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Abstract 

We give a characterization of nuclear Fr6chet lattices in terms of lattice properties of the seminorms. 
Indeed, we prove that a Frdchet lattice is nuclear if and only if it is both an AL- and an AM-space. 
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1. Introduction and preliminaires 

Since its introduction by Grothendieck [5], nuclear spaces have been intensively 
studied, and nowadays their particular structure is very well understood. Main contri­
butions to these facts were made by Pietsch [11] in the sixties, characterizing nuclear 
spaces in terms of an intrinsic condition involving a fundamental system of seminorms. 
Namely, a locally convex space E is nuclear, if and only if for each absolutely convex 
Zero neighbourhood U in E there exist an absolutely convex zero neighbourhood V 
and a measure (i on the a*-compact set V, so that 

11*11* < [ l(*,/>l<W) 

for all x € E. 
At the same time the structure of nuclear Fr6chet lattices was studied, amongst 

others, by Komura and Koshi [8], Popa [12], Wong [13, 14] and Wong and Ng [15]. 
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Especially, Popa showed the following: Let £ be a locally convex vector lattice that 
is topologically complete; then E is nuclear if and only if it has a fundamental system 
of neighbourhoods ^ such that Ev is an (AL)-space with a weak order unit for 
each U e 9/, and a fundamental system of neighbourhoods V such that Ev is a n 

(AM)-space for each V z f. The proof of Popa's result uses several deep results 
from the literature. As a conclusion, he obtains for topologically complete, separable 
locally convex lattices a characterization of nuclearity involving lattice properties of 
the seminorms. 

In the present note we present a similar characterization in the general context ot 
Frechet lattices, removing the additional requirement of the existence of a weak order 
unit and changing the local Banach lattices by lattice conditions on the seminorms-
Our proof is more elementary and more direct. Moreover, from our results we make 
more transparent the structure of nuclear Frechet lattices. Compare our Lemma 2.4 
and Lemma 2.5 with [8, Theorem 4]. In particular, we obtain that every nuclear 
Frechet lattice must be separable (or equivalently, there can be no nuclear Freshet 
lattices with an uncountable disjoint system of discrete elements), so that, in a certain 
sense Popa's result characterizing nuclearity in the setting of separable lattices is the 
best possible. 

Let us recall briefly some definitions and preliminaires. A Frechet lattice E is 

called an AL-space if its topology can be defined by a family of lattice seminorms || • II 
that are additive in the positive cone, that is, such that 

(1) II*+yll = 11*11+ llyll, f o r a l l x , y e £ + . 

A remarkable property of AL-spaces is that their topology is the so-called Dieudonne 
topology, that is, the topology of uniform convergence on order-intervals of its dual 
space (see [13, Corollary 4.2]). In fact, by using the Kantorovic' theorem [2, Theo­
rem 1.7] it is not difficult to check that a Frechet lattice E is an AL-space if and only 
if for every continuous lattice seminorm || • \\ on E there exists a positive Junctional 
f € E' such that \\x || < {f, \x |) for all x e E. Another fact that we wish to point out 
is that every Frechet AL-space has the Lebesgue property. To check this proceed as 
in the Banach case considering [4, Theorem 2]. Recall that a Frechet lattice is said to 
have the Lebesgue property if whenever a net xa I 0 in the order, then xa -*• 0 in the 
topology. In particular, AL-spaces are order complete (see [1, Theorem 10.3]). 

A Frechet lattice E is called an AM-space if its topology can be defined by a family 
of lattice seminorms || • || such that 

(2) || sup{jc. ylll = sup{||jc||, ||.yll), fo ra l l* , ;ye£ + . 

It is not difficult to check that the space s of rapidly decreasing sequences is both an 
AL- and an AM-space. On the other hand, it is a very well-known fact, as Komura and 

https://doi.org/10.1017/S1446788700150025 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700150025


[3] Nuclear Frechet lattices 411

Komura pointed out, that the space s is a universal generator for all nuclear spaces.
Our characterization of nuclear Frechet lattices says that this is the general situation,
that is, we are going to prove that a Frechet lattice is nuclear if and only if it is both
an AL- and an AM-space.

We refer the reader to the excellent books [2] and [10] for the terminology and the
unexplained terms used in this paper.

2. Main result

Our approach to the main result relies on the setting of Kothe generalized sequences
spaces and, in particular, in the use of the Grothendieck-Pietsch condition that charac-
terizes nuclearity of the space k{ (I, A) of absolutely summable generalized sequences
with respect to a Kothe matrix A.

Consider an index set / , a priori not countable. An increasing sequence A = (ak)k

of positive families ak = (a,,t),6/ is called a Kothe matrix if for each i 6 / there exists
k > 1 such that aiik > 0. We define

co(7, A) := jar = (a,) ie / : lima.a,,k = 0, k = 1, 2 , . . . J

equipped with the topology generated by the seminorms

INU,o° :=sup{|a,|aa, ie I).

Then co(I, A) is a Frechet AM-space with the Lebesgue property. To check that
co(7, A) has the Lebesgue property proceed directly from the definition of this property.
If the matrix A has all its elements equal to one we simply write co(7) instead of
cod, A).

Analogously, we consider

X,(7, A) := la = (a,)16/ : £ \a,\a,.k < oo, k = 1, 2 , . . . 1
I ie/ i

equipped with the topology generated by the seminorms ||a||*,i := £ , e , \aj\aiik. Then
ki(I, A) is a Frechet AL-space. If the matrix A has all its elements equal to one we
simply write l\(7) instead of \\(I, A).

Observe also that the inclusion A.[(7, A) C co(7, A) is a continuous lattice homo-
morphism.

On the other hand, as indicated by the work of Komura and Koshi, our setting must
be in the context of a discrete Frechet lattice.

LEMMA 2.1 ([8, Theorem 3]). Every nuclear Frechet lattice is discrete.
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Recall that an element e ^ 0 of a Frechet lattice is called discrete (an atomic
element in the terminology used by Komura and Koshi in [8]) if it follows from
e = u + v with inf{|«|, |u|} = 0 that u = 0 or v = 0. A Frechet lattice is said to be
discrete if it coincides with the band generated by all its discrete elements.

REMARK 2.1. (1) According to [9, Theorems 26.4 and 26.8] a discrete element
e of a Frechet lattice is an element whose generating ideal (band) equals the vector
subspace generated by e.
(2) By using Zorn's lemma we can choose in every discrete Frechet lattice a maximal

disjoint system {«,-},-€; consisting of positive discrete elements, that is, inf {e,, e,} = 0,
if i ^ j and if inf {x, et} = 0 for all i € I, then x = 0. Then, following [1, page 17],
we see that a Frechet lattice E is discrete if and only if for every x e E, with x > 0,
there exists a discrete element e of E satisfying 0 < e < x.
(3) The spaces k\ (I, A) and co(/, A) are both discrete.

The proof of our main result is based on several lemmas that we now formulate.

LEMMA 2.2. Let E be a Frechet AM-space with the Lebesgue property. Then E is

discrete.

PROOF. Assume by contradiction that E is non-discrete. According to Remark 2.1
there exists x e E such that x > 0 and there is no discrete element in the order
interval [0, x]. Take a continuous lattice seminorm || • || on E verifying (2) and such
that ||JC || > 0. Since x is a non-discrete element there must exist two disjoint elements
0 < y, z < x such that x = y + z, in which case x = sup{>>, z). Thus, we have
II* II = sup{||y||, ||z||}. Accordingly, the set A := {y e E : 0 < y < x, \\y\\ = ||jc||}is
non-empty. Clearly A is bounded from below. Since E has the Lebesgue property it is
order complete and so v := inf A > 0 exists. The set {>>}y<=,4, endowed with the order
inherited from £ is a net for which {y]y€A 4- v. Since E has the Lebesgue property
this convergence is topologically, and so ||u|| = limj,eA | | j | | = \\x\\ > 0. This shows
that v e A. Now observe that v is a non-discrete element. Repeating the previous
argument there will exist an element z € E, 0 < z < v such that ||z|| = ||v|| = ||JC||,

so that z e A contradicting that v is the infimum of A. •

LEMMA 2.3. Let E be a discrete Frechet lattice with the Lebesgue property and let
{^ilie/ be a maximal disjoint system of discrete elements in E. Then every element
x € E can be written as x = J2iei a'(x)ei> w/tere the family (ctj(x))i(:i is uniquely
determined by the element x.

PROOF. It is enough to prove the decomposition as stated in the lemma for positive
elements only. Then, fix x > 0 in E and consider the family <^/(/) of all finite
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subsets of / ordered by inclusion. Denote by P, the order projection onto the band
£, generated by the element et. Since £, coincides with the subspace generated by
eh the projection P, is given by Pj(y) = a,(;y)e, for a certain scalar a,(y) which is
uniquely determined by the element y € E. From the positivity of the projections
and the disjointness of the bands, we conclude that (5Z/ej «((jc)e,)y _ is a positive
increasing net order-bounded by x. By the Lebesgue property, it follows that the limit

,(x)e, = sup {a,{x)et : / e /} < *

exists.
Putx0 = 5Z,€/ a,(x)e, and suppose that* > x0. By the maximality of {£,}ie/, there

exists j 0 € / such that

0 < inf[x - x0, ek) = inf I* - ^ a , ( x ) e , , ek \ < inf {x - ak(x)eio, ek) = 0.
I iel J

This contradiction establishes the equality x = x0. Thus, we have proved that the
series ^1 G / a,0t)e, converges unconditionally to x. We also need to show that this
decomposition is unique. In fact, if $ ,̂-6/ *; = 0 with xt e £, for all i, then the
continuity of each projection Pj and the disjointness of the bands £,'s, imply that
0 = J^iei PJ (xi) = pi (xj) = xi f o r a11./ G L Observe also that

(3) \x\ =

because |a,(*)| — «,(jjf |) for all i e / (as Pt is a lattice homomorphism). •

REMARK 2.2. The preceding lemma is a particular case of a more general result
which assures that every Frechet lattice with the Lebesgue property can be decomposed
into an unconditional direct sum of a (generally uncountable) family of mutually
disjoint ideals, each one having a weak order unit. See [6] for a proof of this statement
in the Banach lattice case.

Ando proved in [3] that a Banach AM-space has order continuous norm (the
Lebesgue property in our terminology) if and only if it is lattice isometric to co(/), for
some index set / . The next result is the Frechet version of Ando's result.

LEMMA 2.4. Let E be a Frechet lattice. Then E is an AM-space with the Lebesgue
property if and only if it is lattice isomorphic to a Kothe sequence space co(/, A).

PROOF. Only the if part needs a proof. Consider an increasing sequence (|| • ||*)t
of lattice seminorms defining the topology of E and satisfying condition (2). Since
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E is an AM-space having the Lebesgue property, according to Lemma 2.2 E must be
discrete. Let {e,},€/ be a maximal disjoint system of discrete elements. By Lemma 2.3
we know that every element x e E can be uniquely written as

(4) x =
ie /

Define the families ak : = (||e,|U).e/> for every k = 1,2, Then A = (ak)k is
a Kothe matrix and we may consider the space co(I, A). Consider also the map
T : E -> co(/, A) defined by T(x) := («,(*))»=/• From (4) we have that T is well
defined and it is clearly linear. Indeed, we have to prove that lim* a,(;t)aa = 0 for
all it = 1,2, but this is clear by the convergence of the series. The injectivity
of T follows from the uniqueness of the representation (4). We show that T is onto
by proving that for every (a,),e/ in co(/, A) the series J^ieI a^ converges in E. Fix
k > 1 and take e > 0. Then there exists a finite subset Jo C / such that |a , |a a < e
for all i' £ JQ. For every finite subset J <Z I such that J D Jo = 0 we have

= ||sup{|a,|e, : i e J}\\k

ieJ i<=J

= sup {|a,| IkH* : i € /} = sup {|a,| a a : i € J) < e,

so x := 5Z,e/ a;e, defines an element of E. Obviously T(x) = (a,),e/. Finally, it is
easy to prove that T is a lattice homomorphism by using (3). •

LEMMA 2.5. Let E be a Frechet lattice. Then E is a discrete AL-space if and only
if it is lattice isomorphic to a Kothe sequence space k\(I, A).

PROOF. Only the if part needs a proof. Consider an increasing sequence (|| • \\k)k of
lattice seminorms defining the topology of E and satisfying condition (1). Let [ei}iei
be a maximal disjoint system of discrete elements. By Lemma 2.3 we know that every
element x € E can be written uniquely as x = 5Z(e/ a,(;t)e,. Define the families
ak := (||e,|U),e/, for every k = 1,2, Then A = (ak)k is a Kothe matrix and we
may consider the space A.i(7, A). Consider also the map T : E —>• ^ (7 , A) defined
by T(x) := (a, (*)),,=/. From (4) we have that T is well-defined and it is clearly linear.
Indeed, if k > 1 and a finite subset J C / are given then

\ai(x)\a,.k =
ieJ ie7

k '£•' * >eJ k

and hence || T(x) || *, i = \\x ||k for all x e E. Moreover, it is clear that T is onto. •
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The following lemma was proved by Komura and Koshi. We present here a sketch
of its proof for the sake of completeness.

LEMMA 2.6 ([8, Theorem 1]). Every nuclear Frechet lattice is an AL-space.

PROOF. If || • || is a continuous lattice seminorm on E and we denote by U its unit
ball, then there exist an absolutely convex zero neighborhood V and a measure fi on
the o-*-compact set V, so that ||x|| < fv. \{x, y')\ d^{y'), for all x € E. It is then
easy to see that the formula

:= f
Jv°

(x,g):= / x, y' dfi(y'), x € E,

defines a positive linear functional g on E such that ||x|| < (|JC|, g), for all x e E.
Accordingly, E is an AL-space. •

LEMMA 2.7 (Grothendieck-Pietsch condition). The following conditions are equiv-
alent for every Kothe matrix A = (a*)*>i-

(1) Xi(I, A) is nuclear.
(2) For every k > 1, there exist m > k and ft € l\ (/) such that ak < flam.
(3) The inclusion ki(I, A) C co(/, A) is a lattice isomorphism.

PROOF. (1) if and only if (2). The proof of this equivalence is similar to [14,
Theorem 3.6.4], where the countable case is considered.

(2) implies (3). It is only necessary to prove that co(/, A) is included in Xi(/, A).
Take a = (a,),e/ € co(I, A) and fix k > 1. From the hypothesis there exist m > k
and p e t\U) such that ak < fiam. Then

|er'l °'.* - Z l | a / l Afl'-« - sup {la'l a '> : ' e
ie/ iel ie/

and hence a € k\(I, A).
(3) implies (2). For every k > 1 there exist m > k and a constant C > 0 such

that IHU,! < C||a|Li00, for all a € co(7, A). Now, if ||a|Lf00 < 1, then « /C € UkA

(the unit ball of the seminorm || • \\kJ). Thus we have \{a, y)\ < C, for all y € ££,.
Hence, sup|,a|L oo<1 | (a, / ) | < C, for all y € ££,. In particular, for ak 6 f/t°, we have

(5) sup | (a ,a») |<C.
»a|U.oo<l

Finally, define fi = (a/,t/a,,m)ie/. where we agree that 0/0 = 0. By using standard
arguments it is easy to see that sup||a|Loo5l \(a, ak)\ = £ / e / /3,-. Thus ^ 6 ^,(7) by (5)
and clearly ak < 0am. This finishes the proof. •
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REMARK 2.3. According to condition (2) in the above lemma, we see that there can
be no nuclear spaces ki(l, A) with uncountable / . Indeed, every family ak has only
countably many non-zero entries (since this is true for /!), and hence / can be chosen
countable. In particular, k\(I,A) must be separable. Combining this observation
with Lemma 2.5 we obtain that every discrete AL-space must be separable. That is,
it cannot contain an uncountable disjoint system of discrete elements, as we point out
with the following lemma.

LEMMA 2.8. Let E be a discrete Frechet lattice with the Lebesgue property. The
following conditions are equivalent:

(1) E is separable.
(2) Every subset A c E ofpairwise disjoint discrete elements is countable.

PROOF. (1) implies (2). By the hypothesis we can take 0 < e € E a weak order
unit. Let A = {e,},€/ be a subset of E of pairwise disjoint discrete elements. Now,
consider x, := inf{|e,|, e] > 0 for all i e / , and the set B = {x;},e/ of pairwise
disjoint discrete elements. Observe that 0 < xt < e for all i e I. It is not difficult
to see that (J2i^jx')j & *s a positive increasing net order-bounded by e. By the
Lebesgue property it follows that £ i e / x, is convergent, so that / must be countable.

(2) implies (1). According to Remark 2.1 and the hypothesis, take a maximal
disjoint system (en}neN consisting of positive discrete elements. Then Lemma 2.3
assures that E is the closed linear span of the set {en}neH. Hence, E is separable. •

THEOREM 2.9. Let E be a Frechet lattice. The following conditions are equiva-
lent:

(1) E is nuclear.
(2) E is both an AL and an AM-space.

PROOF. (1) implies (2). By results of Komura-Koshi (Lemma 2.1 and Lemma 2.6)
we know that E must be a discrete AL-space. By applying Lemma 2.5 E is lattice
isomorphic to ki(I, A) for a certain Kothe matrix A. Hence, Xi(l, A) is nuclear
and, by Lemma 2.7, it is lattice isomorphic to co(/, A). Then, the space E is lattice
isomorphic to co(/, A) and so it is an AM-space.

(2) implies (1). As the AL-spaces enjoy the Lebesgue property, the space E must
be discrete. Let {e,},€/ be a maximal disjoint system of discrete elements. Consider
an increasing sequence (|| • \\k)k of lattice seminorms defining the topology of E and
satisfying condition (1). Also consider another increasing sequence (|| • ||j)* of lattice
seminorms defining the topology of E and satisfying condition (2) and such that both
systems verify

(6) INI* < ||x||; < ||*||t+1, for all x e E and k > 1.
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Define the Kothe matrices A — (ak)k>i, where aik = ||e,-||t for all i € / and B =
(bk)k>\, where bijk = ||e,||^ for all i e / . By using (6), it is clear that the Kothe
spaces co(/, A) and co(/, B) are identical as Frechet lattices. On the other hand, by
applying Lemma 2.5 and Lemma 2.4, E is lattice isomorphic to ki(I, A) and also to
co(/, B). Thus the inclusion from co(I, A) onto k{(I, A) is a lattice isomorphism. By
Lemma 2.7 we have that X, (/, A) is nuclear, and hence the space E is also nuclear. •
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