{array}\right),
$$

Extensions of rank one (φ, Γ)-modules

where ${ }^{-}$denotes reduction modulo ϖ_{F}. Since $\mathbf{D}(T) \cong \mathbf{A}_{K, F} \otimes_{\mathbf{A}_{K, F}^{+}} \mathbf{N}(T)$, we can write $\left(e_{1}^{\prime}, e_{2}^{\prime}\right)=$ $\left(e_{1}, e_{2}\right) Q$ for some $Q \in \mathrm{GL}_{2}\left(A_{K, F}\right)$, and then we have

$$
P^{\prime}=Q^{-1} P \varphi(T) \quad \text { and } \quad G_{\gamma}^{\prime}=Q^{-1} G_{\gamma} \gamma(Q) \quad \text { for all } \gamma \in \Gamma .
$$

Claim. We have $Q \equiv R S \bmod p \mathbf{A}_{K, F}$ for some matrices $R=\left(\begin{array}{cc}\alpha\left(q^{-1}, 1\right) & * \\ 0 & \beta(q, 1)\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbf{A}_{K, F}\right)$ with $\alpha, \beta \in \mathcal{O}_{F}^{\times}$and $S \in I+\varpi_{F} \mathrm{M}_{2}\left(A_{K, F}^{+}\right)$.

Since F may be ramified over \mathbf{Q}_{p}, we prove the claim by showing inductively that $Q \equiv$ $R_{m} S_{m} \bmod \varpi_{F}^{m} \mathbf{A}_{K, F}$ for some matrices R_{m}, S_{m} of the prescribed form for $m=1, \ldots, e$ where $e=e\left(F / \mathbf{Q}_{p}\right)$.

To prove the statement for $m=1$, note that setting $R_{0}=\left(\begin{array}{cc}\left(q^{-1}, 1\right) & 0 \\ 0 & (q, 1)\end{array}\right)$ gives

$$
\bar{R}_{0}^{-1} \bar{P} \varphi\left(\bar{R}_{0}\right)=\left(\begin{array}{cc}
\left(B \pi^{p-1}, 1\right) & * \\
0 & \left(A \pi^{(p-i)(p-1)}, \pi^{p(p-1)}\right)
\end{array}\right) .
$$

So if we write $R=R_{0} S_{0}$, then

$$
\bar{S}_{0}\left(\begin{array}{cc}
\left(B \pi^{p-1}, 1\right) & * \\
0 & \left(A \pi^{(p-i)(p-1)}, \pi^{p(p-1)}\right)
\end{array}\right)=\left(\begin{array}{cc}
\left(B \pi^{p-1}, 1\right) & * \\
0 & \left(A \pi^{(p-i)(p-1)}, \pi^{p(p-1)}\right)
\end{array}\right) \varphi\left(\bar{S}_{0}\right) .
$$

It follows easily that $\bar{S}_{0}=\left(\begin{array}{c}\bar{\alpha} \\ 0 \\ \bar{\beta}\end{array}\right)$ for some $\bar{\alpha}, \bar{\beta} \in \mathbf{F}^{\times}, \bar{\delta} \in \mathbf{E}_{K, F}$. Choosing lifts $\alpha, \beta \in \mathcal{O}_{F}^{\times}$and $\delta \in \mathbf{A}_{K, F}$ and setting $R_{1}=R_{0}\left(\begin{array}{cc}\alpha & \delta \\ 0 & \beta\end{array}\right)$ gives the result for $m=1$.

Suppose now that $m \in\{1, \ldots, e-1\}$ and that $Q \equiv R_{m} S_{m} \bmod \varpi_{F}^{m} \mathbf{A}_{K, F}$ with R_{m}, S_{m} of the prescribed form. Setting $Q_{m}=R_{m}^{-1} Q S_{m}^{-1}$, we have $Q_{m}=I+\varpi_{F}^{m} Q_{m}^{\prime}$ for some $Q_{m}^{\prime} \in \mathrm{M}_{2}\left(\mathbf{A}_{K, F}\right)$. Define

$$
\begin{gathered}
P_{m}=R_{m}^{-1} P \varphi\left(R_{m}\right), \quad G_{\gamma, m}=R_{m}^{-1} G_{\gamma} \gamma\left(R_{m}\right), \\
P_{m}^{\prime}=S_{m}^{-1} P^{\prime} \varphi\left(S_{m}\right) \quad \text { and } \quad G_{\gamma, m}^{\prime}=S_{m}^{-1} G_{\gamma}^{\prime} \gamma\left(S_{m}\right),
\end{gathered}
$$

so that

$$
P_{m}^{\prime}=Q_{m}^{-1} P_{m} \varphi\left(Q_{m}\right) \quad \text { and } \quad G_{\gamma, m}^{\prime}=Q_{m}^{-1} G_{\gamma, m}^{\prime} \gamma\left(Q_{m}\right) .
$$

Note that $P_{m}^{\prime} \in \mathrm{M}_{2}\left(\mathbf{A}_{K, F}^{+}\right), \quad G_{\gamma, m}^{\prime} \in I+\pi \mathrm{M}_{2}\left(\mathbf{A}_{K, F}^{+}\right), \quad P_{m} \equiv P_{m}^{\prime} \bmod \varpi_{F}^{m} \mathrm{M}_{2}\left(\mathbf{A}_{K, F}\right), \quad G_{\gamma, m} \equiv$ $G_{\gamma, m}^{\prime} \bmod \varpi_{F}^{m} \mathrm{M}_{2}\left(\mathbf{A}_{K, F}\right)$,

$$
P_{m} \equiv\left(\begin{array}{cc}
\left(\tilde{B} \pi^{p-1}, 1\right) & \stackrel{*}{\left.\tilde{A} \pi^{(p-i-1)(p-1)}, \pi^{p(p-1)}\right)}
\end{array}\right) \quad \bmod p \mathrm{M}_{2}\left(\mathbf{A}_{K, F}\right)
$$

and

$$
G_{\gamma, m} \equiv\left(\begin{array}{cc}
\left(\lambda_{\gamma}, \lambda_{\gamma}^{p}\right) & * \\
0 & \left(\lambda_{\gamma}^{p^{2}+p-i-1}, \lambda_{\gamma}^{p^{2}-i p}\right)
\end{array}\right) \quad \bmod p \mathrm{M}_{2}\left(\mathbf{A}_{K, F}\right) .
$$

Note that, since $m+1 \leqslant e$, the last two congruences hold $\bmod \varpi_{F}^{m+1}$, and that $Q_{m}^{-1} \equiv I-$ $\varpi_{F}^{m} Q_{m}^{\prime} \bmod \varpi_{F}^{m+1} \mathrm{M}_{2}\left(\mathbf{A}_{K, F}\right)$. It follows that

$$
\begin{aligned}
P_{m}^{\prime} & \equiv\left(I-\varpi_{F}^{m} Q_{m}^{\prime}\right) P_{m}\left(I+\varpi_{F}^{m} \varphi\left(Q_{m}^{\prime}\right)\right) \\
& \equiv P_{m}+\varpi_{F}^{m}\left(P_{m} \varphi\left(Q_{m}^{\prime}\right)-Q_{m}^{\prime} P_{m}\right) \bmod \varpi_{F}^{m+1} \mathrm{M}_{2}\left(\mathbf{A}_{K, F}\right),
\end{aligned}
$$

and therefore that

$$
\varpi_{F}^{m}\left(P_{m} \varphi\left(Q_{m}^{\prime}\right)-Q_{m}^{\prime} P_{m}\right) \equiv P_{m}^{\prime}-P_{m} \equiv \varpi_{F}^{m}\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right) \quad \bmod \varpi_{F}^{m+1} \mathrm{M}_{2}\left(\mathbf{A}_{K, F}\right)
$$

S. Chang and F. Diamond

with $x, z, w \in \mathbf{A}_{K, F}^{+}$. Note that $\bar{P}_{m}=\bar{P}^{\prime}$, so we have $\bar{P}^{\prime} \varphi\left(\bar{Q}_{m}^{\prime}\right)-\bar{Q}_{m}^{\prime} \bar{P}^{\prime}=\left(\begin{array}{c}\bar{x} \bar{y} \\ \bar{z} \\ \bar{w}\end{array}\right)$ for some $\bar{x}, \bar{z}, \bar{w} \in$ $\mathbf{E}_{K, F}^{+}, \bar{y} \in \mathbf{E}_{K, F}$. Similarly we find that $\bar{G}_{\gamma}^{\prime} \gamma\left(\bar{Q}_{m}^{\prime}\right)-\bar{Q}_{m}^{\prime} \bar{G}_{\gamma}^{\prime}=\left(\begin{array}{l}\bar{x}_{\gamma} \\ \bar{z}_{\gamma} \\ \bar{w}_{\gamma}\end{array}\right)$ for some $\bar{x}_{\gamma}, \bar{z}_{\gamma}, \bar{w}_{\gamma} \in \pi \mathbf{E}_{K, F}^{+}$, $\bar{y}_{\gamma} \in \mathbf{E}_{K, F}$.

Writing

$$
\bar{Q}_{m}^{\prime}=\left(\begin{array}{ll}
\left(r_{0}, r_{1}\right) & \left(s_{0}, s_{1}\right) \\
\left(t_{0}, t_{1}\right) & \left(u_{0}, u_{1}\right)
\end{array}\right)
$$

with $r_{0}, r_{1}, \ldots, u_{0}, u_{1} \in \mathbf{F}((\pi))$, the condition that $\bar{z} \in \mathbf{E}_{K, F}^{+}$becomes $\pi^{p(p-1)} t_{0}(\pi)^{p}-$ $t_{1}(\pi), A \pi^{(p-i-1)(p-1)} t_{1}\left(\pi^{p}\right)-B \pi^{p-1} t_{0}(\pi) \in \mathbf{F}[[\pi]]$, from which one deduces that $\operatorname{val}_{\pi}\left(t_{0}\right) \geqslant 1-p$ and $\operatorname{val}_{\pi}\left(t_{1}\right) \geqslant 0$. The condition that $\bar{z}_{\gamma} \in \pi \mathbf{E}_{K, F}^{+}$then becomes that $\gamma\left(t_{0}\right) \lambda_{\gamma}^{p^{2}+p-i-2}-t_{0} \in$ $\pi \mathbf{F}[[\pi]]$. Lemma 4.2 rules out the possibility that $1-p<\operatorname{val}_{\pi}\left(t_{0}\right)<0$, and Lemma 4.4 rules out the possibility that $\operatorname{val}_{\pi}\left(t_{0}\right)=1-p$. Therefore $\left(t_{0}, t_{1}\right) \in \mathbf{E}_{K, F}^{+}$. Since $\bar{P}^{\prime} \in \mathrm{M}_{2}\left(\mathbf{E}_{K, F}^{+}\right)$, the condition that $\bar{x} \in \mathbf{E}_{K, F}^{+}$then becomes that $\pi^{p-1}\left(r_{1}\left(\pi^{p}\right)-r_{0}(\pi)\right), r_{0}\left(\pi^{p}\right)-r_{1}(\pi) \in \mathbf{F}[[\pi]]$, which implies that $\left(r_{0}, r_{1}\right) \in \mathbf{E}_{K, F}^{+}$. The condition that $\bar{w} \in \mathbf{E}_{K, F}^{+}$becomes that $\pi^{(p-i-1)(p-1)}\left(u_{1}\left(\pi^{p}\right)-\right.$ $\left.u_{0}(\pi)\right), \pi^{p(p-1)} u_{0}\left(\pi^{p}\right)-u_{1}(\pi) \in \mathbf{F}[[\pi]]$, which implies that $\operatorname{val}_{\pi}\left(u_{0}\right) \geqslant 1-p$ and $\operatorname{val}_{\pi}\left(u_{1}\right) \geqslant i+$ $2-p$. Since $\left(t_{0}, t_{1}\right) \in \mathbf{E}_{K, F}^{+}$and $\bar{G}_{\gamma}^{\prime} \equiv I \bmod \pi \mathrm{M}_{2}\left(\mathbf{E}_{K, F}^{+}\right)$, the condition that $\bar{w}_{\gamma} \in \pi \mathbf{E}_{K, F}^{+}$becomes that $\gamma\left(u_{i}\right)-u_{i} \in \pi \mathbf{E}_{K, F}^{+}$for $i=0,1$, so that Lemmas 4.2 and 4.4 again imply that $\left(u_{0}, u_{1}\right) \in$ $\mathbf{E}_{K, F}^{+}$. We can thus lift \bar{Q}_{m}^{\prime} to a matrix $\left(\begin{array}{cc}r & s \\ t & u\end{array}\right) \in \mathrm{M}_{2}\left(\mathbf{A}_{K, F}\right)$ with $r, t, u \in \mathbf{A}_{K, F}^{+}$. Setting $R_{m+1}=$ $R_{m}\left(\begin{array}{c}1 \varpi_{F}^{m} s \\ 0\end{array} 1 \begin{array}{l}1\end{array}\right)$ and $S_{m+1}=\left(\begin{array}{cc}1+\varpi_{F}^{m} r & 0 \\ \varpi_{F}^{m} t & 1+\varpi_{F}^{m} u\end{array}\right) S_{m}$ then gives $Q \equiv R_{m+1} S_{m+1} \bmod \varpi_{F}^{m+1} \mathrm{M}_{2}\left(\mathbf{A}_{K, F}\right)$ with R_{m+1}, S_{m+1} of the prescribed form, and completes the proof of the claim.

To derive a contradiction from the claim, we proceed as in the proof of the induction step above, but with $m=e$ and working modulo ϖ_{F}^{m+1}. More precisely, we define $Q_{e}, Q_{e}^{\prime}, P_{e}, G_{\gamma, e}, P_{e}^{\prime}$ and $G_{\gamma, e}^{\prime}$ as above; the difference now is that the congruences satisfied by P_{e} and $G_{\gamma, e}$ modulo p are not satisfied modulo $p \varpi_{F}$. In particular, the upper left-hand entry of P_{e} is $\left(\tilde{A} q, q^{p} / \varphi(q)\right)$, and a straightforward calculation shows that

$$
\frac{q^{p}}{\varphi(q)} \equiv 1+p\left(g\left(\pi^{-p}\right)-g\left(\pi^{-1}\right)+f(\pi)\right) \quad \bmod p^{2} \mathbf{A}_{\mathbf{Q}_{p}}
$$

where $g(X)=\sum_{i=1}^{p-1}(-X)^{i} / i$ and $f(\pi) \in \mathbf{A}_{\mathbf{Q}_{p}}^{+}$. As before, we have $\bar{P}^{\prime} \varphi\left(\bar{Q}_{e}^{\prime}\right)-\bar{Q}_{e}^{\prime} \bar{P}^{\prime}=\left(\begin{array}{l}\bar{x} \\ \bar{z} \\ \bar{w}\end{array}\right)$ with $\bar{z} \in \mathbf{E}_{K, F}^{+}$since P_{e} is upper-triangular, but now $\bar{x} \in\left(0, c\left(\bar{g}\left(\pi^{-p}\right)-\bar{g}\left(\pi^{-1}\right)\right)\right)+\mathbf{E}_{K, F}^{+}$for some $c \in \mathbf{F}^{\times}$(the reduction of $\left.p / \varpi_{F}^{e}\right)$. Similarly we have $\bar{G}_{\gamma}^{\prime} \gamma\left(\bar{Q}_{e}^{\prime}\right)-\bar{Q}_{e}^{\prime} \bar{G}_{\gamma}^{\prime}=\left(\begin{array}{l}\bar{x}_{\gamma} \\ \bar{z}_{\gamma} \\ \bar{w}_{\gamma}\end{array}\right)$ with $\bar{z}_{\gamma} \in \pi \mathbf{E}_{K, F}^{+}$. So just as before we get $\left(t_{0}, t_{1}\right) \in \mathbf{E}_{K, F}^{+}$, but this implies that $\pi^{p-1}\left(r_{1}\left(\pi^{p}\right)-r_{0}(\pi)\right) \in \mathbf{F}[[\pi]]$ and $r_{0}\left(\pi^{p}\right)-r_{1}(\pi) \in c\left(\bar{g}\left(\pi^{-p}\right)-\bar{g}\left(\pi^{-1}\right)\right)+\mathbf{F}[[\pi]]$, which leads to a contradiction and completes the proof of the lemma.

Theorem 7.12. Suppose that $f=2$ and $\vec{c} \neq \overrightarrow{0}$. Then $V_{J}=L_{J}$ (or $V_{J}^{ \pm}=L_{J}^{ \pm}$) for all $J \subset S$. In particular, $L_{\{0\}}=L_{\{1\}}$ if and only if $\vec{c}=(i, p-1)$ or $(p-1, i)$ for some $i \in\{1, \ldots, p-2\}$.

Proof. The proof of the first assertion is exactly the same as for Theorem 7.8. The second then follows from the corresponding result for V_{J} in § 5.3.

Theorem 1.2 of the introduction now follows in view of Corollary 3.3.
Remark 7.13. Again we see that, in the definition of $L_{J}, \tilde{\psi}_{J}$ can be replaced by its twist by any unramified character with trivial reduction; the cases where some a_{i} or b_{i} is p (with $J=\{0\}$ or $\{1\}$) are outside the range of Fontaine-Laffaille theory.

Extensions of rank one (φ, Γ)-modules

Note also that the case where we had to work the hardest in the proof of Lemma 7.11 is precisely the one where $L_{\{0\}}=L_{\{1\}}$.

By the same proof as Corollary 7.10, we obtain the following corollary.
Corollary 7.14. Suppose that $f=2$, that $\vec{c} \neq \overrightarrow{0}$ and $\vec{a}, \vec{b} \in \mathbf{Z}^{S}$ are as above and that

$$
0 \rightarrow M_{B \vec{b}} \rightarrow E \rightarrow M_{A \vec{a}} \rightarrow 0
$$

is a bounded extension of (φ, Γ)-modules over $\mathbf{E}_{K, F}$. In the case $A=B, \vec{c}=\overrightarrow{p-2}$ and $\vec{a}=\vec{p}$, assume F is ramified. Then the extension E arises by applying $\mathbf{E}_{K, F} \otimes_{\mathbf{A}_{K, F}^{+}}$to an exact sequence over $\mathbf{A}_{K, F}^{+}$of Wach modules of the form

$$
0 \rightarrow \mathbf{N}\left(\psi_{1}\right) \rightarrow N \rightarrow \mathbf{N}\left(\psi_{2}\right) \rightarrow 0,
$$

where $\psi_{1}\left(\right.$ respectively $\left.\psi_{2}\right)$ is a crystalline character with labeled Hodge-Tate weights (b_{1}, b_{0}) (respectively $\left(a_{1}, a_{0}\right)$).

We now say what we can in the case $\vec{c}=\overrightarrow{0}$. First note that the proof of Lemma 7.11 goes through in the following cases:

- $J=S$, in which case $\vec{a}=\overrightarrow{p-1}$ (or $\overrightarrow{2}$ if $p=2$);
- $J=\{0\}, \vec{a}=(p, 0), \vec{b}=(0,1)$ (the + case);
- $J=\{1\}, \vec{a}=(0, p), \vec{b}=(1,0)$ (the + case).

The proof of Theorem 7.12 goes through in these cases unless $J=S, p=2, \vec{a}=1, C=1$, where we get $L_{S}^{-} \subset V_{S}^{-}$, but $\operatorname{dim} L_{S}^{-}=3 \neq \operatorname{dim} V_{S}^{-}=4$ (see Remark 6.14). In this case, however, we know that L_{S}^{-}consists of the peu ramifiée extensions. To compute the corresponding (φ, Γ)-modules, note that $V_{\{0\}}^{+}=L_{\{0\}}^{+}$contains the classes arising from reductions of Galois stable lattices in $F\left(\mu \psi^{2}\right) \oplus F\left(\psi^{\sigma}\right)$, where $\psi: G_{K} \rightarrow \mathcal{O}_{F}^{\times}$is a crystalline character with labeled Hodge-Tate weights $(0,1), \sigma$ is the non-trivial element of $\operatorname{Gal}\left(K / \mathbf{Q}_{2}\right)$, and $\mu: G_{K} \rightarrow \mathcal{O}_{F}^{\times}$is an unramified character with trivial reduction $\bmod \varpi_{F}$. These classes correspond to homomorphisms $G_{K} \rightarrow \mathbf{F}$ whose restriction to inertia is a multiple of the reduction of $1 /\left.2\left(\psi^{\sigma} \psi^{-2}-1\right)\right|_{I_{K}}$. One can compute these explicitly using class field theory and check that they are peu ramifiée. It follows that $L_{\{0\}}^{+} \subset L_{S}^{-}$, and similarly $L_{\{1\}}^{+} \subset L_{S}^{-}$, so that $L_{S}^{-}=\left\langle B_{\mathrm{nr}}, B_{0}, B_{1}\right\rangle$.

If $J=\emptyset$, we have $V_{\emptyset}=\{0\}$, and $L_{\emptyset}=\{0\}$ unless $C=1$. If $C=1$, one can compute the extensions and associated (φ, Γ)-modules explicitly since they are unramified twists of representations on which H_{K} acts trivially. If $p \neq 2$, one gets $L_{\emptyset}=\left\langle B_{\mathrm{nr}}, B_{\mathrm{cyc}}\right\rangle$. If $p=2$, one gets $L_{\emptyset}^{+}=\left\langle B_{\mathrm{nr}}, B_{\text {cyc }}\right\rangle$ (with $\vec{b}=\overrightarrow{1}$) and $L_{\emptyset}^{-}=\left\langle B_{\mathrm{nr}}, B_{\mathrm{tr}}\right\rangle$ (with $\vec{b}=\overrightarrow{2}$).

The most interesting is the - case when $S=\{0\}$ or $\{1\}$. For example, if $S=\{0\}, \vec{a}=(p, 0)$ and $\vec{b}=(0,1)$, the proof of Lemma 7.11 breaks down, but we see that, if the associated sequence of Wach modules is not exact, then $\vec{a}^{\prime}=(0,1)$ and $\overrightarrow{b^{\prime}}=(p, 0)$, so the extension of (φ, Γ)-modules associated to \bar{T} is in $V_{\{1\}}^{+}$. Since $V_{\{0\}}^{-} \subset V_{\{1\}}^{+}$, it follows that $L_{\{0\}}^{-} \subset V_{\{1\}}^{+}$, and dimension counting implies equality. We therefore have that $V_{\{0\}}^{-}$is contained in $L_{\{0\}}^{-}=V_{\{1\}}^{+}=L_{\{1\}}^{+}$with codimension one. Similarly $V_{\{1\}}^{-}$is contained in $L_{\{1\}}^{-}=V_{\{0\}}^{+}=L_{\{0\}}^{+}$with codimension one.

Putting everything together we get the following theorem.
Theorem 7.15. Suppose that $f=2, \vec{c}=\overrightarrow{0}$.
(i) If $C \neq 1$, then:

- if $p>2$ then $L_{S}=V_{S}=\operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{C 0}\right)$;

S. Chang and F. Diamond

- if $p=2$ then $L_{S}^{ \pm}=V_{S}^{ \pm}=\operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{C \overrightarrow{0}}\right)$;
$-V_{\{0\}}^{-}=V_{\{1\}}^{-}=\{0\}$ and $L_{\{0\}}^{-}=L_{\{1\}}^{+}=V_{\{1\}}^{+} \neq V_{\{0\}}^{+}=L_{\{0\}}^{+}=L_{\{1\}}^{-}$;
- if $p>2$ then $L_{\emptyset}=V_{\emptyset}=\{0\}$; and
- if $p=2$ then $L_{\emptyset}^{ \pm}=V_{\emptyset}^{ \pm}=\{0\}$.
(ii) If $C=1$, then:
- if $p>2$ then $L_{S}=V_{S}=\operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{\overrightarrow{0}}\right)$;
- if $p=2$ then $L_{S}^{+}=V_{S}^{ \pm}=\operatorname{Ext}^{1}\left(M_{\overrightarrow{0}}, M_{\overrightarrow{0}}\right)$ and $L_{S}^{-}=\left\langle B_{\mathrm{nr}}, B_{0}, B_{1}\right\rangle$;
$-V_{\{0\}}^{-}=V_{\{1\}}^{-}=\left\langle B_{\mathrm{nr}}\right\rangle, L_{\{0\}}^{-}=L_{\{1\}}^{+}=V_{\{1\}}^{+}=\left\langle B_{\mathrm{nr}}, B_{1}\right\rangle$ and $L_{\{1\}}^{-}=L_{\{0\}}^{+}=V_{\{0\}}^{+}=\left\langle B_{\mathrm{nr}}, B_{0}\right\rangle$;
- if $p>2$ then $V_{\emptyset}=\{0\}$ and $L_{\emptyset}=\left\langle B_{\mathrm{nr}}, B_{\text {cyc }}\right\rangle$; and
- if $p=2$ then $V_{\emptyset}^{ \pm}=\{0\}, L_{\emptyset}^{+}=\left\langle B_{\mathrm{nr}}, B_{\mathrm{cyc}}\right\rangle$ and $L_{\emptyset}^{-}=\left\langle B_{\mathrm{nr}}, B_{\mathrm{tr}}\right\rangle$.

Note that the strict inclusion $V_{\{0\}}^{-} \subset L_{\{0\}}^{-}$implies the existence of non-split crystalline extensions $0 \rightarrow F\left(\psi_{1}\right) \rightarrow V \rightarrow F\left(\psi_{2}\right) \rightarrow 0$ with Galois stable \mathcal{O}_{F}-lattices T such that the corresponding sequence of Wach modules over $\mathbf{A}_{K, F}^{+}$is not exact (with ψ_{1} and ψ_{2} of labeled Hodge-Tate weights $(p, 0)$ and $(0,1)$ respectively).

As in Remark 7.13, we see that the definitions of L_{J} are independent of the choice of unramified twist, unless $C=1, J=\emptyset$ and F is ramified, in which case twisting by an unramified character that is trivial $\bmod \varpi_{F}$ but not $\bmod p$ would give $L_{J}^{\prime}=L_{J}=\left\langle B_{\mathrm{nr}}\right\rangle$.

Finally we remark that the proof of Corollary 7.14 goes through when $\vec{c}=\overrightarrow{0}$ except in the following two cases where $C=1$.

- If $p=2$ and $\vec{a}=\overrightarrow{1}$, then only classes in L_{S}^{-}lift (see Remark 6.14).
- If $\vec{a}=(1,0)$ and $\vec{b}=(0, p)$ (or $\vec{a}=(0,1)$ and $\vec{b}=(p, 0)$), then we have not determined whether B_{nr} lifts.

Acknowledgements

This paper grew out of the first author's Brandeis Ph.D. thesis [Cha06] written under the supervision of the second author. The thesis already contains most of the key technical results in $\S \S 4$ and 5. The authors are grateful to Laurent Berger for helpful conversations and correspondence, and to the referee for useful comments suggesting corrections and improvements to the exposition. The first author expresses his sincere gratitude to the second author for suggesting the project and for the guidance and encouragement during doctoral study. He would like to thank POSTECH, in particular Professor YoungJu Choie, for the hospitality in the final stages of writing the paper. He was supported by RP-Grant 2009 of Ewha Womans University. The second author is grateful to the Isaac Newton Institute for its hospitality in the final stages of writing this paper. The research was supported by NSF grant 0300434 .

References

Ber02 L. Berger, Représentations p-adiques et équations différentielles, Invent. Math. 148 (2002), 219-284.

Ber04a L. Berger, An introduction to the theory of p-adic representations, in Geometric aspects of Dwork theory (Walter de Gruyter, Berlin, 2004), 255-292.
Ber04b L. Berger, Limites de représentations cristallines, Compositio Math. 140 (2004), 1473-1498.
Bre09 C. Breuil, Sur un problème de compatibilité local-global modulo p pour GL_{2}. Preprint (2009), http://www.math.u-psud.fr/breuil/PUBLICATIONS/compamodp.pdf.

Extensions of rank one (φ, Γ)-modules

BDJ10 K. Buzzard, F. Diamond and F. Jarvis, On Serre's conjecture for mod ℓ Galois representations over totally real fields, Duke Math. J. 155 (2010), 105-161.
Cha06 S. Chang, Extensions of rank one (φ, Γ)-modules, PhD thesis, Brandeis University (2006).
CC98 F. Cherbonnier and P. Colmez, Représentations p-adiques surconvergentes, Invent. Math. 133 (1998), 581-611.

Col99 P. Colmez, Représentations cristallines et représentations de hauteur finie, J. Reine Angew. Math. 514 (1999), 119-143.
CF00 P. Colmez and J.-M. Fontaine, Constructions des représentations p-adiques semi-stables, Invent. Math. 140 (2000), 1-43.
Dou08 G. Dousmanis, On reductions of families of crystalline Galois representations. Preprint (2008), arXiv:0805.1634.

Fon90 J.-M. Fontaine, Représentations p-adiques des corps locaux I, in The Grothendieck Festschrift, vol. II (Birkhäuser, Boston, 1990), 249-309.
Fon94a J.-M. Fontaine, Le corps des périodes p-adiques, in Périodes p-adiques (Bures-sur-Yvette, 1988), Astérisque 223 (1994), 59-102.
Fon94b J.-M. Fontaine, Représentations p-adiques semi-stables, in Périodes p-adiques (Bures-sur-Yvette, 1988), Astérisque 223 (1994), 113-184.

Her98 L. Herr, Sur la cohomologie galoisienne des corps p-adiques, Bull. Soc. Math. France 126 (1998), 563-600.
Her01 L. Herr, Une approche nouvelle de la dualité locale de Tate, Math. Ann. 320 (2001), 307-337.
KW09a C. Khare and J.-P. Wintenberger, On Serre's conjecture for 2-dimensional mod p representations of $\operatorname{Gal}(\overline{\mathbf{Q}} / \mathbf{Q})$, Ann. of Math. (2) 169 (2009), 229-253.
KW09b C. Khare and J.-P. Wintenberger, Serre's modularity conjecture (II), Invent. Math. 178 (2009), 505-586.
Liu08 R. Liu, Cohomology and duality for (φ, Γ)-modules over the Robba ring, Int. Math. Res. Not. IMRN 3 (2008), 32pp, Art. ID rnm150.
Wac96 N. Wach, Représentations p-adiques potentiellement cristallines, Bull. Soc. Math. France 124 (1996), 375-400.

Wac97 N. Wach, Représentations cristallines de torsion, Compositio Math. 108 (1997), 185-240.

Seunghwan Chang schang@ewha.ac.kr
Institute of Mathematical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea

Fred Diamond Fred.Diamond@kcl.ac.uk
Department of Mathematics, King's College London, Strand, London WC2R 2LS, UK

[^0]: Received 10 September 2009, accepted in final form 26 April 2010, published online 13 December 2010. 2000 Mathematics Subject Classification 11S25 (primary).
 Keywords: p-adic representations, crystalline representations, (φ, Γ)-modules, Wach modules. This journal is © Foundation Compositio Mathematica 2010.

[^1]: ${ }^{1}$ We will frequently use the following notation: for an element κ and a ring endomorphism ψ of $\mathbf{E}_{K, F}$, we denote by $\kappa \psi-1$ the \mathbf{F}-linear endomorphism of $\mathbf{E}_{K, F}$ defined by $(\kappa \psi-1)(x)=\kappa \psi(x)-x$. We do the same for $\mathbf{F}((\pi))$ in place of $\mathbf{E}_{K, F}$. Thus, for example, if $\Sigma, s \in \mathbf{Z}$, then $\left(\lambda_{\gamma}^{\Sigma} \gamma-1\right)\left(\pi^{s}\right)$ denotes $\lambda_{\gamma}(\pi)^{\Sigma} \cdot \gamma\left(\pi^{s}\right)-\pi^{s}$.

[^2]: ${ }^{2}$ Note that, if $c_{i}=p-1$, then $\Sigma_{i} \equiv-1 \bmod p$ and $v \geqslant 1$ in the notation of Lemma 4.2, which is why we need to modify the construction in that case.

