
BULL. AUSTRAL. MATH. SOC. 20E45, 20DXX

VOL. 69 (2004) [317-325]

PRIME POWERS AS CONJUGACY CLASS LENGTHS OF
T T - E L E M E N T S

ANTONIO BELTRAN AND MARIA J O S E FELIPE

Let G be a finite group and n an arbitrary set of primes. We investigate the structure
of G when the lengths of the conjugacy classes of its 7r-elements are prime powers.
Under this condition, we show that such lengths are either powers of just one prime
or exactly {l,ga,r6}, with q and r two distinct primes lying in n and a,b > 0. In
the first case, we obtain certain properties of the normal structure of G, and in the
second one, we provide a characterisation of the structure of G.

1. INTRODUCTION

If G is a finite group, there are many theorems showing that the conjugacy class
lengths of G strongly control the structure of G. Moreover, several results show that
imposing arithmetical conditions on the conjugacy class lengths of certain elements of G,
for instance when such lengths are prime powers, also reflect on the structure of G. In
[1], Baer proved that if every element of prime power order of G has a conjugacy class of
prime power size, then G is a direct product of factors of coprime orders, each of which
is either a p-group or a group with Abelian Sylow subgroups whose order is divisible by
just two primes. Recently, Camina and Camina ([7]) restricted the above hypotheses,
studying the structure of those groups whose g-elements, for some fixed prime q, have
conjugacy classes of prime power size (g-Baer groups). On the other hand, several authors
obtained a complete characterisation of those finite groups whose conjugacy class lengths
are prime powers ([8, Theorem 2 and Corollary 2.2], or [6, Theorem 3]). The authors
have studied the structure of p-solvable groups whose p'-elements have conjugacy classes
of prime power size ([4, Theorem D]).

Let n be an arbitrary set of primes and denote by Gn the set of 7r-elements of a
group G and by Con(G^) the set of conjugacy classes in Gn. In this paper, we extend
some of the above mentioned results, describing the structure of G when every class in
Con(G7r) has prime power size. We recall that a group G is said to be quasi-Frobenius
(following [5]) when G/Z(G) is a Frobenius group. Then we shall refer to the kernel and
complement of G as the inverse image in G of the kernel and a complement of G/Z(G).

We state our main result.
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THEOREM A. Let G be a finite group. Suppose that \C\ is a prime power for any

C € Con(Gn). Then one of the two following possibilities occurs.

(a) \C\ is a q-power for some fixed prime q. Moreover,

(1) q ^ n if and only if G has an Abelian Hall n-subgroup H. In this case

HOq(G) < G.

(2) q € 7r if and only ifG — HxK where K is a ir-complement and H is a

nilpotent Hall n-subgroup having all Abelian Sylow subgroups except for

the prime q.

(b) The lengths of the conjugacy classes in Con(G,r) are powers of exactly two

different primes, say q and r. This happens if and only ifq, r € n and G — H x K, where

K is a 7T-complement ofG and H is a Hall IT -subgroup which is a quasi-Frobenius group

with Abelian kernel and complement of orders q" and rb for some a, b > 0. In particular,

the set of conjugacy class lengths in Con(Gv) is exactly {l,qa,rb}.

Furthermore, in all cases G has n-length 1 and G/O^ (G) is solvable.

As a result of Theorem A, when n - {p} we provide another proof of [7, Theorem
A(b)], which is the following.

COROLLARY B . Let G be a group and p a fixed prime such that all the conjugacy

classes ofp-elements have prime power size. Then there exists only one prime q, equal

to or distinct from p, such that all classes ofp-elements have q-power size.

We remark that the proof given there depends, among others, on a result of Kazarin
([10]), requiring Modular Representation Theory. However, our proof is simpler since
we only make use of Burnside's p"-Lemma to prove the fact that groups satisfying the
hypotheses of Theorem A are 7r-separable.

One of the main tools to show Theorem A will be to define and study a graph rn(G)

associated to the set of non-central classes in Con(G^) of a 7r-separable group G. This
graph generalises the graphs T(G) and TP(G), which were defined and studied earlier in
[5, 11 , 2, 3]. We shall obtain some properties of the maximal size classes in Con(G^),
as we did for n = {p1} in [3], so as to show Theorem A(b).

In order to prove Theorem A(a) we have also developed certain properties relating to
conjugacy class lengths in 7r-separable groups. The most remarkable one is the following
extension of a Theorem of Wielandt.

THEOREM C . Let G be a n-separable group. Ifx€G with \xG\ a TT-number, then

[xG,xc] C O,(G). Consequent]^ x € O*y{G).

2. THE GRAPH Tn(G)

LEMMA 1 . Let G be a ir-separable group and let B - bG, C - cG £ Con(G^) such

that (\B\, \C\) = 1. Then

(a) CG(b)Cc(c) - G.
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(b) BC = CB is a conjugacy class in Con(G^) and \BC\ divides \B\ \C\.

(c) Let Bo G Con(Gw) of maximal length and assume that (\B0\, \C\) = 1.

Then C~lCB0 = Bo and \(C-lC)\ divides \B0\.

PROOF: (a) and (b) Mimic the proof of [11, Lemma 1], replacing the set p' by TT.

(c) We know by (b) that CB0 G Con(Gn) and by maximality |GB0| = I-Bo I- Again by
(b), we have that C~XCBO is a class containing Bo, so C'XCBO = Bo. Thus, {C~lC)B0

= Bo and consequently, BQ is union of some cosets of the normal subgroup (C~lC). Then
\{C~lC)\ divides | 5 0 | . D

We are going to use some properties of the following graph, which is a generalisation
of the graph F(G), denned for ordinary conjugacy classes (see [5]) and the graph FP(G),
defined for p-regular classes (see [2]). We define T^(G) to be the graph having as vertices
the non-central classes in Con(G,r) and two classes, C and D, are connected by an edge
when there exists a common prime dividing \C\ and \D\.

THEOREM 2 . Suppose that G is ir-separable. Then rn(G) has at most two con-

nected components.

PROOF: It is sufficient to rewrite the proof of [2, Theorem 1], replacing p1 by vr and

using Lemma l(b). D

In [3, Theorem 2], the authors obtained some properties related to p-regular conju-

gacy classes of maximal size in p-solvable groups. The following theorem extends them

for conjugacy classes of 7r-elements of maximal size in 7r-separable groups.

From now on, ix{m) will denote the set of prime divisors of a positive integer m. We

shall also write ir{X) to denote the set of primes dividing | ^ | for any group X or any

X € Con(G^).

THEOREM 3 . Suppose that G is ir-separable. Let Bo € Con(G^) of maximal length

and write

M = (DeCon(G,)|(|£>|,|5o|) = l).

Then M is an Abelian n-subgroup ofG. Furthermore, Z* := Z(G)ff C M and TT(M/Z^)

C n(B0).

PROOF: We define N = (D~lD \ D € Con(Gp-), (|D|, |50|) = 1)- From the defini-
tion of M and N, it is clear that N - [M,G]. On the other hand, if C G Con(Gn) with
( |C| , |5O |)=1, then C~lCBo = Bo by Lemma l(c), and hence, NB0 = Bo. This means
that Bo is union of cosets of N, so |iV| divides |Bo| and TT(N) C K(B0). NOW, for such
a class cG = C, we have (\N\, \C\) = 1. Since |N : CN(c)\ divides (\N\, \C\), it follows
that N - CN{c), so N ^ Z(M). But M/N is contained in the centre of G/N, and this
forces M to be nilpotent. As all the generators of M lie in the Hall 7r-subgroup of M, we
conclude that M is a 7r-group.

Now, it is obvious that Z* C M. Let r € Tr(M/Zn) and choose R G Sylr(M). Notice
that R < G and that 1 ̂  [R,G] ^ [M,G] = N. Therefore, r G n{N) C TT(B0) and thus
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TT(M/ZW) C n(Bo) as wanted.

Finally, if dG — D is a generating class of M and R is a Sylow r-subgroup as above,

then \R : CR{d)\ divides (\R\, \D\) = 1, so R = CR(d) and we get R ^ Z(M). Hence M

is Abelian. D

LEMMA 4 . Let G be a IT-separable group such thatF* (G) has two connected com-

ponents, Xi and X2, and assume that X2 contains the maximal length classes. Then

\A\ < \B\, A~XAB = B and {(A^A^ divides \B\ for all A € X1 and all B 6 X2.

PROOF: Let B € X2, A e Xi and choose Bo any maximal length class. Since

(|J4|, \B\) — 1 then AB is again a class by Lemma l(b), satisfying that \AB\ divides

\A\ \B\. As A and B belong to different components, we have two possibilities: either

\AB\ = \A\ or \AB\ = \B\. If \AB\ = \A\ then B~lBA = A, and thus we deduce that

\{B~lB)\ divides \A\ and {B~lB) C (.4.4-1). But K ^ " 1 ) ! also divides \B0\ by Lemma

l(c), so we conclude that ((.B"1!?)! divides (|i4|, |JB0|) = 1, a contradiction. Consequently,

\AB\ = \B\, so in particular \A\ < \B\. Moreover, A~XAB = B and then K^-M)! divides

\B\. D
THEOREM 5 . Suppose that G is ir-separable and that TW(G) has two connected

components X\ and X2- Assume that X2 contains the maximal length classes in Con(G^)

and let

M = (£> € Con(G,r) | D € Xj.

Then

(a) M coincides with the subgroup defined in Theorem 3. Accordingly, M is

an Abelian n-subgroup and n(M/Z(G)n) C TT(X2).

(b) there is no class in X2 whose size is a -n'-number.

PROOF: (a) Let A € X\ and let Bo be a class of 7r-elements of maximal length.

In Lemma 4, we proved that ^ ^ l " 1 ) ! divides \B\ for every class B 6 X2. Thus, if

C € Con(Gw) with (|C|, |B0|) = 1, then either C G Xl or \C\ = 1. If C = {c}, then we

need to show that c € M — {D € Con(Gx) | D e Xi). Observe that cA - {ca \ a € A}

is a conjugacy class of 7r-elements of G with \cA\ = \A\. Therefore, cA € Xt, and ca € M

for every a G A. Since a"1 e M, we conclude that c € M.

(b) Fix a class A £ X\. We know that (A'1 A) C M, which is a 7r-group. For any

class B G X2, we proved in Lemma 4 that l ^ " 1 / ! ) ! divides |B| , and thus, |JB| is not a

7r'-number. D

3. CLASS LENGTHS IN TT-SEPARABLE GROUPS

We state and prove now Theorem C of the Introduction.

THEOREM 6 . Suppose that G is -R-separable and let x € G such that \xG\ is a

•K-number. Then [xG,xG] C On(G). Consequently, x 6 Ony(G).
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PROOF: We argue by induction on \G\. As the hypotheses of the theorem are

inherited by quotient groups we can assume that O^(G) = 1 and we shall show that

[zG,zG] = l.

Let N = (xG) and suppose that N < G. Since On{N) = 1, it follows by induction

that [xN,xN] = 1. In particular, (xN) is Abelian and subnormal in G. Thus x € {xN)

C F(G), which is a Tr'-group. But since | z G | is a 7r-number, then F(G) C Cc(x), and so

x is central in F(G). Therefore, {xG) is also central in F(G), so we have [xG,xG] = 1, as

required.

Accordingly, we can assume that N = G. Now take K a minimal normal subgroup

of G, which must be a Tr'-group. By assumption, we have K C CQ(X) and, as G = (xG),

then K C Z(G). It follows that OW(G/K) = On(G)K/K = 1 and, by applying induction,

we obtain [{xK)GlK, {xK)G'K] = 1, that is to say, [xG,xG] C K C Z(G). Then G is

nilpotent. Consequently, G is a Tr'-group, so x is central in G and the theorem is trivially

true.

Now, (xG)Oir(G)/Oir(G) is an Abelian normal subgroup of G/OW(G). Hence

(xG)O,(G)/O,(G) C F{G/O,(G)),

which is necessarily a Tr'-group. In particular, x € Ony(G), as required. D

REMARKS. Theorem 6 is a generalisation of the fact that if G is a Tr-separable group, then

every 1 6 G , with \xG\ a Tr-number must lie in On(G) (see for instance, [9, Lemma 33.3]).

On the other hand, Theorem 6 is simply not true when the Tr-separability hypothesis is

eliminated. For instance, let G be a nonabelian simple group and choose a; ^ 1 to belong

to the centre of a Sylow p-subgroup of G, for some prime p. Then \xG\ is a p'-number

and Op'(G) = 1, while the property [iG,3;G] = 1 is clearly not satisfied.

We also need two lemmas. We shall denote by ln{G) the Tr-length of a group G.

LEMMA 7 . Let G be a n-separable group. Then the conjugacy class length of any

n-element in G is a TT''-number if and only if G has Abelian Hall n-subgroups. In this

case, ln(G) ^ 1.

PROOF: The first assertion can easily be proved by using induction on \G\ (it is

exactly [3, Lemma 5]). The second assertion follows immediately by applying Theorem

6. D
LEMMA 8 : Let G be a ir-separable group. Then the conjugacy class length of every

n-element of G is a n-number if and only ifG = HxK, where H and K are a Hall

•n-subgroup and a n-complement ofG, respectively.

P R O O F : Suppose first that \C\ is a 7r-number for any C £ Con(G^) and take H and

K a Hall Tr-subgroup and a ^-complement of G respectively. Then for each x € H, there

exists some g eG such that K9 C Cc(x). Thus, i € Cc{Kg) and

H C (J CG{K>).
geG
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Since G = HK, we have

/ f c ( J CG{Kh) n H c (J cH{K)h c #.

This yields /f = CH{K) and then G = H x K, as required. The converse direction of
the lemma is trivial. D

4. PROOFS OF THEOREM A AND COROLLARY B

LEMMA 9. Let G be a group. Suppose that \C\ is a prime power for any C
€ Con(G^). Tien G is TT-separable.

PROOF: If any 7r-element of G is central, then G trivially has a central Hall n-
subgroup and the lemma is proved. Thus we can assume that there exists some C
6 Con(G^) such that 1 < \C\ is a prime power. By Burnside's Lemma, G is not simple,
and then the result follows by induction on |G|, since the hypothesis is inherited by
normal subgroups and quotients. D

Suppose that all the conjugacy classes of elements in G* have prime power length.
Then Theorem 2 implies that the primes appearing in this set of lengths can be at most
two. Therefore, to show Theorem A of the Introduction, we only have to study two cases,
depending on whether just one or two primes appear. Each one of these cases corresponds
to Theorems 12 and 10, respectively.

THEOREM 1 0 . Let G be a group and IT an arbitrary set of primes. Then the
lengths of the conjugacy classes in Con(G¥) are powers of exactly two different primes q
and r if and only ifq, r E n and G — H x K, where K is a TT-complement ofG and H is a
Hall ir-subgroup which is quasi-Frobenius with Abelian kernel and complement of orders
qa and rb, with o, b > 0. In particular, the set of conjugacy class lengths in Con(Gn).is
exactly {l,qa,rb}.

PROOF: First, we note that G is 7r-separable by Lemma 9. Suppose that the lengths
of the classes in Con(Gn) are powers of exactly two primes, q and r, and suppose without
loss that qa, with a > 0, is the maximal size. Then I\r(G) has two connected components
and Theorem 5(b) asserts that q € n. Now, we use the subgroup M denned in the state-
ment of Theorem 5. By definition, we have M — (£> € Con(G^) | |£>| is an r-power),
which further is an Abelian 7r-group by Theorem 5(a). We claim that G has a normal Hall
7r-subgroup. Let us consider G/M, which satisfies that all conjugacy classes of 7r-elements
have g-power length. Then, by Lemma 8, we can factor G/M = H/M x KM/M, where
H and K are a Hall 7r-subgroup and a ^-complement of G, respectively. Accordingly, G
has a normal Hall 7r-subgroup, as claimed. Also, we shall use later the fact that KM<G,
for any ^-complement K of G.

Notice that the conjugacy class lengths of H are also r-powers or g-powers, since
they divide the conjugacy class sizes of G. If we prove that H has conjugacy classes
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whose size are g-numbers and r-numbers, we shall obtain, via [5, Theorem A], that H is

quasi-Frobenius with Abelian kernel and complement. Suppose first that every class in

H has r-power size and assume that M < H. Take x € H — M and observe that \xG\

must be a ^-number by definition of M, so \xH\ = 1. This forces H = MZ(H), and thus

H is Abelian (observe that if M = if then H is also Abelian). It follows that the length

of every C € Con(Gn) is a 7r'-number, contradicting the fact that q £ TT.

Suppose now that all the conjugacy classes in H have g-power size and take x € H

such that |xG| is an r-power. Then \xH\ = 1, that is, x £ Z(7/), and therefore, M C Z(H).

If H = M, we get a contradiction as above. Thus we can take x 6 H — M. By definition

of M, 1 ^ \xG\ is a q-number, so in particular, it is a 7r-number. Then Kg C Cc{x)

for some g € G. But on the other hand, we have proved that M C Cc{x), and then

KM = K^M C CG(x) for every x G H - M. We conclude that K C CG{H) and this

means that all conjugacy classes in G* have g-power length, a contradiction.

Thus, we have shown that H has conjugacy classes of r-power size and classes of

g-power size. Therefore q, r € n, and by Lemma 8, we obtain G = H x K. Moreover,

from the fact that H is quasi-Frobenius with Abelian kernel and complement one can

easily check that the conjugacy class sizes of H are exactly {l,ga,r ( >} for some positive

integers a, b, where qa and rb are exactly the orders of the kernel and a complement of

H, respectively.

The converse direction of the theorem is trivial. D

The following is Corollary B of the Introduction.

COROLLARY 1 1 . Let G be a group and p a fixed prime such that all the conjugacy

classes of p-elements have prime power size. Then there exists only one prime q, equal

to or distinct from p, such that all classes of p-elements have q-power size.

P R O O F : Take ir = {p} in Theorem 10. By Theorem 2 there exist at most two primes

dividing the conjugacy class sizes in Gw. If there are exactly two, then they must belong

to 7T by Theorem 10, and this is not possible. D

Now we study the remaining case, that is, when all classes in Gn have g-power size

for a fixed prime q.

THEOREM 1 2 . Suppose that for any C € Con(G^), \C\ is a power of a fixed prime

q. Then

(a) q £ ir if and only if G has an Abelian Hall •n-subgroup H. In this case

HOq{G) < G.

(b) q € 7T if and only ifG — HxK where K is a -^-complement and H is a

nilpotent Hall TT-subgroup having all Abelian Sylow subgroups except for

the prime q.

Furthermore, in both cases l*(G) ^ 1 and G/O*>(G) is solvable.

P R O O F : (a) The direct sense is immediate by Lemmas 7 and 9, and the converse
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direction is trivial. In this case, it remains to be proved that if H is a Hall ?r-subgroup
of G then HOq{G) < G and that G/OW,(G) is solvable.

We first notice that l-n(G) < 1 by applying Lemma 7. To prove that HOq(G) is
normal in G, we first see, arguing by induction on \G\, that we may assume that OV(G)

— 1. If 1 7̂  M := On(G) then, as the hypotheses are inherited by factor groups, by
induction we have Oq{G/M)H/M < G/M. On the other hand, we can write Oq(G/M)

— Q0M/M for some g-subgroup Qo of G, and thus HQ0 < G. Moreover, Oq(HQ0)

= O,(G) since O,(G) C Q 0 M C HQ0. Now we distinguish two possibilities. UHQ0 < G,

by induction it follows that HOq(G) < HQ0. This implies that HOq(G) < G, because we
observe that HOq(G)/Oq(G) = O*(HQ0/Oq(G)). If HQ0 = G then O*(G) = O,(G)
and since lv(G) ^ 1, we also conclude that HOq(G) < G, as required.

We prove now that we can also assume that O^tV(G) - G, that is, On>(G)H = G.

Suppose that N =: On,{G)H < G. As k(G) ^ 1, then N < G. Since.the hypotheses
are inherited by normal subgroups, by applying induction we get HOq(N) <N, and thus
HOq{N) < G. But notice that Oq{N) = O,(G), so we conclude that HOq(G) is normal
in G and the proof finishes.

Now, for any x € H and any prime r E TT', r ^ q, by assumption there exists some
R e Sylr(G) such that R C CG(x), that is, x G Ca(R)- Hence

H C (J Co(il)'.

Then
G - ffCMG) C \J CG{R9)OAG) C G,

S€G

so we have G = CG{R)OW>(G) for some fl e Sylr(G). In particular, \G : CG{R)\ is a
7r'-number and, replacing by some G-conjugated of R, we may assume that H C Cc(R),

or equivalently, R C CQ(H). This has been proved for every prime r € TT' — {9} and
since i / is Abelian, it follows that \G : Cc{H)\ is a g-number. Then G = CQ{H)Q for
some Q € Syl,(G). Furthermore, we can choose Q to be normalised by H, because, by
the Frattini argument, G — Nc{Q)O-ir'(G), so in particular, NG(Q) has 7r'-index in G,
and consequently, there exists some Hall 7r-subgroup of G normalising Q.

Let us consider [H,G] = [H,CG(H)Q] = [H,Q] < Q. Then [H,G] is a normal
<7-subgroup of G, which cannot be trivial because this contradicts the assumption OT(G)
= 1. This forces O,(G) ̂  1 and then we can apply the inductive hypothesis to G/Oq(G)

to conclude that HOq(G) < G and the proof is finished.

Finally, the solvability of G/OW/(G) is a consequence of [7, Theorem A(d)], which
asserts that, under our hypotheses, G / O ^ G ) is solvable for any prime r £ n. In fact,
it is enough to notice that Off/(G) = nr e 7 r0 r /(G) and that G/Ow/(G) can be immerged
into n G/Or>{G), which is solvable too.
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(b) Suppose that q e ir. Then G — H x K by Lemma 8. Notice that the conjugacy
class sizes of H are also g-powers, and this implies (see for instance [8, Proposition 4])
that H = Q x L with Q a Sylow g-subgroup of H and L Abelian, as wanted. Conversely,
if G is as described in the statement, it clearly follows that the conjugacy classes of GT

have g-power size and that q € TT. Finally, the fact that ln(G) ^ 1 and the solvability of
G/O^(G) are trivial in this case. D

REMARK. Let us assume the hypotheses of Theorem 12 with i\ = {p}. Then we have
provided a more elementary proof of the fact that Oq(G)P<G, with P e Sylp(G), which
is part of [7, Theorem A(d)].
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