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Abstract

Let X be a compact Kähler manifold and let (L,ϕ) be a pseudo-effective line bundle

on X. We first define a notion of numerical dimension for pseudo-effective line bundles

with singular metrics, and then discuss the properties of this numerical dimension.

Finally, we prove a very general Kawamata–Viehweg–Nadel-type vanishing theorem on

an arbitrary compact Kähler manifold.

1. Introduction

Let X be a compact Kähler manifold and let (L,ϕ) be a pseudo-effective line bundle1 on X. Tsuji

[Tsu07] defined a notion of numerical dimension for such a pair, using an algebraic approach.

Definition 1.1. Let X be a projective variety and let (L,ϕ) be a pseudo-effective line bundle.

The numerical dimension of (L,ϕ) is defined to be

νnum(L,ϕ) = max{dimV | V is a subvariety of X such that

ϕ is well-defined on V and (V,L, ϕ) is big}.

Here, (V,L, ϕ) being ‘big’ means that there exists a desingularization π : Ṽ → V such that

lim
m→∞

h0(Ṽ ,mπ∗(L)⊗ I(mϕ ◦ π))

mn
> 0,

where n is the dimension of V .2

Since Tsuji’s definition depends on the existence of subvarieties, it would be convenient to

find a more analytic definition in the case where the base manifold is not projective. Following

a suggestion of J.-P. Demailly, we first define a notion of numerical dimension, nd(L,ϕ) (see

Definition 3.1), for a pseudo-effective line bundle (L,ϕ) on a manifold X which is just assumed

to be compact Kähler. The definition involves a certain cohomological intersection product of

positive currents, introduced in § 2. We discuss the properties of nd(L,ϕ) in §§ 3 and 4. The main

properties are as follows.
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Proposition 1.2 (Proposition 3.7). Let (L,ϕ) be a pseudo-effective line bundle on a projective
variety X of dimension n. If nd(L,ϕ) = n, then

lim
m→∞

h0(X,mL⊗ I(mϕ))

mn
> 0.

Proposition 1.3 (Proposition 4.2). Let (L,ϕ) be a pseudo-effective line bundle on a projective
variety X. Then

νnum(L,ϕ) = nd(L,ϕ).

Our main goal in this article is to prove a general Kawamata–Viehweg–Nadel vanishing
theorem on an arbitrary compact Kähler manifold. Our result is as follows.

Theorem 1.4 (Theorem 5.12). Let (L,ϕ) be a pseudo-effective line bundle on a compact Kähler
manifold X of dimension n. Then

Hp(X,O(KX + L)⊗ I+(ϕ)) = 0 for every p > n− nd(L,ϕ) + 1,

where I+(ϕ) is the upper semicontinuous variant of the multiplier ideal sheaf associated to ϕ
(cf. (2.1) or [FJ05]).

The organization of the article is as follows. In § 2, we recall some elementary results about
the analytic multiplier ideal sheaves and define our cohomological product of positive currents by
quasi-equisingular approximation. In § 3, using the product defined in § 2, we give our definition
of the numerical dimension nd(L,ϕ) for a pseudo-effective line bundle L equipped with a singular
metric ϕ. The main goal of this section is to obtain an asymptotic estimate of sections when
nd(L,ϕ) = dimX. In § 4, we prove that our numerical dimension coincides with Definition 1.1
when X is projective; we also give a numerical criterion for the numerical dimension and discuss a
relationship between the numerical dimension without multiplier ideal sheaves and the numerical
dimension defined here. In § 5, we first give a quick proof of our Kawamata–Viehweg–Nadel
vanishing theorem on projective varieties; finally, we generalize the vanishing theorem to arbitrary
compact Kähler manifolds by the methods developed in [DP03], [Eno93] and [Mou95].

2. Cohomological product of positive currents

We first recall some basic definitions and results about quasi-psh functions (see [Dem12] for
details). Let X be a complex manifold. We say that ϕ is a psh function (respectively, a quasi-psh
function) on X if ϕ : X → [−∞,+∞[ is upper semicontinuous and

i∂∂ϕ > 0 (respectively, i∂∂ϕ > −c · ωX),

where c is a positive constant and ωX is a smooth hermitian metric on X. We say that a quasi-psh
function ϕ has analytic singularities if ϕ is locally of the form

ϕ(z) = c · ln
(∑

|gi|2
)

+O(1),

where c > 0 and the gi are holomorphic functions. Let ϕ and ψ be two quasi-psh functions. We
say that ϕ is less singular than ψ if

ψ 6 ϕ+ C

for some constant C. We write this as ϕ 4 ψ.
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A Kawamata–Viehweg–Nadel-type vanishing theorem

We now recall the analytic definition of multiplier ideal sheaves. Let ϕ be a quasi-psh function.
We define the multiplier ideal sheaves associated to the quasi-psh function ϕ as

I(ϕ)x =

{
f ∈ OX :

∫
Ux

|f |2e−2ϕ < +∞
}

where Ux is some open neighborhood of x in X. It is well known that I(ϕ) is a coherent sheaf
(cf. [Dem12] for a more detailed introduction to the concept of multiplier ideal sheaf). When
ϕ does not possess analytic singularities, one needs to introduce the ‘upper semicontinuous
regularization’ of I(ϕ), namely the ideal sheaf

I+(ϕ) = lim
ε→0+

I((1 + ε)ϕ). (2.1)

By the Noetherian property of coherent ideal sheaves, there exists an ε > 0 such that

I+(ϕ) = I((1 + ε′)ϕ) for every 0 < ε′ < ε.

When ϕ has analytic singularities, it is easy to see that

I+(ϕ) = I(ϕ). (2.2)

Conjecturally, the equality (2.2) holds for all quasi-psh functions. Recently, Berndtsson [Ber13]
proved that (2.2) holds for quasi-psh functions ϕ such that I(ϕ) = OX . However, it is unknown
whether his method can be generalized to arbitrary quasi-psh functions.3

Important convention. When we talk about a line bundle L on X, we always implicitly fix
a smooth metric h0 on L. Given a quasi-psh function ϕ on X, we can therefore construct a new
metric (which may be singular) on L by setting h0 · e−ϕ. In a similar fashion, when we prescribe
a ‘singular metric’ ϕ on L, we actually mean that the metric on L is given by h0 · e−ϕ. Recall
that the curvature form for the metric ϕ is

i

2π
Θϕ(L) =

i

2π
Θh0(L) + ddcϕ

by the Poincaré–Lelong formula.

Definition 2.1. Let L be a pseudo-effective line bundle on a compact Kähler manifold X
equipped with a metric ϕ. We say that (L,ϕ) is a pseudo-effective pair (or sometimes a
pseudo-effective line bundle) if the curvature form (i/2π)Θϕ(L) is positive as a current, i.e.
(i/2π)Θϕ(L) > 0.

Let π : X̃ → X be a modification of a smooth variety X, and let ϕ and ψ be two quasi-psh
fuctions on X such that I(ϕ) ⊂ I(ψ). In general, this inclusion does not imply that I(ϕ ◦ π) ⊂
I(ψ ◦ π). In order to compare I(ϕ ◦ π) and I(ψ ◦ π), we need the following lemma.

Lemma 2.2. Let E = π∗KX −KX̃
. If I(ϕ) ⊂ I(ψ), then

I(ϕ ◦ π)⊗O(−E) ⊂ I(ψ ◦ π),

where the sheaf O(−E) consists of the germs of holomorphic functions f such that div(f) > E.

3 The equality (2.2) is well known in dimension 1 and was proved to be true in dimension 2 by Favre and Jonsson
[FJ05]. See [DP03] for more details about I+(ϕ).
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Proof. It is known that I(ϕ ◦ π) ⊂ π∗I(ϕ) (cf. [Dem12, Proposition 14.3]). Then, for any f ∈
I(ϕ ◦ π)x we have ∫

π(Ux)
|π∗(f)|2e−2ϕ < +∞, (2.3)

where Ux is some open neighborhood of x (though its image π(Ux) is not necessarily open).
Combining (2.3) with the condition I(ϕ) ⊂ I(ψ), we get∫

π(Ux)
|π∗f |2e−2ψ < +∞. (2.4)

The inequality (2.4) implies that ∫
Ux

|f |2|J |2e−2ψ◦π < +∞, (2.5)

where J is the Jacobian of π. Since O(−E) = J · OX , (2.5) implies the lemma. 2

Let X be a compact Kähler manifold and let T be a closed positive (1, 1)-current. It is well

known that T can be written as

T = θ + ddcϕ,

where θ is a smooth (1, 1)-closed form representing [T ] ∈H1,1(X,R) and ϕ is a quasi-psh function.

Demailly’s famous regularization theorem states that ϕ can be approximated by a sequence of

quasi-psh functions with analytic singularities. This type of approximation is called an analytic

approximation of ϕ. Among all such analytic approximations, we want to deal with those which

somehow preserve the information concerning the singularities of T . More precisely, we introduce

the following definition.

Definition 2.3. Let θ+ddcϕ be a positive current on a compact Kähler manifold (X,ω), where θ

is a smooth form and ϕ is a quasi-psh function on X. We say that {ϕk}∞k=1 is a quasi-equisingular

approximation of ϕ for the current θ + ddcϕ if it satisfies the following conditions:

(i) the sequence {ϕk}∞k=1 converges to ϕ in L1 topology and

θ + ddcϕk > −τk · ω

for some constants τk → 0 as k → +∞;

(ii) all the ϕk have analytic singularities, and ϕk 4 ϕk+1 for all k;

(iii) for any δ > 0 and m ∈ N, there exists k0(δ,m) ∈ N such that

I(m(1 + δ)ϕk) ⊂ I(mϕ) for every k > k0(δ,m).

Remark 1. By condition (i), the concept of a quasi-equisingular approximation depends not on

ϕ only but on the current θ + ddcϕ.

The existence of quasi-equisingular approximations was essentially proved in [DPS01,

Theorem 2.2.1] by a Bergman kernel method. Such approximations are in some sense the most

singular ones asymptotically. The following proposition makes this assertion more precise.
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Proposition 2.4. Let θ + ddcϕ1 and θ + ddcϕ2 be two positive currents on a compact Kähler
manifold X. We assume that the quasi-psh function ϕ2 is more singular than ϕ1. Let {ϕi,1}∞i=1
be an analytic approximation of ϕ1, and let {ϕi,2}∞i=1 be a quasi-equisingular approximation of
ϕ2. For any closed smooth (n− 1, n− 1)-semipositive form u, we have

lim
i→∞

∫
X

(ddcϕi,1)ac ∧ u > lim
i→∞

∫
X

(ddcϕi,2)ac ∧ u, (2.6)

where (ddcϕi,1)ac denotes the absolutely continuous part of the current ddcϕi,1.

Proof. The idea of the proof is rather standard (cf. [Bou02] or [Dem12, Theorem 18.12]). To
prove (2.6), it is enough to show that∫

X
(ddcϕs,1)ac ∧ u > lim

i→∞

∫
X

(ddcϕi,2)ac ∧ u (2.7)

for every s ∈ N fixed. Since {ϕi,2}∞i=1 is a quasi-equisingular approximation of ϕ2, for any δ > 0
and m ∈ N, there exists a k0(δ,m) ∈ N such that

I(m(1 + δ)ϕk,2) ⊂ I(mϕ2) for every k > k0(δ,m). (2.8)

Since ϕs,1 4 ϕ1 4 ϕ2 by assumption, (2.8) implies that

I(m(1 + δ)ϕk,2) ⊂ I(mϕs,1) (2.9)

for any s ∈ N and k > k0(δ,m).
Using (2.9), we can proceed to prove (2.7). Let π : X̂ → X be a log resolution of ϕs,1, i.e.

ddc(ϕs,1 ◦ π) is locally of the form

ddc(ϕs,1 ◦ π) = [F ] + C∞,

where F is a R-normal crossing divisor. By Lemma 2.2, (2.9) implies that

I(m(1 + δ)ϕk,2 ◦ π)⊗O(−J) ⊂ I(mϕs,1 ◦ π) = O(−bmF c) (2.10)

for k > k0(δ,m), where J is the Jacobian of the blow-up π. Since F is a normal crossing divisor,
(2.10) implies that m(1 + δ)ddcϕk,2 ◦ π + [J ]− bmF c is a positive current. Then∫

X̂
(m(1 + δ) · ddcϕk,2 ◦ π)ac ∧ u 6 C +

∫
X̂

(m · ddcϕs,1 ◦ π)ac ∧ u

for k > k0(δ,m), where C is a constant independent of m and k. Letting m → +∞, we get∫
X̂

(ddcϕk,2 ◦ π)ac ∧ u 6 O

(
1

m

)
+ C1δ +

∫
X̂

(ddcϕs,1 ◦ π)ac ∧ u (2.11)

for k > k0(δ,m), where C1 is a constant independent of m and k. Then∫
X

(ddcϕk,2)ac ∧ u 6 O

(
1

m

)
+ C1δ +

∫
X

(ddcϕs,1)ac ∧ u for k > k0(δ,m).

Letting m → +∞ and δ → 0, we get

lim
k→∞

∫
X

(ddcϕk,2)ac ∧ u 6
∫
X

(ddcϕs,1)ac ∧ u,

and so (2.7) is proved. 2
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Remark 2. By taking ϕ1 = ϕ2 and ϕi,1 = ϕi,2 in Proposition 2.4, we obtain that the sequence
{
∫
X(ddcϕi,2)ac ∧ u}∞i=1 is in fact convergent. Moreover, if {ϕi,1} and {ϕi,2} are two quasi-

equisingular approximations of ϕ, Proposition 2.4 implies that

lim
i→∞

∫
X

(ddcϕi,1)ac ∧ u = lim
i→∞

∫
X

(ddcϕi,2)ac ∧ u. (2.12)

Thanks to Proposition 2.4 and (2.12), we can define a related cohomological product of closed
positive (1, 1)-currents.

Definition 2.5. Let T1, . . . , Tk be closed positive (1, 1)-currents on a compact Kähler manifold
X. We write them in the potential forms Ti = θi + ddcϕi as usual. Let {ϕi,j}∞j=1 be a quasi-
equisingular approximation of ϕi. Then we can define a product

〈T1, T2, . . . , Tk〉

as an element in Hk,k
>0 (X) (cf. [Bou02] or [Dem12, Theorem 18.12]) such that for all u ∈

Hn−k,n−k(X),

〈T1, T2, . . . , Tk〉 ∧ u = lim
j→∞

∫
X

(θ1 + ddcϕ1,j)ac ∧ · · · ∧ (θk + ddcϕk,j)ac ∧ u,

where ∧ is the usual wedge product in cohomology.

Remark 3. Let {ψi,j}∞j=1 be an analytic approximation (not necessarily quasi-equisingular) of
ϕi. Thanks to Proposition 2.4 and some standard arguments (cf. [Dem12, Theorem 18.12]), we
have

lim
j→∞

∫
X

(θ1 + ddcψ1,j)ac ∧ · · · ∧ (θk + ddcψk,j)ac ∧ u

> lim
j→∞

∫
X

(θ1 + ddcϕ1,j)ac ∧ · · · ∧ (θk + ddcϕk,j)ac ∧ u.

This means that the product defined in Definition 2.5 is smaller than the product defined by
any other analytic approximation. In particular, the product defined in Definition 2.5 does not
depend on the choice of the quasi-equisingular approximation.

3. Numerical dimension

Using Definition 2.5, we can give our definition of the numerical dimension.

Definition 3.1. Let (L,ϕ) be a pseudo-effective line bundle on a compact Kähler manifold X.
We define the numerical dimension nd(L,ϕ) to be the largest v ∈ N such that 〈(iΘϕ(L))v〉 6=
0, where the cohomological product 〈(iΘϕ(L))v〉 is the v-fold product of iΘϕ(L) given in
Definition 2.5.

Let (L,ϕ) be a pseudo-effective line bundle on X of dimension n such that nd(L,ϕ) = n. If
the quasi-psh function ϕ has analytic singularities, it is not difficult to see that

h0(X,mL⊗ I(mϕ))

mn

admits a strictly positive limit by using the Riemann–Roch formula. When ϕ is just a quasi-psh
function, Tsuji conjectured in [Tsu07] that

h0(X,mL⊗ I(mϕ))

mn
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also admits a strictly positive limit. The main goal of this section is to prove Proposition 1.2,
i.e. if nd(L,ϕ) = n, then

lim
m→∞

h0(X,mL⊗ I(mϕ))

mn
> 0.

To begin with, we explain the construction of quasi-equisingular approximations by a
Bergman kernel method. Before doing so, we first give a useful estimate that uses the comparison-
of-integrals method in [DPS01, Theorem 2.2.1, Step 2]. Although the proof is almost the same,
we present it here for the sake of completeness.

Lemma 3.2. Let A be a very ample line bundle on a projective manifold X, and let (L,ϕ) be a
pseudo-effective line bundle. Let ϕm be the metric on L constructed by the Bergman kernel of
H0(X,O(A+mL)⊗O(mϕ)) with respect to the metric mϕ. Then

I
(

sm

m− s
ϕm

)
⊂ I(sϕ) for any m, s ∈ N.

Proof. First of all, we have the following estimate on X:∫
s·ϕ(x)6(sm/(m−s))·ϕm(x)

e−2s·ϕ(x) =

∫
s·ϕ(x)6sm/(m−s)·ϕm(x)

e2(m−s)·ϕ(x)−2m·ϕ(x)

6
∫
X
e2m·ϕme−2m·ϕ

= h0(X,O(A+mL)⊗ I(mϕ)) < +∞.

Using the finiteness obtained above, for any f ∈ I((sm/(m− s))ϕm)x we have∫
Ux

|f |2e−2sϕ 6
∫
sϕ(x)6(sm/(m−s))ϕm(x)

|f |2e−2sϕ +

∫
Ux

|f |2e−(2sm/(m−s))ϕm

6 sup |f |2 ·
∫
sϕ(x)6(sm/(m−s))ϕm(x)

e−2sϕ +

∫
Ux

|f |2e−2(sm/(m−s))ϕm < +∞.

Then f ∈ I(sϕ), so the lemma is proved. 2

We are going to construct a quasi-equisingular approximation to ϕ. Although such
approximations were implicitly constructed in [DPS01, Theorem 2.2.1] for the local case, we
can easily adapt that construction to a global situation by using the same techniques.

Proposition 3.3. Let X be a projective variety of dimension n and let ω be a Kähler metric
in H1,1(X,Q). Let (L,ϕ) be a pseudo-effective line bundle on X (see Definition 2.1) such that
nd(L,ϕ) = n.

Let (G, hG) be an ample line bundle on X equipped with a smooth metric hG, such that the
curvature form iΘhG(G) is positive and sufficiently large (e.g. G is very ample and G −KX is
ample). Let {τp,q,i}i be an orthonormal basis of

H0(X,O(2pG+ 2qL)⊗ I(2qϕ))

with respect to the singular metric h2
p

G · h2
q

0 · e−2
qϕ. We define

ϕp,q =
1

2q
ln
∑
i

|τp,q,i|2h2pG ·h2q0 .
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Then there exist two increasing integral sequences pm → +∞ and qm → +∞ with

lim
m→+∞

(qm/pm) = +∞

and

qm − qm−1 > pm − pm−1 for all m ∈ N

such that {ϕpm,qm}+∞m=1 is a quasi-equisingular approximation of ϕ for the current (i/(2π))Θh0(L)+
ddcϕ. Set ϕm := ϕpm,qm for simplicity.

Moreover, {ϕm} satisfies the following two properties.

(i) H0(X,O(2pmG + 2qmL) ⊗ I(2qmϕm)) = H0(X,O(2pmG + 2qmL) ⊗ I(2qmϕ)) for every
m ∈ N+.

(ii) There exists a constant C > 0 independent of G and m such that∫
X

(
i

2π
Θϕm(L) + εω

)n
ac

> C

for all ε > 0 and m > m0(ε) (i.e. m is larger than a constant depending on ε).

Proof. By [Dem12, Theorems 13.21 and 13.23], there exist two sequences pm → +∞ and qm →

+∞ with

lim
m
qm/pm = +∞

and

qm − qm−1 > pm − pm−1 for all m ∈ N

such that {ϕm} is an analytic approximation of ϕ for the current (i/2π)Θϕ(L). Since ϕm
is constructed using the Bergman kernel, by Lemma 3.2, {ϕm} satisfies condition (iii) in
Definition 2.3. To prove that {ϕm} is a quasi-equisingular approximation, it remains to verify
condition (ii) in Definition 2.3.

We first prove that

ϕp−1,q−1 4 ϕp,q and ϕp,q−1 4 ϕp−1,q−1 (3.1)

by using the standard diagonal trick (cf. [DEL00] or [DPS01, Theorem 2.2.1, Step 3]). Let ∆ be
the diagonal of X ×X, and let π1 and π2 be two projections from X ×X to X. Let

F := 2p−1π∗1G+ 2p−1π∗2G+ 2q−1π∗1L+ 2q−1π∗2L

be a new bundle on X × X equipped with a singular metric 2q−1π∗1(ϕ) + 2q−1π∗2(ϕ). Since
2p−1G −KX is ample enough, we can apply the Ohsawa–Takegoshi extension theorem from ∆
to X ×X for the line bundle F . Then the following map is surjective:

(H0(X,O(2p−1G+ 2q−1L)⊗ I(2q−1ϕ)))2 → H0(X,O(2pG+ 2qL)⊗ I(2qϕ)). (3.2)

Let {fp−1,q−1,i}Ni=1 be an orthonormal basis of

H0(X,O(2p−1G+ 2q−1L)⊗ I(2q−1ϕ))

with respect to the singular metric h2
p−1

G · h2q−1

0 · e−2q−1ϕ. For any

g ∈ H0(X,O(2pG+ 2qL)⊗ I(2qϕ)),
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by applying the effective version of the Ohsawa–Takegoshi extension theorem to (3.2), there exist

constants {ci,j} such that

g(z) =

(∑
i,j

ci,jfp−1,q−1,i(z)fp−1,q−1,j(w)

)
z=w

and ∑
i,j

|ci,j |2 6 C1‖g‖2,

where C1 depends only on X and ‖g‖ is the L2 norm with respect to the singular metric h2
p

G ·
h2

q

0 e
−2qϕ. By the Cauchy–Schwarz inequality, we have

|g(z)|2
h2
p
G ·h

2q
0

6

(∑
i,j

|ci,j |2
)(∑

i,j

|fp−1,q−1,i(z)fp−1,q−1,j(z)|2h2pG ·h2q0

)

6 C1‖g‖2
(∑

i

|fp−1,q−1,i(z)|2
h2
p−1
G ·h2q−1

0

)2

.

Assuming ‖g‖ = 1, we get

1

2q
ln|g(z)|2

h2
p
G ·h

2q
0

6
lnC1

2q
+

1

2q−1
ln

(∑
i

|fp−1,q−1,i(z)|2
h2
p−1
G ·h2q−1

0

)
=

lnC1

2q
+ ϕp−1,q−1(z).

By the extremal property of the Bergman kernel, we finally obtain that

ϕp−1,q−1 4 ϕp,q.

Thus the first inequality in (3.1) is proved. The second inequality in (3.1) is evident by observing

that G is very ample. Thanks to the construction of pm and qm, (3.1) implies that ϕm−1 4 ϕm.

Therefore ϕm is a quasi-equisingular approximation of ϕ for the current (i/2π)Θϕ(L).

It remains to check properties (i) and (ii) of the proposition. Property (i) comes directly

from the construction of ϕm. Property (ii) follows from the fact that nd(L,ϕ) = n and ϕm is a

quasi-equisingular approximation. 2

The rest of this section is devoted to the proof of Proposition 1.2. The strategy is as

follows. Thanks to property (ii) of Proposition 3.3, we can construct a new metric on L with

strictly positive curvature that is more singular than ϕ in an asymptotic sense (cf. (3.11)).

Then Proposition 1.2 follows from a standard estimate for this new metric. Before giving the

construction of the new metric, we need the following two preparatory propositions.

Proposition 3.4. Let ϕm be the quasi-psh function constructed in Proposition 3.3. Then there

exists another quasi-psh function ϕ̃m such that:

(i) supx∈X ϕ̃m(x) = 0;

(ii) (i/2π)Θϕ̃m(L) > (δ/2) · ω, where δ is a strictly positive number independent of m;

(iii) ϕm 4 ϕ̃m.
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Proof. Let π : Xm → X be a log resolution of ϕm. We can therefore assume that

i

2π
Θϕm◦π(π∗L) = [E] + β,

where [E] is a normal crossing divisor and β ∈ C∞. Keeping the notation used in Proposition 3.3,
since ω ∈ H1,1(X,Q), we can find a Q-ample line bundle A on X such that c1(A) = ω. Let ε be
a positive rational number. By property (ii) of Proposition 3.3, we have∫

X

(
i

2π
Θϕm(L) + εω

)n
ac

> C.

Thanks to Proposition 3.3, (
i

2π
Θϕm◦π(π∗L) + επ∗ω

)
ac

is a Q-nef class for m large enough. We can thus choose a Q-nef line bundle Fm on Xm such that

c1(Fm) =

(
i

2π
Θϕm◦π(π∗L) + επ∗ω

)
ac

. (3.3)

We now prove that

Fm − δπ∗ω (3.4)

is pseudo-effective for a uniform constant δ > 0 independent of ε and m. In order to prove (3.4),
we first give a uniform upper bound on Fn−1m · π∗A. Let C1 be a constant such that C1 · A − L
is effective. Using the nefness of Fm and π∗A, (3.3) implies that

Fn−1m · π∗A6 Fn−2m · (π∗L+ επ∗ω) · π∗A 6 Fn−2m · (C1 + ε)π∗A · π∗A
6 Fn−3m · ((C1 + ε)π∗A)2 · π∗A 6 · · · 6 ((C1 + ε)π∗A)n−1 · π∗A.

Therefore {Fn−1m · π∗A}m is uniformly bounded (for ε < 1). Combining this with property (ii) of
Proposition 3.3, we can thus choose a rational constant δ > 0 independent of ε and m such that

Fnm > nδFn−1m · π∗A. (3.5)

Using the holomorphic Morse inequality (cf. [Dem12, ch. 8] or [Tra11]) for the Q-bundle Fm −
δ · π∗(A) on Xm, we have

h0(Xm, kFm − kδ · π∗A) > C
kn

n!
(Fnm − nδFn−1m · π∗A) +O(kn−1). (3.6)

Combining (3.5) and (3.6), we obtain that Fm − δπ∗ω is pseudo-effective.
By taking ε 6 δ/2, the pseudo-effectiveness (3.4) implies that (i/2π)Θϕm◦π(π∗L)ac−(δ/2)π∗ω

is pseudo-effective. In other words, there exists a quasi-psh function ψm on Xm such that

i

2π
Θϕm◦π(π∗L) + ddcψm >

δ

2
π∗ω. (3.7)

Let C1 be a constant such that

sup
x∈Xm

(ϕm ◦ π + ψm + C1)(x) = 0.

Then (3.7) implies that ϕm ◦ π(x) + ψm(x) + C1 induces a quasi-psh function on X, which we
denote by ϕ̃m. It is easy to check that ϕ̃m satisfies all the requirements in the proposition. 2
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Remark 4. In the proof of Proposition 3.4 we assumed that ε is rational. The reason is that we
want to use the holomorphic Morse inequality (3.6). However, by using the techniques in [DP04],
one can get the same results without assuming that ε is rational.

Thanks to Proposition 3.4, we are able to construct a singular metric on L which is a type of
limit of ϕ̃m. We first recall the notion of upper semicontinuous regularization. Let Ω ⊂ Rn and
let (uα)α∈I be a family of upper semicontinuous functions Ω → [−∞,+∞[. Assume that (uα) is
locally uniformly bounded from above. Since the upper envelope

u = sup
α∈I

uα

need not be upper semicontinuous, we consider its upper semicontinuous regularization,

u∗(z) = lim
ε→0

sup
B(z,ε)

u.

We denote this upper semicontinuous regularization by s̃upα(uα). It is easy to prove that if
{uα}α∈I are psh functions which are locally uniformly bounded from above, then s̃upα(uα) is
also a psh function (see [Dem12] for details).

We need the following lemma.

Lemma 3.5. Let ϕ be a quasi-psh function with normal crossing singularities, i.e. ϕ is locally of
the form

ϕ =
∑
i

ai ln |fi|+O(1)

where the fi are holomorphic functions and
∑

i div(fi) is a normal crossing divisor. Let {ψi} be
quasi-psh functions such that

sup
z∈X

ψi(z) 6 0 and ddcψi > −Cω

for some uniform constant C independent of i. If ϕ 4 ψi for all i, then

ϕ 4 s̃up
i

(ψi).

Proof. Since ϕ has normal crossing singularities and ϕ is less singular than ϕi, the differences
ψi − ϕ are quasi-psh functions and

ddc(ψi − ϕ) > −C1ω (3.8)

for some uniform constant C1 independent of i. Since supz∈X ψi(z) 6 0 and ddcψi > −Cω for a
uniform constant C, standard potential theory implies that there exists a constant M such that∫

X
ψi 6M for all i.

Therefore ∫
X

(ψi − ϕ) 6M ′ (3.9)

for a uniform constant M ′.
Combining (3.8) and (3.9), there exists a uniform constant C2 such that

sup
z∈X

(ψi(z)− ϕ(z)) 6 C2 for all i.

Therefore ϕ 4 s̃upi(ψi) and the lemma is proved. 2
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Thanks to Propositions 3.4 and 3.5, we can construct the following crucial metric mentioned
in the paragraph before Proposition 3.4.

Proposition 3.6. In the situation of Proposition 3.4, set

ϕ̃(z) := lim
m→∞

s̃up
s>0

((ϕ̃m+s(z))).

Then the new metric ϕ̃ satisfies

i

2π
Θϕ̃(L) >

δ

2
ω (3.10)

and

ϕm 4 ϕ̃ for every m > 1. (3.11)

Proof. By Proposition 3.4, we have

i

2π
Θϕ̃m(L) >

δ

2
ω for m > 1.

By letting m → +∞, (3.10) is proved. To check (3.11), since ϕ̃ 6 s̃ups>0(ϕ̃m+s) by construction,
it is enough to show that

ϕm 4 s̃up
s>0

(ϕ̃m+s). (3.12)

Combining Propositions 3.3 and 3.4, we obtain that

ϕm 4 ϕm+s 4 ϕ̃m+s for every m and s. (3.13)

Let π : X̂ → X be a log resolution of ϕm. By (3.13), we have

ϕm ◦ π 4 ϕm+s ◦ π 4 ϕ̃m+s ◦ π. (3.14)

Since ϕm ◦ π has normal crossing singularities, by Lemma 3.5, (3.14) implies that

ϕm ◦ π 4 s̃up
s>0

(ϕ̃m+s ◦ π).

Upon passing to π∗, (3.12) is proved. 2

Using the new metric ϕ̃, we can give the following asymptotic estimate.

Proposition 3.7 (Proposition 1.2). Let X be a projective variety of dimension n and let (L,ϕ)
be a pseudo-effective line bundle on X such that nd(L,ϕ) = n. Then

lim
m→∞

h0(X, mL⊗ I(mϕ))

mn
> 0.

Proof. Let {ϕm} be the quasi-equisingular approximation of ϕ constructed in Proposition 3.3.
By Lemma 3.2, for every m ∈ N we have

h0(X, mL⊗ I(mϕ)) > h0
(
X, mL⊗ I

(
m · 2qk
2qk −m

ϕk

))
. (3.15)
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Let ϕ̃ be the metric constructed in Proposition 3.6. By (3.11) in Proposition 3.6, we have

h0
(
X, mL⊗ I

(
m · 2qk
2qk −m

ϕk

))
> h0

(
X, mL⊗ I

(
m · 2qk
2qk −m

ϕ̃

))
(3.16)

for every k and m. Combining (3.15) with (3.16), we obtain that

h0(X, mL⊗ I(mϕ)) > h0
(
X, mL⊗ I

(
m · 2qk
2qk −m

ϕ̃

))
. (3.17)

Since (3.17) is true for every m and k, we can take k so large that 2qk � m. By applying (3.10)
to (3.17), we have

lim
m→∞

h0(X, mL⊗ I(mϕ))

mn
> 0,

so the proposition is proved. 2

Remark 5. Proposition 3.7 implies that if nd(L,ϕ) = dimX, then νnum(L,ϕ) = dimX (cf.
Definition 1.1). In the next section, we will study the relation between nd(L,ϕ) and νnum(L,ϕ)
in more detail.

4. A numerical criterion

Up to now, we have two concepts of numerical dimension for a pseudo-effective pair (L,ϕ): the
‘algebraic’ concept νnum(L,ϕ) and the more analytic concept nd(L,ϕ) (see Definitions 1.1 and
3.1). We prove in this section that these two definitions coincide when X is projective. Before
giving the proof, we first list some properties of multiplier ideal sheaves which will be useful in
our context. The essential tool here is the Ohsawa–Takegoshi extension theorem (cf. [Dem12,
ch. 12]).

Lemma 4.1. Let (L,ϕ) be a pseudo-effective line bundle on a projective variety X of dimension
n, and let {ϕk} be a quasi-equisingular approximation of ϕ. Let s1 be a positive number such
that

I+(ϕ) = I((1 + ε′)ϕ) for every 0 < ε′ 6 s1. (4.1)

Assume that A is a very ample line bundle and S is the zero divisor of a very general global
section of H0(X,A). Then the following properties hold.

(i) The restrictions

I(mϕk) → I(mϕk|S), I+(mϕk) → I+(mϕk|S), (4.2)

I(mϕ) → I(mϕ|S), I+(mϕ) → I+(mϕ|S) (4.3)

are well-defined for all m ∈ N, where ϕ|S denotes the restriction of ϕ on S and I(ϕ|S) is the
multiplier ideal sheaf associated to ϕ|S on S.4 Moreover, we have

I((1 + ε′)ϕ|S) = I((1 + s1)ϕ|S) for every 0 < ε′ 6 s1.

(ii) {ϕk|S} is a quasi-equisingular approximation of ϕ|S .

4 Note that ϕ|S is also quasi-psh if it is well-defined.
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(iii) If the restrictions are well-defined, we have an exact sequence

0 → I+(ϕ)⊗O(−S) → adjεS(ϕ) → I+(ϕ|S) → 0

for every 0 < ε 6 s1, where

adjεS(ϕ)x =

{
f ∈ Ox :

∫
Ux

|f |2

|s|2(1−ε/2)
e−2(1+ε)ϕ < +∞

}
.

(iv) adjεS(ϕ) = I+(ϕ) for every 0 < ε 6 s1.

Proof. (i) First of all, since S is very general, ϕk and ϕ are well-defined on S. Since the
multiplier ideal sheaves here are coherent and the restrictions (4.2) and (4.3) contain only
countable morphisms, by Fubini’s theorem it is easy to see that the restrictions (4.2) and (4.3)
are well-defined.

To show the second part of (i), since S is very general, we can suppose that

I((1 + s1)ϕ) → I((1 + s1)ϕ|S) (4.4)

is well-defined. Combining this with (4.1), we obtain that

I((1 + ε′)ϕ) → I((1 + ε′)ϕ|S) (4.5)

is well-defined for every 0 < ε′ < s1. Let f ∈ I(S, (1 + s1)ϕ|S)x. Applying the Ohsawa–Takegoshi

extension theorem to (4.4), there exists a function f̃ ∈ I((1 + s1)ϕ) such that f̃ |S = f . Thanks

to (4.1) and (4.5), f̃ |S ∈ I((1 + ε′)ϕ|S) for every 0 < ε′ < s1, so (i) is proved.
(ii) Since {ϕk} is a quasi-equisingular approximation of ϕ, we have that

I(m(1 + δ)ϕk) ⊂ I(mϕ) for every k > k0(δ,m). (4.6)

To prove (ii), it is enough to show that

I(m(1 + δ)ϕk|S) ⊂ I(mϕ|S) for every k > k0(δ,m). (4.7)

Let f ∈ I(m(1+δ)ϕk|S)x. By the Ohsawa–Takegoshi extension theorem, there exists a f̃ ∈ I(X,

m(1+δ)ϕk)x such that f̃ |S = f . By (4.6), f̃ ∈ I(mϕ). Thanks to (4.3), we have f̃ |S ∈ I(S,mϕ |S).
Hence (4.7) is proved.

(iii) First of all, the Ohsawa–Takegoshi extension theorem implies the surjectivity of the
sequence. It remains to prove the exactness of the middle term, i.e. for any f ∈ Ox satisfying
the conditions

f

s
∈ Ox and

∫
Ux

|f |2

|s|2(1−ε/2)
e−2(1+ε)ϕ < +∞, (4.8)

we should prove the existence of some ε′ > 0 such that∫
Ux

|f |2

|s|2
e−2(1+ε

′)ϕ < +∞, (4.9)

where s is a local defining function for S. In fact, if f/s ∈ Ox, then∫
Ux

|f |2

|s|4−δ
< +∞ for every δ > 0. (4.10)
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By taking ε′ = ε/4 in (4.9), we have∫
Ux

|f |2

|s|2
e−2(1+ε/4)ϕ 6

(∫
Ux

|f |2

|s|2(1−ε/2)
e−2(1+ε)ϕ

)(1+ε/4)/(1+ε)(∫
Ux

|f |2

|s|α

)(3ε/4)/(1+ε)

(4.11)

by Hölder’s inequality, where

α =

(
2− 2

(
1− ε

2

)
1 + ε/4

1 + ε

)
· (1 + ε) · 4

3ε
=

10ε+ ε2

3ε
< 4.

Thanks to (4.8) and (4.10), the right-hand side of (4.11) is finite. Thus (4.9) is proved.
(iv) By the definition of I+(ϕ), we have an obvious inclusion

adjεS(ϕ) ⊂ I+(ϕ).

In order to prove the equality, it is enough to show that for any f ∈ I((1 + ε)ϕ)x we have∫
Ux

|f |2

|s|2(1−ε/2)
e−2(1+ε)ϕ dV < +∞, (4.12)

where s is a general global section of H0(X,A) independent of the choice of f and x.
The bound (4.12) comes from Fubini’s theorem. In fact, let {s0, . . . , sN} be a basis for

H0(X,A). Then
N∑
i=0

|si(x)|2 6= 0 for every x ∈ X.

Taking {τ0, . . . , τN} ∈ CN+1, we have∫
∑N
i=0 |τi|2=1

dτ

∫
Ux

|f |2∣∣∑N
i=0 τisi

∣∣2(1−ε/2) e−2(1+ε)ϕ dV
=

∫
Ux

|f |2∣∣∑N
i=0 |si(x)|2

∣∣(1−ε/2) e−2(1+ε)ϕ dV
∫
∑N
i=0 |τi|2=1

1(∑N
i=0 τi(si/

∑N
i=0 |si(x)|2)

)2(1−ε/2) dτ
=

∫
Ux

|f |2∣∣∑N
i=0 |si(x)|2

∣∣(1−ε/2) e−2(1+ε)ϕ dV
∫
∑N
i=0 |τi|2=1

1

|τ0|2(1−ε/2)
dτ < +∞. (4.13)

For any f ∈ I((1 + ε)ϕ)x fixed, by applying Fubini’s theorem to (4.13) we obtain that∫
Ux

|f |2

|s|2(1−ε/2)
e−2(1+ε)ϕ < +∞ (4.14)

for a general element s ∈ H0(X,A). Observing that I((1 + ε)ϕ) is finitely generated on X, we
can therefore choose a general section s such that (4.14) is true for any f ∈ I((1 + ε)ϕ). Thus
(4.12) is proved. 2

The next proposition confirms that our definition of the numerical dimension coincides with
Tsuji’s definition.

Proposition 4.2. If (L,ϕ) is a pseudo-effective line bundle on a projective variety X of
dimension n, then

νnum(L,ϕ) = nd(L,ϕ).
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Proof. We first prove that

νnum(L,ϕ) > nd(L,ϕ) (4.15)

by induction on the dimension. If nd(L,ϕ) = n, (4.15) comes from Proposition 3.7. Assume
that nd(L,ϕ) < n. Let A be a general hypersurface given by a very ample line bundle, and let
{ϕk} be a quasi-equisingular approximation of ϕ. By Lemma 4.1, ϕk|A is a quasi-equisingular
approximation of ϕ|A. Since A is a general section and nd(L,ϕ) < n, we have

lim
k→∞

∫
A

((
i

2π
Θϕk(L)

)
ac

)s
∧ ωn−s−1 > 0,

where s = nd(L,ϕ). By Definition 2.3, we have

nd(L,ϕ|A) > s = nd(L,ϕ), (4.16)

where nd(L,ϕ|A) is the numerical dimension of (L,ϕ|A) on A. Note, moreover, that by the
definition of νnum,

νnum(L,ϕ) > νnum(L,ϕ|A). (4.17)

Thanks to (4.16) and (4.17), we get (4.15) by induction on the dimension.
We now prove that

νnum(L,ϕ) 6 nd(L,ϕ). (4.18)

Assume that νnum(L,ϕ) = s. By Definition 1.1, there exists a subvariety V of dimension s such
that

lim
m→∞

h0(V, mL⊗ I(mϕ))

ms
> 0. (4.19)

Let {ϕk} be a quasi-equisingular approximation of ϕ. To prove (4.18), by Definition 3.1, it is
sufficient to show that

lim
k→+∞

(iΘϕk(L))sac ∧ [V ] > 0. (4.20)

We prove (4.20) by using the holomorphic Morse inequality for line bundles equipped with
singular metrics (cf. [Bon98]). Let π : X̃ → X be a desingularization of V in X, and let Ṽ be
the strict transform of V . Thanks to (4.19), we have

lim
m→∞

h0(Ṽ , mπ∗(L)⊗ I(mϕk ◦ π))

ms
> 0 for every k. (4.21)

Let A be an ample line bundle on X and let ω be a Kähler metric such that c1(A) = ω. By
Definition 3.1, we can find a positive sequence εk → 0 such that (iΘϕk(L))ac + εkω > 0. Using
[Bon98, Theorem 1.1], we have∫

V
(iΘϕk(L) + εkω)sac > lim

m→∞

h0(Ṽ , mπ∗(L)⊗ I(mϕk ◦ π))

ms
.

Combining this with (4.21), we obtain that

(iΘϕk(L) + εkω)sac ∧ [V ] > 0.

Upon letting k → +∞, (4.20) is proved. 2
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Remark 6. From the proof, it is easy to conclude that if S1, S2, . . . , Sk are divisors of general
global sections of a very ample line bundle, then

nd(L,ϕ|S1∩S2∩···∩Sk) = max(nd(L,ϕ), n− k). (4.22)

In fact, if nd(L,ϕ) 6 n − k, then by the same argument as above, ϕm|S1∩S2∩···∩Sk is also a
quasi-equisingular approximation of ϕ|S1∩S2∩···∩Sk . Then (4.22) is proved by a simple calculation.

Before giving a numerical criterion to calculate the numerical dimension, we mention the
following interesting example, [Tsu07, Example 3.6]. The example tells us that we cannot expect
an equality of the form

sup
A

lim
m→∞

lnh0(X,O(A+mL)⊗ I(mϕ))

lnm
= nd(L,ϕ) (4.23)

where A runs over all the ample bundles on X. In fact, Tsuji defined a closed positive (1, 1)-
current T on P1,

T =

+∞∑
i=1

3i−1∑
j=1

1

4i
Pi,j

where the Pi,j are distinct points on P1. Thus, there exists a singular metric ϕ on L = O(1) with
(i/2π)Θϕ(L) = T . It is easy to construct a quasi-equisingular approximation {ϕk} of ϕ such that

i

2π
Θϕk(L) =

k∑
i=1

3i−1∑
j=1

1

4i
Pi,j + C∞.

Then nd(L,ϕ) = 0.
On the other hand, owing to the construction of ϕ, we have

lim
m→∞

h0(P1,O(s+m)⊗ I(mϕ))

m
= lim

k→∞

h0(P1,O(s+ 4k − 1)⊗ I((4k − 1)ϕ))

4k − 1

for every s > 1. By construction,

I((4k − 1)ϕ)x = Ox
for x /∈ {Pi,j}i6k−1, and I((4k − 1)ϕ) has multiplicity b(4k − 1)/4ic = 4k−i − 1 on 3i−1 points
{Pi,1, . . . , Pi,3i−1}. Therefore

h0(P1,O(s+ 4k − 1)⊗ I((4k − 1)ϕ)) = s+ 4k −
k−1∑
i=1

3i−1(4k−i − 1)

=
9

2
3k−1 + s− 1

2
.

Then

sup
A

lim
m→∞

lnh0(P1,O(A+m)⊗ I(mϕ))

lnm
=

ln 3

ln 4
.

Therefore

nd(L,ϕ) 6= sup
A

lim
m→∞

lnh0(P1,O(A+m)⊗ I(mϕ))

lnm
.

In view of the above example, we propose the following modified formula for calculating the
numerical dimension.
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Proposition 4.3. Let (L,ϕ) be a pseudo-effective line bundle on a projective variety X, and
let A be a very ample line bundle. Then nd(L,ϕ) = d if and only if

lim
ε→0

ln
(

lim
m→∞

(h0(X, mεA+mL⊗ I(mϕ))/mn)
)

ln ε
= n− d.

Proof. First of all, the inclusion

H0(X, mεA+mL⊗ I(mϕ))⊃H0(X, mεA+mL⊗ I+(mϕ))

⊃H0(X, mεA+mL⊗ I((m+ 1)ϕ))

implies that h0(X,mεA+mL⊗I+(mϕ)) has the same asymptotic comportment as h0(X,mεA+
mL⊗ I(mϕ)). Since we have constructed the exact sequence for I+ in Lemma 4.1, we prefer to
calculate h0(X,mεA+mL⊗ I+(mϕ)) instead of h0(X,mεA+mL⊗ I(mϕ)).

If nd(L,ϕ) = n, the proposition follows directly from Proposition 4.2. Assume that nd(L,
ϕ) = d < n. Let {Yi}ni=1 be the zero divisors of n very general global sections of H0(X,A). By
the remark after Proposition 4.2, there exists a uniform constant C > 0 such that for all m
and ε,

h0(Y1 ∩ · · · ∩ Yn−d, mεA+mL⊗ I+(mϕ)) = C(ε,m) ·md (4.24)

with C(ε,m) > C. Our aim is to prove by induction on s that

1

mn−sh
0(Y1 ∩ · · · ∩ Ys, mεA+mL⊗ I+(mϕ))

= C(ε,m)εn−s−d
1

(n− d− s)!
+O(εn−s−d+1) +O

(
1

m

)
(4.25)

for 0 6 s 6 n − d. If s = n − d, (4.25) comes from (4.24). Assume that (4.25) is true for
s0 6 s 6 n− d. We now prove (4.25) for s = s0 − 1.

Let Y be the intersection of zero divisors of s0 − 1 general global sections of H0(X,A), and
let

e0,q1 (ε,m) =

(
mε

q

)
h0(Y ∩ Y1 ∩ · · · ∩ Yq, mεA⊗mL⊗ I+(mϕ)). (4.26)

We claim that

1

mn−s0+1
h0(Y,mεA+mL⊗ I+(mϕ)) = − 1

mn−s0+1

(∑
q>1

(−1)qe0,q1 (ε,m)

)
+O

(
1

m

)
. (4.27)

We postpone the proof of (4.27) to Lemma 4.4 and conclude the proof of (4.25) first. If q >
n− d− s0 + 1, we have, by definition,

lim
m→∞

1

mn−s0+1
e0,q1 (ε) = O(εq) 6 O(εn−d−s0+2). (4.28)

Then (4.27) and the induction hypothesis of (4.25) imply that

1

mn−s0+1
h0(Y, mεA+mL⊗ I+(mϕ))

= −
(n−d−s0+1∑

q=1

(−1)q
εn−d−s0+1C(ε,m)

q!(n− q − s0 + 1− d)!

)
+O(εn−d−s0+2) +O

(
1

m

)
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= −
(n−d−s0+1∑

q=1

(−1)q
εn−d−s0+1C(ε,m)

(n− s0 + 1− d)!

(
n− s0 + 1− d

q

))
+O(εn−d−s0+2) +O

(
1

m

)

= −ε
n−d−s0+1C(ε,m)

(n− s0 + 1− d)!

(n−d−s0+1∑
q=1

(−1)q
(
n− s0 + 1− d

q

))
+O(εn−d−s0+2) +O

(
1

m

)

= C(ε,m)εn−d−s0+1 1

(n− d− s0 + 1)!
+O(εn−d−s0+2) +O

(
1

m

)
.

Therefore (4.25) is proved for s = s0 − 1.
In particular, taking s = 0 in (4.25), we have

lim
ε→0

lim
m→∞

1

mnεn−d
h0(X,mεA+mL⊗ I+(mϕ)) > 0.

So the proposition is proved. 2

We now prove the claim (4.27) in Proposition 4.3.

Lemma 4.4. In the situation of Proposition 4.3, we have

1

mn−s0+1
h0(Y, mεA+mL⊗ I+(mϕ)) =

1

mn−s0+1
e0,01 (ε,m)

=− 1

mn−s0+1

(∑
q>1

(−1)qe0,q1 (ε,m)

)
+O

(
1

m

)
.

Proof. Thanks to properties (iii) and (iv) of Lemma 4.1 and [Kür06, § 4], OY (mL⊗ I+(mϕ)) is
resolved by a complex of sheaves

OY (mεA+mL⊗ I+(mϕ)) →

⊕
16i6mε

OY ∩Yi(mεA+mL⊗ I+(mϕ))

→

⊕
16i1<i26mε

OY ∩Yi1∩Yi2 (mεA+mL⊗ I+(mϕ))

→ · · · (∗)

and then

Hk(Y, mL⊗ I+(mϕ)) = Hk(ε,m), (4.29)

where Hk(ε,m) represents the hypercohomology of (∗).
We now calculate the asymptotic behavior of both sides of (4.29). The Nadel vanishing

theorem implies that

lim
m→∞

1

mn−s0+1
hk(Y, mL⊗ I+(mϕ)) = 0 for every k > 1. (4.30)

Moreover, since we assume that nd(L, h) = d < dimY , we have

lim
m→∞

1

mn−s0+1
h0(Y, mL⊗ I+(mϕ)) = 0. (4.31)

By calculating the asymptotic cohomology on both sides of (4.29), (4.30) and (4.31) imply in
particular that
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lim
m→∞

1

mn−s0+1

∑
k

(−1)khk(ε,m) = 0, (4.32)

where hk(ε,m) denotes the dimension of Hk(ε,m).

We now prove the lemma by using (4.32). By the Nadel vanishing theorem, we have

lim
m→∞

1

mn−s0+1

(
mε

q

)
hp(Y ∩ Y1 ∩ · · · ∩ Yq, mεA⊗mL⊗ I+(mϕ)) = 0

for every p > 1. If p = 0, we have(
mε

q

)
h0(Y ∩ Y1 ∩ · · · ∩ Yq, mεA⊗mL⊗ I+(mϕ)) = e0,q1 (ε,m)

by (4.26). Then (4.32) implies that

lim
m→∞

1

mn−s0+1

(∑
q>0

(−1)qe0,q1 (ε,m)

)
= 0 for every ε > 0,

which is equivalent to saying that

1

mn−s0+1
h0(Y, mεA+mL⊗ I+(mϕ)) =

1

mn−s0+1
e0,01 (ε,m)

=− 1

mn−s0+1

(∑
q>1

(−1)qe0,q1 (ε,m)

)
+O

(
1

m

)
.

Thus the lemma is proved. 2

Remark 7. On a compact Kähler manifold, Boucksom defined in [Bou02] a concept of numerical
dimension, nd(L), for a pseudo-effective line bundle L without any specified metric. Let ϕmin be
a positive metric of L with minimal singularities. Proposition 4.3 implies, in particular, that

nd(L) > nd(L,ϕmin). (4.33)

Example 1.7 from [DPS94] tells us that we cannot hope for an equality

nd(L) = nd(L,ϕmin).

In that example, the line bundle L is nef and nd(L) = 1. On the other hand, [DPS94, Example 1.7]

shows that there exists a unique singular metric h on L such that the curvature form (i/2π)Θh(L)

is positive. Moreover,
i

2π
Θh(L) = [C]

for a curve C on X. Therefore ϕmin = h and nd(L,ϕmin) = 0. Hence

nd(L) > nd(L,ϕmin)

in this example.
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5. A Kawamata–Viehweg–Nadel vanishing theorem

The classic Nadel vanishing theorem states the following.

Theorem 5.1 [Nad90, Dem93]. Let (X,ω) be a projective manifold and let (L,ϕ) be a pseudo-
effective line bundle on X. If iΘϕ(L) > c · ω for some constant c > 0, then

Hq(X,O(KX + L)⊗ I(ϕ)) = 0 for every q > 1.

One of the limitations of Theorem 5.1 is that the curvature iΘϕ(L) should be strictly positive.
Various attempts have been made to overcome this limitation. For example, the following more
classic Kawamata–Viehweg vanishing theorem has found many applications in complex algebraic
geometry (cf. [Dem12, ch. 6.D])

Theorem 5.2 [Dem12]. Let X be a projective manifold and let F be a line bundle over X such
that some positive multiple mF can be written as mF = L+D where L is a nef line bundle and
D is an effective divisor. Then

Hq(X,O(KX + F )⊗ I(m−1D)) = 0 for every q > n− nd(L).

The classic proof of Theorem 5.2 uses an ample line bundle on X and a hyperplane section
argument to perform an induction on the dimension. Therefore the hypothesis that X is
projective is crucial in Theorem 5.2. However, we believe that it would be useful to find a
Kawamata–Viehweg-type vanishing theorem for arbitrary Kähler manifolds. In this direction,
Demailly and Peternell have proved the following result.

Theorem 5.3 [DP03]. Let (L, h) be a line bundle over a compact Kähler n-fold X. Assume that
L is nef. Then the natural morphism

Hq(X,O(KX + L)⊗ I+(h)) → Hq(X,O(KX + L))

vanishes for q > n− nd(L) + 1.

Following several ideas and techniques from [DP03], we will prove in this section our main
theorem, Theorem 1.4, which says that given a pseudo-effective line bundle (L,ϕ) over a compact
Kähler manifold X of dimension n, one has

Hp(X,O(KX + L)⊗ I+(ϕ)) = 0 for p > n− nd(L,ϕ) + 1.

By (4.33), our vanishing theorem can be viewed as a generalization of Theorem 5.3. The main
advantage of this version of the Kawamata–Viehweg–Nadel vanishing theorem is that we do not
need strict positivity of the line bundle; but as compensation, we have to use the multiplier
ideal sheaf I+(ϕ) instead of I(ϕ). When X is projective, the proof of our vanishing theorem is
much easier. We first give a quick proof of Theorem 1.4 in the projective case using the tools
developed in the previous sections. To begin with, we prove Theorem 1.4 in the case where
nd(L,ϕ) = dimX.

Proposition 5.4. Let X be a smooth projective variety of dimension n. Let (L,ϕ) be a pseudo-
effective line bundle over X with nd(L,ϕ) = n. Then

H i(X,O(KX + L)⊗ I+(ϕ)) = 0 for every i > 0.

1889

https://doi.org/10.1112/S0010437X14007398 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007398


J. Cao

Proof. Recall that we first fix a smooth metric h0 on L. The quasi-psh function ϕ gives a metric
h0e
−ϕ on L. That (L,ϕ) is pseudo-effective means that

i

2π
Θϕ(L) =

i

2π
Θh0(L) + ddcϕ > 0.

Since (i/2π)Θϕ(L) is not strictly positive, we cannot apply Theorem 5.1 directly. The idea is
to add a portion of the metric ϕ̃ constructed in Proposition 3.6 to make the curvature form for
the new metric strictly positive. We will see that this operation preserves the multiplier ideal
sheaves I+(ϕ).

First of all, by the definition of I+ (see § 2), there exists a δ > 0 such that

I+(ϕ) = I((1 + δ)ϕ). (5.1)

Let ϕ̃ be the psh function constructed in Proposition 3.6. Set ϕ1 := (1 + σ(ε)− ε)ϕ+ εϕ̃, where
0 < ε < 1 and 0 < σ(ε) � ε. Since ddcϕ > −cω for some constant c,5 the condition σ(ε) � ε
implies that

i

2π
Θϕ1(L) = (1 + σ(ε)− ε) i

2π
Θϕ(L) + ε

i

2π
Θϕ̃(L) + σ(ε)ddcϕ > 0.

Applying the standard Nadel vanishing theorem (cf. Theorem 5.1) to (X,L, I(ϕ1)), we get

H i(X,O(KX + L)⊗ I(ϕ1)) = 0 for i > 0. (5.2)

On the other hand, it not hard to prove that

I+(ϕ) = I(ϕ1) for ε� 1. (5.3)

We postpone the proof of (5.3) to Lemma 5.5 and conclude the proof of Proposition 5.4 first. By
taking ε small enough, (5.2) and (5.3) imply the proposition. 2

Lemma 5.5. In the situation of Proposition 5.4, if ε is small enough, then

I(ϕ1) = I+(ϕ). (5.4)

Proof. By (3.11) of Proposition 3.6, we have

(1 + σ(ε))ϕm = (1 + σ(ε)− ε)ϕm + εϕm 4 (1 + σ(ε)− ε)ϕ+ εϕ̃.

Therefore

I(ϕ1) ⊂ I((1 + σ(ε))ϕm). (5.5)

Note that, by Lemma 3.2, we have

I((1 + σ(ε))ϕm) ⊂ I+(ϕ) (5.6)

for m large enough with respect to σ(ε). Combining (5.5) with (5.6), we obtain that

I(ϕ1) ⊂ I+(ϕ).

5 In our context, since ϕ is a function on X, we have (i/2π)Θϕ(L) = (i/2π)Θh0(L) + ddcϕ > 0. Therefore
ddcϕ > −cω.
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For the reverse inclusion of (5.4), we need to prove that if f ∈ I+(ϕ)x, then

f ∈ I(ϕ1)x.

By (5.1), we have ∫
Ux

|f |2e−2(1+δ)ϕ < +∞. (5.7)

Since ϕ̃ is a quasi-psh function, by taking ε small enough, we have∫
Ux

e−2(ε/δ)ϕ̃ < +∞. (5.8)

Therefore (5.7) and (5.8) imply that∫
Ux

|f |2e−2(1+σ(ε)−ε)ϕ−2εϕ̃ 6
∫
Ux

|f |2e−2(1+δ)ϕ
∫
Ux

e−2(ε/δ)ϕ̃ < +∞

by Hölder’s inequality. Since ϕ1 = (1 + σ(ε)− ε)ϕ+ εϕ̃ by construction, we have f ∈ I(ϕ1). The
lemma is proved. 2

Using Proposition 5.4, we can prove the following Kawamata–Viehweg–Nadel vanishing
theorem by induction on the dimension.

Proposition 5.6. Let (L,ϕ) be a pseudo-effective line bundle on a projective variety X of
dimension n. Then

Hp(X,O(KX + L)⊗ I+(ϕ)) = 0 for p > n− nd(L,ϕ) + 1.

Proof. If nd(L,ϕ) = n, the result has been proved in Proposition 5.4. Assume that nd(L,ϕ) < n.
Let A be an ample line bundle that is large enough with respect to L, and let S be the zero
divisor of a very general global section of H0(X,A). Let ε > 0 be small enough that property
(iv) of Lemma 4.1 is satisfied (by Lemma 4.1, ε is independent of A). By Lemma 4.1, we have
an exact sequence

0 → I+(ϕ)⊗O(−S) → I+(ϕ) → I+(S, ϕS) → 0. (5.9)

Therefore we get an exact sequence

Hq(S,O(KS + L)⊗ I+(ϕ|S)) →Hq+1(X,O(KX + L)⊗ I+(ϕ))

→Hq+1(X,O(KX +A+ L)⊗ I+(ϕ))

for every q > 0. Since A is ample enough with respect to L, we have

Hq+1(X,O(KX +A+ L)⊗ I+(ϕ)) = 0

by the Nadel vanishing theorem. Thus the above exact sequence implies that

Hq(S,O(KS + L)⊗ I+(ϕ|S)) → Hq+1(X,O(KX + L)⊗ I+(ϕ))

is surjective for every q. The proposition is proved by induction on the dimension. 2
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The main goal of this section is to prove Theorem 1.4 for arbitrary Kähler manifolds. To
achieve this, we use the methods developed in [DP03], [Eno93] and [Mou95]. To clarify the
idea of the proof, we first consider the following easy case. Assume that (X,ω) is a compact
Kähler manifold and (L,ϕ) is a pseudo-effective line bundle with analytic singularities. Let
λ1 6 λ2 6 · · · 6 λn be the eigenvalues of iΘϕ(L) with respect to ω. Let f be a smooth (n, p)-
form representing an element in Hp(X,KX ⊗ L ⊗ I(ϕ)) for some p > n − nd(L,ϕ) + 1. Then∫
X |f |

2e−2ϕωn < +∞. By using a L2 estimate (cf. [DP03] or Proposition A.1 in the Appendix),
f can be written as

f = ∂uk + vk, (5.10)

with the following estimate:∫
X
|uk|2e−2ϕ +

1

2pεk

∫
X
|vk|2e−2ϕ 6

∫
X

1

2pεk + λ1 + λ2 + · · ·+ λp
|f |2e−2ϕ, (5.11)

where {εk} is a positive sequence tending to 0. Since p > n− nd(L,ϕ) + 1, we have∫
X

(∑
i>p

λi(z)

)
ωn > 0. (5.12)

If λp(z) is generically strictly positive, (5.11) implies that

lim
k→+∞

∫
X
|vk|2e−2ϕ = 0.

By some standard results from functional analysis (cf. Lemma 5.8), we obtain that

f = 0 ∈ Hp(X,O(KX + L)⊗ I(ϕ)).

The situation becomes more complicated when λp(z) is not necessarily generically strictly
positive. In this case, thanks to the condition (5.12) and the fact that ϕ has analytic singularities,
we can use Monge–Ampère equations to construct a sequence of new metrics ϕ̂k on L such that∫
X |f |

2e−2ϕ̂kωn can be controlled by
∫
X |f |

2e−2ϕωn and, more importantly, the place where the
pth eigenvalue of iΘϕ̂k(L) is strictly positive tends to cover the whole X. Letting k → +∞, we
can thus prove that

f = 0 ∈ Hp(X,O(KX + L)⊗ I(ϕ)).

In the general case, since ϕ does not necessarily possess analytic singularities, we are in
trouble when using L2 estimates. Therefore we replace ϕ by a quasi-equisingular approximation
{ϕk} and get estimates similar to (5.10) and (5.11) with ϕ replaced by ϕk. We can use a
Monge–Ampère equation to construct other metrics ϕ̂k for which we can control the eigenvalues.
Therefore we can use L2 estimates for every ϕ̂k. By a delicate analysis, we then prove the theorem.
Such ideas were already used in [DP03], [Eno93] and [Mou95]. We will construct the key metric
ϕ̂k in Lemma 5.9 and prove some important properties of ϕ̂k in Lemmas 5.10 and 5.11. Finally,
we prove the vanishing theorem in Theorem 5.12.

To begin with, we show that I+ has analytic singularities. More precisely, we prove the
following result.

Lemma 5.7. Let (L,ϕ) be a pseudo-effective line bundle over a compact Kähler manifold X.
Then there exists a quasi-equisingular approximation {ϕk} of ϕ such that

I
((

1 +
2

k

)
ϕk

)
= I+(ϕ) for k � 1. (5.13)

1892

https://doi.org/10.1112/S0010437X14007398 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007398


A Kawamata–Viehweg–Nadel-type vanishing theorem

Proof. By [DPS01, Theorem 2.2.1], there exists a quasi-equisingular approximation {ϕk} of
ϕ. The technique of comparing integrals discussed in [DPS01] implies that we can choose a
subsequence {ϕf(k)} ⊂ {ϕk} such that

I
((

1 +
2

k

)
ϕf(k)

)
⊂ I+(ϕ). (5.14)

In fact, if X is projective, we can take s = 1 + ε and f(k) � k in Lemma 3.2. By Lemma 3.2,

we get (5.14). If X is an arbitrary compact Kähler manifold, we can get the inclusion (5.14) on

any Stein open set of X. Using standard gluing techniques, we also obtain the global inclusion

(5.14) (see [DPS01, Theorem 2.2.1] for details).

For the opposite inclusion, we observe that ϕf(k) is less singular than ϕ, and the definition

of I+(ϕ) implies that

I
((

1 +
2

k

)
ϕf(k)

)
⊃ I+(ϕ) for k � 1.

Thus the lemma is proved. 2

The following lemma will be important in the proof of our Kawamata–Viehweg–Nadel

vanishing theorem. The main substance of the lemma is that to prove the convergence in

higher-degree cohomology with multiplier ideal sheaves, we just need to check the convergence

for some smooth metric. Although this technique is well known (see, for example, [DPS01,

Part 2.4.2]), we will present the proof here for the reader’s convenience.
First we fix some notation. Let (L,ϕ) be a pseudo-effective line bundle over a compact Kähler

manifold X and let U = {Uα}α∈I be a Stein covering of X. Set Uα0α1···αq := Uα0 ∩ · · · ∩Uαq . Let
Čq(U ,KX ⊗ L ⊗ I+(ϕ)) be the Čech q-cochain associated to KX ⊗ L ⊗ I+(ϕ). For an element
c ∈ Čq(U ,KX ⊗ L⊗ I+(ϕ)), we denote its component on Uα0α1···αq by cα0α1···αq . Let

δp : Čp−1(U , I+(ϕ)) → Čp(U , I+(ϕ)) (5.15)

be the Čech operator, and let Žp(U , I+(ϕ)) = Ker δp+1.

Lemma 5.8. Let L be a line bundle over a compact Kähler manifold X and let ϕ be a singular
metric on L. Let {Uα}α∈I be a Stein covering of X. Let u be an element in Ȟp(X,O(KX +L)⊗
I+(ϕ)). If there exists a sequence {vk}∞k=1 ⊂ Čp(U ,KX ⊗ L ⊗ I+(ϕ)) in the same cohomology
class as u satisfying the L2 convergence condition

lim
k→∞

∫
Uα0···αp

|vk,α0···αp |2 → 0, (5.16)

where the L2 norm |v|2 in (5.16) is taken for some fixed smooth metric on L, then u = 0 in

Ȟp(X,O(KX + L)⊗ I+(ϕ)).

Proof. On the p-cochain space Čp(U , I+(ϕ)), we first define a family of natural semi-norms: for
f ∈ Čp(U , I+(ϕ)), define a family of semi-norms by∑

α0···αp

∫
Vα0···αp

|f |2ωn for any open set Vα0···αp b Uα0···αp . (5.17)

Claim. Čp(U , I+(ϕ)) is a Fréchet space with respect to the family of semi-norms (5.17).
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Proof of the claim. We need to prove that if fi ∈ I+(ϕ) and fi → f0 with respect to the semi-
norms (5.17), then f0 ∈ I+(ϕ). First of all, by (5.17), f0 is holomorphic. By Lemma 5.7, we can
choose a quasi-psh function ψ with analytic singularities such that

I(ψ) = I+(ϕ).

Let π : X̂ → X be a log resolution of ψ. Then the current E = bddc(ψ ◦ π)c has normal crossing
singularities. Since fi ∈ I+(ϕ) = I(ψ), we have

(fi ◦ π) · J ∈ O(−E), (5.18)

where J is the Jacobian of π. Since fi ◦ π ⇀ f0 ◦ π in the sense of weak convergence and E has
normal crossing singularities, (5.18) implies that

(f0 ◦ π) · J ∈ O(−E).

Therefore f0 ∈ I+(ϕ) and the claim is proved. 2

As a consequence of the claim, the Čech operator (5.15) is continuous and its kernel Žp−1(U ,
I+(ϕ)) is also a Fréchet space. Therefore we have a continuous boundary morphism between
Fréchet spaces,

δp : Čp−1(U , I+(ϕ)) → Žp(U , I+(ϕ)). (5.19)

Since the cokernel of δp in (5.19) is Ȟp(X,O(KX + L) ⊗ I+(ϕ)), which is of finite dimension,
by the open mapping theorem from functional analysis, the image of δp in (5.19) is closed.
Therefore the quotient morphism

pr : Žp(U , I+(ϕ)) →
Žp(U , I+(ϕ))

Im(δp)
= Ȟp(X,O(KX + L)⊗ I+(ϕ)) (5.20)

is continuous. Thanks to the claim, the condition (5.16) implies that {vk}∞k=1 tends to 0 in the
Fréchet space Žp(U , I+(ϕ)). By the continuity of (5.20), we have

lim
k→+∞

pr(vk) = 0 ∈ Ȟp(X,O(KX + L)⊗ I+(ϕ)). (5.21)

Since, by construction, the pr(vk) are in the same class as [u], we conclude by (5.21) that u = 0
in Ȟp(X,O(KX + L)⊗ I+(ϕ)). 2

Remark 8. Recently, Matsumura proved in [Mat13] that the above lemma is also true for the
space Ȟp(X,O(KX + L)⊗ I(ϕ)).

We proceed to construct the new singular metrics mentioned in the paragraphs before
Lemma 5.7.

Lemma 5.9. Let (L,ϕ) be a pseudo-effective line bundle over a compact Kähler manifold (X,ω)
of dimension n, and let p > n − nd(L,ϕ) + 1. Then there exists a sequence of metrics {ϕ̂k}∞k=1

with analytic singularities on L which satisfy the following properties.

(i) I(ϕ̂k) = I+(ϕ) for all k.

(ii) Let λ1,k 6 λ2,k 6 · · · 6 λn,k be the eigenvalues of (i/2π)Θϕ̂k(L) with respect to the base
metric ω. Then there exist two sequences τk → 0 and εk → 0 such that

εk � τk +
1

k
and λ1,k(x) > −εk −

C

k
− τk

for all x ∈ X and k, where C is a constant independent of k.
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(iii) We can choose β > 0 and 0 < α < 1 independent of k such that for every k, there exists
an open subset Uk of X satisfying

vol(Uk) 6 εβk and λp + 2εk > εαk on X\Uk.

Proof. Recall that we first fix a smooth metric h0 on L. Taking ϕ as a weight, we just mean that
the hermitian metric on L is h0 · e−ϕ.

By definition, there exists s1 > 0 such that

I+(ϕ) = I((1 + s1)ϕ). (5.22)

Let {ϕk} be the quasi-equisingular approximation of ϕ in Lemma 5.7. Then there is a positive
sequence τk → 0 such that

i

2π
Θϕk(L) > −τkω and I

((
1 +

2

k

)
ϕk

)
= I+(ϕ) (5.23)

for every k. We can choose a positive sequence εk → 0 such that εk � τk + 1/k.
Fix a positive sequence {δk} tending to 0. We begin to construct new metrics by solving a

Monge–Ampère equation. Let π : Xk → X be a log resolution of ϕk. Then ddc(ϕk ◦ π) is of the
form [Ek] + C∞ where [Ek] is a normal crossing Q-divisor. Let Zk = π∗(Ek). By [Bou02], there
exists a smooth metric hk on [Ek] such that for all δ > 0 small enough,

π∗(ω) + δ
i

2π
Θhk(−Ek)

is a Kähler form on Xk. Then we can solve a Monge–Ampère equation on Xk,((
i

2π
π∗Θϕk(L)

)
ac

+ εkπ
∗ω + δk

i

2π
Θhk(−Ek) + ddcψk,ε,δk

)n
= C(k, δ, ε) · εn−dk

(
ω + δk

i

2π
Θhk(−Ek)

)n
, (5.24)

with the normalization condition

sup
z∈Xk

(ϕk ◦ π + ψk,ε,δk + δk ln |Ek|hk)(z) = 0 (5.25)

where d = nd(L,ϕ). Thanks to the definition of numerical dimension, there exists a uniform
constant C > 0 such that C(k, δ, ε) > C. By observing, moreover, that

i∂∂ ln |Ek|hk = [Ek] +
i

2π
Θhk(−Ek),

(5.24) implies that

i

2π
Θϕk+ψk,ε,δk+δk ln |Ek|hk

(π∗L) > −εkω. (5.26)

Set

ϕ̂k :=

(
1 +

2

k
− s
)
ϕk ◦ π + s(ϕk ◦ π + ψk,ε,δ + δ ln |Ek|hk), (5.27)
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where 0 < s � s1 will be made precise6 in Lemma 5.10. Now we have a new metric ϕ̂k on
(Xk, π

∗L) (i.e. h0e
−ϕ̂k as the actual hermitian metric on π∗L). We prove that ϕ̂k induces a

natural metric on (X,L). In fact, by (5.27) we have

i

2π
Θϕ̂k(π∗L) = (1− s) i

2π
Θϕk(π∗L) + s

i

2π
Θϕk+ψk,ε,δk+δk ln |Ek|hk

(π∗L) +
2

k
ddcϕk. (5.28)

Inequality (5.26) gives the estimate for the second term in the right-hand side of (5.28). For the
last term in the right-hand side of (5.28), we observe that ϕk is a function on X satisfying

i

2π
Θϕk(L) =

i

2π
Θh0(L) + ddcϕk > −cω,

and thus
ddcϕk > −Cω

for some uniform constant C, and

i

2π
Θϕ̂k(π∗L) > −εkω − τkω −

C

k
ω. (5.29)

Thus ϕ̂k induces a quasi-psh function on X by extending it from X\Zk to the whole X. This is
the metric that we wanted to construct. We denote it also by ϕ̂k for simplicity. We will prove
properties (i) to (iii) of Lemmas 5.10 and 5.11. 2

Lemma 5.10. If we take s in (5.27) small enough with respect to s1 in (5.22) of Lemma 5.9, then∫
U
|f |2e−2ϕ̂k 6 C|f |L∞

(∫
U
|f |2e−2(1+s1)ϕ

)1/(1+s1)

(5.30)

for all U in X and k � 1, where C|f |L∞ is a constant depending only on |f |L∞ (in particular, it
is independent of the open subset U and of k). As a consequence, we have

I(ϕ̂k) = I+(ϕ) for every k. (5.31)

Proof. Thanks to (5.26), ϕk +ψk,ε,δk + δ ln |Ek|hk induces a quasi-psh function on X. We denote
it also by ϕk +ψk,ε,δk + δ ln |Ek|hk for simplicity. Then (5.25) and (5.26) in Lemma 5.9 imply the
existence of a constant a > 0 such that∫

X
e−2a(ϕk+ψk,ε,δ+δk ln |Ek|hk )

is uniformly bounded for all k.
By Hölder’s inequality and the construction (5.27), we have∫

U
|f |2e−2ϕ̂k 6

(∫
U
|f |2e−2(1+s1)ϕk

)1/(1+s1)(∫
U
|f |2e−(2s(1+s1)/s1)(ϕk+ψk,ε,δk+ δk ln |Ek|hk )

)s1/(1+s1)
(5.32)

for k� 1, where U is any open subset of X. If we take an s > 0 satisfying s(1 + s1)/s1 6 a, then
the uniform boundedness of

∫
X e
−2a(ϕk+ψk,ε,δk+δk ln |Ek|hk ) implies that∫

U
|f |2e−(2s(1+s1)/s1)(ϕk+ψk,ε,δk+δk ln |Ek|hk ) 6 C · |f |L∞ (5.33)

6 Note that s1 is the constant in (5.22).
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for any U ⊂ X and k � 1. Combining (5.32) with (5.33), we obtain that∫
U
|f |2e−2ϕ̂k 6 C|f |L∞

(∫
U
|f |2e−2(1+s1)ϕk

)1/(1+s1)

6 C|f |L∞

(∫
U
|f |2e−2(1+s1)ϕ

)1/(1+s1)

(5.34)

for some constant C|f |L∞ independent of the open subset U and of k � 1.
It remains to prove (5.31). The inclusion I(ϕ̂k) ⊃ I+(ϕ) comes directly from (5.34). By

construction, ϕ̂k is more singular than (1 + 2/k)ϕk. Then (5.23) implies that I(ϕ̂k) ⊂ I+(ϕ),
and so the equality (5.31) is proved. 2

The following lemma was essentially proved in [Mou95].

Lemma 5.11. In the situation of Lemma 5.9, the new metrics {ϕ̂k}∞k=1 satisfy properties (ii) and
(iii) of Lemma 5.9.

Proof. Let λ1(z) 6 λ2(z) 6 · · · 6 λn(z) be the eigenvalues of iΘϕ̂k(L) with respect to the base
metric ω. Note that λi is equal to λi,k in Lemma 5.9. Since the proof here is for a fixed k, this
simplification should not lead to misunderstanding. By (5.29), we have

λi(z) > −εk −
C

k
− τk,

so property (ii) of Lemma 5.9 is proved.

Set λ̂i := λi + 2εk. Since s is a fixed positive constant, the Monge–Ampère equation (5.24)
implies that

n∏
i=1

λ̂i(z) > C(s)εn−dk , (5.35)

where C(s) > 0 does not depend on k. Since p > n− d, we can take α such that 0 < α < 1 and

n− d < αp. Set Uk := {z ∈ X | λ̂p(z) < εαk}.
We now check that Uk satisfies property (iii) of Lemma 5.9. Since εk � τk + 1/k, we have

λ̂i(z) = λi(z) + 2εk > 0 for any z and i. Thus the cohomological condition∫
X

(λ̂1 + λ̂2 + · · ·+ λ̂n)ωn 6M

implies that ∫
Uk

(λ̂1 + λ̂2 + · · ·+ λ̂n)ωn 6M. (5.36)

Observing that (5.35) and the definition of Uk imply that

∏
p+16i6n

λ̂i(z) > C(s)
εn−dk

εαpk
for z ∈ Uk,

we have ∑
p+16i6n

λ̂i(z) > C

(
εn−dk

εαpk

)1/(n−p)
for z ∈ Uk (5.37)
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by the inequality between arithmetic and geometric means. Applying (5.37) to (5.36), we have∫
Uk

(
εn−dk

εαpk

)1/(n−p)
ωn 6M ′. (5.38)

Since n− d < αp, (5.38) implies that

vol(Uk) 6 εβk

for some β > 0. Thus property (iii) of Lemma 5.9 is proved. 2

We now reach the final conclusion.

Theorem 5.12 (Theorem 1.4). Let (L,ϕ) be a pseudo-effective line bundle on a compact Kähler
manifold (X,ω). Then

Hp(X,O(KX + L)⊗ I+(ϕ)) = 0 for p > n− nd(L,ϕ) + 1.

Remark 9. One reason to use I+(ϕ) instead of I(ϕ) is that it does not seem to be easy to prove
that

Hp(X,O(KX + L)⊗ I(ϕ)) = 0 for p > n− nd(L,ϕ) + 1,

even when X is projective. (However, see [Mat13] for some recent progress.)

Proof. We prove the theorem in two steps.

Step 1. L2 estimates.
Let {ϕ̂k}∞k=1 be the metrics constructed in Lemma 5.9, and let [u] be an element in Hp(X,

KX ⊗ L⊗ I+(ϕ)). Let f be a smooth (n, p)-form representing [u]. Then∫
X
|f |2e−2(1+s1)ϕ < +∞,

where s1 is the constant in (5.22) of Lemma 5.9. By Lemma 5.10, we have∫
U
|f |2e−2ϕ̂k 6 C

(∫
U
|f |2e−2(1+s1)ϕ

)1/(1+s1)

for every k � 1 (5.39)

for any open subset U of X, where C is a constant independent of U and k (but which certainly
depends on |f |L∞). We now use the L2 method from [DP03] to get a key estimate, namely that
f can be written as

f = ∂uk + vk (5.40)

with the bound∫
X
|uk|2e−2ϕ̂k +

1

2pεk

∫
X
|vk|2e−2ϕ̂k 6

∫
X

1

λ̂1,k + λ̂2,k + · · ·+ λ̂p,k
|f |2e−2ϕ̂k , (5.41)

where λ̂i,k = λi,k + 2εk. The estimate (5.41) comes from the Bochner inequality

‖∂u‖2ϕ̂k + ‖∂∗u‖2ϕ̂k >
∫
X−Zk

(λ̂1,k + λ̂2,k + · · ·+ λ̂p,k − Cεk)|u|2ϕ̂k dV,

where Zk is the singular locus of ϕk in X (see [DP03, Theorem 3.3] or Proposition A.1 in the
Appendix for details).
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Using (5.41), we claim that

lim
k→∞

∫
X
|vk|2e−2ϕ̂k → 0. (5.42)

To prove the claim, observe that properties (ii) and (iii) of Lemma 5.9 and (5.41) imply that∫
X
|uk|2e−2ϕ̂k +

1

2pεk

∫
X
|vk|2e−2ϕ̂k 6

∫
X

C1

εαk
|f |2e−2ϕ̂k +

∫
Uk

1

C2εk
|f |2e−2ϕ̂k .

Then ∫
X
|vk|2e−2ϕ̂k 6 C3ε

1−α
k

∫
X
|f |2e−2ϕ̂k + C4

∫
Uk

|f |2e−2ϕ̂k . (5.43)

Since vol(Uk) → 0 by property (iii) of Lemma 5.9, (5.39) implies that the second term of the
right-hand side of (5.43) tends to 0. Since 0 < α < 1 and εk → 0 as k → ∞, (5.39) therefore
implies that the first term of the right-hand side of (5.43) also tends to 0. Thus (5.42) is proved.

Step 2. Final stage.
We use Lemma 5.8 to obtain the final result. Let U = {Uα}α∈I be a Stein covering of X.

Thanks to (5.42), we get a p-cocycle representing vk by solving ∂-equations, i.e. vk can be written
as

vk = {vk,α0···αp} ∈ Čp(U ,O(KX + L)⊗ I(ϕ̂k)),

where the components satisfy the L2 conditions∫
Uα0···αp

|vk,α0···αp |2e−2ϕ̂k 6 C

∫
X
|vk|2e−2ϕ̂k , (5.44)

with C not depending on k. Inequality (5.44) and property (i) of Lemma 5.9 imply that {vk} is
in Čp(U ,O(KX + L)⊗ I+(ϕ)) for every k.

Since ϕ̂k 6 0 by construction, (5.42) and (5.44) imply that

lim
k→∞

∫
Ui0···ip

|vk,i0···ip |2 = 0. (5.45)

By (5.40), {vk}∞k=1 are in the same cohomology class as u in Hp(X,O(KX + L) ⊗ I+(ϕ)). By
Lemma 5.8, (5.45) implies that [u] = 0. So the theorem is proved. 2
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Appendix. An L2 estimate
For the reader’s convenience, we give the proof of estimate (5.41) in Theorem 5.12. For the most
part, the proof is just extracted from [DP03].

Proposition A.1. Let (X,ω) be a compact Kähler manifold and let (L, h0e
−ϕ) be a line bundle

on X, where h0 is a smooth metric on L and the quasi-psh function ϕ has analytic singularities
and is smooth outside a subvariety Z. Assume that

i

2π
Θϕ(L) > −εω
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on X\Z and that f is a smooth L-valued (n, p)-form satisfying∫
X
|f |2e−2ϕ dV <∞. (A1)

Let λ1 6 λ2 6 · · · 6 λn be the eigenvalues of (i/2π)Θϕ(L) and let λ̂i = λi + 2ε > ε. Then there
exist u and v such that f = ∂u+ v and the following estimate is satisfied:∫

X
|u|2e−2ϕ dV +

1

2pε

∫
X
|v|2e−2ϕ dV 6

∫
X

1

λ̂1 + λ̂2 + · · ·+ λ̂p
|f |2e−2ϕ dV.

Proof. Let ω1 be a complete Kähler metric on X\Z and let ωδ = ω + δω1 for some δ > 0. We
now do the standard L2 estimate on (X\Z, ωδ, L, ϕ).

If s is an L-valued (n, p)-form in C∞c (X\Z), then the Bochner inequality implies that

‖∂s‖2δ + ‖∂∗s‖2δ >
∫
X\Z

(λ̂1 + λ̂2 + · · ·+ λ̂p − 2pε)|s|2e−2ϕωnδ , (A2)

where ‖s‖2δ =
∫
X |s|

2e−2ϕωnδ . Note that there is an abuse of notation here: we calculate the norm
|u|2 by the metric (or volume form) written in the equations. For example, if the volume form is
ωnδ , then we calculate the norm of u by means of the metrics ωδ and h0.

Since f is an (n, p)-form, (A1) implies that

f ∈ L2(X\Z,L, ϕ, ωδ) for δ > 0.

We write every form s in the domain of the L2 extension of ∂
∗

as s = s1 + s2 with

s1 ∈ Ker ∂ and s2 ∈ (Ker ∂)⊥ ⊂ Ker ∂
∗
.

Since f ∈ Ker ∂, by (A2) we obtain

|〈f, s〉|2ϕ,δ = |〈f, s1〉|2ϕ,δ

6
∫
X\Z

1

λ̂1 + λ̂2 + · · ·+ λ̂p
|f |2e−2ϕ dVδ

∫
X\Z

(λ̂1 + λ̂2 + · · ·+ λ̂p)|s1|2e−2ϕ dVδ

6
∫
X\Z

1

λ̂1 + λ̂2 + · · ·+ λ̂p
|f |2e−2ϕ dVδ(‖∂

∗
s1‖2δ + 2pε‖∂s1‖2δ)

6
∫
X\Z

1

λ̂1 + λ̂2 + · · ·+ λ̂p
|f |2e−2ϕ dVδ(‖∂

∗
s‖2δ + 2pε‖∂s‖2δ).

By the Hahn–Banach theorem, we can find vδ and uδ such that

〈f, s〉δ = 〈uδ, ∂
∗
s〉δ + 〈vδ, s〉δ for every s

and which satisfy the estimate

‖uδ‖2δ +
1

2pε
‖vδ‖2δ 6 C

∫
X

1

λ̂1 + λ̂2 + · · ·+ λ̂p
|f |2e−2ϕωnδ .

Therefore

f = ∂uδ + vδ. (A3)
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Since the norm ‖ · ‖δ of (n, p)-forms is increasing as δ decreases to 0, we obtain limits

u = lim
δ→0

uδ and v = lim
δ→0

vδ (A4)

satisfying

‖u‖2δ +
1

2pε
‖v‖2δ 6 C

∫
X

1

λ̂1 + λ̂2 + · · ·+ λ̂p
|f |2e−2ϕωnδ 6 C

∫
X

1

λ̂1 + λ̂2 + · · ·+ λ̂p
|f |2e−2ϕωn

(A5)
for every δ > 0. Formulas (A3) and (A4) imply that f = ∂u + v. Letting δ → 0 in (A5), we
obtain the estimate in the proposition. 2
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