13
Methods of Hyperbolic Partial Differential Equations

The structures of a causal fermion system are all encoded in the family of physical
wave functions (see Section 5.7). Consequently, the dynamics of the causal fermion
is understood once we know how each physical wave function propagates in time.
In many examples, the physical wave functions satisfy the Dirac equation (for the
simplest example of this type, see Section 5.5). More abstractly, the dynamics of
the physical wave functions is described by the dynamical wave equation (9.49).
Moreover, we also encountered the linearized field equations (see Definition 8.1.2).
We now turn attention to methods for solving these equations. In this chapter, we
begin with linear partial differential equations like the Dirac equation. Causality
is reflected in these equations in the fact that they are hyperbolic. As we shall see,
the methods developed here will also be fruitful for the study of the linearized field
equations, as will be explained in Chapter 14. With this in mind, the constructions
here can be regarded as a technical preparation for Chapter 14. We remark that
the adaptation of the methods to the dynamical wave equation will not be covered
in this book; we refer the interested reader instead to [82].

13.1 The Cauchy Problem and Linear Symmetric Hyperbolic Systems

In this section, we shall prove that the Cauchy problem for the Dirac equation in
the presence of an external potential has a unique global solution. Moreover, we
will show that the finite speed of propagation as postulated by special relativity
is indeed respected by the solutions of the Dirac equation. For later purposes, it
is preferable to include an inhomogeneity. Thus, we consider the Cauchy problem
in Minkowski space

(i@+B—m)=¢ecCM,SM), Y|y =10 € CZR}SM), (13.1)

for a given inhomogeneity ¢ and initial data 1y. In order to make the standard
methods available, we multiply the equation by —ir°,

lcs Opp +7°7VY — i7°(B — m)y = —ir°¢ . (13.2)

Now the matrices in front of the derivatives are all Hermitian (with respect to
the standard scalar product on C*). Moreover, the matrix in front of the time
derivative is positive definite. Friedrichs [91] observed that these properties are
precisely what is needed in order to get a well-posed Cauchy problem. He combined
these properties in the notion of a symmetric hyperbolic system. We now give its
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244 18 Methods of Hyperbolic Partial Differential Equations

general definition. More specifically, we consider a system of N complex-valued
equations with spatial coordinates # € R™ and time ¢ in an interval [0, T with 7" >
0. The initial data will always be prescribed at time ¢ = 0. For notational clarity,
we denote partial derivatives in spatial directions by V.

Definition 13.1.1 A linear system of differential equations of the form

AO(t, 7) dyult, T) + i A%, F) Vou(t, ) + B(t, @) ult, 7) = w(t, @),  (13.3)

a=1

with
A° A*, B € C*>([0,T] x R™,L(CY)), we C>([0,T] x R™,CN), (13.4)
is called symmetric hyperbolic if

(i) The matrices A° and A~ are Hermitian,
(AT =4  and (AT = A~ (13.5)

where t denotes the adjoint with respect to the canonical scalar product on CY .
(ii) The matriz A is uniformly positive definite, that is, there is a positive
constant C' such that

A%(t, %) > Clen  for all (t,7) € ([0,T] x R™) . (13.6)
In the case w = 0, the linear system is called homogeneous.

A good reference for linear symmetric hyperbolic systems is the book by John [107,
Section 5.3] (who was Friedrichs’ colleague at the Courant Institute). Our presen-
tation was also influenced by [133, Chapter 8]. We remark that the concept of a
symmetric hyperbolic system can be extended to nonlinear equations of the form

AC(t, %, u) Opu(t, @) + Y A% (t, & u) Vault, &) + B(t, &u) =0, (13.7)

a=1

where the matrices A% and A® should again satisfy the abovementioned condi-
tions (i) and (ii). For details, we refer to [144, Section 16] or [135, Section 7]. Having
the Dirac equation in mind, we always restrict attention to linear systems. We also
note that an alternative method for proving the existence of fundamental solutions
is to work with the so-called Riesz distributions (for a good textbook, see [6]). Yet
another method is to work with estimates in the interaction picture [25]. For com-
pleteness, we finally note that the concept of symmetric hyperbolic systems was
extended by Friedrichs to so-called symmetric positive systems [92].

It is a remarkable fact that all partial differential equations in relativistic physics
as well as most wave-type equations can be rewritten as a symmetric hyperbolic
system. As an illustration, we now explain this reformulation in the example of a
scalar hyperbolic equation.
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13.2 Finite Propagation Speed and Uniqueness of Solutions 245

Example 13.1.2 Consider a scalar hyperbolic equation of the form

m

Ond(t, &) = Y aap(t, &) Vasd
@ (13.8)
+ D balt, D) Vad +e(t, 7) 01+ d(t, 7) &,
a=1
with (aep) a symmetric, uniformly positive matrix (in the case ang = dap

and b, ¢, d = 0, one gets the scalar wave equation). Now the initial data prescribes ¢
and its first time derivatives,

Plt=0 = o € C(M) , OtPli=0 = ¢1 € C(M) . (13.9)

In order to rewrite the equation as a symmetric hyperbolic system, we introduce
the vector v with k := m + 2 components by

Uy = V1¢>, ey Uy = quS, um+1 = 8t¢, um+2 = ¢ . (1310)
Then, the system
Zaag (9{LL5 —Zaaﬁ Vﬁuerl =0
B=1 B=1
m m 13.11
_ Z aasVale — Z bo UatOttmt+1 — CUmy1 —dUpia =0 ( )
a,f=1 a=1
0 —Um+1 +0um42 =0,

is symmetric hyperbolic (as one verifies by direct inspection). Also, a short cal-
culation shows that if ¢ is a smooth solution of the scalar equation (13.8), then
the corresponding vector u is a solution of the system (13.11). Conversely, assume
that u is a smooth solution of (13.11) that satisfies the initial condition u|;—o = ug,
where wug is determined by ¢g and ¢ via (13.10). Setting ¢ = w12, the last line
in (13.11) shows that w411 = 0:¢. Moreover, the first line in (13.11) implies
that diug = Vgums1 = 0:Vgo. Integrating over ¢ and using that the rela-
tion ug = Vg¢ holds initially, we conclude that this relation holds for all times.
Finally, the second line in (13.11) yields that ¢ satisfies the scalar hyperbolic equa-
tion (13.8). In this sense, the Cauchy problem for the system (13.11) is equivalent
to that for the scalar equation (13.9). o

This procedure works similarly for other physical equations like the Klein—
Gordon or Maxwell equations. Exercise 13.1 is concerned with the example of the
homogeneous Maxwell equations.

13.2 Finite Propagation Speed and Uniqueness of Solutions

For what follows, it is convenient to combine the time and spatial coordinates
to a spacetime vector x = (t,Z) € [0,7] x R™. We denote the spacetime
dimension by n = m + 1. Moreover, setting dyp = 0;, we use Latin spacetime
indices i € {0,...,m} and employ the Einstein summation convention. Then, our
linear system (13.3) can be written in the compact form
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246 18 Methods of Hyperbolic Partial Differential Equations
Al (z) Oyu(z) + B(z) u(z) = w(z) . (13.12)

Next, a direction in spacetime can be described by a vector & = (&;)i=0,...m €
R™*L. Contracting with the matrices A47(z), we obtain the Hermitian N x N-
matrix

A, 8) = Al (2) ¢, (13.13)
referred to as the characteristic matriz. Note that in the example of the Dirac
equation (13.2), the index ¢ is a vector index in Minkowski space, and £ should
be regarded as a co-vector (i.e., a vector in the cotangent bundle). One should
keep in mind that, despite the suggestive notation, the equation (13.12) should
not be considered as being manifestly covariant because it corresponds to the
Hamiltonian formulation (13.2), where a time direction is distinguished.

The determinant of the characteristic matrix is referred to as the characteris-
tic polynomial, being a polynomial in the components ;. For our purposes, it is
most helpful to consider whether the characteristic matrix is positive or negative
definite. If the vector &€ = (7,0) points in the time direction, then A(z,&) = 7A°,
which in view of Definition 13.1.1 is a definite matrix. By continuity, A(z,¢) is
definite if the spatial components of ¢ are sufficiently small. In the example of the
Dirac equation (13.2), the fact that

Az, &) =1& + 7%%€  has eigenvalues O+ |§?\7 (13.14)

shows that A(z,&) is definite if and only if £ is a timelike vector. Moreover, it
is positive definite if and only if £ is future-directed and timelike. This suggests
that the causal properties of the equation are encoded in the positivity of the
characteristic matrix. We simply use this connection to define the causal structure
for a general symmetric hyperbolic system.

Definition 13.2.1 The vector ¢ € R™*! is called timelike at the spacetime
point x if the characteristic matriz A(x, &) is definite. A timelike vector is called
future-directed if A(z,€) is positive definite. If the characteristic polynomial
vanishes, then the vector £ is called lightlike. A hypersurface 3 C [0,T] x R™
with normal v is called spacelike if the matriz A(x,v) is positive definite for
all x € H.

The notion of a normal used here requires an explanation. The simplest method
is to represent the hypersurface locally as the zero set of a function ¢(z). Then,
the normal can be defined as the gradient of ¢. In this way, the gradient is a co-
vector, so that the contraction A7v; = A79;¢ is well defined without referring to
a scalar product. In particular, the last definition is independent of the choice of
a scalar product on spacetime vectors in R". We always choose the normal to be
future-directed, and we normalize it with respect to the Euclidean scalar product
on R™*! but these are merely conventions.

We shall now explain why and in which sense the solutions of symmetric
hyperbolic systems comply with this notion of causality.
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Figure 13.1 Lens-shaped regions.

Definition 13.2.2 Let u be a smooth solution of the linear symmetric hyperbolic
system (13.12). A subset K of the initial value surface {t = 0} determines the
solution at a spacetime point x € [0,T] x R™ if every smooth solution of the
system that coincides on K with u also coincides with u at x. The domain of
determination of K is the set of all spacetime points at which the solution is
determined by the initial data on K.

Definition 13.2.3 An open subset L C (0,T) x R™ is called a lens-shaped
region if L is relatively compact in R™ and if its boundary OL is contained in
the union of two smooth hypersurfaces Sy and S; whose intersection with L is
spacelike. We set (OL)y = OL N Sy and (OL)- = L N Sy, where we adopt the
convention that (OL)4 lies to the future of (OL)_.

Figure 13.1 shows typical examples of lens-shaped regions. Often, one chooses the
initial data surface as Sp = {t = 0}. Moreover, it is often convenient to write the
hypersurface S; as a graph S1 = {(¢,%) |t = f(Z)}. In this case, S; is the zero set
of the function ¢(t, ¥) = t — f(Z), and the normal v is the gradient of this function,
that is,

(¥3)j=0,on = (LV1fo o, Vi f) . (13.15)

We first consider the homogeneous equation
(A70; + B)u=0. (13.16)

The idea for analyzing the domain of determination is to multiply this equation by
a suitable test function and to integrate over a lens-shaped region. More precisely,
we consider the equation

0= / e K" 2Re(u, (470; + B)u) d"z , (13.17)
L

where (.,.) denotes the canonical scalar product on C¥, and K > 0 a positive
parameter to be determined later. Since the A7 are Hermitian, we have

0;(u, Au) = 2Re (u, AT0ju) + (u, (3;A%)u), (13.18)

and using this identity in (13.17) gives

0= /Le—Kt (aj<u,AJ’u> +{u,(B+ B* — (ajAj))u>) d"z. (13.19)
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248 18 Methods of Hyperbolic Partial Differential Equations

In the first term, we integrate by parts with the Gauss divergence theorem,

/ e K19 (u, Alu) A"z = K / e K (u, A%) d"z
k o A (13.20)
+/ e B (u, vy Alu) dpar, 7/ e K (u,v; Ay dpar
(OL)+ (oL)-

We now use (13.20) in (13.19) and solve for the surface integral over (OL),

/ e (u, v Alu) dpor, = / e M (u, vy Alu) dpor,
(OL)+ (L) _ (13.21)
+ / e (u, (= K= B—B*+(9;47)) u) d"z.
L

This identity is the basis for the following uniqueness results.

Theorem 13.2.4 Let uy and us be two smooth solutions of the linear symmet-
ric hyperbolic system (13.3) that coincide on the past boundary of a lens-shaped
region L,

utl(or)_ = u2l(aL)_ - (13.22)

Then, uy and us coincide in the whole set L.

Proof The function u := u; — us is a solution of the homogeneous system (13.16)
with u|(pz)_ = 0. Hence, (13.21) simplifies to

/ ™! u, v Alu) dpor, = / e K {u, (=K — B~ B+ ;A u)d"z.
(OL)+ L

(13.23)
Assume that u does not vanish identically in L. By choosing K sufficiently large, we
can then arrange that the right-hand side becomes negative. However, since 0L is
a spacelike hypersurface, the left-hand side is nonnegative. This is a contradiction.

O

As an immediate consequence, we obtain the following uniqueness result for
solutions of the Cauchy problem.

Corollary 13.2.5 Let u; and ug be two smooth solutions of the linear symmetric
hyperbolic system (13.3) with the same initial at time t = 0. Then, uy = us in a
neighborhood of the initial data surface.

If the matrices A7 are uniformly bounded and A° is uniformly positive, then u; =
ug in [0,T] x R™.

Proof The local uniqueness result follows immediately by covering the initial data
surface by lens-shaped regions (see the left of Figure 13.2).

For the global uniqueness, for any zo = (tg,%o) € [0,7] x R™ our task is
to choose a lens-shaped region that contains xy and whose past boundary Sy
is contained in the surface {t = 0}. We need to rule out the situation shown
on the right of Figure 13.2 that the hypersurface S; does not intersect Sp, in
which case we would not get a relatively compact lens-shaped region. To this end,
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Figure 13.2 Coverings by lens-shaped regions.
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Figure 13.3 Approximating the light cone by lens-shaped regions.

we must use that the matrices A7 are uniformly bounded by assumption. As a
consequence, there is € > 0 such that the inequality ||V f|| < e implies that the
hypersurface S1 = {(t = f(&), Z)} is spacelike. Possibly after decreasing e, we may
choose

1@ = to+¢ (1= I+ 7 - 7lP). (13.24)
This concludes the proof. O

By a suitable choice of lens-shaped region, one can get an upper bound for the
maximal propagation speed. For the Dirac equation, where the causal structure of
Definition 13.2.1 coincides in view of (13.14) with that of Minkowski space, one can
choose for S; a family of spacelike hypersurfaces, which converge to the boundary
of a light cone (see Figure 13.3). This shows that the maximal propagation speed
for Dirac waves is indeed the speed of light (which, according to our conventions,
is equal to one).

13.3 Global Existence of Smooth Solutions

In this section, we will show that, by refining the abovementioned uniqueness argu-
ment, we even obtain an existence proof. The close connection between existence
and uniqueness for linear equations is a familiar theme in mathematics. The sim-
plest setting where it occurs is in the study of the linear equation Au = v with a
given vector v € R™ and a quadratic matrix A. In this case, the uniqueness of the
solution implies that the matrix A is invertible, which in turn ensures existence.
A more interesting example is Fredholm’s alternative for compact operators (see,
e.g., [131, Section VI.5]). The procedure for globally hyperbolic systems follows
somewhat similar ideas. Here, the general strategy is to construct a bounded linear
functional on a Hilbert space in such a way that the Fréchet—Riesz theorem (see
Theorem 2.2.4) gives the desired solution.

Before beginning, we point out that, in view of uniqueness and finite propagation
speed, it suffices to consider the problem in a bounded spatial region. Indeed, once
we have constructed “local solutions” in small lens-shaped regions as shown on the
left of Figure 13.2, uniqueness implies that these solutions agree in the overlap of
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250 18 Methods of Hyperbolic Partial Differential Equations

the lens-shaped regions, making it possible to “glue them together” to obtain the
desired solution which is global in space. We will come back to this construction
in more detail in the context of the Dirac equation in Sections 13.4 and 13.6 (see
also Figure 13.4). Having this construction in mind, we may start from a local
problem and to extend the coefficients of the symmetric hyperbolic system in an
arbitrary way outside. Therefore, it is no loss of generality to consider a problem
in the whole space R™. Choosing a bounded time interval ¢ € [0,T] (where t = 0
is the initial time), we are led to considering the time strip

Rr:=[0,T] x R™. (13.25)
We now write the linear system (13.12) as
Lu=w  with L:=A9;+B, (13.26)

where we again sum over j = 0,...,m. Again using that the system can be
extended arbitrarily outside a bounded spatial region, we may assume that the
functions A7, B and w are uniformly bounded in Ry and that w has spatially
compact support (meaning that w(t,.) € C§°(R™) for all ¢ € [0,T]). Moreover,
for convenience, we again assume smoothness of A7, B and w. In the Cauchy
problem, one seeks a solution to the equation (13.26) with prescribed initial
data ug € C*°(R™) at time t = 0,

Lu=w, uli=0 = up € CC(R™), (13.27)
in C*(Ry). First of all, we may restrict attention to the case ug =0,
Lu=w, ult=0 =0. (13.28)

In order to see this, let u be a solution to the abovementioned Cauchy problem.
Choosing a function v € C*°(Ryr) which at ¢ = 0 coincides with ug. Then the
function @ := (u — v) satisfies the equation L = @ with @ = w+ A79;v + Bv and
vanishes at ¢ = 0. If conversely 4 is a solution to the corresponding Cauchy problem
with zero initial data, then u := @+ v is a solution of the original problem (13.27).

In preparation of the existence proof, we need to introduce the notion of a
weak solution. In order to get into the weak formulation, we multiply the equa-
tion (13.26) by a test function v(¢,Z) and integrate over Ry, giving rise to the
equation

<U7LU>L2(RT) = <'U7w>L2(RT)a (13.29)
with the L2-scalar product defined by

(v, W) 12 (R ::/O dt/m@(t,f),w(t, ) d"z. (13.30)

The next step is to integrate by parts, so that the derivatives act on the test
function v. Before doing so, we need to specify the regularity of the test functions.
To this end, for A € [0,7] we consider the time strip

Ry :=[0,\] x R™. (13.31)
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13.3 Global Existence of Smooth Solutions 251

We denote the s-times continuously differential functions on R, with spatially
compact support by C*(Ry). The function spaces

CS(RA) and CS(R)\), (13.32)

are defined as the functions which in addition vanish at ¢ = 0 and ¢ = A, respec-
tively. As the space of test functions, we choose C1(Rr); this guarantees that
integrating by parts does not yield boundary terms at ¢ = T'. For a classical solu-
tion u € C1(Rr) (i.e., a solution with zero Cauchy data (13.28)), the boundary

term at t = 0 also vanishes. We thus obtain

(v, W)r2(Ry) = <Z~Lv, U)L2(Ry) for all v € CY(Rr), (13.33)

where L is the formal adjoint of L with respect to the scalar product (13.30), that
is,

L:=A0;+B with A'=-47 and B=B"-(9;A7). (13.34)

Now suppose that a function v € C'(Rr) satisfies (13.33). Testing with func-

tions v € C1(Ry) N C'(Ry) which vanish both at times ¢t = 0 and ¢ = T, we can
integrate by parts without boundary terms. Using a standard denseness argument,
one finds that u solves the symmetric hyperbolic system (13.26). Next, testing with
a function v € C'(Ry) which does not vanish at ¢ = 0, only the boundary term

remains, giving the equation
/ (0(0,7),u(0,7)) d™z =0 for all v € CT(Ryr) , (13.35)

which in turn implies that u vanishes initially. Thus u is a solution of the Cauchy
problem (13.28). To summarize, for functions u € C'(Ryr), the weak formula-
tion (13.33) is equivalent to our Cauchy problem (13.26) and (13.28). Therefore,
it is sensible to take (13.33) as the definition of a weak solution of the Cauchy
problem. The main advantage of the weak formulation (13.33) is that it is well
defined even for functions that are not differentiable.

Our next step is to derive so-called energy estimates for a given solution u €
CY(Rr). To this end, we return to the formula for the divergence (13.18) and using

the equation (13.26), we obtain

9 {u, AVu) + (u, Cu) = 2 Re (u, w), (13.36)
C =B+ B* — (9;A47). (13.37)

Next, we integrate (13.36) over R, integrate by parts and use that the initial
values at ¢ = 0 vanish. We thus obtain

B\ = /t (A% 47

A
:‘/OA dt/m (2Re<u,w>— <u7Cu>) d"z.
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252 18 Methods of Hyperbolic Partial Differential Equations

Since the matrix C' is uniformly bounded and Ay is uniformly positive, there is a
constant K > 1 such that

|(u, Cu)| < K {u, A%) . (13.39)
Moreover, the linear term in u can be estimated with the Schwarz inequality by

1 1
2Re (u,w) < p{u,u) + m (w, w) < (u, A%u) + — (w, Aw), (13.40)
©

with a suitable constant u > 0. Applying these estimates in (13.38) gives

A
1
E(\) < (K + 1)/ Et)dt+ — [ (w,Aw) d"=. (13.41)
0 B J Ry
Writing this inequality as

d —(K+1)A A —(K+1)\ 1 0 n

—e E() dt<e — (w, Aw) d"x, (13.42)

dA 0 B J Ry

we can integrate over A\ to obtain

KT 7 1

—Z/R (w, A%w) d"z . (13.43)

T
E(\) dx <
/0 ®) - K+1 pu

Finally, we apply the mean value theorem and use that the exponential function
is monotone to conclude that

T
/ E(\) dX < %e(KH)T / (w, Aw) d"z . (13.44)
0 2 Rrp

This is the desired energy estimate.

” used for the quan-
tity E/(\) does in general not coincide with the physical energy. In fact, for the
Dirac equation (13.2), E(A) has the interpretation as the electric charge. Following

Example 13.1.2, for the scalar wave equation [l = 0, we find

Before going on, we point out that the notion of “energy’

E(A) = /Rm (\&sqblz +|Ve|* + |¢|2) ™z . (13.45)

This differs from the physical energy by the last summand |¢|?> (and an overall
factor of two). The name “energy” for E(\) was motivated by the fact, considering
only the highest derivative terms, the expression (13.45) is indeed the physical
energy. We point out that, in contrast to the physical energy, the quantity E(\)
does in general depend on time. The point is that (13.44) gives an a priori control
of the energy in terms of the inhomogeneity. The exponential factor in (13.44)
can be understood in analogy to a Gronwall estimate (for the classical Gronwall
estimate see, e.g., [1, Lemma 1.15 in Section VIL.1]).

For the following construction, it is convenient to introduce on C!(Rr) the
scalar product

(u,v) :/R (u, A%) d"z . (13.46)
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13.3 Global Existence of Smooth Solutions 253

We denote the corresponding norm by || - ||. Setting furthermore
T
I? = — DT (13.47)
%

the energy estimate can be written in the compact form
(u,u) <T? (w,w) . (13.48)

This inequality holds for every solution u of the differential equation Lu = w
which vanishes at ¢t = 0. Noting that every function v € C*(R7) is a solution of
this differential equation with inhomogeneity w := Lu, we obtain

lu]] < T||Lul] for all u € C*(Ry). (13.49)

This is the form of the energy estimates suitable for an abstract existence proof.
Note that the operator L in (13.34) is also symmetric hyperbolic and has

the same boundedness and positivity properties as L. Hence, repeating the

abovementioned arguments, we obtain similar to (13.49) the “dual estimate”

|v]| < T|| L] for all v € CY(Rr) . (13.50)

We now want to show the existence of weak solutions with the help of the
Fréchet—Riesz theorem (see Theorem 2.2.4 in the preliminaries or, e.g., [131, 116]).
To this end, we first introduce on C'(Rr) yet another scalar product denoted by

(v,v") = (Lv, Lv) . (13.51)
This scalar product is indeed positive definite, because for any v # 0,
(v,v) = (Lv, Lv) > T72 (v,v) # 0, (13.52)

where in the last step we applied (13.50). Forming the completion, we obtain
the Hilbert space (H,(.,.)). We denote the corresponding norm by ||.|. In
view of (13.50) and (13.51), we know that every vector v € H is a function
in L?(Ry, d™z). Moreover, we know from (13.51) that Lwv is also in L?(Ry, d"z).
We remark that, in the language of functional analysis, the space J can be
identified with the Sobolev space W12?(Rz), but we do not need this here.

We now consider for w € CY%Rr) and v € CY(Rr) the linear func-
tional (v, w)r2(g,). In view of the estimate

T
(v, w)2(rp)| < Wll22(re) llw] 22(Rp) < ¢ lwllzarey ol (13.53)

this functional is continuous in v € H. The Fréchet—Riesz theorem shows that
there is U € H with

(v, W) r2(Ry) = (v, U) = (Lv, LU) for all v € K. (13.54)
Rewriting the last scalar product as
(Lv, LU) = (Lv, A°LU) 12(Ry) , (13.55)

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.135, on 22 Nov 2025 at 03:44:05, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009632638.018


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009632638.018
https://www.cambridge.org/core

254 18 Methods of Hyperbolic Partial Differential Equations

one sees that the function u := A°LU € L?(Rr, d"x) satisfies the equation (13.33)
and is thus the desired weak solution. Note that all our methods apply for
arbitrarily large T. We have thus proved the global existence of weak solutions.

We next want to show that the solutions are smooth. Thus our task is to show
that our constructed weak solution u is of the class C*°(Ry), where s > 1 can be
chosen arbitrarily large. We first show that a linear symmetric hyperbolic system
can be “enlarged” to include the partial derivatives of ¢.

Lemma 13.3.1 Suppose that the system AId;u + Bu = w is symmetric
hyperbolic. Then there is a symmetric hyperbolic system of the form

A9, ¥ + BY = 1, (13.56)
for the vector U := (Oyu, Viu, ..., Vyu,u) € CPHON,
Proof Let i be a fixed spacetime index. We differentiate the equation Lu = w,
diw = 0;Lu = Loju + (0; A7) O;u + (0;B) u . (13.57)

This equation can be written as

n
A0;0; +> Bl + (0;B)u =1, (13.58)
j=1
where we set
B/ =Bé& + (0;A47)  and ;= duw. (13.59)

Combining these equations with the equation Lu = w, we obtain a system of the
form (13.56), where the matrices A’ are block diagonal in the sense that

A= ((A)8) 0 oo mer  With  (A1)5 = AT 65 (13.60)

Obviously, this system is again symmetric hyperbolic. O

Iterating this lemma, we obtain (at least in principle) a symmetric hyperbolic
system for u and all its partial derivatives up to any given order s. Since the
corresponding weak solution is in L?(Rr), we conclude that u and all its weak
partial derivatives are square integrable. The next lemma, which is a special case
of the general Sobolev embedding theorems (see, e.g., [32, Section II.5.] or [143,
Section 4]), gives smoothness of the solution.

Lemma 13.3.2 Let s > 3 be an integer. If a function g on R™ is s times weakly
differentiable and

/ |Veg? dmz < C (13.61)
Rm

for all multi-indices o with || < s, then g is bounded, g € L>®(R™). Likewise,
if g is s+ 1+ 1 times weakly differentiable with I > 1 and (13.61) holds for all «
with || < s+ 141, then g € CYR™).
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13.3 Global Existence of Smooth Solutions 255

Proof We apply the Schwarz inequality to the Fourier transform,

dmk o )P
2 _ a(k —ikx
o) = || g i) e
d™k . . ok
|| (1 ) (L ) (b
m (27T)m
d"k 2\s | A 2
Som | o (LR G(R)])7, (13.62)
m (2m)m
where the constant ¢, is finite due to our choice of s,
d™k
m = 1+ [k[*)~* . 13.63
c /m(Qﬂ_)m(—i-H) < o0 ( )

Using the Plancherel formula together with the fact that a factor k2 corresponds
to a Laplacian in position space, we obtain

S

L e P 0P =3 () 1990y <. (1360
m (27) —\!
Hence /¢y, c is an L*-bound for g.

Next, if g is s + 1 times weakly differentiable, then ||Dg|[z(R™) < c. As a
consequence, the mean value theorem yields |g(z) — g(y)| < c|lx — y|, so that g
is Lipschitz continuous. Finally, if g is s + [ 4+ 1 times weakly differentiable, then
all partial derivatives Vg of order |«| < [ are Lipschitz continuous, so that g €
CYR™). 0

More precisely, in order to apply this lemma, we fix a time ¢ and consider the
solution u (A, .). The identity (13.38) implies that E(A) is controlled in terms of ||w||
and |lul|. After iteratively applying Lemma 13.3.1, we conclude that the weak
derivatives of u(),.) exist to any order and are in L*(R™). It follows that u(),.)
is smooth. Finally, one uses the equation to conclude that u is also smooth in the
time variable.

The results of this section can be summarized as follows.

Theorem 13.3.3 Consider the Cauchy problem

(A%, + Y A*Va+ B)u=w € CF([0,T] x R™),
a=1

(13.65)
Ult—o = ug € C°(R™) .

Assume that the matrices A°, A7 and B as well as the functions w and uy are
smooth. Moreover, assume that all these functions as well as all their partial
derivatives are uniformly bounded (where the bound may depend on the order of
the derivatives). Then the Cauchy problem has a smooth solution on [0,T] x R™.

This theorem also applies in the case T = oo, giving the global existence of a
smooth solution.
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256 18 Methods of Hyperbolic Partial Differential Equations

We finally show that the solutions depend smoothly an parameters.

Corollary 13.3.4 Suppose that the matrices A7, B and the functions w,ug
depend smoothly on a parameter A. Then the family of solutions u(\) is also smooth
mn .

Proof First, as explained after (13.28), we may restrict attention to the case ug =
0. Differentiating the equation Lu = w with respect to A, we obtain

Luy = (W L)u+ dhw =: w, (13.66)

where uy stands for the formal derivative dyu. This is a symmetric hyperbolic
system for uy. According to Theorem 13.3.3, we know that u and therefore w
are smooth. Hence, applying this theorem again, we conclude that there exists a
smooth solution uy. Considering the limit of the difference quotients, one verifies
that uy really coincides with dyu(A) for our given family of solutions u(\). The
higher A-derivatives can be treated inductively. O

13.4 The Causal Dirac Green’s Operators in Minkowski Space

We now want to apply the previous general existence and uniqueness results to the
Cauchy problem (13.1) for the Dirac equation in Minkowski space in the presence
of an external potential B.

Theorem 13.4.1 Consider the Cauchy problem for the Dirac equation (13.1)
for smooth initial data v¥g, a smooth inhomogeneity ¢ and a smooth matriz-valued
potential B € C(M,C**). Then there is a unique global smooth solution v €
Co(M,SAM).

Proof Writing the Dirac equation in the Hamiltonian form (13.2), we obtain a
symmetric hyperbolic system. In view of the uniqueness result for smooth solutions
of Corollary 13.2.5, it suffices to construct a smooth solution at any given time 7" €
R. It suffices to consider the case T' > ty, because otherwise we reverse the time
direction. Moreover, we can arrange by a time shift that ¢ty = 0.

We cannot apply Theorem 13.3.3 directly because the coefficient functions
in (13.2) do not need to be bounded, nor are our initial values compactly sup-
ported. For this reason, we need to construct local solutions and “glue them
together” using linearity: We first extend the initial data ¢y smoothly to the
time strip Ry and consider the Cauchy problem for ¢ := 1) — 1)y:

(i@ +B-—m)p=¢ecC®(M,SM), |, =0. (13.67)

We let (ni)ren be a smooth partition of unity of R™ with n, € C§°(R™) (for
details, see, e.g., [136, Theorem 2.13]). We extend these functions to static func-
tions on Ry (i.e., ni(t, Z) := nx(Z). Given k € N, we first solve the Cauchy problem
for the inhomogeneity nké. We choose a compact set K C R™ such that [0,7] x K
contains the causal future of the support of (nkqg) (see Figure 13.4; more specifi-

cally, we could choose K = Bop(suppnx)). Next, we choose a smooth, compactly
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13.4 The Causal Dirac Green’s Operators in Minkowski Space 257

8

Figure 13.4 Construction of local solutions.

supported function 0 € C§°(R™) with 0| = 1. We again extend 0 to a static
function on Ry.
We now consider the modified Cauchy problem

(11@1 Ot + 73V +0( — (B — m)))i)k =iy b,  Urle =0. (13.68)

Now the coefficients in the PDE are uniformly bounded, and the inhomogeneity
has compact support. Therefore, we can apply Theorem 13.3.3 to obtain a global
smooth solution. Due to finite propagation speed (see Theorem 13.2.4, where we
choose lens-shaped regions L as shown in Figure 13.4), this solution vanishes out-
side K. Therefore, it is also a solution of the unmodified Dirac equation, with
initial data nkq}

Finally, summing over k gives the desired solution of the original Cauchy

problem,
e ~
U= U (13.69)
k=1
Here the series converges because, again due to finite propagation speed, it is
locally finite. O

We next explain how the previous existence and uniqueness results give rise to
the existence of causal Green’s operators, being defined as integral operators with
distributional kernels. These kernels are often referred to as Green’s functions.
Our main tool is the Schwartz kernel theorem. We do not give a proof of this
more advanced result of distribution theory but refer instead to [105, Section 5.2]
or [143, Section 4.6]. For better consistency with the notation in the perturbative
treatment in Chapter 18, from now on we denote the objects in the presence of
an external potential with an additional tilde. We begin with a representation
formula for the solution of the Cauchy problem in terms of a distribution.

Theorem 13.4.2 Assume that the external potential B is smooth and that B
and all its partial derivatives are uniformly bounded in Minkowski space. Then for
any t,to there is a unique distribution kn,(t,.;to,.) € D'(R® x R®) such that the
solution of the Cauchy problem (17.1) has the representation

Bt T) = 2 /N Fon (8, % o, ) 1° 0 (§) &y . (13.70)

The integral kernel k,, is also a distribution in spacetime, k,, € D'(M x M) It is
a distributional solution of the Dirac equation,

(i@, + B —m) kpy(z,y) =0. (13.71)
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258 18 Methods of Hyperbolic Partial Differential Equations

Proof Combining the energy estimates with the Sobolev embedding of
Lemma 13.3.2 shows that there is £ € N and a constant C' = C(t, to, Z, B) such
that the solution (¢, .) of the Cauchy problem is bounded in terms of the initial

data by
[(t, T)] < C'lolon (13.72)
where [¢|? := <4|y%¢=, and the C*-norm is defined by
[Yolcr = max sup [VF4(7)] . (13.73)
|BI<k zecrs

Moreover, this estimate is locally uniform in Z, meaning that for any compact
set K C R3, there is a constant C' such that (13.72) holds for all # € K. This
makes it possible to apply the Schwartz kernel theorem [105, Theorem 5.2.1],
showing that k., (t, .;t,.) € D'(R? x R3).

Next, we note that the constant C' in (13.72) can also be chosen locally uni-
formly in ¢ and ¢y. Thus, after evaluating weakly in ¢ and ¢y, we may again apply
the Schwartz kernel theorem to obtain that k,, € D'(M x M). Finally, the distri-
butional equation (13.71) follows immediately from the fact that (13.70) is satisfies
the Dirac equation for any choice of 1. O

The distribution k,, is referred to as the causal Sfundamental solution. Encod-
ing the whole Dirac dynamics, it plays a fundamental role in the analysis of
the Dirac equation. In the next step, we introduce the causal Green’s oper-
ators by decomposing k, in time. Namely, for any ¢ t, we introduce the
distribution 8Y, (¢, .;to,.), 80 (¢, i to,.) € D'(R? x R3) by

»9m

gyn(t?atm) = 2mi I%m(taath) @(to—t) (13 74)
SN (t, 5to,.) = —2mi k(8 . t0, ) O(t — to) '

(where © denotes the Heaviside function). In this way, we introduce the causal
fundamental solutions for any given ¢y and t as distributions on R3 x R3. Alter-
natively, they can also be introduced as bi-distributions in spacetime, as is shown
in the next lemma.

Theorem 13.4.3 Assume that the external potential B is smooth and that B
and all its partial derivatives are uniformly bounded in Minkowski space. Then
there are unique distributions

5,50 €D (M x M) (13.75)
which satisfy the distributional equations
(i@, + B —m) Gm(z,y) = 6*(x — ) (13.76)
and are supported in the upper respectively lower light cone,
supp &, (x,.) C J., supp 55, (z,.) C J2 . (13.77)

Proof Tt is clear by construction and the fact that the constant C in (13.72) can
be chosen locally uniformly in z and y that the causal Green’s operators are
well-defined distributions in D'(M x M). The support property (13.77) follows
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13.4 The Causal Dirac Green’s Operators in Minkowski Space 259

immediately from finite propagation speed as explained at the end of Section 13.2.
The uniqueness of the causal Green’s operators is clear from the uniqueness of
solutions of the Cauchy problem. In order to derive the distributional equa-
tions (13.76), we only consider the retarded Green’s operator (the argument for the
advanced Green’s operator is analogous). Then, according to (13.70) and (13.74),

Ot — to) b(t,7) = i /N 3 (8 B o, ) 7 o) &y, (13.78)

where 1 is the solution of the corresponding Cauchy problem. Applying the Dirac
operator in the distributional sense yields

26 (t — to) Yo(t, ¥) = (D, —m) /N St @510, 9) 7 o (§) PPy . (13.79)

We now choose the initial values as the restriction of a test function in spacetime,
Yo = Pli=t, with ¢ € C§5°(M,SM). Then we can integrate over ¢y to obtain

n°0(e) = (D, = m) [ (e.9) n0() dy. (13.50)
This gives the result. O

We remark that, turning the abovementioned argument around, we can also use
the causal Green’s operators in order to define the causal fundamental solution as
a bi-distribution in spacetime,

Epy = QL (5, —5n) €D (M x M) . (13.81)
i

The causal fundamental solution has the remarkable property that it relates
the scalar product with the inner product obtained by integrating the spin inner
product over spacetime. We now explain this relation step by step. Given two wave
functions ¥ and ¢ (not necessarily solutions of the Dirac equation), we want to
integrate their pointwise inner product <|¢>, over spacetime (as already done
in the preliminaries in (1.42) and (4.58)). In order to ensure that this integral is
well defined, it suffices to assume that one of the functions is compactly supported.
We thus obtain the sesquilinear pairing

<> s O, S) x O (A, SM) — C,
<Ylop> = / <Y|@=a dpu (13.82)
M

(here C*°(AM,SAM) are again the smooth sections of the spinor bundle,
and C§° (M, SA) denotes the smooth sections with compact support). Restrict-
ing the first argument to compactly supported wave functions, we obtain an inner
product,

< |.> : CP (M, SAM) x C5 (M, SAM) — C, (13.83)
referred to as the spacetime inner product (we remark that this inner product space

can be extended to a Krein space; we refer the interested reader to [45, §1.1.5]).
Alternatively, one can also restrict the first argument of <.|.> to smooth Dirac
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260 18 Methods of Hyperbolic Partial Differential Equations
solutions and extend by approximation to the whole Hilbert space H,,, giving the
sesquilinear pairing
< |> 0 Hp x C5o (M, SAM) — C. (13.84)
The following proposition goes back to John Dimock (see [27, Proposition 2.2]).
Proposition 13.4.4  For any ¥, € H,, and ¢ € C§° (M, SAM),
(ﬂjm | 2377L¢)m = <wm|¢> . (1385)
Proof We first give the proof under the additional assumption that the Dirac
solution has spatially compact support, 1, € C (M, SA). We choose Cauchy
surfaces N, and AN_ lying in the future and past of supp ¢, respectively. Let €2 be

the spacetime region between these two Cauchy surfaces, that is, 92 = N, UN_.
Then, according to (13.109) and using again the notation (4.57),

(o o @) = (o o D), = 5 (8 |85, 61,

o [ 180, 81, = W 80, 81

i/ Vi=tm |7 3¢=2 dul) (13.86)
Q

where in the last line we applied the Gauss divergence theorem and used (15.2).
Using that v, satisfies the Dirac equation, a calculation similar to (1.35) yields

(| s S = / Ko | (D = m) 36 dpi()
@ (13.87)

0 /Q <m|d=o du(z) .

As ¢ is supported in €2, we can extend the last integration to all of 4, giving the
result.

In order to extend the result to general 1, € H,,, we use the following approx-
imation argument. Let @ZJ,(,? ) e Hoy NCX (M, SAM) be a sequence which converges
in H,y, t0 ¥, Then obviously (V5 | kum #)m — (¥ | Em ¢)m. In order to show that
the right-hand side of (13.85) also converges, it suffices to prove that wfﬁ ) converges
in L2 (M, SA) to 1)p,. Thus let K C M be a compact set contained in the domain

of a chart (z, U). Using Fubini’s theorem, we obtain for any ¢ € H,,,NC2 (M, SAM)
the estimate

[ <l = [ 4 [ <olpovial d < O @l (1359
Applying this estimate to the functions ¢ = wr(ff ) 7(713 /), we see that 1/1,(1? ) converges
in L2(K, SA) to a function 1. This implies that 1/),(7? ) converges to ¢ pointwise
almost everywhere (with respect to the measure dy 4 ). Moreover, the conver-
gence of ’(/J»S;Z ) in H,n to Y, implies that the restriction of ’(/J»S,ZZ ) to any Cauchy
surface N converges to ¢,,|y pointwise almost everywhere (with respect to the
measure dy,y). It follows that 1) = tb,,,|x, concluding the proof. O
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18.5 A Polynomial Estimate in Time 261

Corollary 13.4.5 The operator ky,, (13.109), is symmetric with respect to the
inner product (13.82).

Proof Using Proposition 13.4.4, we obtain for all ¢, ¢ € C§° (M, SAM),
<Igm¢ | 1/}> = (];37n¢5 | ]%m'l/})m = <¢ | ifm'l/f> 5 (1389)

concluding the proof. O

13.5 A Polynomial Estimate in Time

We now derive an estimate which shows that the solutions of the Dirac equation
increase at most polynomially in time. This result will be needed in Section 17.2.1.
For the proof, we adapt standard methods of the theory of partial differential
equations to the Dirac equation. In generalization of (16.22), we denote the spatial
Sobolev norms by

6l = 3 /\va o(@)2 d® (13.90)

a with |a] < a

Lemma 13.5.1 We are given two nonnegative integers a and b as well as a
smooth time-dependent potential B. In the case a > 0 and b > 0, we assume
furthermore that the spatial derivatives of B decay faster than linearly for large

times in the sense that
c

= T
for suitable constants c,e > 0. Then there is a constant C = C(c,€,a,b) such that
every family of solutions 1» € H> of the Dirac equation (1.39) for varying mass
parameter can be estimated for all times in terms of the boundary values att = 0 by

IVB(t)|ca— (13.91)

HagﬂﬁthWa,z = 1+ |t| ZH@IJ wmlt OHW(LZ . (13'92)

Proof We choose a multi-index « of length a := |a| and a nonnegative integer b.
Differentiating the Dirac equation (1.39) with respect to the mass parameter and
to the spatial variables gives

(i + B —m) VOO by, = bV ipy — V(B hm) + BV th, . (13.93)
Introducing the abbreviations

==V,  and

13.94
¢ = bV by — V(B tbm) + BVt (1359
we rewrite this equation as the inhomogeneous Dirac equation
(D-m)E=2¢. (13.95)
A calculation similar to current conservation yields
—10;<E|Y'E
i=Eh (13.96)

==<(D-m)Z|E- — <E| (D —m)ZE> = <¢|== — <E|p> .
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262 18 Methods of Hyperbolic Partial Differential Equations

Integrating over the equal time hypersurfaces and using the Schwarz inequality,
we obtain

10 (1 |2]),| < 2[|EL]], [|¢le]], (13.97)
and thus
orl[=ll| < [l - (13.98)

Substituting the specific forms of = and ¢ and using the Schwarz and triangle
inequalities, we obtain the estimate

0| veap, VOO e,
tca |V'B(t)|ca*1 ||3fn¢m\t||wa71,2 ’

where we used the notation (17.8).

We now proceed inductively in the maximal total order a + b of the derivatives.
In the case a = b = 0, the claim follows immediately from the unitarity of the time
evolution. In order to prove the induction step, we note that in (13.99), the order
of differentiation of the wave function on the right-hand side is smaller than that
on the left-hand side at least by one. In the case a = 0 and b > 0, the induction

(13.99)

hypothesis yields the inequality

b—1
|0u105, Yl < 0|05 ]| <OC (L+[t1) D [|08¢mli=ol ,  (13.100)

p=0
and integrating this inequality from 0 to ¢ gives the result. In the case a > 0
and b > 0, we apply (13.91) together with the induction hypothesis to obtain

h

e[| m || <OC (1417 Hap Gimlt=o|| yras (13.101)
p=0
L
teC 1+ ‘t|1+5 Z || m¢ﬂ1|t 0||W‘1 1,2 * (13102)
Again integrating over t gives the result. O

13.6 The Cauchy Problem in Globally Hyperbolic Spacetimes

We conclude this chapter by extending the global existence and uniqueness result
for the Dirac equation to curved spacetime. These results were already stated
in Section 4.5. We are now in the position for giving the proof. The reader not
interested in or not familiar with curved spacetime may skip this section. We note
that more details on the geometric properties of globally hyperbolic spacetimes
can be found in [6, Section 3.2].

Proof of Theorem 4.5.1. As explained in the proof of Theorem 13.4.1, by consid-
ering the Cauchy problem for i) — 1)y one may reduce the problem to that of zero
initial data zero. Moreover, choosing a partition of unity (n;) subordinate to the
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Figure 13.5 Global solutions in globally hyperbolic spacetimes.

charts of a given atlas, it suffices to consider the compactly supported inhomo-
geneity ni¢ (the sum over k is again locally finite, as explained in the proof of
Theorem 13.4.1). In view of these constructions, it remains to consider the Cauchy
problem

(D-—m)p=¢peCy(M,SM), w‘ﬂto =0. (13.103)
We denote the support of ¢ by K.

Clearly, in local charts, the Dirac equation can be written as a symmetric hyper-
bolic system. Therefore, the results in Sections 13.2 and 13.3 yield the existence
and uniqueness of solutions of the Cauchy problem in local charts. This also yields
global uniqueness: Let ¢ and ¢ be two smooth solutions to the Cauchy prob-
lem (13.103). Then their difference Z := ¢ — 9 is a homogeneous solution that
vanishes at time ty. In view of a possible time reversal, it suffices to consider the
solution in the future of ¢y3. Thus let © € / be in the future of ty. Then the past
light cone J”(z) intersects the future of ¢, in a compact set,

JNx) N (Ut>t0 J\Q) is compact . (13.104)

Therefore, we can choose § > 0 such that for every ¢, there is a finite number of
lens-shaped regions which cover the time strip

JMN&) N (UZ? Ae) (13.105)

On each lens-shaped regions, the solution for the Cauchy problem with zero ini-
tial data vanishes identically. Therefore, we can proceed inductively to conclude
that Z(x) = 0. Since z is arbitrary, the solution = vanishes identically on .

In order to prove global existence, we proceed indirectly. In view of a possible
time reversal, it suffices to consider the Cauchy problem to the future. Thus sup-
pose that the solution exists only up to finite time ¢y.x (see Figure 13.5). Due
to finite propagation speed, the solution is supported in the domain of causal
dependence of K,

suppy C JY(K)U J"(K). (13.106)
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264 18 Methods of Hyperbolic Partial Differential Equations

By properties of globally hyperbolic spacetimes, the intersection D of this set with
the Cauchy surface Ny, is compact. Covering D by a finite number of charts,
we choose d such that the sets JY(D) U J*(D) N AN, lie in the domain of these
charts for all ¢ € [tmax — 0, tmax + 9]. Next, we choose a finite number of lens-
shaped regions L, which also cover all these sets (see again Figure 13.5). In each
of these lens-shaped regions, we can solve the Cauchy problem with initial data
at time ty. — d. In this way, we get a solution up to time ty,, + 0. This is a
contradiction, thereby proving that the solution must exist at all times. O

Proof of Theorem 4.5.2. By extending the initial data 1y to a smooth and com-
pactly supported function in spacetime and considering the Cauchy problem
for 1 — 1y, it again suffices to consider the case of zero initial data (13.103).
The solution constructed subsequently the proof of Theorem 4.5.1 was supported
in JY(K) C J*(K). By general properties of globally hyperbolic manifolds, the
intersection of this set with every Cauchy surface is compact. This concludes the
proof. O

As also explained in Section 13.4 in Minkowski space, in curved spacetime the
solution of the Cauchy problem can be expressed in terms of the causal funda-
mental solution k,,. The retarded and advanced Green’s operators sl and sy, are
linear mappings (for details, see, e.g., [27, 6])

shosy t O (M, SA) — C2 (A, SA) . (13.107)

m?

They satisfy the defining equation of the Green’s operator
(D—m)(shVo) =6 (13.108)

Moreover, they are uniquely determined by the condition that the support of s/, ¢
(or s, @) lies in the future (respectively the past) of supp ¢. The causal fundamental
solution k,, is introduced by

Lo v

km = (sy —sh) + O (M, SM) — C2 (M, SAM) Ny, (13.109)

2mi
Note that it maps to solutions of the Dirac equation.

Proposition 13.6.1 The solution of the Cauchy problem (4.5.1) has the
representation

Y(z) = 27T/ka(:c,y)ww(y) dy (y) » (13.110)
where kny (z,y) is the causal fundamental solution (13.109).

Proof Let us consider a point x in the future of N (the case for the past is
analogous). In this case, due to (13.109), the lemma simplifies to

be) =i /ﬂ () () Yo () A ) (13.111)

In preparation, we want to prove that for any ¢ € C°°(AM,SA) which has
compact support to the past of N and with the property that (D — m)¢ has
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compact support the equation

6= s ((D—m)o) (13.112)
holds. To this end, we consider the function
E(x):=¢—sh((D—m)e) . (13.113)

Applying the operator (D — m) and using the defining equation of the Green’s
operators, one sees that = is a solution of the Dirac equation. Moreover, = obviously
vanishes in the past of the support of ¢. The uniqueness of the solution of the
Cauchy problem implies that = vanishes identically, proving (13.112).

In order to derive equation (13.111), we let n € C*°(M) be a function which is
identically equal to one at x and on A, but such that the function 7y has compact
support to the past. For example, in a foliation (N;):eg with N = AN, one can
take ) = 7(t) as a smooth function with 7[j, o) = 1 which vanishes if ¢t <, — 1.
Then we can apply (13.112) to the wave function ¢ = ny. We thus obtain for
any z in the future of N the relations

Y(z) = (mp)(z)
= (s (@ = m)) ) (@) = (0 (17 @) ) ) (2)

where we have used that 1 is a solution of the Dirac equation.

To conclude the proof, for 7 in (13.114) we choose a sequence 7, which converges
in the distributional sense to the function which in the future N is equal to one
and in the past of & is equal to zero. This yields 9;1m7¢ — v, and thus the right-hand
side of (13.114) goes over to the right-hand side of (13.111). O

(13.114)

13.7 Exercises

Exercise 13.1 The homogeneous Mazwell equations for the electric field F :
R3 — R3 and the magnetic field B : R3 — R? read

V x B= atE, VxFE= —8tB7 (13115)

where x denotes the cross product in R3. Rewrite these equations as a symmetric
hyperbolic system. Remark: We here ignore the equations div E = div B = 0. The
reason is that these equations hold automatically if they are satisfied initially.

Exercise 13.2 Consider the scalar wave equation (0 — Agrm )@ (t,x) = 0.

(a) Rewrite the equation as a symmetric hyperbolic system

A%0pu+ Y " A*Vou+ Bu=0. (13.116)
a=1
(b) Determine the timelike and future-directed directions. Which directions &
are characteristic (in the sense that the characteristic polynomial det A(z, &)
vanishes)?
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266 18 Methods of Hyperbolic Partial Differential Equations
(c) Express the “energy”
B(t) = / (u, A%u) d™z (13.117)

in terms of ¢(¢,x). Compare the resulting expression with the conserved
physical energy

/ (|0:8)* + |V|*) d™z . (13.118)
]Rm
(d) Compute dEdgt). Prove the inequality
E
d dit) < E(t) (13.119)

and integrate it (Gronwall’s lemma).
Exercise 13.3 Consider the solution of the homogeneous wave equation
(O — D)t 3) = 0 (13.120)

for smooth initial data ¢(0,z) = f(z) and 0,¢(0,z) = g(x).
Show by a suitable choice of lens-shaped regions that ¢(tg,zo) depends only on
the initial data in the closed ball {z € R"™ : |z — z¢| < to}.

Exercise 13.4 We consider the system

Our (t,x) + Ogua (t, x) + 40 us(t, ) =0 (13.121)
Opus(t, ) + 40 uq1 (t, ) + Ozus(t,z) =0 (13.122)

(a) Write the system in symmetric hyperbolic form.
(b) Compute the solution of the Cauchy problem for initial data given
by 41(0,2) = sinz and uz(0,z) = cosz.

Exercise 13.5 (The Euler equations) The evolution equation for an isentropic
compressible fluid reads

(13.123)

O+ Vv + %grad(p) =0
Op+ Vyp+pdiviv) =0.

Here v : RT x R® — R3 is the velocity vector field, p : RT x R® — (0,00) the
density and p = Ap” the pressure (where A > 0 and v > 1).

(a) Show that (13.123) is equivalent to a quasilinear symmetric hyperbolic system,
provided that p is bounded away from zero.
(b) Show that for smooth solutions, the system (13.123) is equivalent to

(13.124)

O + Vo +grad(h(p)) =0
Orp + div(pv) =0,

where h € C*°(R) satisfies the equation h'(p) = p~1p/(p).
(¢) Let (v, p) be a solution of (13.124) with v(¢,z) = V,¢(t, x) for a real-valued
potential . Prove Bernoulli’s law: If ¢ and p decay at infinity sufficiently
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13.7 Ezxercises 267
fast and if h(0) = 0, then

1
Orp + §|ngo|2 +h(p)=0. (13.125)

(d) Show that (13.123) can also be rewritten as a system for (p,v),

{Btv + Vv + p(p)~tgrad(p) =0 (13.126)
O+ Vop+ (yp)div(y)  =0.
Rewrite this system in symmetric hyperbolic form.
Exercise 13.6 Let A > 0. A symmetric hyperbolic system of the form
O + A% (u)Oqu+ Au =0, (13.127)

where the matrices A% are smooth, uniformly bounded and uniformly positive, is
an example of a so-called dissipative system.

(a) Prove that for spatially compact solutions, the following energy estimate
holds:

@) < (— 22+ cllutdllen )0l (13.128)

(b) Prove: If the initial data wug is sufficiently small in the C'-norm, then there
exists a global solution.
Hint: Choose p sufficiently large and use the Sobolev embedding theorem.

Exercise 13.7 (Causality in the setting of symmetric hyperbolic systems) The
Dirac equation (i —m)y = 0 can be rewritten as a symmetric hyperbolic system,
that is, in the form (¢ > 0)

(A%(z) Do + A%(2) Dy + B(z))h =0, with (AT = A® and A%(z) > L
(13.129)

For such systems a notion of causality can be introduced: a vector ¢ € R* is said
to be timelike or lightlike at x € R*, if the matrix A(z,&) := A¥(z)¢&; is definite
(either positive or negative) or singular, respectively.

Find the matrices A* and B for the Dirac equation and show that the above-
mentioned notions of timelike and lightlike vectors coincide with the corresponding
notions in Minkowski space.
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