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THE SMALLEST PRIME VALUE OF xn + a 

KEVIN S. McCURLEY 

1. Introduction. Let a and n be positive integers such that f(x) = 
xn 4- a is irreducible over the integers. A conjecture made by 
Bouniakowsky [4] in 1857 would imply that there exist infinitely many 
integers x such tha t / (x) is prime. An even stronger conjecture of Bateman 
and Horn [1, 2] would imply that 

I A C ^ X _ 
7T(X; J ) ~ as x —> oo, 

n log x 
where 7r(x;f) is the number of integers m with 0 ^ m ^ x for which/(m) 
is prime, and 

c(/) = r r - ^ , 
P p ~ i 

where w(p) is the number of solutions of the congruence 

xn = —«(mod/?). 

Except for the trivial case n = 1, neither of these conjectures has ever been 
resolved. 

If Bouniakowsky's conjecture is true, then it seems natural to inquire 
about the size of the smallest nonnegative integer x for which f(x) is 
prime. In this paper we prove that there exist irreducible polynomials of 
the form xn + a whose smallest prime value is large as a function of the 
parameters a and n. A result of this type was proved by the author in a 
previous paper [8]. For a statement of this result, we require the following 
definition. 

Definition. Let 

n 

g(x) = 2 akx
k 

be a polynomial with integral coefficients. The length of g, written L(g), is 
defined as 
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926 KEVIN S. McCURLEY 

L(g) = 2 \\ak\\, 

where | |^ | | is the number of digits in the binary representation of ak, with 
lion = i . 

Throughout this paper we use Cu C2, . . . to represent positive absolute 
constants, and log^ x to represent the /c-fold iterated natural logarithm of 
x. The following result is due to the author [8]. 

THEOREM 1. There exist infinitely many irreducible polynomials of the 
form f(x) = xn + a such that f(x) is composite for all integers x with 

This result has an interesting connection with an algorithm proposed 
by Brillhart [5] for proving that a polynomial is irreducible over the 
integers. Brillhart's algorithm involves locating a suitable prime value of 
the polynomial, and the polynomials of Theorem 1 provide examples 
where the simplest form of Brillhart's algorithm will not terminate in 
polynomial time. It should be noted that this observation is primarily of 
theoretical interest, and that variations of Brillhart's algorithm probably 
work well in practice. For a more thorough discussion of this, consult 
Brillhart's original paper or the author's paper [8] and the references listed 
there. 

The proof of Theorem 1 uses a lemma due to A. Odlyzko stating that 
there exist infinitely many integers n having at least exp(C2 log n/log2 n) 
divisors of the form/? — 1, where p is a prime. As a result, Theorem 1 
applies only to a very restricted set of degrees n. In this paper we use 
different methods to prove two results that are valid for all n. 

It is easy to prove that for any fixed n and w, there exists a positive 
integer a such that xn 4- a is irreducible over the integers and xn + a is 
composite for all integers x with 0 ^ x ^ u. The following result gives an 
estimate for the least value of a for which this is true. In what follows, d(n ) 
is used to denote the number of positive integral divisors of n. 

THEOREM 2. There exists a positive absolute constant C3 such that for 
every integer n = 2, and u = 2, there exists a positive integer a with 

0 < a < exp[exp(ul/d{n)nci) ] 

such that xn + a is irreducible over the integers and xn + a is composite for 
all integers x with 0 = x = u. If there do not exist any Siegel zeros (see 
Section 2) then there exists such an integer a with 
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0 < a < exp[exp(C4w l /^} log n) ], 

where once again C4 is absolute. 

The proof of Theorem 1 shows that xn + a may have no small prime 
value in the case where n has many divisors of the form/? - 1, where/? is a 
prime. It follows from Theorem 2 that the same is true if n merely has 
a large number of divisors. Suppose that n is a large integer with 

d(n) > exp(C5 log n/log2 n) 

for some constant C5, and that no Siegel zeros exist. By choosing u = edi<n) 

in Theorem 2, we find that there exists an irreducible polynomial 
f(x) = xn + a such that/(;c) is composite for all integers x with 

0 ^ x ^ exp[exp(Q log L(/) / log 2 L(f) ) ]. 

Except possibly for the size of the constant C6, this would extend Theorem 
1 to cover a larger class of degrees n. 

Theorem 2 gives an estimate that is uniform in u and n. For fixed n 
and large values of w, the following result gives an improvement over 
Theorem 2. 

THEOREM 3. For every integer n = 1, there exists a positive constant 
C(n), and infinitely many integers a such that x11 + a is irreducible over the 
integers, and xn + a is composite for all integers x with 

n < < nt \ l o g 
0 ^ x ^ C(n) 

a /log2fllog4flV("> 

a V logo a > log3 a V log 

Rankin [10] was the first to prove this result in the case n = 1, but the 
cases n > 1 appear to be new. In the case n = 1, Rankin's result shows 
that if pk is the k{ prime and e > 0, then 

0) A+i - A > (*y - Olog * — r — j A -
(iog3 *r 

for infinitely many integers k. In passing we note that P. Erdôs has offered 
ten thousand dollars for a proof of (1) with ey replaced by a function that 
tends to infinity with k. 

The proof of Theorem 3 is a generalization of the method of Rankin, 
and gives 

C(l) = ey - e and C(2) = (2e2y/7T2) - e, 

for any £ > 0, provided a is sufficiently large. If n ^ 3 then C(w) does not 
have such a simple form, and the problem of estimating C(n) as a function 
of n is essentially equivalent to the estimation of a in Theorem 2. 

It is probably a very difficult question to determine how close these 
results are to best possible. In Section 5 we present some numerical 
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examples, with the hope that they may prove illustrative in future 
investigations. 

2. Preliminary lemmas. In what follows, p always represents a prime, 

and (x, y) represents the greatest common divisor of x and y. 

LEMMA 1. There exists a positive constant C7 such that 

2 - = iog2^ + c7 + o(-±-) 
ptkyP MOgj^ 

provided y = 2. 

Proof. See [7], p. 151. 

LEMMA 2. Let i//(jt, y) be the number of integers m with 1 = m = x having 
no prime factor exceeding y, and fix e > 0. Then 

\p(x, y) < x e x p ( - ( l - e)t log /), 

where t = log x/log y, provided t = (log x) ' and x is sufficiently large. 

Proof. See [6]. 

Let (ky /) = 1, and define 

0(x; k,l) = 2 log p. 
plky 

p = l(modk) 

The proofs of Theorems 2 and 3 use estimates for 6{x\ k, I) that depend 
upon information concerning the location of zeros of Dirichlet L-
functions. If x is a character modulo k and L(s, x) is t n e associated 
Dirichlet L-function, then it is well known (see for example [3], p. 39) 
that 

L(o + it, x) * 0 for a > 1 - C8/log[£(2 + \t\ ) ], 

except possibly when x is real-valued, when there may be a single real 
zero. Such zeros have come to be known as Siegel zeros or exception
al zeros, but it is widely believed that none exist. The following result gives 
a useful estimate for 6(x; k, I) in the case that Siegel zeros do not exist. 

LEMMA 3. Let k be a modulus for which there do not exist any Siegel zeros, 
and let (/c, /) = 1. Then there exist constants C9, C10, and D = D(C$) such 
that 

0(x; * , / ) = - £ - + o ( ^ e x p ( - C 9 V Ï ^ ) ) 
w(k) \€r)(k) ' <p(k) V/c) 

- C 1 0 / k 

^ 7 o(- 1, 

provided x ^ kD. 
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Proof. This follows from an argument of Bombieri [3, p. 54-55], with the 
choice 

T = £exp((logjt)1 / 2) . 

LEMMA 4. Let y ^ 2, (k, /) = 1, and let px{k, I) be the least prime 
congruent to I modulo k. Then 

(2) 2 i . 
p^y P 

p=l(modk) 

_ log2 y + 

<p(k) 

1 + o( \ogk\ 

where the implied O-constant w absolute. If t w addition there are no Siegel 
zero. s for the modulus k, then there < exists an absolute constant Cu such 
that 

O) 2 i; 
/>% P 

p=l(modk) 

> ^ 2 ^ _ 

" <f(k) 

log2 /c 

i 

Proof. The first statement is due to K. K. Norton [9]. It is interesting to 
note that by using the Siegel-Walfisz Theorem in Norton's proof, one can 
replace the log k term by e log k, provided k exceeds some (ineffective) 
bound depending on e. In addition to (2), Norton proved that if there are 
no Siegel zeros, then log k can be replaced by log2 k. 

We now prove (3). Note that from Lemma 3 it follows that if x ^ kD, 
then 

(4) 0(x; k,l) = — + o( ) + o(- — Y 

If y < kD, then (3) is trivial, provided that Cu > log D. If y ^ kD, then 
from (4) we obtain 

y i _ fy dO(t\ K I) 

< p J 1 _ t log / 
p=l(modk) 

+ / ; 
0(y\ K I) , [y 0(t\ k, /)(! + log t)dt 

,2 , _ 2 y log y J x f logz t 

/ LD ~T~, dt 

J k t log / 

log2^ - \og2(k
D) 
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The last integral satisfies 
fy .-CjQ/lOgA 1 fy 

Jy— at < -J— J'D r]'c^kdt = od), 
J k f log f D log k J k 

which proves the lemma if Cx x is sufficiently large. 

LEMMA 5. There exists a positive constant C13 such that 

(5) I I r 4 r T-T < exp(C13J(A7) log n - d(n) log2 y\ 
p^yP - 1 + (p - 1, n) 

provided y = 2. If there do not exist any Siegel zeros for moduli d that are 
divisors of n, then there exists a constant C14 such that 

p^yP - 1 + (/? - 1, «) 

< &xp(d(n) log2 n + C14rf(«) - d(n)\og2y). 

Proof. From the inequality log(l + x) > x — x / 2 i t follows that 

(7) log( £-Z_L ) < l o g ( P- ) 
V - i + o> - i, »)/ v + (p - i, «)/ 

< ~(P - hn) | ( / » - ! , nf 
P 2p2 

We now observe that 

(8) 2 ^ 4 ^ = 2</2 2 \ 

< 

< 2d(n). 

From Lemma 4 we obtain 

= 2 *(<o 2 -
p = \(modd) 

2 d2 

d2 

2 4 
/>% P 

(p-\,n)=d 

oo , 

V » 

2 d2 

d2 

A ^ l ( /C^) 2 

2 *<</)( l Q g 2 ^ _ ^15 l Q g d \ 

~n 'V ^ <p(d) <jp(d) / 

rf(w) log2 y - Cl5d(n) log w. 
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Furthermore, if there are no Siegel zeros for moduli that are divisors of n, 
then from Lemma 4 we obtain 

2 {P ~ h n ) i= d(n) \og2y - d(n) log2 n - Cud(n). 
p^y P 

Combining these estimates with (7) and (8) proves the lemma. 

Note that for fixed n, and for y tending to infinity, the inequalities (5) 
and (6) can be replaced by an asymptotic result with an appropriate 
constant. If n = 1, then (5) can be replaced by a result of Merten's (see 
[7] ) that 

n ( . - i ) - A 
p^y \ p/ logy 

Furthermore, if n = 2, then (5) becomes 

(9) | n p~\ ~ | n a - p-y] n o - ^*)2 

^ p % /? + 1 I p p^y 

4e2y\og2y' 

3. Proof of theorem 2. Let 

w = exp{ (1 + u)l/d(n)nc">], 

let g be the least prime exceeding w, and let p]9 p2,. . . ,pt be the primes 
less than w. Our goal is to choose a > w in such a way that xn + a is 
irreducible in Z[x], and such that if 0 ^ x ^ w, then x" + <2 is divisible by 
a prime less than w, hence composite. We do this by choosing a as a 
solution to a congruence modulo g = g2 r i Pv with g < a < 2Q. We 
begin by choosing a == #(mod g ), so that x" + a is irreducible by 
Eisenstein's criterion. 

Beginning with ph and proceeding through the primes in increasing 
order, we choose a modulo/^ in such a way that mn = — a(mod pk) has 
a maximal number of solutions m among those ra's that do not satisfy a 
congruence 

mn = — aimodpj), i < k. 

Let N0 = 1 -f [u], and let Nk be the number of ra's with 0 ^ m = u 
such that m11 4- a is not divisible by a prime /? ^ /^. Since the function 
h(x) = JC" takes on only 1 + ( ^ — \)/(pk — 1, «) values modulo/^, (see 
[7], p. 90-91) we have 

mn + a = 0(modpk) 
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for at least Nk_x/{1 + (pk ~ l)/(/fy. — 1, n) } of the numbers counted in 
Nk_x. Hence 

P k - i + (Pk- i , » ) / 

< N 0 U { >-1
 ] Y 

p^Pk V - 1 + (P - hn)' 
It now follows from Lemma 5 that 

Nt < (1 + u)Qxp(C]3d(n) log « - </(«) log2 w) < 1, 

if C16 is large. Since JV, is an integer, it follows that Nt = 0, and xn + a is 
composite for 0 ^ x ^ u. Note that 

a < 2Q = 2q2 I I /> 
/?<w 

< exp(2w), 

if w is sufficiently large (which can be accomplished by taking C16 large). 
It then follows that 

a < exp(exp(w1/'/(',)/2C3)), 

provided C3 is sufficiently large. 
Let us now assume that there are no Siegel zeros. In this case we take 

w = exp(C17(l + u)x/d{n)\og n). 

We then get 

Nt < (1 + u)cxp(d(n) log2 n + C]4d(n) - d(n) log2 w) < 1, 

if C17 is sufficiently large. It remains only to observe that a < exp(2w) for 
w sufficiently large, so that 

a < exp(exp(C3w1/'/(,l) log n) ) 

for C3 sufficiently large. 

4. Proof of theorem 3. Let n be fixed, € > 0 be small, and let w be large. 
Let q be the least prime exceeding w, and let 

w /log w log3 w\d^ 
u = a 1 — I 

log2 w \ log2 w ' 
where a is a constant to be chosen later. As in the proof of Theorem 2, we 
choose a modulo Q = q J J pt, where pi runs over all primes less than w. 
We also take Q ^ a < 2Q and a = q(mod q2), so that x" + a is 
irreducible. Note that it follows from the Prime Number Theorem that 
log a ~ w as w —> oo. 

N, < M 
-
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Define 

y = exp (1 - 2c) 

w 

log w log3 w 

log2 w ) . 

log2 w 

H y < p ^ z, then we choose a == 0(mod /?). Consider now the set of 
integers m with 0 ^ m ^ w for which ra" + a is not divisible by a prime 
between j ; and z. These ra's are of two types: 

i) m is only divisible by primes not exceeding y 
ii) m is divisible by at least one prime exceeding z. 

Let S] and S2 be the number of iris of types i) and ii), respectively. 
From Lemma 1 we obtain 

s2^ 2 
z<p^u LP 

^u 2 -
z<p^u P 

< u\\og2 u - log2 z + O h J J 
^log z > 

< (1 + e)d(n)u 
log2 w 

log w 

for w sufficiently large. Furthermore since S{ = t//(w, y), Lemma 2 yields 

.Sj < u exp -(l-^log(^)] 
log>> M o g ^ / J 

< 
log w 

for w sufficiently large. It follows that 

log2 w 
5j + S2 < (1 + 2e)d(n)u 

log w 

We now choose a modulo /? for all p = y, using the same strategy as in 
the proof of Theorem 2. After doing so, the number of rris with 0 ^ m ^ u 
such that ra" + a is not divisible by a prime less than z is at most 

(*, + s2) n — ^ ^ — . 
/>:%/? - 1 + (p ~ 1, W) 

Using Lemma 5, this quantity is bounded above by C18aw/log w, where 
C]8 is a constant depending on n and e. With an appropriate choice of a, 
the number of surviving rris is less than 

(1 — c)vv/log w. 
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If w is sufficiently large, then the number of primes between z and w 
exceeds the number of surviving m's, and for these primes/? we can choose 
a modulo p in such a way as to remove at least one m with each prime. The 
result is that every m with 0 ^ m ^ u satisfies at least one congruence 

m11 + a = 0(mod/?) with/? < vv, 

and this completes the proof of Theorem 3. 
For n = 1, this is exactly the proof outlined by Rankin, and leads to 

C(l) = ey - e for a ^ tf0(c). 

Similarly if n = 2, we obtain from (9) that 

(1 + 2c>72 , 
^ 1 
'18 2(1 - 2e)2e2y 

if w is sufficiently large. An appropriate choice of a then leads to 

C(2) = (2e2y/7T2) - € if a ^ a0(e). 

5. Some numerical examples. It is widely believed that Theorem 3 can 
be substantially improved if n = 1, and there seems to be little reason to 
doubt that this is also the case for n è 2. In this section we discuss some 
numerical examples of irreducible polynomials of the form xn + a 
that have no small primes values, with the hope that they may give 
some insight into the type of improvement that might be obtained for 
Theorem 3. 

If n ^ 1 and a > 0 are such that xn + a is irreducible, we define Rn(
a) 

to be the least nonnegative integer x such that xn + a is prime (such an x 
exists if Bouniakowski's conjecture is true). For fixed n we also define a 
sequence a0, ax,. . . , where a0 = 7 and ak is the least positive integer such 
that xn 4- ak is irreducible and Rn(ak) > Rn(ak_x). The numbers ak are 
the places where Rn(a) assumes a new maximum value. In Table 1-4 
below we give all ak less than a specified limit, along with Rn{ak), for 
n = 2, 3, 4, 5. 

TABLE 1 (n = 2, all ^ ^ 106) 

** # 2 ^ ) ak Ri("k) 

1 0 

8 3 

21 4 

24 7 

117 8 

119 12 

185 18 

341 36 

489 38 

545 42 

749 60 

3485 66 

3561 70 

6041 114 

17531 150 

43181 210 

52454 225 

159731 294 

218084 357 

576239 402 

https://doi.org/10.4153/CJM-1986-045-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-045-9


KEVIN S. McCURLEY 935 

TABLE 2 (n = 3, ail ak ^ 106) 

R3(ak) ak R3(ak) 

7 0 

9 2 

14 3 

24 5 

50 11 

84 13 

111 20 

176 21 

246 23 

405 26 

685 28 

895 48 

044 53 

1464 67 

1490 69 

2918 87 

4031 122 

35036 123 

38583 136 

56510 147 

69152 153 

88152 169 

114360 179 

291068 189 

382108 297 

T A B L E 3 (n = 4, alla* ̂  150000) 

ak R4(ak) ak Uak) 

7 0 

8 3 

9 10 

14 165 

74 255 

189 290 

524 315 

584 435 

959 540 

2204 735 

2369 840 

9224 1275 

12869 1380 

18854 1755 

72254 2505 

TABLE 4 (n = 5, ail ak ^ 105) 

ak R5(ak) ak R5(ak) 

7 0 

8 3 

24 7 

33 8 

48 13 

54 17 

80 63 

122 75 

309 82 

318 83 

736 175 

5114 195 

11142 209 

13738 255 

36213 268 

46353 286 

58752 295 

60435 322 

89750 339 

It is interesting to observe the wide variation in the rates of growth 
of Rn{a) for different values of n. Roughly speaking, we might expect that 
Rn(a) grows more rapidly the bigger n is, for the simple reason that the 
values of xn + a are larger and therefore less likely to be prime. On the 
other hand, it definitely appears from the data that R4(a) grows more 
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rapidly that R5(a), which suggests that the rate of growth may depend on 
some arithmetic property of n such as the size of d(n). This may also 
explain why in Theorem 3 we are able to prove a stronger result for n = 4 
than we are for n = 5. 

The growth of R6(a) is even more startling, although the data is 
somewhat sketchy because of the large numbers involved. The following 
examples were discovered in a computer search conducted by the 
author. 

x6 + 2 composite for \x\ < 39, 
x6 + 11, composite for |JC| < 54, 
x6 + 20, composite for jx| < 399, 
x6 + 41, composite for |JC| < 546, 
x6 + 272, composite for \x\ < 2163, 
x6 + 5186, composite for |JC| < 3759, 
x6 + 8546, composite for |JC| < 5859. 

Here there is no claim made that the polynomials actually have a prime 
value at the endpoint of the interval, but only that the value N of the 
polynomial satisfies the congruence 2N = 2(mod N), so that N is very 
likely to be prime. 
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