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Abstract

After the work of Kisin, there is a good theory of canonical integral models of Shimura
varieties of Hodge type at primes of good reduction. The first part of this paper develops
a theory of Hodge type Rapoport–Zink formal schemes, which uniformize certain formal
completions of such integral models. In the second part, the general theory is applied to
the special case of Shimura varieties associated with groups of spinor similitudes, and
the reduced scheme underlying the Rapoport–Zink space is determined explicitly.
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1. Introduction

This paper contributes to the theory of integral models of Shimura varieties, and to the related
theory of Rapoport–Zink formal schemes. We concentrate our attention on Shimura varieties of
Hodge type with hyperspecial level subgroup. In this case, canonical smooth integral models of
the Shimura varieties were constructed by Kisin (see also work of Vasiu). Using these models,
we give a construction of certain Hodge type Rapoport–Zink formal schemes, and describe their
field-valued points in terms of certain refined affine Deligne–Lusztig sets.

A large portion of the paper concerns what is arguably the most interesting family of Shimura
varieties that are of Hodge but not of PEL type: those associated to the spinor similitude groups
of quadratic spaces over Q of signature (d, 2). For this family of Shimura varieties, we use our
results on Rapoport–Zink spaces to explicitly describe the basic (supersingular) locus in the
reduction modulo p of the canonical integral model.

In what follows, we describe our results in more detail. First, we will discuss the construction
of Rapoport–Zink formal schemes for general Hodge type Shimura varieties, and then we will
explain the description of the supersingular locus in the reduction modulo p of the Shimura
varieties for spinor similitude groups.

1.1 Rapoport–Zink spaces for Hodge type Shimura varieties
Let (G,H) be a Hodge type Shimura datum with reflex field E ⊂ C. Fix a prime p > 2 and a
sufficiently small compact open subgroup

U = UpU
p ⊂ G(Af )

with Up ⊂ G(Qp) hyperspecial. This implies that G extends to a reductive group scheme over
Z(p), denoted the same way, with Up = G(Zp). Denote by ShU (G,H) the corresponding Shimura
variety; it is a smooth quasi-projective variety over E with complex points

ShU (G,H)(C) = G(Q)\H ×G(Af )/U.

1.1.1 For (G,H) to be of Hodge type means that there is an embedding of Shimura data

(G,H)→ (GSp2g,H2g), (1.1.1.1)
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where H2g is the union of the upper and lower Siegel half-spaces of genus g. This embedding may
be chosen in a particular way: we can find a self-dual symplectic space (C,ψ) over Z(p) and a
closed immersion

G ↪→ GSp(C,ψ) (1.1.1.2)

of reductive groups over Z(p) whose generic fiber induces (1.1.1.1).
Moreover, G can be realized as the pointwise stabilizer of a finite set of tensors (sα) ⊂ C⊗.

Here C⊗ is the total tensor algebra; it is defined as the direct sum of all free Z(p)-modules that
can be formed from C using the operations of taking duals, tensor products, symmetric powers,
and exterior powers. In particular, if we set

D = Hom(C,Z(p)) (1.1.1.3)

with its contragredient action (gd)(c) = d(g−1c) of G, then C⊗ = D⊗ as representations of G.
For a prime v | p of E, Kisin [Kis10] has proved that the Shimura variety ShU (G,H) over E

admits a canonical smooth integral model

S = SU (G,H)

over the localization OE,(v). The integral model is constructed, using (1.1.1.1), as the
normalization of the Zariski closure of ShU (G,H) in the integral model of a Siegel moduli
variety. In particular, S carries over it a ‘universal’ family of abelian varieties with additional
structure, obtained as the pull-back of the universal family over the Siegel variety. The universal
family on S depends on the choice of Hodge embedding (1.1.1.1), but the integral model S
does not.

The special fiber of the canonical integral model comes with its Newton stratification, whose
strata are defined by fixing the isogeny class of the universal p-divisible group with additional
structure. Among the Newton strata there is a distinguished closed stratum, called the basic locus
(see [RR96, Wor13]). For many Hodge type Shimura varieties, the basic locus is the supersingular
locus: the locus of points at which the universal abelian variety is isogenous to a product of
supersingular elliptic curves. This will be the case for the spinor similitude Shimura varieties
discussed below in § 1.2.

When ShU (G,H) is a PEL type Shimura variety, the completion of the integral model along
the basic locus is described via the p-adic uniformization theorem of Rapoport and Zink [RZ96]
as a quotient of what is now called a Rapoport–Zink formal scheme.

1.1.2 The first main result of this paper is the construction of Rapoport–Zink formal
schemes for general Hodge type Shimura varieties as above. Such a construction also appears
in the recent preprints of Kim [Kim13, Kim14]. We have followed Kim in the characterization of
our formal schemes as moduli spaces of quasi-isogenies between p-divisible groups endowed with
so-called crystalline Tate tensors; however, our construction of these spaces is more direct than
Kim’s, and uses the existence of the integral model S .

Let k be an algebraic closure of the residue field of the place v | p fixed above, and let
W = W (k) be the ring of Witt vectors of k. For us, a Hodge type Rapoport–Zink formal scheme
over W is characterized in terms of the local Shimura–Hodge datum (GZp , bx0 , µx0 , CZp) attached
to a point x0 ∈ S (k). The reductive group scheme GZp over Zp and the representation

GZp ↪→ GL(CZp)

were described above, and we must now explain the meaning of bx0 and µx0 .
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Denote by X0 the p-divisible group of the fiber of the universal abelian scheme at x0, and
let D(X0) be its contravariant Grothendieck–Messing crystal. The evaluation D(X0)(W ) of the
crystal on W is the Dieudonné module of X0. Kisin shows that this comes equipped with a
collection of crystalline tensors

tα,0 ∈ D(X0)(W )⊗,

which are Frobenius invariant in D(X0)(W )⊗[1/p]. Moreover, there is a W -module isomorphism

D ⊗Zp W
∼−→ D(X0)(W ) (1.1.2.1)

identifying sα ⊗ 1 with tα,0. Under any such identification the Frobenius operator on D(X0)(W )
induces an operator on D ⊗Zp W of the form

F = bx0 ◦ σ

for some bx0 ∈ G(K). Here σ ∈ Aut(W ) lifts the absolute Frobenius on k, and K = W [1/p] is
the fraction field of W .

Kisin shows that the Hodge filtration on D(X0)(k) is split by a Gk-valued cocharacter, which
is the reduction of a minuscule cocharacter

µx0 : GmW → GW

satisfying bx0 ∈ G(W )µσx0
(p)G(W ).

The G(W )-conjugacy class of µx0 is independent of (1.1.2.1) and it agrees with the conjugacy
class of the inverse of the Deligne cocharacter µh : GmC → GC associated to the symmetric
domain H. More precisely, µx0 and µ−1

h become conjugate after we fix an isomorphism C ∼−→ K̄
whose restriction to E ↪→ K̄ induces the place v chosen above.

Having fixed x0 and (1.1.2.1), we abbreviate b = bx0 and µ = µx0 . Define an algebraic group
Jb over Qp with functor of points

Jb(R) = {g ∈ G(R⊗Qp K) : gbσ(g)−1 = b}

for any Qp-algebra R. The element b is basic if and only if Jb is an inner form of G.

Theorem A. There exists a formal scheme RZG over Spf(W ) that is formally smooth and locally
formally of finite type, admits a left action of Jb(Qp), and has the following properties.

(i) It is a formal closed subscheme of the usual Rapoport–Zink formal scheme RZ(X0) over
Spf(W ) representing pairs (X, ρ) of a p-divisible group X and a quasi-isogeny ρ : X0 99K X, as
in [RZ96].

(ii) There is a bijection
RZG(k)

∼−→ XG,b,µσ(k),

where XG,b,µσ(k) is the affine Deligne–Lusztig set{
g ∈ G(K) : g−1bσ(g) ∈ G(W )µσ(p)G(W )

}
/G(W ).

(iii) Assume in addition that b is basic, or, equivalently, that the point x0 lies in the basic
locus. Then there is an isomorphism of formal schemes

Θb : I(Q)\RZG ×G(Apf )/Up
∼−→ (ŜW )/Sb

.
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Here (ŜW )/Sb
is the completion of the base change SW along the basic locus Sb of the special

fiber, and I is a reductive group over Q, which is an inner form of G admitting identifications

I(Q`) =

{
Jb(Qp) if ` = p,

G(Q`) if ` 6= p,

and with I(R) compact modulo center.

In fact, RZG(k) can be identified with the set of isomorphism classes of triples (X, ρ, (tα)) in
which X is a p-divisible group over k,

(tα) ⊂ D(X)(W )⊗

is a collection of Frobenius invariant tensors, and ρ : X0 99K X is a quasi-isogeny identifying tα
with tα,0. Some additional technical properties are required; see Definition 2.3.3. We can give a
similar moduli description of the R-valued points of RZG for R any formally smooth, formally
finitely generated W -algebra, but not for general R. This description uniquely determines RZG.

Remark 1.1.3. As noted earlier, Theorem A already appears in the recent preprints of Kim
[Kim13, Kim14]. It is only our construction of the space RZG that is new. It is essential for
our construction (but not for Kim’s) that the local Shimura–Hodge datum (GZp , b, µ, CZp) arises
from a point x0 ∈ S (k) on a global Hodge type Shimura variety as above. Given results on the
non-emptiness of Newton strata for Shimura varieties of Hodge type which have been recently
announced by Kisin, Madapusi Pera, and Shin, one should be able to show that this happens
most of the time; we would like to return to this question on another occasion.

1.1.4 We can also give a concrete description of RZG(k′) when k′/k is any finitely generated
field extension and the p-divisible group X0 is formal. This involves the new notion of a refined
affine Deligne–Lusztig set, which we now explain. Let W ′ be the Cohen ring of k′, let K ′ =

W ′[1/p] be its fraction field, and suppose σ : W ′ → W ′ is an appropriate lift of Frobenius (see
Proposition 2.4.8). The following theorem is then obtained by using Zink’s theory of displays and
windows.

Theorem B. There is a bijection

RZG(k′)
∼−→ XG,b,µσ ,σ(k′),

where the refined affine Deligne–Lusztig setXG,b,µσ ,σ(k′) is, by definition, the image of the natural
map {

g ∈ G(K ′) : g−1bσ(g) ∈ G(W ′)µσ(p)
}
→ G(K ′)/G(W ′).

Our refined affine Deligne–Lusztig set is a subset of the naive affine Deligne–Lusztig set{
g ∈ G(K ′) : g−1bσ(g) ∈ G(W ′)µσ(p)G(W ′)

}
/G(W ′),

and equality holds if k′ is perfect. The above description of RZG(k′) is entirely group-theoretical
(i.e. does not involve p-divisible groups), and is thus quite useful.
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Remark 1.1.5. There is a simpler parallel theory when we consider only the points of Rapoport–
Zink formal schemes with values in perfect Fp-algebras. Indeed, then one can even use the Witt
vector affine Grassmannian as in [Zhu17, BS15] to obtain a more straightforward and general
construction of (at least) the reduced locus of Rapoport–Zink schemes, but only up to perfection.
These constructions allow one to also consider non-minuscule coweights. However, this comes at
the cost of passing to the non-finite type perfection which loses a lot of information.

In contrast, in this paper we can consider points with values in non-perfect rings, but we
must restrict to minuscule coweights connected to Shimura varieties. Allowing non-perfect rings
as in Theorem B is essential for the application to spinor Shimura varieties described below.
A different approach towards describing Rapoport–Zink formal schemes as functors on more
general (not necessarily perfect) rings directly from the group data is pursued in work in
preparation by one of us (G.P.) with O. Bültel.

Remark 1.1.6. A direct construction of an adic analytic space corresponding to the limit of
Rapoport–Zink spaces over all p-level subgroups has been given by Scholze and Weinstein [SW13]
using Scholze’s perfectoid spaces. Recently, there has been further progress in defining related
spaces by Scholze using his theory of diamonds. The constructions of Scholze and of Scholze and
Weinstein concern the generic fiber, and do not provide a uniformization of the integral model.

1.2 Spinor similitude Shimura varieties
In large part, our motivation for studying Rapoport–Zink spaces for Hodge type Shimura varieties
is to apply the general theory to the Shimura varieties associated with spinor similitude groups.

By combining our general results, specialized to the case of GSpin, with the linear algebra of
lattices in quadratic spaces as in [HP14], we obtain a very explicit description of the basic locus of
the special fiber of the integral model, and of the underlying reduced scheme of the corresponding
Rapoport–Zink formal scheme.

1.2.1 Start with an odd prime p and a self-dual quadratic space (V,Q) over Z(p) of signature
(d, 2) with d > 1. The corresponding bilinear form is denoted by

[x, y] = Q(x+ y)−Q(x)−Q(y). (1.2.1.1)

This determines a reductive group scheme G = GSpin(V ) over Z(p). By a slight abuse of notation,
we sometimes use the same letter to denote the generic fiber of G.

Define a hyperspecial subgroup

Up = G(Zp) ⊂ G(Qp).

By setting U = UpUp for any sufficiently small compact open subgroup Up ⊂ G(Apf ), we obtain
a d-dimensional Shimura variety ShU (G,H) over Q. Here G(R) acts on the hermitian domain

H = {z ∈ VC : [z, z] = 0, [z, z̄] < 0}/C× (1.2.1.2)

via the natural surjection G→ SO(V ).

1.2.2 The group G is, by definition, a subgroup of the unit group of the Clifford algebra
C = C(V ), and hence G acts on C by left multiplication. For an appropriate choice of perfect
symplectic form ψ on C, this defines a closed immersion (1.1.1.2) of reductive groups over Z(p),

Thus we find ourselves in exactly the situation described in § 1.1. Let S = SU (G,H) be the
canonical smooth integral model over Z(p), equipped with the universal abelian scheme determined

1055

https://doi.org/10.1112/S0010437X17007011 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007011


B. Howard and G. Pappas

by the symplectic embedding (1.1.1.2). This universal abelian scheme is also known as the Kuga–
Satake abelian scheme, and the locus of points

Sss ⊂ S ⊗Z(p)
k (1.2.2.1)

at which it is supersingular is precisely the basic locus. As before, we set k = F̄p and W = W (k).
Fix a supersingular point x0 ∈S (k), and let (GZp , b, µ, CZp) be the corresponding unramified

local Shimura–Hodge datum as in § 1.1. Let RZ = RZG be the associated formal scheme over W ,
as in Theorem A. Our main result is an explicit description of the underlying reduced locally
finite type k-scheme RZred. First, we give a formula for its dimension.

Theorem C. Let n = d + 2 be the dimension of VQp . All irreducible components of RZred are
isomorphic, and are smooth of dimension

dim(RZred) =
1

2


n− 4 if n is even and det(VQp) = (−1)n/2,

n− 3 if n is odd,
n− 2 if n is even and det(VQp) 6= (−1)n/2,

where the equalities involving det(VQp) are understood to be in Q×p modulo squares. Equivalently,

dim(RZred) =

{
(d/2)− 1 if VQp is a sum of hyperbolic planes,
bd/2c otherwise.

1.2.3 In fact, we give essentially a complete description of RZred, in the same spirit as the
work of Vollaard [Vol10], Vollaard and Wedhorn [VW11], Rapoport et al. [RTW14], and the
authors [HP14] for some unitary Shimura varieties. To explain its structure requires some more
notation.

Consider the quadratic space VK over K = W [1/p], with its natural action GK → SO(VK).
The operator Φ = b◦σ makes VK into a slope 0 isocrystal, and its subspace of Φ-invariant vectors
V Φ
K is a Qp-quadratic space of the same dimension and determinant as VQp , but with different

Hasse invariant. In fact, the self-duality of V implies that VQp has Hasse invariant 1, and so V Φ
K

has Hasse invariant −1.
A vertex lattice is a Zp-lattice Λ ⊂ V Φ

K satisfying pΛ ⊂ Λ∨ ⊂ Λ. The quadratic form pQ on
V Φ
K induces a quadratic form on the Fp-vector space

Ω0 = Λ/Λ∨.

The type tΛ = dim(Ω0) of Λ is even, and satisfies 2 6 tΛ 6 tmax, where

tmax =


n− 2 if n is even and det(VQp) = (−1)n/2,

n− 1 if n is odd,
n if n is even and det(VQp) 6= (−1)n/2.

(1.2.3.1)

One may characterize Ω0 as the unique quadratic space over Fp of dimension tΛ that admits no
Lagrangian (= totally isotropic of dimension tΛ/2) subspace.

Of course the base change of Ω0 to k does admit Lagrangian subspaces, and we define a
smooth projective k-variety SΛ with k-points

SΛ(k) =

{
Lagrangians L ⊂ Ω0 ⊗Fp k : dim(L + Φ(L )) =

tΛ
2

+ 1

}
.
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Here Φ = id⊗σ is the operator on Ω0⊗k induced by the absolute Frobenius σ(x) = xp on k. The
variety SΛ = S+

Λ t S−Λ has two connected components, which are (non-canonically) isomorphic,
and smooth of dimension (tΛ/2) − 1. As we will explain in § 6.5.4, these can be identified with
closures of Deligne–Lusztig varieties for SO(Ω0).

Theorem D. The Rapoport–Zink formal scheme RZ = RZG admits a decomposition

RZ =
⊔
`∈Z

RZ(`)

with the following properties.

(i) Each open and closed formal subscheme RZ(`) is connected, and

RZ(`) ∼−→ RZ(`+1).

(ii) Each connected component RZ(`) has a collection of closed formal subschemes RZ
(`)
Λ ⊂ RZ(`)

indexed by the vertex lattices Λ ⊂ V Φ
K , and the underlying reduced schemes satisfy

RZ
(`),red
Λ

∼−→ S±Λ .

Moreover, for any vertex lattices Λ1 and Λ2,

RZΛ1(k) ∩ RZΛ2(k) =

{
RZΛ1∩Λ2(k) if Λ1 ∩ Λ2 is a vertex lattice,
∅ otherwise.

(iii) The irreducible components of RZ(`),red are precisely the closed subschemes RZ
(`),red
Λ indexed

by the vertex lattices of type tΛ = tmax.

Loosely speaking, the theorem asserts that the irreducible components of RZred, their
intersections, the intersections of their intersections, etc. are all isomorphic to varieties of the
form S±Λ for various choices of Λ. The following result is an immediate corollary of this and the
uniformization result of Theorem A.

Theorem E. For Up ⊂ G(Apf ) sufficiently small, every irreducible component of the
supersingular locus (1.2.2.1) is isomorphic to a connected component of the smooth projective
k-variety {

Lagrangians L ⊂ Ω0 ⊗ k : dim(L + Φ(L )) =
tmax

2
+ 1

}
,

where Ω0 is the unique quadratic space over Fp having dimension tmax, and admitting no
Lagrangian subspace. In particular, all irreducible components of Sss are smooth and projective
of dimension

dim(Sss) =
tmax

2
− 1 =

{
(d/2)− 1 if VQp is a sum of hyperbolic planes,
bd/2c otherwise.
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1.3 Applications and directions of further inquiry
1.3.1 One motivation for wanting such an explicit description of the supersingular locus

for GSpin Shimura varieties is because of its relevance to conjectures of Kudla [Kud04] relating
intersections of special cycles on orthogonal Shimura varieties to derivatives of Eisenstein series.
Indeed, Kudla and Rapoport [KR99, KR00] were able to verify many cases of these conjectures
for Shimura varieties attached to the low-rank groups GSpin(2, 2) and GSpin(3, 2), and their
arguments depend in an essential way on having concrete descriptions of the supersingular loci.

With the results of § 1.2 now in hand, it should be possible to extend the results of these
papers to all Shimura varieties of type GSpin(d, 2). Some results in this direction will appear in
the forthcoming Boston College PhD thesis of Cihan Soylu.

1.3.2 Görtz and He [GH15] have studied all basic minuscule affine Deligne–Lusztig varieties
for equicharacteristic discrete-valued fields. They give a list of cases where these affine Deligne–
Lusztig varieties can be expressed as a union of classical Deligne–Lusztig varieties, and that list
contains equicharacteristic analogues of the GSpin Rapoport–Zink spaces considered here. In fact,
these spaces are the only (absolutely simple) types in their list with hyperspecial level subgroups
which are not of EL or PEL type. The results of Görtz and He in the equicharacteristic case are
analogous to our mixed characteristic results.

There are other Hodge type cases for which a similar description should be possible, but for
more general parahoric level subgroups. Extending our construction of Rapoport–Zink formal
schemes to the general parahoric case, by using, for example, the integral models of Shimura
varieties given in [KP15], is an interesting problem. If this is done, then our results should extend
to cover all the cases listed in [GH15]. This will probably require generalizing, via Bruhat–Tits
theory, the algebra of lattices in quadratic spaces we use in this paper. In another direction, it
would also be interesting to understand our results from the point of view of the stratifications
introduced by Chen and Viehmann in [CV15].

1.3.3 In the cases considered in [GH15], the affine Deligne–Lusztig varieties are unions of
Ekedahl–Oort (EO) strata. Such strata can be defined in the hyperspecial mixed characteristic
case following [Zha13] or [Vie14]. In the GSpin case considered here, the EO strata should be
indexed by the possible types tΛ of vertex lattices Λ. In fact, we expect that each EO stratum is
the union of all Bruhat–Tits strata

BTΛ = RZred
Λ r

⋃
Λ′(Λ

RZred
Λ′

in the sense of § 6.5, with Λ ranging over all vertex lattices of the corresponding type.

1.4 Organization and contents
In § 2 we first fix notation and recall some general facts about windows and crystals for
p-divisible groups, and about local Shimura data. When the local Shimura datum (G, [b], {µ}) is
of Hodge type, and after fixing a suitable Hodge embedding, we define in § 2.3 a functor RZnilp

G

on p-nilpotent algebras. We also consider a functor RZfsm
G defined (only) on formally smooth,

formally of finite type p-adic algebras, which is essentially given by a limit of values of RZnilp
G .

In § 2.4 we describe the field-valued points of these functors via refined affine Deligne–Lusztig
sets.

In § 3.1 we switch to the global set-up of Shimura varieties and recall some properties of the
canonical integral models constructed by Kisin. Then in § 3.2 we prove the first main result of
the paper (Theorem 3.2.1): roughly speaking, we show that when the local Shimura datum is
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obtained from a global one, the functor RZfsm
G is representable by a formal scheme RZG. In § 3.3

we prove a uniformization theorem for the formal completion of the integral model of the Shimura
variety along its basic locus.

The rest of the paper is devoted to Rapoport–Zink formal schemes and Shimura varieties for
spinor similitude groups.

In § 4 we describe the corresponding local Shimura data and define the GSpin Rapoport–Zink
formal schemes. We devote § 5 to the algebra of certain type of lattices (‘vertex lattices’ and
‘special lattices’) in quadratic spaces. This, together with our previous general results, is used
in § 6 to describe the reduced scheme underlying the basic GSpin Rapoport–Zink formal schemes
(see especially § 6.4). Finally, in § 7, we apply our local results to the global problem of describing
the supersingular loci of Shimura varieties of type GSpin.

1.5 Notation and conventions
Throughout the paper, k = F̄p, where p > 2. The absolute Frobenius on k is denoted by σ(x) = xp.
We also denote by σ the induced automorphism of the ring of Witt vectors W = W (k) and its
fraction field K = W [1/p].

2. Rapoport–Zink spaces of Hodge type

2.1 Preliminaries
In this section we introduce notation for various categories of W -algebras. We also recall some
facts about divided power thickenings and crystals of p-divisible groups, and Zink’s theory of
windows.

2.1.1 As in [RZ96], we will denote by NilpW the category of W -schemes S such that p is
Zariski locally nilpotent in OS . Denote by

ANilpW ⊂ Nilpop
W

the full subcategory of Noetherian W -algebras in which p is nilpotent. We denote by ANilpf
W the

category of Noetherian adic W -algebras in which p is nilpotent, and embed

ANilpW ⊂ ANilpf
W

as a full subcategory by endowing any W -algebra in ANilpW with its p-adic topology.
We say that an adic W -algebra A is formally finitely generated if A is Noetherian, and if

A/I is a finitely generated W -algebra for some ideal of definition I ⊂ A. Thus Spf(A) is a formal
scheme which is formally of finite type over Spf(W ). If, in addition, p is nilpotent in A, then A
is a quotient of W/(pn)[[x1, . . . , xr]][y1, . . . , ys] for some n, r, and s.

We will denote by
ANilpfsm

W ⊂ ANilpf
W

the full subcategory whose objects are W -algebras that are formally finitely generated and
formally smooth over W/(pn), for some n > 1.

2.1.2 As in [RZ96, § 2.1], every formal scheme X over Spf(W ) defines a functor on NilpW .
We restrict this functor to ANilpW , and then extend to ANilpf

W as follows: for A in ANilpf
W with

ideal of definition I, define X(A) to be the set

X(A) = HomSpf(W )(Spf(A),X) = lim
←−nX(A/In).
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2.1.3 If R is an object of ANilpfsm
W , the quotient R̄ = R/pR satisfies the condition [deJ95,

(1.3.1.1)]. Thus, by [deJ95, Lemma 1.3.3], R̄ admits a divided power (PD) thickening

R̃→ R̃/pR̃ = R̄

by a formally smooth, p-adically completeW -algebra R̃, unique up to non-canonical isomorphism.
The absolute Frobenius on R̄ lifts to R̃. The formal smoothness of R over W/pnW implies that
R
∼−→ R̃/pnR̃, and hence R̃ also provides a PD thickening R̃ → R. One can show that R̃ is a

quotient of a W -algebra of the form

W [[x1, . . . , xr]]{y1, . . . , ys} = lim
←−nW/(p

n)[[x1, . . . , xr]][y1, . . . , ys],

and hence is Noetherian.

2.1.4 Suppose that R is any k-algebra admitting a p-basis in the sense of [BM90, § 1.1].
An explicit construction of a PD thickening R̃→ R is then explained in [BM90]. This applies in
particular when R = k′ is any field extension of k, in which case R̃ is isomorphic to the Cohen
ring W ′ of k′.

Recall that the Cohen ring W ′ is the unique, up to non-canonical isomorphism, discrete
valuation ring with k′ as a residue field and p as uniformizer. It is flat over the Witt ring W of k.
If (xi)i is a p-basis of k′, then a choice of elements yi ∈ W ′ with xpi ≡ yi (mod pW ′) determines
a lift σ : W ′→W ′ of the absolute Frobenius k′→ k′. Set K ′ = W ′[1/p].

2.1.5 Continue with the above notation, and fix a lift σ : W ′ → W ′ of the Frobenius of
the field k′. The triple (W ′, pW ′, k′) gives a frame for k′ in the sense of [Zin01]. As in [Zin01,
Definition 2], a Dieudonné W ′-window over k′ consists of a triple (M,M1, F ), in which

– M is a free finitely generated W ′-module;
– M1 ⊂M is a W ′-submodule such that pM ⊂M1 ⊂M ;
– F : M → M is a σ-semi-linear map such that F (M1) ⊂ pM , and p−1F (M1) generates M

as an W ′-module.

These conditions imply F (M) ⊂ p−1F (M1), and so are equivalent to the conditions appearing in
[Zin01, Definition 2]. If (M,M1, F ) is a Dieudonné W ′-window then

M1 = F−1(pM) = {x ∈M [1/p] : F (x) ∈ pM}.

If M is a free finitely generated W ′-module, and F : M [1/p] → M [1/p] is a σ-semi-linear
map such that

– pM ⊂ F−1(pM) ⊂M , and
– F (F−1(M)) generates M as a W ′-module,

then F (M) ⊂M and (M,F−1(pM), F ) is a Dieudonné W ′-window.
A Dieudonné W ′-window is called simply a W ′-window when the additional nilpotence

condition of [Zin01, Definition 3] is satisfied.

2.1.6 Let S be a scheme such that p is Zariski locally nilpotent in OS . Set

S̄ = S ⊗Zp Fp,

and denote by σ : S̄ → S̄ the absolute Frobenius morphism.
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For a p-divisible group X over S, we will denote by D(X) its contravariant Dieudonné crystal.
It is a crystal of locally free OS/Zp-modules of rank equal to the height h(X) of X. We refer
the reader to [Mes72, BBM82, deJ95] for background on the construction and properties of the
Dieudonné crystal.

The crystal D(X) is equipped with the Hodge filtration

Fil1(X) = Lie(X)∗ ⊂ D(X)S ,

where D(X)S is the pull-back of D(X) to the Zariski site of S; it is a locally free OS-module
of rank h(X), and the OS-submodule Fil1(X) is locally a direct summand. We also have the
Frobenius morphism

F : σ∗D(X)→ D(X), (2.1.6.1)

where the pull-back σ∗D(X) is defined as in the above references.
Define crystals

1 = D(Qp/Zp), 1(−1) = D(µp∞),

and note that 1 is the structure sheaf OS/Zp with the usual Frobenius structure and Fil1 = (0).
We often confuse a global section t of a crystal D with the corresponding morphism of crystals
t : 1→ D.

We define D(X)∗ to be the OS/Zp-linear dual with the dual filtration. Note that D(X∨)∗ =
D(X)(−1), where X∨ is the dual p-divisible group. There is a Frobenius structure on D(X)∗ as
in (2.1.6.1) but it is defined only ‘up to isogeny’, i.e. only after we view D(X)∗ as an isocrystal
as below.

We define the category of isocrystals over S as follows.

– Objects are crystals D of locally free OS/Zp-modules. We write D[1/p] if we view D as an
isocrystal.

– Morphisms D[1/p] → D′[1/p] are given by global sections of the Zariski sheaf
Hom(D,D′)[1/p] over S, where Hom(D,D′) is taken in the category of crystals of locally free
OS/Zp-modules.

Every quasi-isogeny ρ : X 99K X ′ of p-divisible groups over S, in the sense of [RZ96,
Definition 2.8], induces an isomorphism of isocrystals

D(ρ) : D(X ′)[1/p]
∼−→ D(X)[1/p]. (2.1.6.2)

The total tensor algebra D(X)⊗ is defined as the direct sum of all the crystals of locally free
OS/Zp-modules which can be formed from D(X) using the operations of taking duals, tensor
products, symmetric powers and exterior powers. It is a crystal of locally free OS/Zp-modules
over S. The Hodge filtration on D(X)S induces a natural filtration Fil•(D(X)⊗S ) on D(X)⊗S , and
the Frobenius morphism (2.1.6.1) induces an isomorphism of isocrystals

F : σ∗D(X)⊗[1/p]
∼−→ D(X)⊗[1/p].

For any quasi-isogeny ρ : X 99KX ′ of p-divisible groups over S, the isomorphism (2.1.6.2) extends
to

D(ρ) : D(X ′)⊗[1/p]
∼−→ D(X)⊗[1/p].

A similar discussion applies to formal schemes S over Spf(Zp), as in [deJ95, ch. 2].
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2.1.7 Suppose X is a formal p-divisible group over a field k′ of characteristic p. Again letting
W ′ be the Cohen ring of k′, the evaluation

D(X)(W ′) = lim
←−nD(X)(W ′/pnW ′)

of the crystal D(X) on W ′ has a natural structure of a W ′-window over k′. (Combine the proof
of [Zin01, Theorem 1.6] with [Zin02, Theorem 6].)

By [Zin01, Theorem 4], the functor X 7→ D(X)(W ′) gives an anti-equivalence of categories
between formal p-divisible groups over k′ andW ′-windows over k′. More precisely, the equivalence
of [Zin01] uses the covariant Dieudonné crystal, and we compose the functor defined there with
Cartier duality.

If k′ is perfect, classical Dieudonné theory (or [Zin01, Theorem 3.2]) gives in the same way an
anti-equivalence between (all) p-divisible groups over k′ and Dieudonné modules overW ′ =W (k′).

2.2 Local Shimura data
For the remainder of § 2, G is a connected reductive group scheme over Zp. The generic fiber
of G is therefore a connected reductive group over Qp, and is unramified in the sense that it is
quasi-split and split over an unramified extension of Qp. Conversely, every unramified connected
reductive group over Qp is isomorphic to the generic fiber of such a G.

2.2.1 Let ([b], {µ}) be a pair consisting of:

– a G(K̄)-conjugacy class {µ} of cocharacters µ : GmK̄ → GK̄ ;
– a σ-conjugacy class [b] of elements b ∈ G(K).

Here b and b′ are σ-conjugate if there is g ∈ G(K) with b′ = gbσ(g)−1.
We let E ⊂ K̄ be the field of definition of the conjugacy class {µ}. This is the local reflex

field. Denote by OE its valuation ring and by kE its (finite) residue field. In fact, under our
assumption on G, the field E ⊂ K̄ is contained in K and there is a cocharacter µ : GmE → GE
in the conjugacy class {µ} that is defined over E; see [Kot84, Lemma (1.1.3)]. In fact, we can
find a representative µ that extends to an integral cocharacter

µ : GmOE → GOE , (2.2.1.1)

and the G(OE)-conjugacy class of such an µ is well defined. In what follows, we usually assume
that µ is such a representative.

To the conjugacy class {µ} we associate the homogeneous space

MG,µ = GOE/Pµ

over OE , in which Pµ ⊂ GOE is the parabolic subgroup defined by µ. More precisely, Pµ is the
parabolic subgroup such that Pµ ×OE W contains exactly the root groups Ua of the split group
GW , for all roots a with a · µ > 0. The group Pµ ×OE W stabilizes the filtration defined by µ in
any representation of GW .

We write µσ = σ(µ) for the Frobenius conjugate of (2.2.1.1).

Definition 2.2.2 (Cf. [RV14, Definition 5.1]). A local unramified Shimura datum is a triple
(G, [b], {µ}), in which G is a connected reductive group over Zp, the pair ([b], {µ}) is as above,
and we assume:
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(i) {µ} is minuscule;
(ii) for some (equivalently, any) integral representative (2.2.1.1) of {µ}, the σ-conjugacy class

[b] has a representative
b ∈ G(W )µσ(p)G(W ). (2.2.2.1)

By [RR96, Theorem 4.2], assumptions (i) and (ii) imply that [b] lies in the set B(GQp , {µ})
of neutral acceptable elements for {µ}; see [RV14, Definition 2.3]. In particular, (GQp , [b], {µ}) is
a local Shimura datum in the sense of [RV14, Definition 5.1].

Definition 2.2.3. The local unramified Shimura datum (G, [b], {µ}) is of Hodge type if there
exists a closed group scheme embedding ι : G ↪→ GL(C), for a free Zp-module C of finite rank,
with the following properties: the central torus Gm ⊂ GL(C) is contained in G, and, after a choice
of basis COE

∼−→ OnE , the composite cocharacter

ι ◦ µ : GmOE → GLn,OE

is the inverse of the minuscule cocharacter1

a 7→ diag(a(r), 1(n−r))

for some 1 6 r < n.

Definition 2.2.4. Let (G, [b], {µ}) be a local unramified Shimura datum of Hodge type. A local
Hodge embedding datum for (G, [b], {µ}) consists of:

– a group scheme embedding ι : G ↪→ GL(C) as in Definition 2.2.3;
– the G(W )-σ-conjugacy class {gbσ(g)−1 : g ∈ G(W )} of a representative

b ∈ G(W )µσ(p)G(W )

of [b], where µ : GmW →GW is chosen to be an integral representative of theG(K̄)-conjugacy
class {µ}. Note that such a representative µ is unique up to G(W )-conjugacy.

The quadruple (G, b, µ, C), where µ is given up to G(W )-conjugation, and b up to G(W )-σ-
conjugation, is a local unramified Shimura–Hodge datum.

By definition, there is a surjection (G, b, µ, C) 7→ (G, [b], {µ}) from the set of local unramified
Shimura–Hodge data to the set of local unramified Shimura data of Hodge type.

Fix a local unramified Shimura–Hodge datum (G, b, µ, C), and set D = HomZp(C,Zp) with
the contragredient action of G.

Lemma 2.2.5. Up to isomorphism, there is a unique p-divisible group

X0 = X0(G, b, µ, C)

over k whose contravariant Dieudonné module is D(X0)(W ) = DW with Frobenius F = b ◦ σ.
Moreover, the Hodge filtration

V Dk ⊂ Dk = D(X0)(k)

is induced by a conjugate of the reduction µk : Gmk → Gk.
1 The notation a(r) means that there are r copies of a.
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Proof. By our assumption on µ in Definition 2.2.3, we have µ(p)DW ⊂ DW . Therefore, by
(2.2.2.1), the lattice DW ⊂ DW [1/p] is F -stable. To determine V DW , write b = h′µσ(p)h with
h, h′ ∈ G(W ), so that

V DW = pF−1DW = pσ−1(b−1DW )

= σ−1(h−1pµσ(p)−1h′−1DW )

= h1pµ(p)−1h−1
1 DW

for h1 = σ−1(h−1) ∈ G(W ). Observe that pµ(p)−1DW ⊂ DW , and in fact the filtration

(pµ(p)−1DW )/pDW ⊂ DW /pDW = Dk

is induced by µk : Gmk → Gk.
The above calculation shows that V DW ⊂ DW , and that the Hodge filtration V Dk ⊂ Dk is

induced by the conjugate h̄1µkh̄
−1
1 . 2

2.2.6 By [Kis10, Proposition (1.3.2)], there is finite list (sα) of tensors sα in the total tensor
algebra C⊗ that ‘cut out’ the group G, in the sense that

G(R) = {g ∈ GL(C ⊗Zp R) : g · (sα ⊗ 1) = (sα ⊗ 1), ∀α}

for all Zp-algebras R. Using the canonical isomorphism C⊗ = D⊗, the tensors sα ∈ C⊗ determine
tensors sα⊗1 ∈D⊗⊗ZpW . Thus, if X0 is the p-divisible group of Lemma 2.2.5, we obtain tensors

tα,0 = sα ⊗ 1 ∈ D⊗ ⊗Zp W = D(X0)(W )⊗,

which are Frobenius invariant when viewed in D(X0)(W )⊗[1/p]. The tensors tα,0 uniquely
determine morphisms of crystals tα,0 : 1→ D(X0)⊗ over Spec(k), such that each

tα,0 : 1[1/p]→ D(X0)[1/p]⊗

is Frobenius equivariant.2 Here, as before, we denote by 1 = D(Qp/Zp) the crystal determined
by the Dieudonné module W with F = σ. Using Lemma 2.2.5, we easily see that tα,0(k) ∈
Fil0(D(X0)(k)⊗).

2.2.7 By [Kot85], every σ-conjugacy class in G(K) is decent in the sense of [RZ96,
Definition 1.8]. By [RZ96, Proposition 1.12], any b ∈ G(K) determines a smooth affine group
scheme Jb over Qp with functor of points

Jb(R) = {g ∈ G(R⊗Qp K) : gbσ(g)−1 = b}

for any Qp-algebra R. Up to isomorphism, Jb depends only on the σ-conjugacy class [b].

2.2.8 Let T be the pro-torus over Zp with character group Q. For any Zp-algebra R, an
R-point z ∈ T(R) consists of a tuple

z = (zm ∈ R×)m∈Z>0

such that zm = zdmd for all positive m and d. The character indexed by the rational number s/t
sends z 7→ zst .

2 Since D(X0)
⊗ also involves the dual, the Frobenius is not defined on D(X0)

⊗, but only on D(X0)
⊗[1/p]; see § 2.1.6.
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Kottwitz [Kot85] attaches to every b ∈ G(K) a slope cocharacter

νb : TK → GK

such that for any representation ψ : GQp → GL(M) on a Qp-vector space M , the decomposition

MK =
⊕
s/t∈Q

M
s/t
K

ofMK determined by the cocharacter ψ◦νb : TK → GL(MK) agrees with the slope decomposition
of the isocrystal (MK , ψ(b)◦σ). The slope cocharacter depends only on the σ-conjugacy class [b].

An element b ∈ G(K) is basic if its slope cocharacter νb factors through the center of GK .
By [Kot85], b is basic if and only if the group Jb is an inner form of G.

2.3 Rapoport–Zink formal schemes and functors
In this subsection we define Rapoport–Zink formal schemes and functors associated to a local
unramified Shimura–Hodge datum (G, b, µ, C) as defined in § 2.2. We start by recalling the
definition of some ‘classical’ Rapoport–Zink functors.

2.3.1 Suppose that X0 is any p-divisible group over k. The Rapoport–Zink space RZ(X0)
of deformations of X0 up to quasi-isogeny is, as in [RZ96], the formal scheme over Spf(W ) that
represents the functor assigning to each scheme S in NilpW the set of isomorphism classes of
pairs (X, ρ) in which

– X is a p-divisible group over S;
– ρ : X0 ×k S̄ 99K X ×S S̄ is a quasi-isogeny, where S̄ = S ⊗W k.

Suppose now that X0 comes with a principal polarization λ0 : X0
∼−→ X∨0 . The symplectic

Rapoport–Zink space RZ(X0, λ0) is the formal scheme over Spf(W ) that represents the functor
that assigns to each S in NilpW the set of isomorphism classes of triples (X,λ, ρ) in which

– X is a p-divisible group over S;
– λ : X

∼−→ X∨ is a principal polarization;
– ρ : X0 ×k S̄ 99K X ×S S̄ is a quasi-isogeny that respects polarizations up to a scalar, in the

sense that, Zariski locally on S̄, we have

ρ∨ ◦ λ ◦ ρ = c−1(ρ) · λ0,

for some c(ρ) ∈ Q×p .

By [RZ96] the formal schemes RZ(X0) and RZ(X0, λ0) are formally smooth and locally
formally of finite type over W , and forgetting the polarization defines a closed immersion
RZ(X0, λ0)→ RZ(X0).

2.3.2 Suppose that (G, b, µ, C) is a local unramified Shimura–Hodge datum. Choose tensors
(sα) that cut out G as in § 2.2.6. Denote by

X0 = X0(G, b, µ, C)

the corresponding p-divisible group over k of Lemma 2.2.5, with its Frobenius invariant crystalline
tensors (tα,0).
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Definition 2.3.3. Consider the functor

RZnilp
G = RZnilp

G,b,µ,C,(sα) : ANilpW → Sets

that assigns to each R ∈ ANilpW the set of isomorphism classes of triples (X, ρ, (tα)) in which

– (X, ρ) consists of a p-divisible group over Spec(R) and a quasi-isogeny

ρ : X0 ⊗k R̄ 99K X ⊗R R̄,

with R̄ = R/pR, as in the definition of the Rapoport–Zink formal scheme RZ(X0);
– the collection (tα) consists of morphisms of crystals tα : 1 → D(X)⊗ over Spec(R) with
tα : 1[1/p]→ D(X)⊗[1/p] Frobenius equivariant,

satisfying the following properties.

(i) For some nilpotent ideal J ⊂ R with p ∈ J , the pull-back of tα over Spec(R/J) is identified
with tα,0 under the isomorphism of isocrystals

D(ρ) : D(XR/J)⊗[1/p]
∼−→ D(X0 ×k R/J)⊗[1/p]

induced by the quasi-isogeny ρ.
(ii) The sheaf of GW -sets over CRIS(Spec(R)/W ) given by isomorphisms

Isomtα,sα⊗1(D(X), D ⊗Zp R)

that respect the tensors as indicated, is a crystal of GW -torsors, i.e. a crystal fppf locally
isomorphic to the crystal defined by GW .

(iii) There exists an étale cover {Ui} of Spec(R), and for each i an isomorphism

D(XUi)Ui
∼−→ D ⊗Zp OUi

of vector bundles respecting the tensors tα and sα⊗1 as in (ii), such that the Hodge filtration

Fil1(XUi) ⊂ D(XUi)Ui
∼−→ D ⊗Zp OUi

is induced by a cocharacter that is G(Ui)-conjugate to µ.

Two triples (X, ρ, (tα)) and (X ′, ρ′, (t′α)) are identified if there is an isomorphism X
∼−→ X ′ of

p-divisible groups that respects the rest of the data in the obvious manner.
Above, CRIS(Spec(R)/W ) denotes the big fppf crystalline site of Spec(R) over (W, (p), γ)

with γ the natural PD structure, as in [BBM82, 1.1]. Condition (ii) implies that, for any nilpotent
PD thickening R′→ R of R, the Spec(R′)-scheme of isomorphisms of finite locally free R′-modules

TR′ = IsomR′,tα(R′),sα⊗1(D(X)(R′), D ⊗Zp R
′)

is a GR′-torsor.

Remark 2.3.4. There is a distinguished point

x0 = (X0, ρ0, (tα,0)) ∈ RZnilp(k),

defined by taking ρ0 to be the identity quasi-isogeny X0 99K X0.
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Remark 2.3.5. (a) Suppose (p) ⊂ J ′ ⊂ J with J ′ also nilpotent. Then a power of the Frobenius
of R/J ′ factors through R/J . Since tα are Frobenius equivariant we obtain that condition (i) is
independent of the ideal J . In particular, we can simply take J = (p).

(b) Conditions (ii) and (iii) together imply the following. The Spec(R)-scheme of R-linear
isomorphisms

D(X)(R)
∼−→ D ⊗Zp R

identifying tα(R) with sα ⊗ 1, and identifying the Hodge filtration Fil1(X) ⊂ D(X)(R) with
standard filtration Fµ ⊗W R ⊂ D ⊗Zp R defined by µ, is a Pµ ×W R-torsor.

(c) For R in ANilpf
W , the categories of p-divisible groups over Spf(R) and over Spec(R) are

naturally equivalent, by [deJ95, Lemma 2.4.4]. For R in ANilpfsm
W , the argument in the proof of

[deJ95, Proposition 2.4.8] shows that each morphism of crystals t̂α : 1→ D(X)⊗ over Spf(R) is
induced by a unique morphism of crystals tα : 1→ D(X)⊗ over Spec(R).

(d) For R̄ of finite type over k, we will see that it is enough to verify (i) over one closed point
of each connected component of Spec(R); see Lemma 3.2.8 and its proof.

2.3.6 Define a functor RZfsm
G on ANilpfsm

W by setting

RZfsm
G (A) = lim

←−nRZnilp
G (A/In),

where I is an ideal of definition of A.
Assume that I is chosen with p ∈ I. By Remark (c) above and the rigidity of quasi-isogenies

[Dri76], we see that elements of RZfsm
G (A) correspond to isomorphism classes of triples (X, ρ, (tα)),

in which X is a p-divisible group over Spec(A),

ρ : X0 ×k A/I 99K X ×A A/I

is a quasi-isogeny, and tα a morphism of crystals over Spec(A), such that (i), (ii), and (iii) above
are satisfied. The definition is independent of the choice of I.

Since any object A of ANilpfsm
W is also an object of ANilpW , it makes sense to consider

RZnilp
G (A). We will rarely do this unless A is discrete, in which case

RZnilp
G (A) = RZfsm

G (A).

The difference between RZfsm
G (A) and RZnilp

G (A) is that, in the former, we ask that the quasi-
isogeny ρ only exists over A/I, with I an ideal of definition of the adic algebra A. For A in
ANilpfsm

W it will often be the case that RZnilp
G (A) = ∅, while RZfsm

G (A) 6= ∅.

2.3.7 The closed immersion ι : G ↪→ GL(C) induces an injective homomorphism from the
group Jb(Qp) into the group AutQp(X0) of quasi-automorphisms of the p-divisible group X0,
i.e. of automorphisms of X0 up to isogeny. In addition, we can see that the induced action of
Jb(Qp) on D(X0)(W )⊗[1/p] preserves the tensors tα,0. Therefore, the group Jb(Qp) acts on the
functors RZnilp

G and RZfsm
G on the left by

g · (X, ρ, (tα)) = (X, ρ ◦ g−1, (tα)). (2.3.7.1)

2.4 Field-valued points and affine Deligne–Lusztig sets
We now introduce some refined affine Deligne–Lusztig sets, and show that these can be used to
parametrize the set RZnilp

G (k′) for any finitely generated field extension k′/k.
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2.4.1 For G, b and µ : GmW → GW as in the beginning of § 2.2.1, the ‘classical’ affine
Deligne–Lusztig set is

XG,b,µ(k) = {g ∈ G(K) : g−1bσ(g) ∈ G(W )µ(p)G(W )}/G(W ).

We will define an analogous set for any extension field k′/k.
Let W ′ be the Cohen ring of k′, let K ′ = W ′[1/p] be its fraction field, and let σ : W ′ → W ′

be a lift of the absolute Frobenius as in § 2.1.4. Consider the set

{g ∈ G(K ′) : g−1bσ(g)µ(p)−1 ∈ G(W ′)}, (2.4.1.1)

and define
Qµ(W ′) = G(W ′) ∩ µσ−1

(p)−1G(W ′)µσ
−1

(p),

the intersection taking place in G(K ′).
The right translation action of Qµ(W ′) on G(K ′) preserves (2.4.1.1). Indeed, if q ∈ Qµ(W ′)

and g belongs to (2.4.1.1), then Ug = g−1bσ(g)µ(p)−1 belongs to G(W ′), and hence so does

(gq)−1bσ(gq)µ(p)−1 = q−1g−1bσ(g)σ(q)µ(p)−1 = q−1Ugµ(p)σ(q)µ(p)−1.

Thus gq belongs to (2.4.1.1).

Definition 2.4.2. The refined affine Deligne–Lusztig set is the quotient

XG,b,µ,σ(k′) = {g ∈ G(K ′) : g−1bσ(g)µ(p)−1 ∈ G(W ′)}/Qµ(W ′).

Similarly, we have the naive affine Deligne–Lusztig set

Xnaive
G,b,µ,σ(k′) = {g ∈ G(K ′) : g−1bσ(g) ∈ G(W ′)µ(p)G(W ′)}/G(W ′).

For simplicity, we will often omit σ from the list of subscripts. However, we do not know if
the set XG,b,µ,σ(k′) is independent of the choice of the lift of Frobenius σ.

Proposition 2.4.3. The refined affine Deligne–Lusztig sets have the following properties.

(i) Sending gQµ(W ′) to gG(W ′) defines an injection

φ(k′) : XG,b,µ(k′) ↪→ Xnaive
G,b,µ(k′) ⊂ G(K ′)/G(W ′).

If k′ is perfect, then φ(k′) is a bijection.
(ii) If b′ is σ-conjugate to b, say b′ = h−1bσ(h) with h ∈ G(K), then g 7→ hg defines a bijection

XG,b′,µ(k′)
∼−→ XG,b,µ(k′).

(iii) If k′ is perfect, then g 7→ σ−1(b−1g) defines a bijection

XG,b,µσ(k′)
∼−→ XG,b,µ(k′).

Proof. We first show (i). The condition for g in the refined notion is stronger than the condition
in the naive notion; since Qµ(W ′) ⊂ G(W ′) the map is well defined. It remains to show that it is
injective. Let g, g′ ∈ G(K ′), and assume

Ug := g−1bσ(g)µ(p)−1 ∈ G(W ′),

Ug′ := g′
−1
bσ(g′)µ(p)−1 ∈ G(W ′).
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Suppose there is an h ∈ G(W ′) such that g′ = gh. Then we obtain

Ug′ = h−1g−1bσ(g)σ(h)µ(p)−1 = h−1Ugµ(p)σ(h)µ(p)−1.

As h−1Ug and Ug′ are in G(W ′), we see that the element

µ(p)σ(h)µ(p)−1 = σ(µσ
−1

(p)hµσ
−1

(p)−1) ∈ G(K)

actually lies in G(W ′). Since σ : W ′/piW ′ → W ′/piW ′ is injective for all i, and G is affine and
flat over Zp, this implies that

µσ
−1

(p)hµσ
−1

(p)−1 ∈ G(W ′).

It follows that h ∈ Qµ(W ′). This shows the injectivity of the map φ(k′).
Now suppose that k′ is perfect so that σ−1 makes sense on W ′ = W (k′). If g ∈ G(K ′) is such

that g−1bσ(g) = h1µ
σ(p)h2 with hi ∈ G(W ′), then g′ = gσ−1(h2)h1 satisfies the refined condition.

Hence φ(k′) is surjective.
Part (ii) is routine. To show part (iii), observe that for h = σ−1(b−1g), we have

h−1bσ(h) = σ−1(g−1b)bb−1g = σ−1(g−1)σ−1(b)g = σ−1(g−1bσ(g))

and the result follows. 2

2.4.4 Suppose ι : G ↪→ GLn is a closed immersion of group schemes over Zp, and set
ν = ι ◦ µ : GmW → GLn,W . For τ = σ−1 ∈ Aut(W ), we have

G(W ′) = G(K ′) ∩GLn(W ′)

and
µτ (p)−1G(W ′)µτ (p) = G(K ′) ∩ ντ (p)−1GLn(W ′)ντ (p),

the intersections taking place in GLn(K ′). The embedding ι then induces injections

G(K ′)/G(W ′) ↪→ GLn(K ′)/GLn(W ′)

and
G(K ′)/Qµ(W ′) ↪→ GLn(K ′)/QGLn

ν (W ′).

Moreover, g ∈ G(K ′) satisfies g−1bσ(g)µ(p)−1 ∈ G(W ′) if and only if ι(g) ∈ GLn(K ′) satisfies
the corresponding condition with (G, b, µ) replaced by (GLn, ι(b), ν). It follows that ι defines an
injection

XG,b,µ(k′) ↪→ XGLn,ι(b),ν(k′).

2.4.5 We now return to the set-up of § 2.3. Assume that (G, [b], {µ}) is an unramified local
Shimura datum of Hodge type. Fix a corresponding local Shimura–Hodge datum (G, b, µ, C) and
a set of tensors (sα) that cuts out G ⊂ GL(C). We then have the functor RZnilp

G as before.
Fix a point

(X, ρ, (tα)) ∈ RZnilp
G (k′).

Consider the value M = D(X)(W ′) of the crystal D(X) on the Cohen ring W ′ of k′, viewed
as a PD thickening of k′. We have the tensors tα(W ′) ∈ M⊗, which are Frobenius invariant in
M⊗[1/p], and the quasi-isogeny ρ, which induces an isomorphism

D(ρ) : M [1/p]
∼−→M0[1/p]

such that D(ρ)(tα(W ′)) = tα,0(W )⊗ 1, by (i) of Definition 2.3.3.
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Lemma 2.4.6. Under these assumptions, the scheme

T = IsomW ′,tα(W ′),sα⊗1(M,D ⊗Zp W
′)

is a trivial G′W -torsor over Spec(W ′).

Proof. Note that T is an affine finite type W ′-scheme carrying an action of the group scheme
G′W . We will first show that T is a G′W -torsor over Spec(W ′).

For any m > 1, we have the nilpotent PD thickening W ′/pmW ′ → k′. Therefore, by
condition (ii) in the definition of RZnilp

G , the base change T ×W ′W ′/pmW ′ is a G×ZpW
′/pmW ′-

torsor. It follows from the local criterion of flatness that T is W ′-flat and hence also faithfully
flat (since the special fiber is non-empty). Since G acts transitively on the points of T it now
follows that T is an (fppf locally trivial) G′W -torsor over Spec(W ′). Since G is smooth, the torsor
T splits locally for the étale topology of Spec(W ′).

We can easily see that the generic fiber T ×W ′ K ′ is a trivial GK′-torsor with a section
constructed using a composition of D(ρ)(W ′) with the identification D(X0)(W ′) ∼= D⊗ZpW

′. By
[Nis82, Theorem 5.2] (a very special case of a conjecture of Grothendieck), which applies since G
is quasi-split, T is a trivial torsor. 2

2.4.7 We now describe RZnilp
G (k′) in terms of a refined affine Deligne–Lusztig set. The

following may be standard, but we could not find a reference.

Proposition 2.4.8. Suppose that k′/k is a finitely generated field extension and denote by W ′

the Cohen ring of k′. There exists a lift of Frobenius σ : W ′ → W ′ with the following property.
We can write k′ = lim−→R, where R are finitely generated smooth k-algebras, each having a finite
p-basis, such that for each R that appears in the limit there is aW -flat formally smooth p-adically
complete and separated lift R̃ of R with R̃ ⊂W ′ lifting R→ k′ which is such that σ(R̃) ⊂ R̃.

Proof. Suppose that R is a finitely generated smooth k-algebra which is a domain and is such that
k′ is the fraction field of R. By replacing R by a localization we can assume that the differentials
ΩR/k are a free R-module of rank equal to the Krull dimension of R; let dxi, i = 1, . . . , d, be an
R-basis of ΩR/k. In this situation, the absolute Frobenius φR : R→ R is injective and makes R
into a finitely generated R-module. Therefore, by [EGAIV, ch. 0, Proposition (21.1.7)], the tuple
(xi) with i = 1, . . . , d is a system of p-generators of R over k, i.e. R = k[Rp, (xi)]. In fact, we
can easily see that, since dxi are R-linearly independent, the xi are p-independent (cf. [Mat80,
p. 276]). Therefore, the xi form a p-basis of R over k.

If we start with a p-basis (xi) of k′, then [Mat80, Theorem 86] implies that (dxi) are a basis
of the k′-vector space Ωk′/k. If R ⊂ k′ is any smooth finite type k′-algebra with k′ = Frac(R) such
that xi ∈ R and (dxi) generate ΩR/k, then, by the above, (xi) also provide a p-basis of R.

Since k is perfect, we can write k′ = lim−→R, where R is as above. Now, as in [BM90, § 1.1],
using the p-basis (xi) we obtain a concrete construction of the Cohen ring

W ′ = lim
←−nAn(k′),

and of a W -flat lift
R̃ = lim
←−nAn(R)

of R. Here An(R) and An(k′), are certain subrings of the truncated Witt vector rings Wn(R) and
Wn(k′). By [BM90], sending xi ∈ R to xi ∈ k′ gives ring homomorphisms in : An(R)→ An(k′).
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Since R→ k′ is injective, An(R)→ An(k′) is injective, and so also ĩ : R̃→W ′ is injective. Recall
that, by [BM90, Proposition 1.2.6], a lift of Frobenius on An(R), respectively Wn(k′), is uniquely
determined by giving (arbitrary) lifts yi,n ∈ An(R), respectively An(k′), of all the elements xpi .
Therefore, we can choose this way lifts of Frobenius on R̃ and W ′ that are compatible under
ĩ : R̃ ↪→W ′. 2

2.4.9 Let (G, b, µ, C) be a local unramified Shimura–Hodge datum as in Definition 2.2.4,
and let (sα) be tensors in C⊗ that cut out G ⊂ GL(C), as in § 2.2.6.

Let k′/k be a finitely generated field extension, and suppose that the lift σ : W ′→W ′ of the
Frobenius is chosen as in Proposition 2.4.8. Suppose also that the Dieudonné module structure
on DW determined by ι(b) ∈ GL(CW ) has no zero slopes (equivalently, the base point p-divisible
group X0 over k defined in Lemma 2.2.5 is formal).

Theorem 2.4.10. Under the above assumptions, there are natural bijections

π : lim−→R
RZnilp

G (R)
∼−→ RZnilp

G (k′)
∼−→ XG,b,µσ ,σ(k′),

where the limit over R is as in Proposition 2.4.8 above.

Proof. Let X0 be the p-divisible group of Lemma 2.2.5, and recall that RZ(X0) is the
(undecorated) Rapoport–Zink formal scheme from § 2.3.1. Notice that (X, ρ, (tα)) 7→ (X, ρ)

defines an injection RZnilp
G (k′) ↪→ RZ(X0)(k′), as tα is determined by tα(W ′).

Similarly, RZnilp
G (R) injects to RZ(X0)(R). Indeed, tα is determined by tα(R̃), and, as R̃ is

torsion-free, tα(R̃) is determined by

tα(R̃)[1/p] = D(ρ)−1(tα,0[1/p]).

Since RZ(X0) is formally locally of finite type over W , we have

RZ(X0)(k′) = lim−→R
RZ(X0)(R),

and so lim−→R
RZnilp

G (R) ↪→ RZnilp
G (k′).

Pick a point x = (X, ρ, (tα)) ∈ RZnilp
G (k′), and consider the value M := D(X)(W ′) of the

crystal D(X) on W ′, endowed with the tensors tα(W ′) ∈M⊗. By Lemma 2.4.6, the scheme

Tx = IsomW ′,tα(W ′),sα⊗1(M,D ⊗Zp W
′)

is a trivial G-torsor over Spec(W ′).
If k′ = k and x = x0 is the base point of Remark 2.3.4, then there is an isomorphism

β0 : M0 := D(X0)(W )
∼−→ D ⊗Zp W

with β⊗0 (tα,0(W )) = sα⊗1 and we can use this to identifyM0 = D⊗ZpW . In general, the generic
fiber of Tx has a section constructed using D(ρ) and β0. Since the G-torsor Tx is trivial there is
β : M

∼−→ D′W such that β⊗(tα(W ′)) = sα ⊗ 1. Using D(ρ), we can identify

MQ = M0 ⊗W K ′ = D ⊗Zp K
′

and therefore think ofM ⊂MQ as aW ′-lattice inM0⊗WK ′ =D⊗ZpK
′. Under this identification,

the choice of β is equivalent to picking g ∈ G(K ′) such that M = g · (D⊗Zp W
′); then β is given
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by left multiplication by g−1. Notice that the coset gG(W ′) is independent of the choice of β0

and β and so we have a well-defined map

RZnilp
G (k′)→ G(K ′)/G(W ′)

given by (X, ρ, (tα)) 7→ gG(W ′).
By Zink’s theory, as in § 2.1.5 (see especially [Zin01, Theorem 4]), and using the inclusion

RZnilp
G (k′) ⊂ RZ(X0)(k′),

we see that the W ′-lattice M ⊂ M0 ⊗W W ′[1/p] uniquely determines the point (X, ρ, (tα)) ∈
RZnilp

G (k′). On the other hand,

M = g · (M0 ⊗W W ′) ⊂M0 ⊗W W ′[1/p]

is uniquely determined by gG(W ′), and so this construction gives an injection

π : RZnilp
G (k′) ↪→ G(K ′)/G(W ′).

We have to show that the image of this injection is exactly the refined affine Deligne–Lusztig set
XG,b,µσ ,σ(k′).

This amounts to showing that M is the W ′-window corresponding to a point in RZnilp
G (k′) if

and only if we can pick g ∈ G(K ′) such thatM = g · (M0⊗WW ′) and g−1bσ(g)µσ(p)−1 ∈ G(W ′).
Suppose that M indeed corresponds to the point x ∈ RZnilp

G (k′) as above. Then

D(X)(k′) = M ⊗W ′ k′ = M/pM

with Hodge filtration given by Fil1(X) = M1/pM ⊂ M/pM . Since the Hodge filtration is a
G-filtration of type µ by Definition 2.3.3(iii), we can pick a trivialization β̄ : M/pM

∼−→ D′k that
preserves the tensors (i.e. a k′-section of the trivial torsor Tx above), and such that

M1/pM ⊂M/pM ∼= D′k

is actually the filtration given by µ. (Indeed, since GW is split, the quotient morphism GW →
GW /Pµ splits locally for the Zariski topology over W . Therefore, G(k′) acts transitively on the
set of G-filtrations of D′k of type µ.) By Hensel’s lemma, we can lift β̄ to β : M

∼−→ D′W . Then
β(M1) = pµ(p)−1D′W . As before, β corresponds to g ∈ G(K ′) such that

M = g · (M0 ⊗W W ′) = g ·D′W
and then β is multiplication by g−1. Hence,

M = g ·D′W , M1 = g · pµ(p)−1D′W .

The quadruple (M,M1, F = b ◦ σ) defines a W ′-window if and only if the W ′-submodule
〈p−1F (M1)〉 of M [1/p] generated by p−1F (M1) is equal to M . Indeed, if (M,M1, F = b ◦ σ)
is a W ′-window this condition follows from the definition in § 2.1.5. Conversely, assume that
〈p−1F (M1)〉 = M . Then

pM ⊂M1 ⊂ F−1(pM) ⊂M
and 〈F (M1)〉 = M = 〈F (F−1(pM))〉. Hence M1 = F−1(pM), and then (M,M1, F = b ◦ σ)
gives a W ′-module by the observation in § 2.1.5 (the nilpotence condition also follows by a slope
argument).
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The condition that 〈p−1F (M1)〉 = M reads

〈p−1bσ(gpµ(p)−1 ·D ⊗Zp W
′)〉 = g · (D ⊗Zp W

′),

which translates to

〈g−1bσ(g)µσ(p)−1 · (D ⊗Zp σ(W ′))〉 = D ⊗Zp W
′. (2.4.10.1)

Set u = gbσ(g)µσ(p)−1 ∈ G(K ′). Since

〈h · (D ⊗Zp σ(W ′))〉 = h · (D ⊗Zp W
′),

for any h ∈ GLn(K ′), the equation (2.4.10.1) above amounts to u ∈ GLn(W ′). We obtain that u is
in G(W ′) = G(K ′)∩GLn(W ′), and thus g ∈ XG,b,µσ ,σ(k′). Therefore, the image of π is contained
in XG,b,µσ ,σ(k′).

Let us now discuss the converse. Start with g ∈ XG,b,µσ ,σ(k′), and set

M = g ·D′W , M1 = gpµ(p)−1 ·D′W .

By the argument above, (M,M1, b◦σ) is aW ′-window. By Zink’s theory, there is a corresponding
p-divisible group X over k′ with a quasi-isogeny ρ : X0 ×k k′ 99K X, and (X, ρ) gives a k′-point
of the Rapoport–Zink space RZ(X0).

Since the underlying reduced scheme RZ(X0)red is locally of finite type, we can find a smooth
domain R over k as above with k′ = Frac(R) and a p-divisible group with quasi-isogeny (XR, ρR)
over R that extends (X, ρ). By replacing R by a localization we can further assume that R has
a lift R̃ such that σ(R̃) ⊂ R̃ and that D(XR)(R̃) is R̃-free. We have

D(XR)(R̃)⊗
R̃
W ′ ∼= D(X)(W ′) ∼= M = g · (M0 ⊗W W ′).

We will now produce a corresponding R-valued point (XR, ρR, (tα)) of RZnilp
G . For this, we will

construct a morphism of crystals tα : 1→ D(XR)⊗ such that tα : 1→ D(XR)⊗[1/p] are Frobenius
invariant and then check that tα satisfy (i), (ii), and (iii) of Definition 2.3.3.

By [BM90, Proposition 1.3.3] or [deJ95, Corollary 2.2.3], to give tα as above, it suffices to give
tα(R̃)(1) ∈ D(XR)(R̃)⊗ which are horizontal for the connection and are Frobenius invariant in
D(XR)(R̃)⊗[1/p]. Consider the images tα of the ‘constant’ tensors sα⊗ 1 under the isomorphism
of isocrystals

D(ρ)−1 : D(X0,R)⊗[1/p]
∼−→ D(XR)⊗[1/p]

induced by the quasi-isogeny ρ. Since ρ is defined over R, we obtain tα(R̃) ∈ D(XR)(R̃)⊗[1/p].
However, since g is in G(K ′), we actually have tα(R̃) = sα ⊗ 1 in

M⊗[1/p] = D(XR)(R̃)⊗ ⊗
R̃
W ′[1/p],

and these lie in
M⊗ = D(XR)(R̃)⊗ ⊗

R̃
W ′.

Since D(XR)(R̃) is R̃-free and R̃[1/p] ∩W ′ = R̃, we can see that our tensors tα(R̃) = sα ⊗ 1
lie in D(XR)(R̃)⊗. They are horizontal and Frobenius invariant since this is true over W ′, and
R̃ ⊂ W ′. Moreover, conditions (i), (ii), and (ii) can now be seen to be satisfied after possibly
further localizing R. We have now produced an R-valued point in RZnilp

G .
These two constructions are inverses of each other. This shows that lim−→R

RZnilp
G (R) =

RZnilp
G (k′) and the image of π is XG,b,µσ ,σ(k′). 2
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Remark 2.4.11. Observe that RZfsm
G (R) = RZnilp

G (R), and so Theorem 2.4.10 also gives

lim−→R
RZfsm

G (R)
∼−→ XG,b,µσ ,σ(k′).

This will be important for the application to Rapoport–Zink formal schemes. As we will see,
these are defined via the functor RZfsm

G which can be evaluated at R as above but not at k′.
We can directly obtain a bijection RZnilp

G (k′)
∼−→ XG,b,µσ ,σ(k′), without assuming that k′/k is

finitely generated, by a simpler version of the above argument.

3. Shimura varieties and representability

3.1 Integral models of Shimura varieties of Hodge type
Here, we recall results of [Kis10] about integral models of Shimura varieties of Hodge type. We
actually follow the set-up of [Kis13, (1.3)], to which the reader is referred for more details.

3.1.1 Let (G,H) be a Hodge type Shimura datum in the sense of [Del79], so that G is
a connected reductive group over Q and H = {h} is the G(R)-conjugacy class of a Deligne
cocharacter h : ResC/RGm → GR. Define µh : GmC → GC, as usual, by µh(z) = hC(z, 1). The
reflex field E ⊂ Q̄ ⊂ C is the field of definition of the conjugacy class {µh}.

The condition of Hodge type means that there is an algebraic group embedding

ι : G ↪→ GSp2g (3.1.1.1)

over Q inducing a morphism of Shimura data (G,H)→ (GSp2g,H2g). Here H2g is the union of
the usual Siegel upper and lower half-spaces of genus g. The composition ι◦µh is conjugate to the
standard minuscule cocharacter µstd : Gm→ GSp2g given by µstd(a) = diag(a(g), 1(g)). As G(R)
contains the image of the weight homomorphism wh, we see that G has to contain the torus of
scalars (diagonal matrices) of GSp2g.

We assume that G extends to a connected reductive group over Z(p), which we again denote
by G. As in [Kis10, Lemma (2.3.1)], this implies that there is a rank 2g symplectic space (C,ψ)
over Z(p) and a closed immersion ι : G ↪→ GL(C) of reductive groups over Z(p) whose generic
fiber factors through the subgroup GSp(CQ, ψ) ⊂ GL(CQ) and induces (3.1.1.1) after fixing an
identification GSp(CQ, ψ) = GSp2g. By Zarhin’s trick, after replacing C by HomZ(p)

(C,C)⊕4

and enlarging g, we may assume that C is self-dual with respect to ψ. We then have a closed
immersion of reductive group schemes

ι : G ↪→ GSp(C,ψ) (3.1.1.2)

over Z(p) with generic fiber (3.1.1.1).
As in (1.1.1.3), let D be the G-representation contragredient to C. By [Kis10, (1.3.2)] there

is finite list (sα) of tensors sα ∈ C⊗ = D⊗ that cut out G ⊂ GL(C), in the sense that

G(R) = {g ∈ GL(CR) : g · (sα ⊗ 1) = (sα ⊗ 1),∀α},

for all Z(p)-algebras R. In particular, G(W ) = G(K)∩GL(CW ). In what follows, we take the set
of tensors (sα) to always include the tensor corresponding to the perfect symplectic form ψ; see
the proof of Theorem 3.2.1 below.

A choice of field embedding Q̄ ↪→ K̄ determines a place v | p of E. The completion Ev is the
field of definition of {µh}, now regarded as a G(K̄)-conjugacy class of cocharacters GmK̄ → GK̄ .
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Let
ShUp(G,H) = lim

←−UpShUpUp(G,H)

be the canonical model over E ⊂ K of the corresponding Shimura variety for the hyperspecial
subgroup

Up = G(Zp) ⊂ G(Qp).

Here the limit is over compact open subgroups Up of G(Apf ).

3.1.2 For a Z(p)-scheme S and an abelian scheme A→ S we set

Tap(A) = lim
←−p-nA[n],

viewed as an étale local system on S, and write

Tap(A)Q = Tap(A)⊗Z Q.

Consider the category obtained from the category of abelian schemes over S by tensoring the
Hom groups by Z(p). An object in this category will be called an abelian scheme over S up to
prime-to-p-isogeny. An isomorphism in this category will be called a p′-quasi-isogeny. Note that
Tap(A)Q is functorial for p′-quasi-isogenies.

If A is an abelian scheme up to prime-to-p-isogeny, we write A∨ for the dual abelian scheme
up to prime-to-p-isogeny. A weak polarization of A is an equivalence class of p′-quasi-isogenies
λ : A

∼−→ A∨ such that some Z×(p)-multiple of λ is a polarization. Here two such λ are equivalent
if they differ by multiplication by an element of Z×(p).

Let U ′p ⊂ GSp2g(A
p
f ) be any compact open subgroup, let

U ′p = GSp(C,ψ)(Zp) ⊂ GSp2g(Qp)

be the hyperspecial subgroup determined by the self-dual symplectic space (C,ψ) over Z(p), and
set

U ′ = U ′pU ′p ⊂ GSp2g(Af ).

Assume (A, λ) is an abelian scheme up to prime-to-p-isogeny with a weak polarization.
A U ′p-level structure on (A, λ) is a global section

εpU ′ ∈ Γ(S, Isom(C ⊗ Apf ,Tap(A)Q)/U ′p).

Here Isom(C ⊗ Apf ,Tap(A)Q)/U ′p is the étale sheaf on S of U ′p-orbits of isomorphisms

C ⊗ Apf
∼−→ Tap(A)Q

identifying the symplectic pairings induced by ψ and λ, up to a (Apf )×-scalar.
For U ′p sufficiently small, the functor that assigns to S the set of isomorphism classes of

triples (A, λ, εpU ′) as above, is representable by a smooth Z(p)-scheme Ag,U ′ , whose generic fiber

Ag,U ′ ⊗Z(p)
Q ∼−→ ShU ′(GSp2g,H2g) (3.1.2.1)

is identified with the Siegel Shimura variety; see [Kot92]. We will always assume that U ′p is
sufficiently small in what follows.
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3.1.3 Let us denote by SUp(G,H) the canonical smooth model over OE,(v) of the Shimura
variety

ShUp(G,H) = lim
←−UpShUpUp(G,H)

constructed in [Kis10] for the hyperspecial subgroup Up = G(Zp). Thus

SUp(G,H) = lim
←−UpSUpUp(G,H),

where for sufficiently small subgroups Up1 ⊂ Up2 ⊂ G(Apf ) the transition morphism

SUp1Up
(G,H)→ SUp2Up

(G,H)

is finite étale. In fact, for U = UpU
p with Up sufficiently small, the integral model SU (G,H) is

smooth over OE,(v), and is constructed as the normalization of the Zariski closure SU (G,H)− of
the image of the morphism

ShU (G,H)→ ShU ′(GSp2g,H2g)⊗Q E → Ag,U ′ ⊗Z(p)
OE,(v)

induced by (3.1.1.2) and (3.1.2.1) for a suitable choice of level structure U ′p. In particular, there
are finite morphisms

ι : SU (G,H)
normalization−−−−−−−−→ SU (G,H)−→ Ag ⊗Z(p)

OE,(v),

where now we suppress the level structure U ′ on the Siegel space from the notation. This should
not lead to confusion, as the particular choice of level U ′ will play little part in our arguments.

3.1.4 Now let us pick a point x0 ∈ SU (G,H)(k). Consider the contravariant Dieudonné
module D(X0)(W ) of the p-divisible group X0 = Ax0 [p∞] of the abelian scheme Ax0 over k
determined by the point ι(x0) ∈ Ag(k). By [Kis10, Corollary (1.4.3)], there are crystalline tensors

tα,0 = tcr
α,0 ∈ D(X0)(W )⊗

that are fixed by the action of Frobenius on D(X0)(W )[1/p], and satisfy

tα,0(k) ∈ Fil0(D(X0)⊗(k)).

By [Kis10], there is an isomorphism of W -modules

β0 : D ⊗Zp W
∼−→ D(X0)(W )

identifying sα ⊗ 1 with tα,0. After choosing such an isomorphism, the Frobenius on D(X0)(W )
has the form F = bx0 ◦ σ for some bx0 ∈ G(K).

Consider the Hodge filtration

Fil1(X0) ⊂ D(X0)(k) ∼= H1
dR(Ax0/k).

By [Kis10, Corollary (1.4.3) (4)] this filtration is given by a Gk-valued cocharacter, and we pick
any lift to a cocharacter

µx0 : GmW → GW .

By the argument in the proof of [Kis13, Lemma (1.1.9)] the G(W )-conjugacy class of µx0 is
independent of the choice of β0. In fact, any such cocharacter satisfies

bx0 ∈ G(W )µσx0
(p)G(W ),

and lies in the G(K̄)-conjugacy class defined by µ−1
h (see [Kis13, (1.1.9)]), whose local reflex field

is Ev ⊂ K.
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In this way, each point x0 ∈ SUp(G,H)(k) produces a local Shimura–Hodge datum, which,
for ease of notation, we abbreviate to

(G, b, µ, C) = (GZp , bx0 , µx0 , CZp). (3.1.4.1)

Note that the p-divisible group of Lemma 2.2.5 is X0 = Ax0 [p∞].
For the rest of § 3 we fix the local Shimura–Hodge datum (3.1.4.1) given by a point

x0 ∈ SUp(G,H)(k) by the above procedure. We also fix the tensors sα ∈ C⊗ = D⊗ cutting
out the subgroup G ⊂ GL(C). It is essential in what follows that both the local Shimura–Hodge
datum (G, b, µ, C) and the tensors (sα) arise from a global point x0 ∈ SUp(G,H)(k), and from
tensors defined on C, not just on CZp .

3.1.5 As the Shimura datum (G,H) will remain fixed, in what follows we will often
abbreviate SU or just S instead of SU (G,H). We will also often write SUp instead of SUp(G,H).

Let f : A→ S be the universal abelian scheme over S , and denote by

f̂ : Â→ Ŝ

the corresponding morphism of smooth formal schemes over Zp obtained by p-adic completion.
We have the crystals D(Xuniv) and D(Xuniv)⊗, and Frobenius isocrystals D(Xuniv)[1/p] and

D(Xuniv)⊗[1/p], over Ŝ , where Xuniv = Â[p∞] is the p-divisible group of the universal abelian
scheme. By [BBM82], we have

D(Xuniv) = R1f̂cris,∗OÂ/Zp ,

and there is a natural isomorphism

H1
dR(Â/Ŝ )

∼−→ (R1f̂cris,∗OÂ/Zp)Ŝ

of coherent sheavesO
Ŝ
-modules, where the left-hand side is the first relative de Rham cohomology

of Â, and the right-hand side is the pull-back of the crystal to the Zariski site.
By [Kis10, Corollary (2.3.9)], there are de Rham tensors

tuniv
α,dR : 1→ H1

dR(Â/Ŝ )⊗,

which are horizontal for the Gauss–Manin connection. Since S is smooth over Zp, we obtain
O

Ŝ /Zp-morphisms

tuniv
α : 1→ (R1f̂cris,∗OÂ/Zp)

⊗ = D(Xuniv)⊗

of crystals over Ŝ . By the construction in [Kis10], the tensors tuniv
α restrict to tα,0 by pulling

back via x0 : Spec(k)→ Ŝ , and

tuniv
α [1/p] : 1[1/p]→ D(Xuniv)⊗[1/p]

are Frobenius equivariant.
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3.1.6 Recall from § 2.2.1 the homogeneous space

MG,µ ⊗OE,v W
∼−→ GW /Pµ

over W , where Pµ ⊂ GW is the parabolic subgroup defined by µ : GmW → GW . Denote by
Uµ = UµG the unipotent radical of the opposite to Pµ parabolic subgroup of GW and by Uµ,∧G the
formal completion of UµG at its identity section over W . Then Uµ,∧G can be identified with the
formal completion of MG,µ ⊗OE W at the section given by 1 · Pµ/Pµ.

Let R = ÔSW ,x0 be the completion of the local ring of SW at x0. By [Kis10,
Proposition (2.3.5)] and its proof, we may identify Spf(R) with U

µx0 ,∧
G and identify

R = W [[x1, . . . , xd]] in such a way that the W -point given by x1 = · · · = xd = 0 has Hodge
filtration given by µx0 . In fact, by a result of Faltings [Fal99], we see, as in [Kis10, (1.5)] (see also
[Moo98, § 4]), that this identification can be chosen in such a way that the Dieudonné crystal of
the universal p-divisible group Xuniv with its tensors tα over R is

D(Xuniv)(R) = D(X0)(W )⊗W R = D ⊗Zp R,

(as R-modules) with filtration

Fil1(Xuniv) = Fil1(X0)⊗W R,

and tα = tα,0 ⊗ 1 = sα ⊗ 1, while the semi-linear Frobenius

F : D(Xuniv)(R)→ D(Xuniv)(R)

is given by F = u · (bx0 ⊗ φR). Here u is the universal R-point of the completion U
µx0 ,∧
G of

the unipotent subgroup U
µx0
G at the identity section and φR is the lift of Frobenius such that

φR(xi) = xpi .

3.2 A global construction of Rapoport–Zink formal schemes
A more general version of the following representability result appears in work of Kim [Kim13].
Kim does not assume that the local Shimura datum (G, [b], {µ}) of Hodge type is obtained from a
point on a Shimura variety. Although we were very much inspired by Kim’s work, our arguments
are quite different and independent of [Kim13].

Theorem 3.2.1. Let the unramified local Shimura–Hodge datum (G, b, µ, C) and the finite set of
tensors (sα) ∈ C⊗ that cut out G ⊂ GL(C) be as in (3.1.4.1) above. Suppose X0 = X0(G, b, µ, C)
is the p-divisible group over k defined in Lemma 2.2.5.

(i) There exists a formal scheme RZG = RZG,b,µ,C,(sα) over Spf(W ), formally smooth and
formally locally of finite type, that represents the functor RZfsm

G on ANilpfsm
W defined in

§ 2.3.6.
(ii) The action of Jb(Qp) on RZfsm

G given by (2.3.7.1) is induced by a left Jb(Qp)-action on the
formal scheme RZG.

(iii) The formal scheme RZG is a closed formal subscheme of RZ(X0).

Remark 3.2.2. The formal scheme RZG is characterized as the unique formally smooth and locally
formally of finite type over W that represents the functor RZfsm

G , and this functor is determined
by (X0, (tα,0)). (The definition of the functor also involves the conjugacy class {µ}, but this is
determined by X0 and its tensors.) In particular, it follows that RZG agrees, up to isomorphism,
with the Rapoport–Zink formal scheme of Kim [Kim13].
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Corollary 3.2.3. Under the above assumptions, if k′/k is a finitely generated field extension,
the construction in the proof of Theorem 2.4.10 provides a bijection

π : RZG(k′)
∼−→ XG,b,µσ ,σ(k′).

Proof. By Theorem 3.2.1(i), the underlying reduced scheme RZred
G is locally of finite type over k,

and so
RZG(k′) = lim−→R

RZG(R) = lim−→R
RZnilp

G (R),

where the limit is as in Proposition 2.4.8. The corollary then follows from Theorem 2.4.10 after
taking into account Remark 2.4.11. 2

3.2.4 We will now turn to the proof of Theorem 3.2.1, but, before we do that, we sketch
the argument. We first construct the formal scheme RZG over W using the integral model of a
Shimura variety and then we show, using also certain results from [Kis13], that it represents the
functor RZfsm

G .
Roughly, the construction of RZG is done in two steps. First, we form a fiber product RZ�G

of the classical Rapoport–Zink space associated to the p-divisible group X0 with the p-adic
completion of the integral model of the Shimura variety; the fiber product is over a Siegel moduli
space. Over this fiber product, we have crystalline tensors obtained by pulling back the universal
crystalline tensors tuniv

α over the integral model constructed by Kisin (see § 3.1.5); we also have
corresponding crystalline tensors tα,0 obtained by pulling back the crystalline tensors on the base
point X0 via the universal quasi-isogeny. The second step is to show that the locus where these
two tensors agree, i.e. with tuniv

α = tα,0, is given by a closed and open formal subscheme of the
fiber product. This formal subscheme is the desired formal scheme RZG.

Proof of Theorem 3.2.1. It follows directly from the definition that the usual Rapoport–Zink
formal scheme RZ(X0) of § 2.3.1 represents

RZfsm
GL(C) := RZfsm

GL(C),b,µ,C,∅.

Here we take the set of tensors to be empty. Also, we can show that the symplectic Rapoport–Zink
formal scheme RZ(X0, λ0) represents

RZfsm
GSp(C) := RZfsm

GSp(C,ψ),b,µ,C,(ssympl)
.

Here, λ0 : X0
∼−→ X∨0 is the principal polarization deduced from the symplectic form ψ on C,

and the single tensor ssympl is defined as follows. Denote by η : GSp(C,ψ)→ Gm the similitude
character. The symplectic pairing ψ : C⊗C −→ Zp(η) defining GSp(C,ψ) induces an isomorphism
C
∼−→ D(η), which allows us to view the dual

ψ∗ : Zp(η−1)→ (C ⊗ C)∗ ∼= D ⊗D

as a map ψ∗ : Zp(η)→ C ⊗ C. Now define

ssympl ∈ End(C ⊗ C) ∼= C⊗2 ⊗D⊗2 ⊂ C⊗

as the composition

C ⊗ C ψ−→ Zp(η)
ψ∗−→ C ⊗ C.
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The group GSp(C,ψ) ⊂ GL(C) is the stabilizer of ssympl. One can easily show that RZ(X0, λ0)
represents RZfsm

GSp(C) by using duality and the full faithfulness of the Dieudonné crystal functor
(see [BM90, 4.1 and 4.3] and [deJ95]) for p-divisible groups over bases in ANilpfsm

W .
In accordance with the above general notation scheme, we can now denote

RZGL(C) = RZ(X0), RZGSp(C) = RZ(X0, λ0).

If C is clear from the context we will simply write RZGL, RZGSp, instead.
As in [RZ96, Theorem 6.21], there is a canonical morphism

Θ : RZGSp(C) −→ Âg,W := Âg ⊗̂ZpW.

(Here again, Âg denotes the completion of Ag → Spec(Z(p)) along its special fiber.) This
morphism sends a triple (X,λ, ρ) to the point corresponding to the unique principally polarized
abelian scheme A whose p-divisible group is X, and for which there exists a quasi-isogeny
Ax0 99K A respecting polarizations up to Q×-scaling, inducing an isomorphism on `-divisible
groups for all ` 6= p, and inducing the quasi-isogeny

Ax0 [p∞] = X0
ρ

99K X = A[p∞].

We now let RZ�G be the formal scheme over Spf(W ) defined by the fiber product

RZ�G
//

Θ�G
��

RZGSp(C)

Θ
��

ŜW
ι // Âg,W.

Here, S = SUpUp , in which we fix a choice of a sufficiently small prime-to-p level Up. We will
see eventually that all such choices produce the same Rapoport–Zink formal scheme.

The formal scheme RZ�G represents the functor that assigns to each W -scheme S in NilpW
the set of quadruples (X,λ, ρ, f : S → SW ), where (X,λ, ρ) is an S-valued point of RZGSp such
that the composition

S
f−→ SW

norm−−−→ S −
W ↪→ Ag,W

gives the corresponding point Θ((X,λ, ρ)) ∈ Ag,W (S).
In this situation, the Dieudonné crystal D(X) of the p-divisible group over S supports tensors

tα : 1→ D(X)⊗ which are obtained as tα = f∗(tuniv
α ), i.e. by pulling back the universal crystalline

tensors over Ŝ .

Proposition 3.2.5. The morphism RZ�G → RZGSp(C) is finite and the formal scheme RZ�G is
formally smooth and locally formally of finite type over Spf(W ).

Proof. Since ι is finite, the same is true for RZ�G→ RZGSp(C), and so RZ�G is locally formally of
finite type over W . By [Kis10, Proposition (2.3.5)] and the proof of [Kis10, Theorem (2.3.8)] (see
also § 3.1.6), the morphism ι induces a closed immersion between the formal completions of SW

and Ag,W at each closed point s ∈ SW . Moreover, the scheme SW is smooth. By the Serre–Tate
theorem, the formal completion of RZGSp(C) at any closed point can be identified with the formal
completion of Ag,W at the corresponding point and formal smoothness follows. In fact, for each
closed point s of RZ�G the morphism Θ�G gives an isomorphism

R̂Z
�
G,s

∼−→ ŜW,s

between formal completions. 2
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Suppose that S is a scheme in NilpW and a ∈ RZ�G(S). We have crystals D(X) and D(X)⊗,
and isocrystals D(X)[1/p] and D(X)⊗[1/p], over S. By pulling back the universal crystalline
tensors tuniv

α via Θ� ◦ a : S → S , we obtain tα : 1→ D(X)⊗ over S.

Definition 3.2.6. For each S in NilpW , denote by RZG(S) ⊂ RZ�G(S) the subset consisting of
all points a ∈ RZ�G(S) with the following property: for every field extension k′/k and every point
y ∈ S(k′), the isomorphism

D(ρ) : D(Xy)
⊗(W ′)[1/p]

∼−→ D(X0)⊗[1/p]⊗W [1/p] W
′[1/p]

identifies the tensors tα(W ′) with tα,0(W )⊗ 1. In other words,

D(ρ)(tα(W ′)) = tα,0(W )⊗ 1. (3.2.6.1)

(Recall that W ′ is the Cohen ring of k′.)

Proposition 3.2.7. (i) The subfunctor RZG is represented by a closed and open formal sub-
scheme of RZ�G.

(ii) The formal scheme RZG is formally smooth and locally formally of finite type over Spf(W ).

Proof. The proof relies on the following lemma.

Lemma 3.2.8. Assume that S in NilpW is connected, a ∈ RZ�G(S), and that there is a field k′

and a point y ∈ S(k′) such that the condition (3.2.6.1) is satisfied at y. Then D(ρ)(tα) = tα,0⊗ 1,
where

D(ρ) : D(XS̄)⊗[1/p]
∼−→ D(X0 ×k S̄)⊗[1/p]

is the morphism of Frobenius isocrystals over S̄ induced by the quasi-isogeny ρ. In particular,
condition (3.2.6.1) is satisfied at all field-valued points of S, and so a ∈ RZG(S).

Proof. Note that, as RZ�G is locally formally of finite type, for any a ∈ RZ�G(S), there exist a
locally finite type scheme S′ in NilpW , a morphism ω : S → S′, and b ∈ RZ�G(S′) such that
a = b ◦ω. Since S is connected, we can assume that S′ is connected and so we reduce to showing
the statement above for S connected and locally of finite type.

We will first show that (3.2.6.1) holds for all field-valued points of S. All such points factor
through the underlying reduced scheme Sred; hence, we can further assume that S is reduced
and is actually affine of finite type over k. Now the argument of [Mad16, Lemma 5.10] implies
that condition (3.2.6.1) is satisfied for all field-valued points of S, and in particular for all closed
points s ∈ S, taking k′ = k(s) to be the residue field. This already gives that a is in RZG(S).

To show the rest, observe that, by Berthelot’s construction [Ber96, Theorem (2.4.2)], the
Frobenius crystal D(X) over S determines a convergent Frobenius isocrystal M = D(X)[1/p]an

over S/W . Similarly, we have a convergent Frobenius isocrystal M0 given by base-changing
D(X0)[1/p]an to a convergent Frobenius isocrystal over S/W . The quasi-isogeny ρ induces a
morphism of convergent Frobenius isocrystals

D(ρ)an : M⊗
∼−→M⊗0 .

By [Ogu84, Theorem 4.1] (see [Ber96, Remark 2.3.4]), we have D(ρ)an(tα) = tα,0 ⊗ 1 in M⊗

since, by the above, this is true at a closed point. By [Ber96, Theorem (2.4.2)] the functor from
Frobenius crystals up to isogeny over S to convergent Frobenius isocrystals over S/W is faithful,
and the result follows. 2
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Consider the union of connected components of RZ�G which have a field-valued point such
that (3.2.6.1) is satisfied. We can now see that this union represents the functor RZG. The second
statement now follows from the first and the previous proposition. 2

The following proposition gives a main part of Theorem 3.2.1.

Proposition 3.2.9. The formal scheme RZG constructed above represents the functor

RZfsm
G : ANilpfsm

W → Sets

defined in § 2.3.6.

Proof. Suppose that R is in ANilpfsm
W . Denote by I an ideal of definition of R with pR ⊂ I. We

will establish a functorial bijection

RZG(R)
∼−→ RZfsm

G (R).

Suppose first that we are given

(X,λ, ρ, f : Spf(R) −→ ŜW ) ∈ RZG(R).

By Remark 2.3.5(c), we have morphisms of crystals tα : 1 → D(X)⊗ over Spec(R) obtained
by pulling back the universal crystalline tensors on Ŝ . Recall that the tensors (tα) include
the crystalline tensor that corresponds to the polarization λ. By the definition of RZG, for
any k′-valued point of R, where k′ is any field, we have the identity (3.2.6.1). Property (i) of
Definition 2.3.3 follows from Lemma 3.2.8. To show that properties (ii) and (iii) are satisfied, we
reduce by fppf descent to the case that R is replaced by its completion R̂x at an arbitrary closed
k-valued point x. Since R is formally smooth, we can assume R = W/pm[[x1, . . . , xn]] for some m
and n. Then the morphism

f : Spf(W/pm[[x1, . . . , xn]])→ ŜW

factors through the completion Spf(ÔS ,f(x)); this completion is described in § 3.1.6, from which
properties (ii) and (iii) follow for tα and the Hodge filtration over ÔS ,f(x), and therefore also
over R.

Conversely, suppose
(X, ρ, (tα)) ∈ RZfsm

G (R).

Since (tα) include the polarization tensor tsympl, it follows, by using duality and the full
faithfulness of the Dieudonné crystal functor over R (see [BM90, 4.1 and 4.3] and also [deJ95]),
that these data also produce a principal polarization λ on the p-divisible group X. We thus obtain
Θ((X,λ, ρ)), a Spf(R)-valued point of Ag,W which, by the standard algebraization theorems,
corresponds to

y : Spec(R)→ Ag,W . (3.2.9.1)

It is enough to show that y factors through SW .
This is true when R = k, but this is already quite deep. It follows from Theorem 2.4.10 (with

k′ = k), together with [Kis13, Proposition (1.4.4)] and its proof (this uses the main result of
[CKV15]).

Let us now deal with more general R. Assume first R
∼−→ W [[x1, . . . , xn]], for some

n > 0, with the obvious extension of a notion of an R-valued point of RZfsm
G (take

I = (p, x1, . . . , xn) as an ideal of definition in § 2.3.6). As just explained, we know that
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Spec(k) → AW given x1 = · · · = xn = p = 0 gives a point x ∈ SW (k). Use property (ii) of
Definition 2.3.3 to choose a trivialization

D(X)(R) ∼= D ⊗Zp R

that matches the tensors tα(R) with the standard tensors sα⊗1. By Faltings’ construction of the
universal deformation of the polarized p-divisible group (Xx, λx) as in § 3.1.6, and the Serre–Tate
theorem, we can identify the completed local ring of Ag,W with the completion Uµstd,∧

GSp(C) of the
opposite unipotent at the identity section. Our conditions now imply that the tensors tα =
sα ⊗ 1 are ‘Tate tensors’ over R, therefore, by [Moo98, 4.8], the corresponding R-valued point of
Uµstd,∧

GSp(C) factors through
Uµx,∧G ⊂ Uµstd,∧

GSp(C).

As in (3.1.6), Uµx,∧G is identified with the completion of SW at x and the result for
R
∼−→W [[x1, . . . , xn]] follows.
We now consider the case of a general R in ANilpfsm

W . Evaluate tα on the PD lift R̃ of § 2.1.3
to obtain tα(R̃), and a corresponding R̃-scheme T

R̃
of trivializations of (D(X)(R̃), (tα(R̃))).

Lemma 3.2.10. T
R̃
is a G

R̃
-torsor.

Proof. Notice that R̃/pnR̃ → R is a nilpotent PD thickening, for all n > 1. The claim follows
from the local criterion of flatness and the definition of RZfsm

G (see, in particular, § 2.3.6 and
condition (ii) of Definition 2.3.3), by an argument as in the proof of Lemma 2.4.6. 2

As in [Kis10, Proposition (1.1.5)], the scheme MG,µ of G-split filtrations of type µ is smooth
over OE . Hence, so is its twist

MT
G,µ = T

R̃
×GR̃ MG,µ (3.2.10.1)

by the G
R̃
-torsor T

R̃
; this classifies filtrations in D(X)(R̃) which are, locally for the étale topology,

induced by a cocharacter which is G-conjugate to µ. Since R̃ is p-adically complete, we can lift
the R-valued point of (3.2.10.1) corresponding to the Hodge filtration Fil1(X) ⊂ D(X)(R) to
an R̃-valued point corresponding to a filtration in D(X)(R̃) as above. By Grothendieck–Messing
theory, this lift of the Hodge filtration gives a morphism

ỹ : Spec(R̃)→ Ag,W (3.2.10.2)

extending the point y of (3.2.9.1). Now suppose that x is a k-valued point of R̄ = R̃/pR̃ and
consider

y∧x : Spec(R̃∧x )→ Spec(R̃)→ Ag,W .

Since R̃∧x
∼−→ W [[x1, . . . , xn]], we obtain, by the result above, that y∧x factors through SW . It

follows that (3.2.10.2) factors through the Zariski closure S −
W of the generic fiber of SW in

Ag,W ; since R̃ is integrally closed in R̃[1/p], we see that ỹ factors through the normalization SW .
Therefore, the morphism y : Spec(R)→ Ag,W also factors through SW . This completes the proof
of Proposition 3.2.9. 2

This completes the proof of (i) and (ii) of Theorem 3.2.1. Indeed, the statement about the
action of Jb(Qp) can be easily deduced from the rest. Part (iii) follows from the fact that

RZGSp = RZ(X0, λ0) ↪→ RZGL = RZ(X0)

is a closed immersion, together with the following proposition.
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Proposition 3.2.11. The morphism RZG → RZGSp obtained by composing RZG ↪→ RZ�G and
RZ�G→ RZGSp is a closed immersion.

Proof. Recall that by Proposition 3.2.5, RZG→ RZGSp is finite. By the previous proposition, we
can identify RZfsm

G (k) = RZG(k). Let (X,λ, ρ) ∈ RZGSp(k), and let

x = (X, ρ, (tα)) ∈ RZfsm
G (k)

be a preimage. The crystalline tensors tα : 1 → D(X)⊗ are uniquely determined by tα(W ) ∈
D(X)(W )⊗. The condition (3.2.6.1) shows that these are then also uniquely determined by the
rest of the data, so

RZfsm
G (k) = RZG(k)→ RZGSp(k)

is injective. The proof of Proposition 3.2.5 now implies that RZG → RZGSp induces a closed
immersion R̂ZG,x ↪→ R̂ZGSp,x on formal completions. Since RZG → RZGSp is finite the result
easily follows, for example by using Nakayama’s lemma. 2

This completes the proof of Theorem 3.2.1. 2

Proposition 3.2.12. The formal scheme RZG depends only on the local Shimura–Hodge datum
(G, b, µ, C) and not on the choice of the tensors (sα) ⊂ C⊗, as in § 3.1.1, that cut out G.

Proof. By Proposition 3.2.11, RZG is a closed formal subscheme of the undecorated Rapoport–
Zink formal scheme RZGL = RZ(X0). By Theorem 2.4.10, the choice of the base point x0 =
(X0, (tα,0)), together with an isomorphism of its Dieudonné module with (DW , b ◦ σ, (sα ⊗ 1)),
determines bijections

RZG(k) = RZfsm
G (k)

∼−→ XG,b0,µσ0
(k), RZGL(k)

∼−→ XGL,i(b0),i(µσ0 )(k).

In fact, these bijections are compatible with the maps RZG ↪→ RZGL and

XG,b0,µσ0
(k) ↪→ XGL,i(b0),i(µσ0 )(k)

determined by i : G ↪→ GL(C). Moreover, for each x ∈ RZG(k), the formal completions R̂ZG,x ⊂
R̂ZGL,x at x can be identified with Uµx,∧G ⊂ U

i(µx),∧
GL , where µx : GmW → GW gives a filtration

that lifts the Hodge filtration for x. Therefore, both the set of k-valued points and the formal
completions at each point of the closed formal subscheme RZG ⊂ RZGL do not depend on the
choice of tensors (sα) ⊂ C⊗. Hence, we deduce that the closed formal subscheme RZG ⊂ RZGL

also does not depend on the choice of tensors (sα). Combining with the above, this now implies
that RZG depends only on the local Shimura–Hodge datum (G, b, µ, C). 2

Remark 3.2.13. According to [Kim13], the Rapoport–Zink formal scheme only depends, up
to isomorphism, on the datum (G, [b], {µ}). Then by the above, RZG also only depends, up to
isomorphism, on (G, [b], {µ}) and not on the local Hodge embedding. However, this independence
does not follow directly from our construction without appealing to [Kim13].

Remark 3.2.14. Define the W -morphism

Θ : RZG→ ŜW = ŜU,W
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to be the composition of RZG ↪→ RZ�G with Θ�G : RZ�G→ ŜW . The morphisms

Θ : RZG→ ŜW = ŜU,W

commute with the projections SUp1Up,W
→ SUp2Up,W

for Up1 ⊂ Up2 . Hence, they combine to also
provide a morphism

Θ : RZG→ ŜUp,W := lim
←−UpŜUpUp,W .

Remark 3.2.15. Recall from § 3.1.4 that the local Shimura–Hodge datum (G, b, µ, C) was
constructed from a point x0 ∈ S (k). Fix g ∈ G(K) and h ∈ G(W ), set

b′ = g−1bσ(g), µ′ = hµh−1,

and assume that b′ ∈G(W )µ′σ(p)G(W ). Then there is a point x′0 ∈S (k) such that the unramified
local Shimura–Hodge datum (G, b′, µ′, C) is constructed, in the sense of § 3.1.4, from x′0.

To see this, notice that the above condition on b′ implies that g ∈ XG,b,µσ(k), and we may
take x′0 to be the image of g under the composition

XG,b,µσ(k)
π−1

−−→ RZG(k)
Θ−→ S (k).

Note that we then obtain an isomorphism

RZG,b,µ,C,(sα)
∼−→ RZG,b′,µ′,C,(sα)

by composing the quasi-isogeny ρ in the definition of the Rapoport–Zink functor (Definition 2.3.3)
with the quasi-isogeny

X0(G, b′, µ′, C) 99K X0(G, b, µ, C)

determined by g.

3.3 Formal uniformization of the basic locus
By our construction, RZG comes with a W -morphism

Θ : RZG→ ŜW ,

where S = SU is the integral model of the Shimura variety given by our choice of a global
Shimura datum. Such a morphism is one of the main ingredients of the uniformization theorems
of [RZ96, Theorem 6.2] and [Kim14]. In our approach, Θ is essentially part of the definition of
RZG. We can directly show a version of uniformization (Theorem 3.3.2) by combining the above
with results of Kisin [Kis13].

3.3.1 For simplicity, we will only discuss the uniformization when b ∈ G(K) is basic. We
assume this is the case for the rest of this section.

We fix a sufficiently small compact open subgroup Up of G(Apf ), again set U = UpUp, and
again abbreviate S = SU (G,H) for the smooth integral model over OE,(v) of the Shimura variety
ShU (G,H).

We continue as in § 3.1.4. In particular, we assume that X0 = X0(G, b, µ, C) arises as the
p-divisible group Ax0 [p∞] with tensors attached to a point x0 ∈ SUp(k). We will denote also by
x0 the image of x0 in S (k). Denote by

Sb ⊂ S ⊗OE,(v)
k (3.3.1.1)
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the Newton stratum determined by b in the geometric special fiber of S . By definition, Sb

consists of all points x such that there is a quasi-isogeny

X0 ⊗k k(x) = Ax0 [p∞]⊗k k(x) 99K Ax[p∞]

of p-divisible groups whose corresponding morphism of contravariant Dieudonné isocrystals
identifies tα,x := i∗x(tuniv

α ) with tα,0 ⊗ 1. Obviously, x0 ∈ Sb.
By [RR96] and our assumption that b is basic, the stratum (3.3.1.1) is closed. Denote by

(ŜW )/Sb
the completion of SW along Sb.

Theorem 3.3.2 (Kim [Kim14]). The morphism Θ extends to a G(Apf )-equivariant morphism

Θ : RZG ×G(Apf ) −→ ŜUp,W := lim
←−UpŜUpUp,W

which induces an isomorphism of formal schemes

Θb : I(Q)\RZG ×G(Apf )/Up
∼−→ (ŜW )/Sb

.

Here I is a reductive group over Q, which is an inner form of G, and is such that IR is
anisotropic modulo center. Moreover, there are natural identifications

IQ` =

{
Jb if ` = p,

GQ` otherwise.

The quotient is for the action of I(Q) obtained by combining the (discrete) embedding I(Q) ⊂
Jb(Qp) × G(Apf ) given by the above identifications, with the actions of Jb(Qp) on RZG, and of
G(Apf ) on G(Apf )/Kp by left multiplication.

There is a more general result for non-basic b, which is more complicated to state. Compare,
for example, with [RZ96, Theorem 6.23] or [Kim14]. Also, the uniformization isomorphism
descends to an isomorphism over a finite unramified extension of Qp; again, we omit this
discussion.

Proof. Given the existence of the morphism Θ, this closely follows [Kim14] and [RZ96]; for the
convenience of the reader we sketch the proof here.

The morphism
Θ : RZG→ ŜUp,W

is given using Remark 3.2.14 and, by its construction, sends the base point (X0, id, (tα,0)) to the
point x0. Note that G(Apf ) acts on the projective system SUp := lim

←−UpSUpUp on the right (this
is the prime-to-p Hecke action) and so this gives a morphism

Θ : RZG ×G(Apf ) −→ ŜUp,W .

After taking the quotient by Up we obtain

Θ : RZG ×G(Apf )/Up −→ ŜW .

The prime-to-p Hecke action on SUp preserves the p-divisible groups, and we can easily see that
this morphism factors through (ŜW )/Sb

.
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By their construction (see also § 3.1.1), the integral model S supports a lisse Apf -sheaf
Tap(A)Q given by the Tate Apf -module of the universal abelian scheme A, and sections

tpα,et : Apf → Tap(A)⊗Q.

We say that two points x and x′ of S (k) are in the same isogeny class if there is a quasi-isogeny
f : Ax 99K Ax′ of the corresponding abelian schemes, respecting weak polarizations, such that
the induced maps

D(Ax′)[1/p]
∼−→ D(Ax)[1/p]

and
Tap(Ax)Q

∼−→ Tap(Ax′)Q

send tα,x′ 7→ tα,x and tpα,et,x 7→ tpα,et,x′ , respectively; compare with [Kis13, Proposition (1.4.15)].
Kisin [Kis13, (2.1)] associates to the isogeny class φ ⊂ S (k) of x0 an algebraic group I = Iφ

with rational points I(Q) given by the self-quasi-isogenies Ax0 99K Ax0 that preserve tpα,et,x0
and

tα,x0 . By its very definition, I(Q) is a subgroup of Jb(Qp)×G(Apf ), and an argument as in [RZ96,
p. 289] shows that this subgroup is discrete.

Moreover, as in [RZ96], Θ factors as

Θ : I(Q)\RZG ×G(Apf )/Up −→ (ŜW )/Sb
. (3.3.2.1)

We continue to assume that Up is sufficiently small. Using Corollary 3.2.3 and [Kis13,
Proposition (2.3.1)], we can see that (3.3.2.1) gives an injection on k-valued points. By the proof
of Proposition 3.2.5, we then see that Θ induces an isomorphism between the formal completions
at such points. It then also follows that, for Up sufficiently small, the quotient

I(Q)\RZG ×G(Apf )/Up

is representable by a formal scheme over W .
It remains to show that the group I has the properties in the statement of Theorem 3.3.2,

and that (3.3.2.1) is an isomorphism.
Note that the point x0 ∈ S (k) is actually defined over a finite field of cardinality pr. By

[Kis13, (2.3) and Corollary (2.3.5)], one sees that there is an element γ0 ∈ G(Q) such that I is
an inner form of the centralizer I0 of a sufficiently divisible power of γ0. In fact, γ0 is a part of a
so-called Kottwitz triple

k = (γ0, (γ`)`6=p, δ)

as in [Kis13, (4.3) and (4.4.6)]. Here, γ` belongs to G(Q`), for all ` 6= p. Also δ belongs to G(Qpr),
withQpr ⊂K a finite unramified field extension ofQp, and is σ-conjugate to b. There are reductive
groups Ip over Qp, and I` over Q` for ` 6= p, associated to k. By [Kis13, Corollary (2.3.2)] we have
isomorphisms

I ⊗Q Q`
∼−→ I`, I ⊗Q Qp

∼−→ Ip.

As we assume that b is basic, a power of the element γp := δσ(δ) · · ·σr−1(δ) is central. Therefore
Ip = Jδ = Jb and they are both inner forms of G. It follows from the definition of Kottwitz triple
that a power of γ0 is also central, and hence I0 = G, and I` = GQl for ` 6= p. The statements
about the group I follow from this and the results of Kisin [Kis13, (2.3)] mentioned above.

In fact, the isogeny class φ is independent of our choice of (basic) point x0. More precisely,
we have the following proposition.
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Proposition 3.3.3. Suppose that x ∈ Sb(k); in other words, assume that D(Ax[p∞])(W ) has
Frobenius F = bx ◦ σ, where bx ∈ G(K) is σ-conjugate to b = bx0 in G(K). Then x and x0 are in
the same isogeny class.

Proof. This again follows from [Kis13]. As above, a power of γp,x obtained from δx as above is
central. Using this we can easily see that there is a unique equivalence class of Kottwitz triples
k = (γ0, (γ`) 6̀=p, δx) with δx σ-conjugate to b. (See [Kis13, 4.3.1] for the definition of the equivalence
relation.) Now, by [Kis13, Proposition 4.4.13], the set of isogeny classes which produce the same
Kottwitz triple k is in bijection with the abelian groupXG(Q, I). However, since b is basic, I0 = G
as above, and we can see from its definition [Kis13, §§ 4.4.9 and 4.4.7] that XG(Q, I) is trivial.
This concludes the proof. 2

Since the image of (3.3.2.1) on k-points is the isogeny class of x0, Proposition 3.3.3 implies
that (3.3.2.1) surjects onto Sb(k). Given the above, the remaining claim that (3.3.2.1) is an
isomorphism can be proven quickly by following the arguments in [RZ96, ch. 6]. 2

4. Rapoport–Zink spaces for spinor similitude groups

We now turn to the description of a special class of Hodge type Rapoport–Zink formal schemes:
those associated with the Shimura varieties for spinor similitude groups. Throughout §§ 4–6 we
work purely locally. The Shimura varieties themselves will not appear until § 7.

Fix a non-degenerate quadratic space (V,Q) of rank n > 3 over Zp and define a bilinear form
on V by (1.2.1.1). We assume that V is self-dual, in the sense that the bilinear form induces an
isomorphism V

∼−→ Hom(V,Zp). The space V will remain fixed throughout §§ 4–6.

4.1 Quadratic spaces, Clifford algebras, and spinor similitudes
For details on quadratic spaces, Clifford algebras, and spinor similitude groups we refer the reader
to [Bas74, Mad16, Shi10].

4.1.1 The Hasse invariant of VQp is the product of Hilbert symbols

ε(VQp) =
∏
i<j

(ai, aj)p,

where e1, . . . , en ∈ VQp is an orthogonal basis and ai = Q(ei). The determinant

det(VQp) = 2na1 · · · an

is the determinant of the matrix of inner products [ei, ej ]. It is well defined up to multiplication
by a square in Q×p . The self-duality hypothesis on V implies that ε(VQp) = 1 and

ordp(det(VQp)) ≡ 0 (mod 2).

4.1.2 The Clifford algebra of V is a Z/2Z-graded Zp-algebra denoted by

C(V ) = C+(V )⊕ C−(V ).

It is free of rank 2n over Zp, generated as an algebra by the image of a canonical injection
V ↪→ C−(V ) satisfying v · v = Q(v). The canonical involution on C(V ) is the Zp-linear
endomorphism c 7→ c∗ characterized by (v1 · · · vd)∗ = vd · · · v1 for all v1, . . . , vd ∈ V .
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For some faithfully flat Zp-algebra R there is an isomorphism

C(VR)
∼−→
{
M2k(R) if n = 2k,

M2k(R)×M2k(R) if n = 2k + 1.

The reduced trace Trd : C(V )→ Zp is the unique Zp-linear map which induces, under any such
isomorphism, the usual trace on M2k(R) when n = 2k, and the sum of the usual traces when
n = 2k + 1.

The center Z(V ) ⊂ C(V ) is easy to determine: if n is even then Z(V ) = Zp, while if n is odd
then Z(V ) is either Zp2 or Zp×Zp, depending on the determinant of VQp . In all cases the natural
map

C(V )⊗Z(V ) C(V )op → EndZ(V )(C(V ))

is an isomorphism.

4.1.3 For a Zp-algebra R, the tensor product VR = V ⊗Zp R is a non-degenerate quadratic
space over R with Clifford algebra C(VR) = C(V ) ⊗Zp R. The spinor similitude group G =
GSpin(V ) is the reductive group over Zp with R-points

G(R) = {g ∈ C+(VR)× : gVRg
−1 = VR, g

∗g ∈ R×},

and the spinor similitude ηG : G→ Gm is the character ηG(g) = g∗g.
The conjugation action of G on C(V ) leaves invariant the Zp-submodule V , and this action

of G on V is denoted by g • v = gvg−1. There is a short exact sequence of group schemes

1→ Gm→ G
g 7→g•−−−→ SO(V )→ 1

over Zp, and the restriction of ηG to the central Gm is z 7→ z2.

4.1.4 If we fix any δ ∈ C(V )× with δ∗ = −δ, then

ψδ(c1, c2) := Trd(c1δc
∗
2)

is a perfect symplectic form on C(V ). The group G, being a subgroup of C(V )×, acts on C(V )
by left multiplication, yielding a closed immersion G ↪→ GSp(C(V ), ψδ). Under this embedding
the symplectic similitude character restricts to the spinor similitude on G.

4.1.5 As in (1.1.1.3), we denote byD = HomZp(C(V ),Zp) the contragredient representation.
It follows from § 4.1.2 that there is an isomorphism

C(V )op ⊗Z(V ) C(V )
∼−→ EndZ(V )(D)

defined by ((c1 ⊗ c2)d)(c) = d(c1cc2). Note that the contragredient action of G on D commutes
with the action of C(V ), but not with that of C(V )op .

However, the inclusion V ⊂ C(V )op allows us to view

V ⊂ EndZp(D). (4.1.5.1)

These are the special endomorphisms of D. Again, they do not commute with the G action;
rather, they satisfy the relation g ◦ v ◦ g−1 = g • v as endomorphisms of D, for any g ∈ G(Zp)
and v ∈ V .
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4.2 The GSpin local Shimura datum
From the quadratic space V we will construct an unramified local Shimura–Hodge datum
(G, b, µ, C(V )) in the sense of Definition 2.2.4.

4.2.1 Fix a Zp-basis x1, . . . , xn ∈ V for which the matrix of inner products has the form

([xi, xj ]) =



0 1
1 0

∗
∗

. . .
∗


(the matrix is diagonal except for the upper left 2 × 2 block). This choice of basis determines a
cocharacter µ : Gm→ G by

µ(t) = t−1x1x2 + x2x1,

where the arithmetic on the right-hand side takes place in C(V ).
Under the representation G→ SO(V ), we have

µ(t) • xi =


t−1xi if i = 1,

txi if i = 2,

xi if 3 6 i 6 n.

The relation x1x2 + x2x1 = [x1, x2] = 1 implies that C(V ) = x1C(V ) ⊕ x2C(V ), and under the
representation G→ GSp(C(V ), ψδ), we have

µ(t) · z =

{
t−1z if z ∈ x1C(V ),

z if z ∈ x2C(V ).

The following lemma will be needed in the proof of Proposition 6.2.2.

Lemma 4.2.2. For self-dual W -lattices A,A] ⊂ VK , the following are equivalent:

(i) (A+A])/A
∼−→W/pW ;

(ii) there is a g ∈ G(K) such that A] = g • VW and A = gµ(p−1) • VW .

Proof. First assume (i) holds. As self-dual lattices are necessarily maximal, Theorem A.1.3 implies
that A and A] have the form

A = We⊕Wf ⊕B1, A] = Wpe⊕Wp−1f ⊕B1,

for some isotropic e, f ∈ VK with [e, f ] = 1, and some W -submodule B1 ⊂ VK orthogonal to both
e and f .

Now consider the self-dual W -lattice VW ⊂ VK . The calculations of § 4.2.1 imply that(
µ(p−1) • VW + VW

)
/
(
µ(p−1) • VW

) ∼−→W/pW, (4.2.2.1)

and so there is a similar decomposition

µ(p−1) • VW = Wẽ⊕Wf̃ ⊕B2,

VW = Wpẽ⊕Wp−1f̃ ⊕B2

for some W -submodule B2 ⊂ VK .
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Witt’s cancellation theorem implies that B1K
∼−→ B2K as K-quadratic spaces. As B1 and

B2 are self-dual (hence maximal), Theorem A.1.2 implies that B1 and B2 are isomorphic as
W -quadratic spaces. It follows that there is a g ∈ SO(VK) such that gẽ = e, gf̃ = f , and
gB2 = B1. Choosing any lift g ∈ G(K) yields the element required in (ii).

The reverse implication is clear from (4.2.2.1). 2

4.2.3 As G acts on both V and D, any b ∈ G(K) determines isocrystals

(VK ,Φ = b ◦ σ) and (DK , F = b ◦ σ).

These will play a central role in everything that follows.
Recall from § 2.2.8 that b ∈G(K) is basic if its slope cocharacter νb : TK→GK factors through

the center of GK . As TK is an inverse limit of connected group schemes, this is equivalent to the
slope cocharacter factoring through the connected component of the center, which is

Gm = ker(G→ SO(V )).

Thus any basic b ∈ G(K) determines a rational number

νb ∈ Hom(TK ,Gm) = Q,

which depends only on the σ-conjugacy class of b.

Lemma 4.2.4. For each b ∈ G(K), the following are equivalent:

(i) b is basic;
(ii) the isocrystal (VK ,Φ = b ◦ σ) is isoclinic of slope 0;
(iii) the isocrystal (DK , F = b ◦ σ) is isoclinic.

When these equivalent conditions hold, the slope of the isocrystal DK is −νb.

Proof. The equivalence of the first two statements follows from the fact that the central Gm ⊂GK
is the kernel of the representation GK → SO(VK). The equivalence of the first and third follows
from the observation that the representation GK → GL(DK) identifies the central Gm ⊂ GK
with the torus of scalars in GL(DK). Moreover, Gm ⊂ GK acts on DK through the character
t 7→ t−1, proving the final claim. 2

Proposition 4.2.5. Every basic b ∈ G(K) satisfies

νb =
ordp(ηG(b))

2
, (4.2.5.1)

and b 7→ νb establishes a bijection

{basic b ∈ G(K)}/σ-conjugacy ∼−→ 1
2Z. (4.2.5.2)

Moreover, for any basic b ∈ G(K), the Qp-quadratic space

V Φ
K = {x ∈ VK : Φx = x}

has the same dimension and determinant as VQp , and has Hasse invariant ε(V Φ
K ) = (−1)2νb .
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Proof. As in [Asg02, § 2], the derived group of G is the kernel of the spinor similitude, which is
just the usual spin double cover of SO(V ). In particular, the derived group is simply connected,
and results of Kottwitz (combine [Kot85, Proposition 5.4] and [Kot85, (2.4.1)]) imply that

ordp ◦ ηG
2

: G(K)→
1

2
Z

induces a bijection
{basic b ∈ G(K)}/σ-conjugacy ∼−→ 1

2Z.
Recalling the basis x1, . . . , xn of V of § 4.2.1, we now set

b = x3(p−1x1 + x2) ∈ G(Qp). (4.2.5.3)

A simple calculation gives
b2 = −p−1Q(x3) ∈ p−1 · Z×p . (4.2.5.4)

As Gm ⊂ G acts on DK via t 7→ t−1, the relation (4.2.5.4) implies that bk makes DK into an
isoclinic isocrystal of slope k/2. Thus bk is basic with νbk = −k/2 by Lemma 4.2.4.

As ηG(p) = p2, the relation (4.2.5.4) implies ordp(ηG(b)) = −1, and so the powers of b form
a complete set of representatives for the basic σ-conjugacy classes. As these satisfy

νbk = −k
2

=
ordp(ηG(bk))

2
,

we have now proved both (4.2.5.1) and (4.2.5.2).
As b2 is a scalar, it lies in the kernel of G(K)→ SO(V )(K). Thus the isocrystal structure on

VK defined by Φ = bk ◦ σ depends only on k (mod 2). If k = 0 then V Φ
K = VQp as subspaces of

VK , and so they have the same dimension, determinant, and Hasse invariant.
On the other hand, if k = 1 then direct calculation shows that the isocrystal VK defined by

Φ = b ◦ σ satisfies
Φx1 = −px2, Φx2 = −p−1x1, Φx3 = −x3, (4.2.5.5)

and Φxi = xi for i > 3. If we define subspaces M = Qpx1 + Qpx2 + Qpx3 and N = M⊥ in VQp ,
then there are orthogonal decompositions

VQp = M ⊕N, V Φ
K = MΦ

K ⊕N,
and an elementary calculation (as in the proof of [HP14, Proposition 2.6]) shows that M and
MΦ
K have the same dimension and determinant, but different Hasse invariants. Hence the same

is true of VQp and V Φ
K . 2

Proposition 4.2.6. If we let

– µ : Gm→ G be as in § 4.2.1;
– b ∈ G(K) be defined by (4.2.5.3), so that νb = −1/2;
– G→ GSp(C(V ), ψδ) be the representation of § 4.1.4,

then b ∈ G(W )µσ(p)G(W ), and the action of Gm on C(V ) determined by

Gm
µ−→ G→ GSp(C(V ), ψδ)

has the form
t 7→

(
t−1I2n−1

I2n−1

)
for some choice of basis of C(V ). In particular, (G, b, µ, C(V )) is a local unramified Shimura–
Hodge datum in the sense of Definition 2.2.4.
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Proof. The calculations of § 4.2.1 show that the action of Gm on C(V ) has the stated form. Thus,
as µ = µσ, it suffices to prove b ∈ µ(p)G(W ). Comparing the calculations of § 4.2.1 with (4.2.5.5)
shows that

b • VW = Φ(VW ) = µ(p) • VW
as lattices in VK . Thus µ(p−1)b lies in pZG(W ), the stabilizer in G(K) of the lattice VW . But

ordp(ηG(b)) = −1 = ordp(ηG(µ(p))),

and so in fact µ(p−1)b ∈ G(W ). 2

Remark 4.2.7. In general, given G and {µ} as in § 2.2.1 with {µ} minuscule, there is a unique
basic σ-conjugacy class [b] such that (G, [b], {µ}) is a local unramified Shimura datum. This
follows from [RR96, Theorem 1.15(i)] and the description of the set B(GQp , {µ}) given there; see
also [Wor13, § 5.2].

4.3 The GSpin Rapoport–Zink space
The local Hodge–Shimura datum (G, b, µ, C(V )) of Proposition 4.2.6 will remain fixed throughout
the remainder of § 4, and throughout §§ 5 and 6.

4.3.1 By Lemma 4.2.4, the isocrystals

(VK ,Φ = b ◦ σ), (DK , F = b ◦ σ)

have slopes 0 and 1/2, respectively, and Lemma 2.2.5 implies that there is a p-divisible group

X0 = X0(G, b, µ, C(V ))

over k whose contravariant Dieudonné module is the lattice DW ⊂ DK . The perfect symplectic
form ψδ on C(V ) determines a principal polarization λ0 : X0 → X∨0 , and the inclusion
C(V )op ⊂ End(C(V )) by right multiplication defines an action of C(V )op on X0. Let D(X0)
be the contravariant crystal of X0, so that D(X0)(W ) = DW .

Tensoring (4.1.5.1) with K yields a subspace VK ⊂ EndK(DK) of special endomorphisms, on
which the operators Φ and F are related by Φx = F ◦ x ◦ F−1. In particular, the Φ-fixed vectors
commute with F , and so determine a distinguished Qp-subspace

V Φ
K ⊂ End(X0)Q

of special quasi-endomorphisms of X0. The restriction to V Φ
K of the K-valued quadratic form on

VK then satisfies x ◦ x = Q(x) · id. By Proposition 4.2.5 the space V Φ
K has the same dimension

and determinant as VQp , but has Hasse invariant ε(V Φ
K ) = −ε(VQp) = −1.

4.3.2 We now have all the ingredients needed to attach a Rapoport–Zink formal scheme to
the quadratic space (V,Q), using the general constructions of §§ 2 and 3. By Theorem 3.2.1, the
quadruple (G, b, µ, C(V )) determines a formal W -scheme

RZ = RZG,b,µ,C(V ),(sα) (4.3.2.1)

together with a closed immersion RZ ↪→ RZ(X0, λ0). Here RZ(X0, λ0) is the symplectic
Rapoport–Zink space as in § 2.3.1. By Proposition 3.2.12, the formal scheme (4.3.2.1) does
not depend on the collection of tensors (sα) ⊂ C(V )⊗ = D⊗ that cut out the subgroup
G ⊂ GL(C(V )).
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For this to make sense, we must explain why the datum (G, b, µ, C(V )) has the form (3.1.4.1);
in other words, why this quadruple (along with some choice of tensors sα) agrees with the one
coming from a k-point on an integral canonical model of a Shimura variety. The quadratic space
(V,Q) over Zp can be realized as the p-adic completion of a quadratic space over Z(p) of signature
(n−2, 2), and hence the reductive group G and its representation C(V ) also arise from analogous
objects over Z(p). The tensors (sα) may then be chosen to come from this Z(p)-model of C(V ), and
the existence of the desired point x on a global Shimura variety then follows from Proposition 7.2.3
below.

An explicit list of tensors (sα) that cut out G ⊂ GL(C(V )) can be found in [Mad16,
Lemma 1.4(3)]. It will be convenient to fix, once and for all, such a list, and assume that it
includes the tensor induced by the symplectic form ψδ on C(V ), as in the proof of Theorem 3.2.1,
and that it includes a set of Zp-algebra generators for the subring

C(V )op ⊂ End(C(V )) = C(V )⊗ C(V )∗

defined by right multiplication (equivalently, a set of generators for the subring C(V ) ⊂ End(D)
of § 4.1.5).

4.3.3 The restriction of the universal object via RZ ↪→ RZ(X0, λ0) is a pair (X, ρ), in which
X is a p-divisible group over RZ, and

ρ : X0 ×Spf(k) RZ 99K X ×RZ RZ

is a quasi-isogeny of p-divisible groups over

RZ = RZ×Spf(W ) Spf(k).

As we have chosen our list of tensors to include generators of the subalgebra C(V )op ⊂
End(C(V )), the universal X is endowed not only with a principal polarization λ : X → X∨,
but also with an action of C(V )op . The universal quasi-isogeny is C(V )op-linear. The action of
C(V )op on the universal object will play little part in what follows; it will be used only in the
proof of Proposition 6.1.2 below.

The universal quasi-isogeny also respects the polarizations λ and λ0 up to scaling, and hence,
Zariski locally on RZ, we have ρ∗λ = c(ρ)−1λ0 for some c(ρ) ∈ Q×p . For each ` ∈ Z, let RZ(`) ⊂ RZ
be the open and closed formal subscheme on which ordp(c(ρ)) = `, so that

RZ =
⊔
`∈Z

RZ(`).

4.3.4 The algebraic group Jb = GSpin(V Φ
K ) has Qp-points

Jb(Qp) = {g ∈ G(K) : gb = bσ(g)},
and acts as automorphisms of the isocrystal DK . This realizes Jb(Qp) ⊂ End(X0)×Q, and, as in
(2.3.7.1), there is an induced action of Jb(Qp) on RZ. Each g ∈ Jb(Qp) restricts to an isomorphism

g : RZ(`)
→ RZ(`+ordp(ηb(g))).

In particular, the subgroup pZ ⊂ Jb(Qp) acts on RZ, and, as ηb(p) = p2,

pZ\RZ
∼−→ RZ(0) t RZ(1). (4.3.4.1)

The surjectivity of the spinor similitude ηb : Jb(Qp)→ Q×p implies that the RZ(`) for various `
are (non-canonically) isomorphic.

1094

https://doi.org/10.1112/S0010437X17007011 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007011


Rapoport–Zink spaces for spinor groups

4.3.5 In this paper we do not discuss the very interesting general theory of the p-adic
symmetric domain and the period morphism for the p-analytic spaces associated to the formal
schemes RZG. See [RZ96, ch. 5], and for the Hodge type case [Kim13].

We will just mention briefly, and without details, an elegant description of the p-adic
symmetric domains that relates to the basic Rapoport–Zink spaces for GSpin(V ) treated here.

In this case, the corresponding flag variety is simply the quadric Q ⊂ P(V ) of isotropic lines
L ⊂ V . If F is a finite extension of K, the F -valued points Qwa(F ) of the (weakly) admissible
locus Qwa ⊂ Qrig

K in the rigid analytic quadric are those isotropic F -lines L ⊂ VF which are
not contained in any isotropic F -subspace of VF which is Qp-rational; here ‘rational’ is for the
Qp-vector space structure on VF given by VF = V Φ

K ⊗Qp F .
This description can be obtained by first reducing consideration to the corresponding

p-adic symmetric domain for the group SO(V ) = GSpin(V )/Gm (see, for example, [DOR10,
Corollary 9.2.22]), and then by working through the definitions of [RZ96, ch. 1] for SO(V ). We
leave the details to the reader.

5. Vertex lattices and special lattices

The section contains mostly linear algebra. We study the family of vertex lattices Λ ⊂ V Φ
K , and

the family of special lattices L ⊂ VK .

5.1 Vertex lattices
In this subsection we introduce the vertex lattices and study their combinatorial properties
(compare with [HP14, Vol10, VW11]). Later, in § 6, we will express the reduced scheme underlying
the spinor similitude Rapoport–Zink formal scheme (4.3.2.1) as a union of closed subschemes
indexed by these vertex lattices.

Definition 5.1.1. A vertex lattice is a Zp-lattice Λ ⊂ V Φ
K satisfying

pΛ ⊂ Λ∨ ⊂ Λ,

where Λ∨ is the dual lattice in the sense of Definition A.1.1. The type of Λ is

tΛ = dimFp(Λ/Λ
∨).

Proposition 5.1.2. Let Λ be a vertex lattice, and recall the integer tmax of (1.2.3.1). The type
tΛ is even and satisfies 2 6 tΛ 6 tmax. Furthermore, every vertex lattice is contained in a vertex
lattice of type tmax.

Proof. Recall from § 4.1.1 and Proposition 4.2.5 that

ordp(det(V Φ
K )) ≡ ordp(det(VQp)) ≡ 0 (mod 2). (5.1.2.1)

It follows that the type of a vertex lattice is even. The type cannot be 0, for then V Φ
K would

contain a self-dual lattice, contradicting the Hasse invariant calculation ε(V Φ
K ) = −1.

Let Lat be the set of all Zp-lattices Λ ⊂ V Φ
K satisfying [Λ,Λ] ⊂ p−1Zp. In other words, Lat

is the set of all lattices for which pΛ ⊂ Λ∨, and so Lat contains all vertex lattices. Let Λ be any
lattice which is maximal (with respect to inclusion) among all elements of Lat. We will prove
that Λ is a vertex lattice of type tmax, from which the proposition follows immediately.
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The lattice Λ is a maximal lattice (in the sense of Definition A.1.1) with respect to the rescaled
quadratic form pQ on V Φ

K , and so by Theorems A.1.2 and A.1.3 there is a decomposition

Λ = SpanZp{e1, f1, . . . , er, fr} ⊕ Z

in which ZQp is anisotropic,

Z = {x ∈ ZQp : Q(x) ∈ p−1Zp}, (5.1.2.2)

and the vectors ei and fj satisfy

[Z, ei] = [Z, fi] = 0, [ei, ej ] = [fi, fj ] = 0,

and [ei, fj ] = p−1δi,j . As every quadratic space over Qp of dimension greater than 4 contains an
isotropic vector, we also have dim(ZQp) 6 4.

The relation pΛ ⊂ Λ∨ implies pZ ⊂ Z∨. We cannot have Z∨ = Z, for then

SpanZp{pe1, f1, . . . , per, fr} ⊕ Z ⊂ V Φ
K

would be a self-dual lattice, contradicting ε(V Φ
K ) = −1. In particular, Z 6= 0.

If dim(ZQp) = 1 then ZQp
∼−→ Qp with the quadratic form Q(x) = cx2 for some c ∈ Q×p /(Q×p )2.

We cannot have ordp(c) even, for then (5.1.2.2) implies Z = Z∨, contradicting what was said
above. But we also cannot have ordp(c) odd, for then

ordp(det(VQp)) = ordp(det(V Φ
K )) = 2r + ordp(det(ZQp))

is odd, contradicting (5.1.2.1). Thus dim(ZQp) ∈ {2, 3, 4}.
Suppose dim(ZQp) = 2. Let Qp2 be the unramified quadratic extension of Qp, and let x 7→ x̄

be its non-trivial Galois automorphism. For some c ∈ Q×p /Nm(Q×
p2) there is an isomorphism

ZQp
∼−→ Qp2 identifying the quadratic form Q with Q(x) = cxx̄. If ordp(c) is even then, as above,

Z = Z∨ yields a contradiction. Thus ordp(c) is odd, and simple calculation shows that Z∨ ⊂ Z,
dim(Z/Z∨) = 2 and det(ZQp) = −u for a non-square u ∈ Q×p . This implies that Λ∨ ⊂ Λ with
dim(Λ/Λ∨) = 2r + 2 = n, and

det(VQp) = det(V Φ
K ) = (−1)r det(ZQp) = (−1)n/2u 6= (−1)n/2.

Thus Λ is a vertex lattice of type n = tmax.
Suppose that dim(ZQp) = 3. Let B denote the quaternion division algebra over Qp, with

its main involution x 7→ x̄. The subspace of traceless elements B0 = {x ∈ B : x + x̄ = 0} has
dimension 3, and the reduced norm Nrd(x) = xx̄ restricts to an anisotropic quadratic form on
B0 with ordp(det(B0)) even. In fact

(B0,Nrd)
∼−→ (Q3

p,−ux2
1 − px2

2 + upx2
3)

for any non-square u ∈ Z×p . There are exactly four anisotropic quadratic spaces over Qp of
dimension 3, and they are the spaces (B0, cNrd) with c ∈ Q×p /(Q×p )2. If ordp(c) is odd then
ordp(det(V Φ

K )) is also odd, contradicting (5.1.2.1). Thus ordp(c) is even, and one can easily check
from (5.1.2.2) that Z∨ ⊂ Z with Z/Z∨ of dimension 2. Thus Λ∨ ⊂ Λ and

dim(Λ/Λ∨) = 2r + 2 = n− 1.

In other words, Λ is a vertex lattice of type n− 1 = tmax.
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Finally, suppose dim(ZQp) = 4. By [Ser73, Corollary IV.2.3], the only anisotropic quadratic
space of dimension 4 is ZQp

∼−→ B with its reduced norm form. In particular, det(ZQp) = 1 and
Z
∼−→ m−1, where OB ⊂ B is the unique maximal order and m ⊂ OB is its unique maximal ideal.

The dual lattice is Z∨ = OB, and it follows that Z∨ ⊂ Z with dim(Z/Z∨) = 2. This implies that
Λ∨ ⊂ Λ, dim(Λ/Λ∨) = 2r + 2 = n− 2, and

det(VQp) = det(V Φ
K ) = (−1)r det(ZQp) = (−1)n/2.

Thus Λ is a vertex lattice of type n− 2 = tmax. 2

There is a natural notion of adjacency between vertex lattices, which makes them into the
vertices of a connected graph, as we now explain.

Definition 5.1.3. Two vertex lattices Λ1,Λ2 ⊂ V Φ
K are adjacent if either Λ1 ( Λ2 or Λ2 ( Λ1.

We write Λ1 ∼ Λ2 to indicate that Λ1 and Λ2 are adjacent. Adjacent lattices have different
types, and the inclusion between them is always the lattice of smaller type inside the lattice of
larger type.

Proposition 5.1.4. Let Λ ⊂ V Φ
K be a vertex lattice of type tΛ and suppose t 6= tΛ is any even

integer with 2 6 t 6 tmax. There is a vertex lattice of type t adjacent to Λ.

Proof. First suppose that t < tΛ. The quadratic form q(x) = pQ(x) makes Λ/Λ∨ into a non-
degenerate quadratic space over Fp of rank tΛ > 4, and [Ser73, Corollary 1.2.2] implies the
existence of an isotropic line ` ⊂ Λ/Λ∨. The orthogonal `⊥ ⊂ Λ/Λ∨ determines a vertex lattice
Λ′ = Λ∨ + `⊥ ⊂ Λ of type tΛ′ = tΛ − 2, and repeating this process yields a vertex lattice of type
t contained in Λ.

Now suppose that tΛ < t. By Proposition 5.1.2 there is a vertex lattice Λmax of maximal type
tmax satisfying Λ∨max ( Λ∨ ⊂ Λ ( Λmax. The subspace Λ∨/Λ∨max ⊂ Λmax/Λ

∨
max is totally isotropic,

and for any codimension 1 subspace ` ⊂ Λ∨/Λ∨max the orthogonal

Λ/Λ∨max ⊂ `⊥ ⊂ Λmax/Λ
∨
max

determines a vertex lattice Λ′ = Λ∨max + `⊥ of type tΛ + 2 containing Λ. Repeating this process
yields a vertex lattice of type t containing Λ. 2

The following proposition, which proves the connectedness of the graph of vertex lattices, will
be used in the proof of Theorem 6.4.1 to show that RZ(`) is connected.

Proposition 5.1.5. Given any two vertex lattices Λ′,Λ′′ ⊂ V Φ
K , there is a sequence of adjacent

vertex lattices
Λ′ ∼ Λ1 ∼ Λ2 ∼ · · · ∼ Λs ∼ Λ′′.

Proof. As in the proof of Proposition 5.1.2, let Lat be the set of all Zp-lattices Λ ⊂ V Φ
K satisfying

[Λ,Λ] ⊂ p−1Zp. Recall that Lat contains all vertex lattices. Recall also that any maximal (with
respect to inclusion) element Λ ∈ Lat is necessarily a vertex lattice of type tmax, and is a maximal
lattice with respect to the rescaled quadratic form pQ.

Pick maximal elements Λ′,Λ′′ ∈ Lat with Λ′ ⊂ Λ′ and Λ′′ ⊂ Λ′′. In particular, Λ′ ∼ Λ′ and
Λ′′ ∼ Λ′′. Using the maximality of Λ′ and Λ′′ with respect to pQ, Theorem A.1.3 implies that
there are decompositions

Λ′′ = SpanZp{e1, f1, . . . , er, fr} ⊕ Z
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and
Λ′ = SpanZp{pa1e1, p

−a1f1, . . . , p
arer, p

−arfr} ⊕ Z,

where all ei and fi are isotropic, [ei, fj ] = p−1δij , each ai > 0, and Z is orthogonal to all ei and
fi and satisfies pZ ⊂ Z∨ ⊂ Z.

From these decompositions it is elementary to construct a chain of adjacent vertex lattices

Λ′ ∼ Λ′ ∼ Λ1 ∼ Λ2 ∼ · · · ∼ Λs ∼ Λ′′ ∼ Λ′′.

For example, set

Λ1 = SpanZp{pa1e1, p
−a1+1f1, p

a2e2, p
−a2f2, . . . , p

arer, p
−arfr} ⊕ Z

so that Λ1 ( Λ′ is a vertex lattice of type tmax − 2, and then set

Λ2 = SpanZp{pa1−1e1, p
−a1+1f1, p

a2e2, p
−a2f2, . . . , p

arer, p
−arfr} ⊕ Z

so that Λ2 ) Λ1 is a vertex lattice of type tmax. Repeat until all the exponents reach 0. 2

5.2 Special lattices
We now define a family of special lattices in VK . In § 6 we will show that these special lattices
are in bijection with the set pZ\RZ(k).

In fact, we will need a similar result for any finitely generated extension k′ of k. Let W ′ be
the Cohen ring of k′, let K ′ = W ′[1/p] be its fraction field, and let σ : K ′ → K ′ be any lift of
Frobenius. Define a σ-linear operator Φ = b ◦ σ on VK′ . If L ⊂ VK′ is any W ′-submodule, let
Φ∗(L) ⊂ VK′ be the W ′-submodule generated by Φ(L).

Definition 5.2.1. A special lattice L ⊂ VK′ is a self-dual W ′-lattice such that

(L+ Φ∗(L))/L
∼−→W ′/pW ′.

The following proposition implies that for every special lattice L ⊂ VK there is a vertex lattice
Λ ⊂ V Φ

K with Λ∨W ⊂ L ⊂ ΛW . In fact, there is a unique minimal such Λ, denoted Λ(L). The proof
is identical to that of [RTW14, Proposition 4.1] and [Vol10, Lemma 2.1], and so is omitted here.

Proposition 5.2.2. Let L ⊂ VK be a special lattice. If we define

L(r) = L+ Φ(L) + · · ·+ Φr(L),

then there is a (necessarily unique) integer 1 6 d 6 tmax/2 such that

L = L(0) ( L(1) ( · · · ( L(d) = L(d+1).

Moreover, the W -module L(r+1)/L(r) has length 1 for all r < d, and

Λ(L) = {x ∈ L(d) : Φ(x) = x} ⊂ V Φ
K

is a vertex lattice of type 2d satisfying Λ(L)∨ = {x ∈ L : Φ(x) = x}.
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5.3 The variety SΛ

We next attach to a vertex lattice Λ ⊂ V Φ
K a k-variety SΛ parametrizing certain special lattices.

5.3.1 Define an Fp-vector space Ω0 = Λ/Λ∨ of dimension tΛ. The quadratic form pQ on Λ
is Zp-valued, and its reduction modulo p makes Ω0 into a non-degenerate quadratic space over
Fp. Set

Ω := Ω0 ⊗Fp k
∼−→ ΛW /Λ

∨
W

with its Frobenius operator id ⊗ σ = Φ. Note that Ω0 cannot admit a Lagrangian (= totally
isotropic of dimension tΛ/2) subspace. Indeed, if such a subspace L ⊂ Ω0 existed, then Λ∨+L ⊂
V Φ
K would be a vertex lattice of type 0, contradicting Proposition 5.1.2. In fact, Ω0 is characterized

up to isomorphism as the unique non-degenerate quadratic space of dimension tΛ that does not
admit a Lagrangian subspace.

The orthogonal Grassmannian OGr(Ω) is the moduli space of Lagrangian subspaces L ⊂ Ω.
More precisely, an R-point of OGr(Ω) is a totally isotropic local direct summand L ⊂ Ω ⊗k R
of rank tΛ/2. Denote by SΛ ⊂ OGr(Ω) the reduced closed subscheme with k-points

SΛ(k) =

{
Lagrangians L ⊂ Ω : dimk(L + Φ(L )) =

tΛ
2

+ 1

}
∼−→ {special lattices L ⊂ VK : Λ∨W ⊂ L ⊂ ΛW }.

Proposition 5.3.2. The k-schemeSΛ has two connected components SΛ = S+
Λ t S−Λ . The two

components are isomorphic, and each is projective and smooth of dimension (tΛ/2)− 1.

Proof. All of the claims are included in [HP14, Proposition 3.6], except for the isomorphism
S+

Λ

∼−→ S−Λ . Pick any g ∈ O(Ω0)(Fp) with det(g) = −1. The natural action of g on OGr(Ω) leaves
SΛ invariant, and the discussion of [HP14, § 3.2] shows that g interchanges S+

Λ with S−Λ . 2

6. Structure of the spinor similitude Rapoport–Zink space

We will determine explicitly the structure of the reduced k-scheme RZred underlying the formal
W -scheme RZ of § 4.3.2. More precisely, we will express RZred as a union of closed subschemes
RZred

Λ indexed by vertex lattices, and then relate each RZred
Λ to the variety SΛ of § 5.3.1.

6.1 Closed subschemes defined by vertex lattices
Recall from §§ 4.3.1 and 4.3.3 the Qp-quadratic space of special quasi-endomorphisms
V Φ
K ⊂ End(X0)Q, and the universal quasi-isogeny

ρ : X0 ×Spf(k) RZ 99K X ×RZ RZ.

6.1.1 Fix a vertex lattice Λ ⊂ V Φ
K , and denote by RZΛ ⊂ RZ the closed [RZ96,

Proposition 2.9] formal subscheme defined by the condition

ρ ◦ Λ∨ ◦ ρ−1 ⊂ End(X).

In other words, RZΛ is the locus where the quasi-endomorphisms ρ ◦ Λ∨ ◦ ρ−1 of X are actually
integral. As in § 4.3.4, the subgroup pZ ⊂ Jb(Qp) acts on RZΛ. Set

RZ
(`)
Λ = RZΛ ∩ RZ(`),

so that pZ\RZΛ
∼−→ RZ

(0)
Λ t RZ

(1)
Λ , exactly as in (4.3.4.1).
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Proposition 6.1.2. The reduced k-scheme underlying RZ
(`)
Λ is projective.

Proof. Abbreviate Z = Z(V ) for the center of C(V ). Using the isomorphism

C(V )op ⊗Z C(V )
∼−→ EndZ(D) (6.1.2.1)

of § 4.1.4, and the inclusion Λ∨ ⊂ VK ⊂ C(VK)op , we denote by

R ⊂ EndZK (DK)

the W -subalgebra generated by Λ∨ ⊗Zp C(V ) ⊂ EndZK (DK). The isomorphism (6.1.2.1) implies
that R generates EndZK (DK) as a K-vector space. Fix any maximal ZW -order R̃ with

R ⊂ R̃ ⊂ EndZK (DK).

As R and R̃ are both W -lattices in EndK(DK), we have pmR̃ ⊂ R for some positive integer m.
Fix a W -lattice M̃ ⊂ DK stable under the action of R̃. It is unique up to scaling by Z×K .

Suppose y ∈ RZ
(`)
Λ (k), and use the quasi-isogeny ρy : X0 99K Xy to view

My = D(Xy)(W )

as a W -lattice in DK = D(X0)(W )[1/p]. On one hand, My is stable under the action of C(V )
defined by (6.1.2.1). Indeed, this action in precisely the action on My induced by the action of
C(V )op on Xy and contravariant functoriality; see § 4.3.3. On the other hand, Λ∨ ⊂ End(Xy) by
the very definition of RZ

(`)
Λ . Combining these, we see that My is stable under the action of R,

and so we may define the R̃-stable lattice M̃y = R̃ ·My. By the uniqueness of M̃ up to scaling,
there is an a(y) ∈ Z×K such that M̃y = a(y)M̃ , and so

pma(y)M̃ ⊂My ⊂ a(y)M̃.

First suppose that n is even, so that ZK = K×. The perfect symplectic form ψδ on C(VW )
induces a dual form on DW , which satisfies

p`ψδ(DW , DW ) = ψδ(M̃y, M̃y) = a(y)2ψδ(M̃, M̃).

Thus the p-adic valuation of a(y) is constant as y varies, and we may choose a = a(y) to be
independent of y.

Now suppose that n is odd, so that ZK = K × K. Let ε1, ε2 ∈ ZK be the orthogonal
idempotents. In this case the dual form on DW satisfies

p`ψδ(εiDW , εiDW ) = ψδ(εiM̃y, εiM̃y) = ai(y)2ψδ(εiM̃, εiM̃),

where ai(y) = εi(y)a(y). Again this shows that ai(y) has constant p-adic valuation as y varies,
and we may take a = a(y) to be independent of y.

In either case apmM̃ ⊂My ⊂ aM̃ for all y. Combining this bound onMy and the projectivity
result of [RZ96, Corollary 2.29], we see that the closed immersion RZ ↪→ RZ(X0, λ0) realizes the
reduced scheme underlying RZ

(`)
Λ as a closed subscheme of a projective k-scheme. 2

6.2 Special lattices and the points of RZΛ

Let k′/k be a finitely generated field extension. LetW ′ be the Cohen ring of k′, set K ′ = W ′[1/p],
and let σ : W ′ → W ′ be a lift of Frobenius chosen as in Proposition 2.4.8. This choice of σ
determines an operator F = b ◦ σ on DK′ , and an operator Φ = b ◦ σ on VK′ .
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6.2.1 As in the proof of Proposition 6.1.2, each y ∈ RZ(k′) determines a W ′-lattice

My = D(Xy)(W
′) ⊂ DK′ ,

and a W ′-submodule M1,y = F−1(pMy) as in § 2.1.5. Using the inclusion VK′ ⊂ EndK′(DK′)
obtained from (4.1.5.1), define W ′-lattices

Ly = {x ∈ VK′ : xM1,y ⊂M1,y},
L]y = {x ∈ VK′ : xMy ⊂My},
L]]y = {x ∈ VK′ : xM1,y ⊂My}.

The action of pZ on RZ(k′) rescales the latticesMy andM1,y, and hence the three lattices defined
above depend only on the image of y in pZ\RZ(k′).

Proposition 6.2.2. For every y ∈ RZ(k′) the lattice Ly is special (in the sense of § 5.2), and
satisfies Φ∗(Ly) = L]y and Ly + L]y = L]]y . Moreover, y 7→ Ly establishes bijections

pZ\RZ(k′)
∼−→ {special lattices L ⊂ VK′},

pZ\RZΛ(k′)
∼−→ {special lattices L ⊂ VK′ : Λ∨W ′ ⊂ L ⊂ ΛW ′}.

Proof. As in § 2.4 we have the refined affine Deligne–Lusztig set

XG,b,µσ ,σ(k′) =
{
g ∈ G(K ′) : g−1bσ(g)µσ(p)−1 ∈ G(W ′)

}
/Q(W ′),

where
Q(W ′) = G(W ′) ∩ µ(p−1)G(W ′)µ(p).

Recalling the action G → SO(V ) defined by g • v = gvg−1, for each g ∈ XG,b,µσ ,σ(k′) define
self-dual W ′-lattices

L]g = g • VW ′ and Lg = gµ(p−1) • VW ′ .

As the action of p• is trivial, these lattices depend only on the image of g modulo pZ.
First we show that g 7→ Lg establishes a bijection

pZ\XG,b,µσ ,σ(k′)
∼−→ {special lattices in VK′}.

Given a g ∈ XG,b,µσ ,σ(k′), Lemma 4.2.2 (which holds withW replaced byW ′ throughout) implies

(Lg + L]g)/Lg
∼−→W ′/pW ′.

Moreover, g−1bσ(g)µσ(p−1) ∈ G(W ′) implies

Φ∗(Lg) = L]g, (6.2.2.1)

and so Lg is special. To prove injectivity, assume Lg = Lh. Applying Φ∗ to both sides and using
(6.2.2.1) shows that L]g = L]h. It follows that h

−1g lies in the intersection inG(K ′) of the stabilizers
of VW ′ and µ(p−1) • VW ′ , which is pZQ(W ′). Thus g = h in pZ\XG,b,µσ ,σ(k′). For surjectivity,
suppose L is a special lattice. Lemma 4.2.2 implies the existence of a g ∈ G(K ′) such that

(Φ∗(L), L) = (g • VW ′ , gµ(p−1) • VW ′).

1101

https://doi.org/10.1112/S0010437X17007011 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007011


B. Howard and G. Pappas

This equality implies that g−1bσ(g)µσ(p−1) stabilizes VW ′ , and so lies in pZG(W ′). The relation
b ∈ G(W )µσ(p)G(W ) of Proposition 4.2.6 implies that

ηG(g−1bσ(g)µσ(p−1)) ∈ (W ′)×,

and so in fact g−1bσ(g)µσ(p−1) ∈ G(W ′). Thus we have found a g ∈ XG,b,µσ ,σ(k′) with L = Lg.
By Corollary 3.2.3, there is bijection RZ(k′)

∼−→ XG,b,µσ ,σ(k′), defined by sending the point
y ∈ RZ(k′) to the unique g ∈ XG,b,µσ ,σ(k′) satisfying both

My = g ·DW ′ and M1,y = g · pµ(p−1)DW ′ .

Assuming that y and g are related in this way, we claim that

(L]y, Ly) = (L]g, Lg). (6.2.2.2)

To prove this, let B = {x ∈ VK′ : xDW ′ ⊂ DW ′}. The inclusion VW ′ ⊂ B is obvious. For the other
inclusion note that any x ∈ B must have Q(x) = x ◦ x ∈ W ′, and so VW ′ ⊂ B ⊂ B∨ ⊂ (VW ′)

∨.
The self-duality of VW ′ implies that equality holds throughout, and so

VW ′ = {x ∈ VK′ : xDW ′ ⊂ DW ′}.

Applying g• to both sides of this equality proves L]y = L]g, while applying gµ(p−1)• to both sides
proves Ly = Lg.

We have now established bijections

pZ\RZ(k′)
∼−→ pZ\XG,b,µσ ,σ(k′)

∼−→ {special lattices L ⊂ VK′}.

The relation Φ∗(L
]
y) = Ly follows from (6.2.2.1) and (6.2.2.2). We verify Ly+L]y = L]]y as follows.

Using the calculations of § 4.2.1, one can show

µ(p−1) • VW ′ + VW ′ = {x ∈ VK′ : xµ(p−1)DW ′ ⊂ DW ′}. (6.2.2.3)

If y ∈ RZ(k′) corresponds to g ∈ XG,b,µσ ,σ(k′) under the bijection above, then applying g• to
both sides of (6.2.2.3) yields

L]y + Ly = L]g + Lg = {x ∈ VK′ : (g−1xg)µ(p−1) ·DW ′ ⊂ DW ′}
= {x ∈ VK′ : xM1

y ⊂My}
= L]]y .

Finally, a point y ∈ pZ\RZ(k′) lies in the subset pZ\RZΛ(k′) if and only if the quasi-
endomorphisms Λ∨ ⊂ End(DK′) stabilize both lattices M1,y ⊂ My. This is equivalent to the
condition Λ∨ ⊂ Ly ∩ L]y, and so

pZ\RZΛ(k′)
∼−→ {special lattices L ⊂ VK′ : Λ∨ ⊂ L ∩ Φ∗(L)}
= {special lattices L ⊂ VK′ : Λ∨ ⊂ L}
= {special lattices L ⊂ VK′ : Λ∨W ′ ⊂ L ⊂ ΛW ′}.

Here we have used first the fact that all elements of Λ∨ are fixed by Φ, and then the fact that
special lattices are self-dual. This completes the proof of Proposition 6.2.2. 2
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Corollary 6.2.3. We have
RZ(k) =

⋃
Λ

tΛ=tmax

RZΛ(k).

Proof. Suppose y ∈ RZ(k). Let Ly ⊂ VK be the corresponding special lattice of Proposition 6.2.2,
and let Λ(Ly) be the vertex lattice of Proposition 5.2.2. By Proposition 5.1.2 there is a vertex
lattice Λ ⊃ Λ(Ly) with tΛ = tmax, and clearly

Λ∨ ⊂ Λ(Ly)
∨ = {x ∈ Ly : Φ(x) = x} ⊂ Ly.

The self-duality of Ly implies Λ∨W ⊂ Ly ⊂ ΛW , and so y ∈ RZΛ(k). 2

Corollary 6.2.4. For any vertex lattices Λ1 and Λ2, we have

RZΛ1(k) ∩ RZΛ2(k) =

{
RZΛ1∩Λ2(k) if Λ1 ∩ Λ2 is a vertex lattice,
∅ otherwise.

Proof. The proof is the same as [RTW14, Proposition 4.3(ii)]. 2

6.3 Comparison of RZΛ and SΛ

Fix a vertex lattice Λ ⊂ V Φ
K . Comparing Proposition 6.2.2 with the bijection of § 5.3.1 yields

bijections
pZ\RZΛ(k)

∼−→ {special lattices L ⊂ VK : Λ∨W ⊂ L ⊂ ΛW } ∼−→ SΛ(k),

and similarly for any finitely generated field extension k′/k.

Theorem 6.3.1. Let RZred
Λ be the reduced k-scheme underlying RZΛ. There is a unique

isomorphism of k-schemes
pZ\RZred

Λ
∼−→ SΛ

inducing the above bijection on k-points.

Proof. First we construct a morphism RZred
Λ → SΛ. Suppose we are given anR-point y ∈ RZred

Λ (R)
for some reduced k-algebra R of finite type. Pulling back the universal object of § 4.3.3 yields a
triple (Xy, ρy, λy) over R in which Xy is a p-divisible group, λy is a principal polarization, and
ρy : X0/R 99K Xy is a quasi-isogeny. Moreover, x 7→ ρ ◦ x ◦ ρ−1 defines a Zp-module map

Λ∨→ ρ ◦ Λ∨ ◦ ρ−1 ⊂ End(Xy).

Let Dy = D(Xy)(R) be the contravariant crystal of Xy evaluated at the trivial divided power
thickening R → R, and let Fil1(Dy) ⊂ Dy be the Hodge filtration. The locally free R-modules
Fil1(Dy) ⊂ Dy depend functorially on Xy, and so Λ∨→ End(Xy) induces R-module maps

φ] : (Λ∨/pΛ∨)⊗Fp R→ EndR(Dy)

and
φ]] : (Λ∨/pΛ∨)⊗Fp R→ EndR(D1

y )

with ker(φ]) ⊂ ker(φ]]).
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The bilinear form on Λ∨ induces an R-valued bilinear form on (Λ∨/pΛ∨) ⊗Fp R, and any
x1, x2 ∈ (Λ∨/pΛ∨)⊗Fp R satisfy

x1 ◦ x2 + x2 ◦ x1 = [x1, x2] ∈ R

as endomorphisms of Dy. In particular, if x1 ∈ ker(φ]]) then [x1, x2] = 0, as the value of the
scalar [x1, x2] can be computed from its action on Fil1(Dy), which is obviously trivial. This
shows that ker(φ]]) is contained in the radical of the quadratic space (Λ∨/pΛ∨)⊗Fp R, which is
(pΛ/pΛ∨)⊗Fp R. Recalling the k-quadratic space Ω = (Λ/Λ∨)⊗Fp k from § 5.3.1, let

L ]
y ⊂ L ]]

y ⊂ Ω⊗k R

be the images of ker(φ]) ⊂ ker(φ]]) under the isomorphism

(pΛ/pΛ∨)⊗Fp R
p−1⊗id−−−−→ Ω⊗k R.

Suppose for the moment that R = k. Recalling from § 6.2.1 (with k′ = k) the W -modules
M1,y ⊂ My, there is an isomorphism Dy

∼−→ My/pMy identifying Fil1(Dy)
∼−→ M1,y/pMy. The

subspaces
L ]
y ⊂ L ]]

y ⊂ Ω
∼−→ (ΛW /Λ

∨
W )

correspond to lattices Λ∨W ⊂ L]y ⊂ L]]y ⊂ ΛW , and tracing through the definitions shows that
these are none other than the lattices

L]y = {x ∈ VK : xMy = My} and L]]y = {x ∈ VK : xM1,y ⊂My}

appearing in § 6.2.1. Comparison with Proposition 6.2.2 shows that L]]y = Ly + L]y, where Ly is
the special lattice

Ly = {x ∈ VK : xM1
y ⊂M1

y }

satisfying Φ(Ly) = L]y. Noting that Λ∨W ⊂ Ly ⊂ ΛW , we denote by Ly ⊂ Ω the k-subspace
corresponding to Ly.

The self-duality of the W -lattices Ly and L]y implies that the corresponding k-subspaces Ly

and L ]
y of Ω are maximal isotropic, and so have dimension tΛ/2. The specialness of Ly also implies

that L ]]
y = Ly +L ]

y has dimension (tΛ/2)+1. It follows that (L ]]
y )⊥ ⊂L ]]

y with codimension 2,
and that the quotient L ]]

y /(L
]]
y )⊥ is a hyperbolic plane over k. The subspaces Ly/(L

]]
y )⊥ and

L ]
y /(L

]]
y )⊥ are its unique isotropic lines.

Now return to a general reduced R of finite type. The submodule L ]
y ⊂ Ω ⊗k R is a totally

isotropic local direct summand of rank tΛ/2, and L ]]
y ⊂ Ω ⊗k R is a local direct summand of

rank (tΛ/2) + 1. Indeed, by [Lan02, Exercise X.16] it suffices to check these properties fiber by
fiber at the closed points of Spec(R), which is precisely what we did in the R = k case above.

By similar reasoning the quotient L ]]
y /(L

]]
y )⊥ is a hyperbolic plane over R, and so contains

exactly two isotropic local direct summands of rank 1. One of them is L ]
y /(L

]]
y )⊥, and the other

has the form Ly/(L
]]
y )⊥ for a uniquely determined Lagrangian Ly ⊂ Ω⊗kR. By again reducing

to the R = k case treated above, we see that Φ(Ly) = L ]
y , and so

Ly + Φ(Ly) = Ly + L ]
y = L ]]

y

is a local direct summand of rank (tΛ/2) + 1. In other words, Ly ∈ SΛ(R).
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The k-scheme RZred
Λ is itself reduced and locally of finite type, and so the rule y 7→Ly defines

(at last) the promised morphism RZred
Λ → SΛ. It is clear from the construction that the morphism

descends to
pZ\RZred

Λ → SΛ (6.3.1.1)

and induces the desired bijection on k-points. In fact, the generality of Proposition 6.2.2 shows
that this morphism induces a bijection

pZ\RZred
Λ (k′)

∼−→ SΛ(k′)

for any extension field k′/k. In particular (6.3.1.1) is birational and quasi-finite. It is a proper
morphism, as Proposition 6.1.2 implies that pZ\RZred

Λ is projective. The variety SΛ is smooth by
Proposition 5.3.2, and so Zariski’s main theorem implies that (6.3.1.1) is an isomorphism. 2

Recall from Proposition 5.3.2 that SΛ has two connected components. The two components
are isomorphic, and are labeled (arbitrarily) as S+

Λ and S−Λ .

Corollary 6.3.2. The reduced scheme RZ
(`),red
Λ underlying RZ

(`)
Λ is connected and non-empty,

and is isomorphic to S±Λ .

Proof. The action of pZ on RZΛ identifies RZ
(`)
Λ

∼−→ RZ
(`+2)
Λ , and so it suffices to assume ` ∈ {0, 1}.

Moreover, we know from Proposition 6.2.2 that

RZ
(0),red
Λ t RZ

(1),red
Λ

∼−→ pZ\RZred
Λ

∼−→ S+
Λ t S−Λ .

This leaves two possibilities: either each of RZ
(0),red
Λ and RZ

(1),red
Λ is connected and isomorphic

to S±Λ , or one of them is empty and the other has two connected components. To complete the
proof of the corollary, it therefore suffices to show that RZ

(0),red
Λ and RZ

(1),red
Λ are non-empty.

First suppose that Λ has type tΛ = 2. In this case one can easily check that SΛ consists of
two points, and so the same is true of pZ\RZred

Λ . There is a W -basis e1, . . . , en of Λ such that the
matrix of the bilinear form is 

u1p−1

u2p−1

u3

. . .
un


for some u1, . . . , un ∈ Z×p .

Let ri ∈ O(V Φ
K )(Qp) be the reflection with ei 7→ −ei and ej 7→ ej for all j 6= i. The spinor

norm of r1r3, in the sense of [Kit93], is

u1

2p
· u3

2
= Q(e1)Q(e3) ∈ Q×p /(Q×p )2.

The spinor norm of [Kit93] is compatible with the spinor similitude of § 4.1.3, in the sense that
any lift of r1r3 ∈ SO(V Φ

K )(Qp) to

g ∈ GSpin(V Φ
K )(Qp)

∼−→ Jb(Qp)

satisfies ηb(g) = Q(e1)Q(e3) up to scaling by (Q×p )2. Thus

ordp(ηb(g)) ≡ 1 (mod 2).
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By this calculation and the discussion of § 4.3.4, g acts on

pZ\RZred
Λ

∼−→ RZ
(0),red
Λ t RZ

(1),red
Λ

and interchanges the two subsets on the right. Thus each is non-empty, and in fact each is a
single reduced point.

For general Λ, Proposition 5.1.4 allows us to pick a type 2 vertex lattice Λ2 ⊂ Λ. Combining
Corollary 6.2.4 with the paragraph above shows that ∅ 6= RZ

(`),red
Λ2

⊂ RZ
(`),red
Λ . 2

6.4 The main result
We can now prove our main result on the structure of the reduced scheme

RZred =
⊔
`∈Z

RZ(`),red.

For each vertex lattice Λ, recall that RZ
(`),red
Λ is the reduced k-scheme underlying the formal

W -scheme RZ
(`)
Λ = RZΛ ∩ RZ(`).

Theorem 6.4.1. For each `, the k-scheme RZ(`),red is connected. Each closed subscheme RZ
(`),red
Λ

is projective and smooth of dimension (tΛ/2) − 1, and is isomorphic to S±Λ . The irreducible
components of RZ(`),red are precisely the closed subschemes RZ

(`),red
Λ as Λ runs over the vertex

lattices of maximal type tΛ = tmax, and, in particular, RZred is equidimensional with

dim(RZred) =
1

2


n− 4 if n is even and det(VQp) = (−1)n/2,

n− 3 if n is odd,
n− 2 if n is even and det(VQp) 6= (−1)n/2.

Proof. For any vertex lattice Λ ⊂ V Φ
K , Corollary 6.3.2 and Proposition 5.3.2 tell us that

RZ
(`),red
Λ

∼−→ S±Λ

is irreducible, projective, and smooth of dimension (tΛ/2)− 1.
Corollary 6.2.3 implies that

RZ(`),red =
⋃
Λ

tΛ=tmax

RZ
(`),red
Λ , (6.4.1.1)

and so the irreducible components of RZ(`),red are precisely the RZ
(`),red
Λ with Λ of maximal type

tmax. This proves all parts of the claim, except for the connectedness of RZ(`),red.
Suppose that Λ1 ∼ Λ2 are adjacent vertex lattices. If Λ1 ⊂ Λ2 then Corollary 6.2.4 implies that

RZ
(`),red
Λ1

and RZ
(`),red
Λ2

lie on the same connected component of RZ(`). Of course similar remarks
hold if Λ2 ⊂ Λ1. Proposition 5.1.5 shows that any two vertex lattices are connected by a chain of
adjacent vertex lattices, and so all of the closed subschemes RZ

(`),red
Λ lie on the same connected

component of RZ(`),red. The equality (6.4.1.1) now shows that RZ(`),red is connected. 2

Remark 6.4.2. When n is odd, the center of C+(V ) is Zp. When n is even, the center of C+(V )
is the maximal Zp-order in F = Qp[x]/(x2 −∆), where ∆ = (−1)n/2 det(VQp). Thus for n even,

dim(RZred) =

{
(n/2)− 2 if F ∼−→ Qp ×Qp,

(n/2)− 1 if F ∼−→ Qp2 .
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Remark 6.4.3. The dimension formula of Theorem 6.4.1 verifies a case of a conjecture of Chai
and of Rapoport [GHKR06, Rap05]. According to this conjecture, we should have

dim(RZred) = 〈ρ, µ− νb〉 − 1
2defG(b).

Here, µ is assumed to be a dominant representative of the conjugacy class {µ}, ρ is the half sum
of all absolute positive roots of G, and, by definition,

defG(b) = rankQp(G)− rankQp(Jb).

In our case, 〈ρ, µ − νb〉 = 〈ρ, µ〉 = (n − 2)/2, while we have defG(b) = 2, 1, or 0, in the three
cases listed in the theorem (in that order). Indeed, defG(b) is the difference between the Witt
indices of VQp and V Φ

K , and this can be determined as in the proof of Proposition 5.1.2. The
above dimension formula has recently been shown, for all the (unramified) Rapoport–Zink spaces
of Hodge type defined in this paper, by Hamacher [Ham16] and by Zhang [Zha15].

6.5 The Bruhat–Tits stratification
Using the collection of closed subschemes RZred

Λ of RZred, we explain how to define a stratification
of RZred in which each stratum is the Deligne–Lusztig variety determined by a Coxeter element
in a special orthogonal group over Fp.

6.5.1 Recall from Corollary 6.2.4 that Λ′ ⊂ Λ implies RZred
Λ′ ⊂ RZred

Λ . For each vertex lattice
Λ define the Bruhat–Tits stratum

BTΛ = RZred
Λ r

⋃
Λ′(Λ

RZred
Λ′ .

It is an open and dense subscheme of RZred
Λ , and

RZred
Λ =

⋃
Λ′⊂Λ

BTΛ

defines a stratification of RZred
Λ as a disjoint union of locally closed subschemes.

6.5.2 Similarly,
RZred =

⋃
all Λ

BTΛ

defines a stratification of RZred as a disjoint union of locally closed subschemes. This is the GSpin
analogue of the Bruhat–Tits stratification for unitary Rapoport–Zink spaces found in [VW11,
RTW14]. However, this terminology should be taken with a grain of salt: unlike in [VW11], the
strata here are not in bijection with the vertices in the Bruhat–Tits building of the group Jder

b .
See [HP14, § 2.7] for more details in the special case n = 6.

6.5.3 For a special lattice L ⊂ VK , recall from Proposition 5.2.2 the vertex lattice Λ(L)
characterized by

Λ(L)∨ = {x ∈ L : Φ(x) = x}.
If we rewrite the bijections of Theorem 6.3.1 and § 5.3.1 as

pZ\RZred
Λ (k)

∼−→ SΛ(k)
∼−→ {special lattices L ⊂ VK : Λ∨ ⊂ L}
= {special lattices L ⊂ VK : Λ(L) ⊂ Λ},
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the inclusion BTΛ ⊂ RZred
Λ identifies

pZ\BTΛ(k)
∼−→ {special lattices L ⊂ VK : Λ(L) = Λ}
= {special lattices L ⊂ VK : L+ Φ(L) + · · ·+ Φd(L) = ΛW }.

6.5.4 Fix a vertex lattice Λ of type tΛ = 2d, and recall from § 5.3.1 the 2d-dimensional
Fp-quadratic space Ω0 = Λ/Λ∨. Set

Ω = Ω0 ⊗Fp k
∼−→ ΛW /Λ

∨
W ,

and let Φ = id⊗ σ be the Frobenius on Ω.
We recall the set-up of [HP14, § 3.2]. Fix a basis {e1, . . . , ed, f1, . . . , fd} of Ω in such a way that

Spank{e1, . . . , ed} and Spank{f1, . . . , fd} are totally isotropic, [ei, fj ] = δi,j , and the Frobenius
Φ fixes e1, . . . , ed−1, f1, . . . , fd−1 but interchanges ed ↔ fd. This choice of basis determines a
maximal Φ-stable torus T ⊂ SO(Ω).

The isotropic flags F+
• and F−• in Ω, defined by

F±i = Spank{e1, . . . , ei}, for 1 6 i 6 d− 1,

F+
d = Spank{e1, . . . , ed−1, ed},

F−d = Spank{e1, . . . , ed−1, fd},

satisfy F±• = Φ(F∓• ), and have the same stabilizer B ⊂ SO(Ω). It is a Φ-stable Borel subgroup
containing T . The corresponding set of simple reflections in the Weyl group W = N(T )/T is
{s1, . . . , sd−2, t

+, t−}, where
– si interchanges ei ↔ ei+1 and fi ↔ fi+1, and fixes the other basis elements;
– t+ interchanges ed−1 ↔ ed and fd−1 ↔ fd, and fixes the other basis elements;
– t− interchanges ed−1 ↔ fd and fd−1 ↔ ed, and fixes the other basis elements.

Notice that Φ(si) = si, and Φ(t±) = t∓, and so the products

w± = t∓sd−2 · · · s2s1 ∈W

are Coxeter elements: products of exactly one representative from each Φ-orbit in the set of
simple reflections above.

6.5.5 The Deligne–Lusztig variety

XB(w±) = {g ∈ SO(Ω)/B : inv(g,Φ(g)) = w±}

is a smooth quasi-projective k-variety of dimension d−1. Here inv is the relative position invariant

SO(Ω)/B × SO(Ω)/B
(g1,g2)7→g−1

1 g2−−−−−−−−−→ B\SO(Ω)/B
∼−→W.

Theorem 6.5.6. There are isomorphisms XB(w+)
∼−→ XB(w−), and

pZ\BTΛ
∼−→ XB(w+) tXB(w−).

Proof. Recall that the k-variety

SΛ(k) = {Lagrangians L ⊂ Ω : dimk(L + Φ(L )) = d+ 1}

has two connected components X+
Λ and X−Λ , interchanged by the action of any g ∈ O(Ω0)(Fp)

with det(g) = −1.
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After possibly relabeling F+
• and F−• , [HP14, Proposition 3.8] gives an open immersion

XB(w±)→ S±Λ defined by g 7→ gF±d . Thus

XB(w+) tXB(w−) ⊂ SΛ

as an open subset with k-points

XB(w±)(k) = {L ∈ S±Λ (k) : L ∩ Φ(L ) ∩ Φ2(L ) ∩ · · · ∩ Φd(L ) = 0}
= {L ∈ S±Λ (k) : L + Φ(L ) + Φ2(L ) + · · ·+ Φd(L ) = Ω}.

The action of any g as above interchanges XB(w+) with XB(w−).
By § 6.5.3, we have bijections

pZ\BTΛ(k)
∼−→ {L ∈ SΛ(k) : L + Φ(L ) + Φ2(L ) + · · ·+ Φd(L ) = Ω}
∼−→ XB(w+)(k) tXB(w−)(k).

This is nothing more than the restriction of the isomorphism pZ\RZred
Λ

∼−→ SΛ of Theorem 6.3.1,
and hence arises from an isomorphism of varieties

pZ\BTΛ
∼−→ XB(w+) tXB(w−). 2

Remark 6.5.7. The quotient pZ\RZred
Λ is itself isomorphic to a disjoint union of two Deligne–

Lusztig varieties. Indeed, if P± ⊂ SO(Ω) denotes the maximal parabolic subgroup stabilizing
F±d , then [HP14, Proposition 3.6] shows that

pZ\RZΛ
∼−→ SΛ

∼−→ XP+(1) tXP−(1).

7. Shimura varieties for spinor similitude groups

Finally, we apply our results to study the supersingular loci of Shimura varieties of type GSpin.
Throughout § 7 we fix a quadratic space (V,Q) of signature (n−2, 2) over Z(p). We always assume
that n > 3, and that the corresponding bilinear form [x, y] induces an isomorphism from V to its
Z(p)-linear dual.

7.1 The GSpin Shimura variety
First, we attach to the quadratic space V a Shimura variety of Hodge type.

7.1.1 As in the local set-up of § 4.1.2, the Clifford algebra C(V ) is endowed with a
Z/2Z-grading C(V ) = C+(V )⊕ C−(V ) and a canonical involution c 7→ c∗. The group of spinor
similitudes G = GSpin(V ) is the reductive group over Z(p) defined by

G(R) = {g ∈ C+(VR)× : gVRg
−1 = VR, g

∗g ∈ R×}

for any Z(p)-algebra R. As before, the spinor similitude ηG : G→ Gm is defined by ηG(g) = g∗g,
and there is a representation G→ SO(V ) defined by g •v = gvg−1. By a slight abuse of notation,
we denote again by G the generic fiber of the Z(p)-group scheme G just defined.
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7.1.2 As in (1.2.1.2), define a hermitian symmetric domain

H = {z ∈ VC : [z, z] = 0, [z, z̄] < 0}/C×

of dimension n− 2. The group G(R) acts on H through the representation G→ SO(V ), and the
action of any g ∈ G(R) with ηG(g) < 0 interchanges the two connected components of H.

Writing z ∈ H as z = u+ iv with u, v ∈ VR, the subspace SpanR{u, v} is a negative definite
plane in VR, oriented by the ordered orthogonal basis u, v. There are natural R-algebra maps

C ∼−→ C+(SpanR{u, v})→ C+(VR).

The first is determined by
i 7→ uv√

Q(u)Q(v)
,

and the second is induced by the inclusion SpanR{u, v} ⊂ VR. The above composition restricts to
an injection hz : C×→ G(R), which arises from a morphism hz : S→ GR of real algebraic groups.
Here S = ResC/RGm is Deligne’s torus. The construction z 7→ hz realizes H ⊂ Hom(S, GR) as a
G(R)-conjugacy class.

Using the conventions of [Del79], the Hodge structure on V determined by hz is

V
(1,−1)
C = Cz, V

(0,0)
C = (Cz + Cz̄)⊥, V

(−1,1)
C = Cz̄. (7.1.2.1)

7.1.3 The Z(p)-quadratic space V admits an orthogonal basis, and so one can choose
orthogonal vectors e, f ∈ V of negative length with Q(e), Q(f) ∈ Z×(p). If we set δ = ef ∈ C(V )×

then, exactly as in § 4.1.4, δ determines a perfect G-equivariant symplectic form

ψδ : C(V )⊗Z(p)
C(V )→ Z(p)(ηG),

where G acts on C(V ) via left multiplication. For any z ∈ H the bilinear form ψδ(hz(i)c1, c2) on
C(VR) is either positive definite or negative definite, depending on the connected component of
H containing z.

The Hodge structure on C(VQ) determined by hz ∈ Hom(S, GR) is

C(VC)(0,−1) = zC(VC), C(VC)(−1,0) = z̄C(VC).

From this it follows that the faithful representation

G→ GSp(C(V ), ψδ)

defines a morphism of Shimura data from (G,H) to the Siegel Shimura datum determined by the
symplectic space (C(V ), ψδ).

7.1.4 Define a hyperspecial subgroup Up = G(Zp) of G(Qp), and choose any sufficiently
small compact open subgroup Up ⊂ G(Apf ). Setting U = UpU

p, there is an associated Shimura
variety ShU (G,H) over Q with complex points

ShU (G,H)(C) = G(Q)\H ×G(Af )/U.

Let 2g = dimC(VQ) = 2n so that, as in § 3.1, the morphism of Shimura data (G,H)→
(GSp2g,H2g) constructed in § 7.1.3 determines a morphism from ShU (G,H) to a moduli space of
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polarized abelian varieties up to prime-to-p-isogeny. Pulling back the universal object over this
moduli space yields an abelian scheme up to prime-to-p-isogeny

A→ ShU (G,H),

often called the Kuga–Satake abelian scheme; see [Mad16] for more information.
The fiber of the Kuga–Satake abelian scheme at a point (z, g) ∈ H × G(Af ) can be made

very explicit: it is the abelian variety up to prime-to-p-isogeny A(z,g) whose Betti homology is
the Z(p)-module

H1(A(z,g)(C),Z(p)) = g · C(V ) ⊂ C(VQ)

with the Hodge structure hz defined above. Note that A(z,g) carries a prime-to-p polarization
λ inherited from the symplectic form ψδ, and an action of C(V )op induced by the right
multiplication action of C(V ) on itself.

7.2 Uniformization of the supersingular locus
As in § 3.1, let S = SU (G,H) be Kisin’s [Kis10] smooth integral model of ShU (G,H) over Z(p),
and let

SUp = lim
←−UpSUpUp(G,H).

By the very construction of the integral model, the Kuga–Satake abelian scheme extends to an
abelian scheme up to prime-to-p-isogeny A→ S .

7.2.1 We denote by
Sss ⊂ S ⊗Z(p)

k

the supersingular locus: the largest reduced closed subscheme over which the Kuga–Satake abelian
scheme is supersingular. The fiber of A at any point of S ⊗Z(p)

k is supersingular if and only if its
p-divisible group is isoclinic. Thus Lemma 4.2.4 implies that the supersingular locus is precisely
the basic locus. Moreover, along the supersingular locus the slope of the universal p-divisible
group must by 1/2, and so the classification of basic elements in Proposition 4.2.5 tells us that
Sss must be the Newton stratum Sb for the basic b appearing in Proposition 4.2.6.

Denote by (ŜW )/Sss
the formal completion of SW along Sss.

Lemma 7.2.2. The supersingular locus Sss is non-empty.

Proof. This can be understood as a special case of recent results on the non-emptiness of the
basic locus in Hodge type Shimura varieties; see Remark 1.1.3. Here we give a direct argument.

Let V0Q ⊂ VQ be a rational 2-plane on which Q is negative definite. The Z/2Z-grading on
the Clifford algebra of V0Q has the simple form C(V0Q) = F ⊕ V0Q, where the even part is the
quadratic imaginary field

F = Q
(√
−det(V0Q)

)
.

We leave it as an exercise to the reader to check that one may choose V0Q so that p is inert in F
(reduce to the case n = 3, and use the classification of quadratic forms from [Ser73]).

The action of F by left multiplication makes V0Q into an F -vector space of dimension 1. The
C-quadratic space V0C is a hyperbolic plane, and its two isotropic lines are distinguished by the
two embeddings F → C: on one line F acts through one embedding, and on the other F acts
through the conjugate embedding. These two lines determine two points of H, and we pick one
of them, z0 ∈ H. For any g ∈ G(Af ), an exercise in linear algebra shows that A(z0,g) is isogenous
to a product of elliptic curves with complex multiplication by F .
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Let xC ∈S (C) be the point defined by (z0, g). This is a special point in the sense of Deligne,
and so the underlying point x ∈ S has residue field a finite extension of Q. By completing the
residue field at a prime above p and passing to its maximal unramified extension, we obtain a
finite extension Φ/Qunr

p and a point xΦ ∈S (Φ) above x. As the Kuga–Satake abelian scheme AxΦ

has complex multiplication, the Néron–Ogg–Shafarevich criterion guarantees that we may replace
Φ by a finite extension so that the `-adic Tate module of AxΦ is unramified for all ` 6= p. The
extension property of Kisin’s integral models now gives an extension of xΦ to a point of S (OΦ),
whose reduction to S (k) is necessarily supersingular (as p is inert in the CM field F ). 2

Proposition 7.2.3. There exists a point x ∈ SUp(k) such that the local Hodge–Shimura datum
(GZp , bx, µx, C(VZp)) obtained from x (by the procedure of § 3.1.4) agrees with the local Hodge–
Shimura datum of Proposition 4.2.6.

Proof. Let b and µ be as in Proposition 4.2.6. Using Lemma 7.2.2, we can find a point

x0 ∈ Sss(k) = Sb(k),

which determines a local Shimura–Hodge datum (GZp , bx0 , µx0 , C(VZp)) as in § 3.1.4.
The cocharacters µx0 and µ are G(W )-conjugate. Indeed, using (7.1.2.1), one can see that

the conjugacy class of both µx0 and µ is characterized as the set of all characters GmW → GW
such that the composition

GmW → GW
νG−→ GmW

is z 7→ z−1, and such that the induced grading on VW has the form VW = F1 ⊕ F0 ⊕ F−1, in
which F1 and F−1 are isotropic lines orthogonal to F0.

The results of § 4.2 now show that there is a unique σ-conjugacy class of basic elements in
G(K) makingDK = Hom(C(VK),K) into an isocrystal of slope 1/2, and hence the basic elements
bx0 and b are σ-conjugate. Thus the claim follows from Remark 3.2.15. 2

Let V ′Q be the unique positive definite quadratic space over Q with the same dimension and
determinant as VQ, but with Hasse invariant

ε(V ′Q`) =

{
ε(VQ`) if ` 6= p,

−ε(VQ`) if ` = p,

for all finite primes `. Let I ′ = GSpin(V ′Q) be the corresponding spinor similitude group over Q,
and let ηI′ : I ′→ Gm be the spinor similitude.

The uniformization theorem (Theorem 3.3.2) now gives the following result.

Theorem 7.2.4. There is an isomorphism of formal W -schemes

I ′(Q)\RZ×G(Ap)/Up ∼−→ (ŜW )/Sss

for suitable isomorphisms I ′(Qp)
∼−→ Jb(Qp), and I ′(Q`)

∼−→ G(Q`) for ` 6= p.

Proof. Since Sss = Sb, this will follow from Theorem 3.3.2 after we show that the group I in the
statement of Theorem 3.3.2 can be identified with the group I ′ = GSpin(V ′Q) above.

The group I ′ = GSpin(V ′Q) is an inner form of G: since VQ and V ′Q have the same dimension
and determinant, we can find an isomorphism of quadratic spaces

ψ : V ′Q ⊗Q Q̄ ∼−→ VQ ⊗Q Q̄
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which produces a Galois cocycle σ 7→ ψσ(ψ)−1 with values in SO(VQ)(Q̄). Composing this with
SO(VQ)→ Gad gives a class c′ ∈ H1(Q, Gad) which defines I ′ = GSpin(V ′Q). Notice that V ′Q` is
isomorphic to VQ` , for all ` 6= p, and V ′Qp is isomorphic to V Φ

K .
The group I is also an inner form of G. In fact, by the remarks that follow part (iv) of the

definition of a Kottwitz triple in [Kis13, (4.3)], I is uniquely determined as an inner form (or
more correctly an inner twist) of G by the local inner twisting isomorphisms at finite places, and
the fact that IR is anisotropic modulo center. (This uses the Hasse principle for adjoint groups
(see [PR94, § 6.5, Theorem 6.22]) and the fact that there is a unique element of H1(R, Gad)
which corresponds to the compact modulo center form of GR (see [Kot92, p. 423]).) Therefore,
I is given by a well-defined cohomology class c ∈ H1(Q, Gad) with prescribed localizations cv in
H1(Qv, G

ad), for all places v of Q.
By the definition of the classes cv, as provided by the inner twists coming from the Kottwitz

triple given by x0, c` is trivial for ` 6= p, while cp corresponds to the inner twist GSpin(V Φ
K ); as

V Φ
K
∼−→ V ′Qp , we have cp = c′p. Hence, cv = c′v for all finite places v of Q. Also, since V ′R is positive

definite, we have c∞ = c′∞ as above. The result then follows as above, by the Hasse principle for
adjoint groups. 2

From here on we identify
I = I ′ = GSpin(V ′Q).

Remark 7.2.5. As in the proof of Theorem 3.3.2, the group I = GSpin(V ′Q) acts as quasi-
endomorphisms of the fiber Ax0 of the Kuga–Satake abelian scheme at the base point x0 ∈SUp(k).
The action I ⊂ End(Ax0)×Q can be explained as follows. The fiber Ax0 , like every fiber of the
Kuga–Satake abelian scheme, comes endowed with a collection of special quasi-endomorphisms
V (Ax0) ⊂ End(Ax0)Q as in [Mad16, § 5]. This is a quadratic space over Q, with quadratic form
determined by v ◦ v = Q(v) · id. For any fiber the space of special endomorphisms has dimension
less than or equal to dim(VQ), and equality holds precisely at supersingular points. In fact, using
[Mad15, Theorem 6.4], the supersingularity of Ax0 implies that V (Ax0)

∼−→ V ′Q. After fixing such
an isomorphism, we obtain an injection V ′Q → End(Ax0)Q, which, by the universal property of
Clifford algebras, extends to the ring homomorphism C(V ′Q)→ End(Ax0)Q. This homomorphism
then restricts to a homomorphism of groups

GSpin(V ′Q)→ End(Ax0)×Q.

7.2.6 Recalling the decomposition RZ =
⊔
`∈ZRZ(`) of RZ into its connected components,

we may rewrite the uniformization of Theorem 7.2.4 as an isomorphism

(ŜW )/Sss

∼−→ I(Q)0\RZ(0) ×G(Ap)/Up,

where
I(Q)0 = ker(I(Q)

ηI−→ Q×
ordp−−→ Z)

is the common stabilizer in I(Q) of the connected components of RZ. This may be further
rewritten as

(ŜW )/Sss

∼−→
⊔

g∈I(Q)0\G(Apf )/Up

Γg\RZ(0), (7.2.6.1)

where Γg = I(Q)0 ∩ gUpg−1.
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7.3 Structure of the supersingular locus
As in the proof of Theorem 7.2.4, we may identify

V ′Qp
∼−→ V Φ

K

as Qp-quadratic spaces. In particular, we obtain from Definition 5.1.1 the notion of a vertex lattice
Λ ⊂ V ′Qp , whose type tΛ = dimFp(Λ/Λ

∨) is a positive even integer less than or equal to the integer
tmax of (1.2.3.1).

7.3.1 Fix a vertex lattice Λ ⊂ V ′Qp . Exactly as in § 5.3.1, endow Ω0 = Λ/Λ∨ with the rescaled
Fp-valued quadratic form pQ. Set Ω = Ω0⊗Fp k, and let SΛ be the reduced k-scheme with k-points

SΛ(k) =

{
Lagrangians L ⊂ Ω : dimk(L + Φ(L )) =

tΛ
2

+ 1

}
,

where Φ = id⊗σ is the absolute Frobenius on Ω. Recall from Proposition 5.3.2 that SΛ = S+
Λ tS−Λ

has two connected components. The components are isomorphic, and each is projective and
smooth of dimension (tΛ/2)− 1. Up to isomorphism, SΛ depends only on the type tΛ.

7.3.2 Taking the reduced scheme underlying both sides of (7.2.6.1) yields an isomorphism

Sss
∼−→

⊔
g∈I(Q)0\G(Apf )/Up

Γg\RZ(0),red.

From this, the description of RZ(0),red of Theorem 6.4.1, and an argument as in the proof of
[Vol10, Theorem 6.1] we deduce the following result.

Theorem 7.3.3. For all Up ⊂ G(Apf ) sufficiently small, the following hold.

(i) Each of the k-schemes Γg\RZ(0),red is connected.
(ii) The irreducible components of Γg\RZ(0),red are in bijection with the set of orbits

Γg\{vertex lattices of type tmax},

and the irreducible component indexed by a vertex lattice Λ is isomorphic to S±Λ . In
particular, all irreducible components are isomorphic to one another, and are projective
and smooth of dimension

dim(Sss) =
tmax

2
− 1. 2
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Appendix A. Maximal lattices

For the reader’s convenience we recall two results on maximal lattices in quadratic spaces, used
in several places in the body of the paper.
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A.1 Eichler’s theorem and the elementary divisor theorem
Let F be a field, complete with respect to a discrete valuation. Denote by O the valuation ring
of F . Suppose V is a finite-dimensional F -vector space endowed with a non-degenerate quadratic
form q : V → F , and let

[x, y] = q(x+ y)− q(x)− q(y)

be the bilinear form determined by q.

Definition A.1.1. By a lattice in V we mean a free O-submodule M ⊂ V with rankO(M) =
dimF (V ). A lattice M is maximal (with respect to q) if q(M) ⊂ O, and if M is not properly
contained in any other lattice with this property. The dual M∨ of the lattice M is

M∨ = {x ∈ V : [x,m] ∈ O,∀m ∈M}.
The lattice M is called self-dual if M = M∨.

For a proof of the following, see [Ger08, Theorem 8.8].

Theorem A.1.2 (Eichler). All maximal lattices in V are isomorphic as O-quadratic spaces. If V
is anisotropic, then it has a unique maximal lattice

M = {x ∈ V : q(x) ∈ O}.
Theorem A.1.3 (Elementary divisor theorem). Suppose A and B are maximal lattices in V .
There is a decomposition

V = Fe1 ⊕ Ff1 ⊕ · · · ⊕ Fer ⊕ Ffr ⊕ V0,

in which V0 is anisotropic and orthogonal to all ei and all fi,

[ei, ej ] = 0, [fi, fj ] = 0, [ei, fj ] = δi,j ,

and
A = Oe1 ⊕Of1 ⊕ · · · ⊕ Oer ⊕Ofr ⊕M0,

B = (β1)e1 ⊕ (β−1
1 )f1 ⊕ · · · ⊕ (βr)er ⊕ (β−1

r )fr ⊕M0,

for some β1, . . . , βr ∈ F×. Here (x) = Ox, and M0 ⊂ V0 is the unique maximal lattice in V0.

Proof. By applying [Ger08, Lemma 6.36] inductively, there is an orthogonal decomposition

V = H1 ⊕ · · · ⊕Hr ⊕ V0

in which each Hi is a hyperbolic plane, V0 is anisotropic, and
A = (A ∩H1)⊕ · · · ⊕ (A ∩Hr)⊕ (A ∩ V0),

B = (B ∩H1)⊕ · · · ⊕ (B ∩Hr)⊕ (B ∩ V0).

The maximality of A implies that each A ∩Hi is a maximal lattice of Hi, and that A ∩ V0 is a
maximal lattice of V0. Of course similar remarks apply to B, and, in particular,

A ∩ V0 = {x ∈ V0 : q(x) ∈ O} = B ∩ V0

by Theorem A.1.2.
Choose a basis ei, fi ∈ Hi such that q(ei) = q(fi) = 0 and [ei, fi] = 1. Using the fact that Fei

and Ffi are the unique isotropic lines in Hi, it follows from [Ger08, Lemma 6.35] that
A ∩Hi = (αi)ei ⊕ (α−1

i )fi,

B ∩Hi = (βi)ei ⊕ (β−1
i )fi,

for some αi, βi ∈ F×. The desired decomposition of V is now obtained by rescaling ei and fi so
that αi = 1. 2
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