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Abstract
Seasonal changes and cyclical human activities (such as periodic fishing bans, Wolbachia-based mosquito popu-
lation control, and school term breaks) have significant impacts on population dynamics. We propose a general
switching dynamical model to describe these periodic changes. The existence, uniqueness and stability of positive
periodic solutions are thoroughly investigated. The results are stated in terms of an introduced threshold value. To
demonstrate their practicability, the obtained results are applied to two biological situations.

1 Introduction

Many organisms experience periodic environmental variations influenced by seasonal changes and
cyclical human activities. These fluctuations often affect the availability of resources (such as food,
water, nutrients, and energy) as well as territories and habitats. For instance, seasonal succession
(such as the succession of phytoplankton species [9]) and cyclical human behaviours (such as periodic
open-closed fishery management policies [6, 11–13, 23] and the periodic release of Wolbachia-
infected mosquitoes [24, 25, 26]) can cause the living environments of the populations to undergo
regular changes. These periodic variations have profound effects on population growth dynamics
and the success of species invasions.

The growth of organisms requires specific environmental conditions and hence not all the times are
suitable for the growth of certain species. As a result, growth seasons alternate with non-growth sea-
sons, during which biomass increases continuously and decreases gradually, respectively. For example,
climate patterns repeat annually, birds migrate according to seasonal successions, and the opening and
closing of schools are almost always cyclical. The incidence and contact rates of many infectious diseases
are often influenced by seasonal changes. Autumn and winter are typically the high-incidence seasons
for influenza. Childhood diseases such as measles, rubella, and whooping cough are highly sensitive to
the seasonal pressures caused by the alternation between school terms and holidays. Seasonal factors
significantly affect the survival of pathogens in the environment, host behaviours, and the abundance
of vectors and non-human hosts. Existing extensive studies [1, 2, 4, 20] suggest that seasonality plays a
crucial role in the outbreak and evolution of epidemics and the transmission of diseases.
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Pan et al. [15] analysed the following switching dynamical system,⎧⎪⎨
⎪⎩

dx

dt
= xf (x), t ∈ (nT , nT + T],

dx

dt
= xg(x), t ∈ (nT + T , (n + 1)T].

(1.1)

It is worth noting that the functions f and g in (1.1) are autonomous functions, namely, they are
independent of the time t. However, in practical applications to biological systems, it has been observed
that f and g actually depend on t, with specific details to be provided in the examples in Section 3. As a
result, in this paper, we consider the following switching dynamical system,⎧⎪⎨

⎪⎩
dx

dt
= xf (t, x, α), t ∈ (nT , nT + T],

dx

dt
= xg(t, x, α), t ∈ (nT + T , (n + 1)T],

(1.2)

with x(0) ∈R+ = [0, +∞) (Here and in the sequel, without mentioning, n = 0, 1, 2, . . .). T and T are
two important time points satisfying T > T . The parameter α is of particular interest in this study and
hence it is highlighted here.

We assume that both f (t, x, α) and g(t, x, α) from R+ ×R+ ×R+ to R are continuous, T-periodic
in t, and continuously differentiable in both x and α. Then it is easy to show the existence and uniqueness
of solutions to system (1.2). In fact, taking n = 0, by a standard application of the existence theory of
ordinary differential equations, one can obtain the existence and uniqueness of solutions on (0, T]. Then,
similarly, we can prove the existence and uniqueness of solutions in (T , T] with the initial data x(T).
Continuing this way, we have the existence and uniqueness of solutions to system (1.2) on R+.

The rest of the paper is organised as follows. In Section 2, we provide the detailed analysis on
the dynamics of (1.2) under certain reasonable assumptions. Then the obtained theoretical results are
illustrated with two applications in Section 3. The paper concludes with a brief summary.

2 The dynamics of system (1.2)

In this section, we develop the existence and stability of positive periodic solutions to system (1.2) under
certain assumptions.

We first state some assumptions on f and g.

(H1) f (t, 0, α) ≥ f (t, x, α) and g(t, 0, α) ≥ g(t, x, α) for x> 0.
(H2) There exist M1 and M2 such that f (t, x, α) ≤ 0 for all x ≥ M1 > 0 and g(t, x, α) ≤ 0 for x ≥ M2 > 0.

(H3)

{
fx(t, x, α)< 0 for t ∈ (nT , nT + T] and x> 0,
gx(t, x, α)< 0 for t ∈ (nT + T , (n + 1)T] and x> 0.

Denote �(T , T , α) = ∫ T

0
f (t, 0, α) dt + ∫ T

T
g(t, 0, α) dt. We also have the following assumption on �.

(H) The function �(T , T , α) satisfies at least one of the following three assumptions about parameters
T > 0, T > 0, and α > 0.
(a) For any fixed T > 0 and α > 0, �(T , T , α) is strictly monotonic in T and �(T , T , α) = 0 has a

unique non-negative root with respect to T .
(b) For any fixed T > 0 and α > 0, �(T , T , α) is strictly monotonic in T and �(T , T , α) = 0 has a

unique non-negative root with respect to T .
(c) For fixed T > 0 and T > 0, �(T , T , α) is strictly monotonic in α and �(T , T , α) = 0 has a

unique non-negative root with respect to α.

In the following, we assume that the monotonicity in (H) is strictly increasing. For results in the case
of monotonically decreasing, just reverse the directions of inequalities in conditions. The non-negative
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root in (H) will serve as the threshold value. In fact, the linearisation of (1.2) at 0 is⎧⎪⎪⎨
⎪⎪⎩

dy

dt
= yf (t, 0, α), t ∈ (nT , nT + T],

dy

dt
= yg(t, 0, α), t ∈ (nT + T , (n + 1)T].

(2.1)

By the Floquet theory, any fundamental solution of equation (2.1) has the form y(t) = e−λtψ(t), where
λ ∈C is a characteristic exponent and ψ(t + T) =ψ(t) for all t ∈R. Thus, we have⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dψ

dt
= f (t, 0, α)ψ + λψ , t ∈ (0, T],

dψ

dt
= g(t, 0, α)ψ + λψ , t ∈ (T , T],

ψ(0) =ψ(T)

(2.2)

or equivalently, ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

ψ(t)

dψ(t)

dt
= f (t, 0, α) + λ, t ∈ (0, T],

1

ψ(t)

dψ(t)

dt
= g(t, 0, α) + λ, t ∈ (T , T],

ψ(0) =ψ(T).

(2.3)

Integrating the first equation of (2.3) with respect to t from 0 to T and the second from T to T , we obtain

lnψ(T) − lnψ(0) =
∫ T

0

(f (t, 0, α) + λ) dt

and
lnψ(T) − lnψ(T) =

∫ T

T

(g(t, 0, α) + λ) dt,

respectively. Adding the above two equations and using ψ(0) =ψ(T), we get

λT +
∫ T

0

f (t, 0, α) dt +
∫ T

T

g(t, 0, α) dt = 0. (2.4)

By (H), let ω∗ be the unique root of �(T , T , α) = 0, where ω is one of T , T , and α and correspondingly,
ω∗ can be one of T∗, T

∗
, and α∗, respectively. Moreover, we have that λ satisfying (2.4) has the property,

λ

⎧⎪⎨
⎪⎩
> 0 if ω<ω∗,
= 0 if ω=ω∗,
< 0 if ω>ω∗.

Now, we are ready to give the main results of this paper.
We first present a result on the existence and attractivity of positive T-periodic solutions to system

(1.2), that is, ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx

dt
= xf (t, x, α), t ∈ (0, T],

dx

dt
= xg(t, x, α), t ∈ (T , T],

x(0) = x(T).

(2.5)

Theorem 2.1. Suppose that (H2) holds. If ω>ω∗, then system (1.2) has at least one positive
T-periodic solution. Furthermore, if (H3) holds, then system (1.2) has a unique globally attractive
positive T-periodic solution.

https://doi.org/10.1017/S0956792525100065 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525100065


4 Q. Ding et al.

Proof. Let ψ(t) be a positive eigenfunction of (2.2) associated with the eigenvalue λ satisfying (2.4).
Denote x(t) = εψ(t). Since ω>ω∗, we have λ< 0. For small enough ε > 0, we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
− xf (t, x, α) − xf (t, 0, α) + xf (t, 0, α)

= (−f (t, εψ(t), α) + f (t, 0, α) + λ)εψ(t) ≤ 0 for t ∈ (0, T],

dx

dt
− xg(t, x, α) − xg(t, 0, α) + xg(t, 0, α)

= (−g(t, εψ(t), α) + g(t, 0, α) + λ)εψ(t) ≤ 0 for t ∈ (T , T],

ψ(0) =ψ(T).

Thus, εψ is a sub-solution of the periodic system (2.5). On the other hand, with the help of (H2), we
can deduce that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dM̄

dt
− M̄f (t, M̄, α)

= −M̄f (t, M̄, α) ≥ 0 for t ∈ (0, T],

dM̄

dt
− M̄g(t, M̄, α)

= −M̄g(t, M̄, α) ≥ 0 for t ∈ (T , T]

for M̄ ≥ max{M1, M2}. Therefore, (M̄, εψ(t)) forms a pair of upper and lower solutions for the periodic
system (2.5). This implies that (2.5) has a positive T-periodic solution x1(t) initiated from the minimal
point u1.

Next, we prove that the periodic system (2.5) has a unique positive T-periodic solution when (H3)
also holds.

Suppose, for the sake of contradiction, that x2(t) is also a positive T-periodic solution to system (2.5)
initiated from u2 with u1 < u2. Since xi (i = 1, 2) is a positive solution to the following equation⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx

dt
= xf (t, x, α), t ∈ (0, T],

dx

dt
= xg(t, x, α), t ∈ (T , T],

x(0) = (T),

we have ⎧⎪⎨
⎪⎩

1

xi

dxi

dt
= f (t, xi, α), t ∈ (0, T],

1

xi

dxi

dt
= g(t, xi, α), t ∈ (T , T].

(2.6)

Integrating the first equation of (2.6) in t from 0 to T and the second one from T to T , and then summing
the resultants, we obtain ∫ T

0

f (t, xi, α) dt +
∫ T

T

g(t, xi, α) dt = 0.

According to (H3), this is impossible. Therefore, system (2.5) has a unique positive T-periodic solution.
Using a standard monotone iteration scheme and the instability of the trivial equilibrium point 0 of
system (1.2), we see that the unique positive T-periodic solution of system (1.2) is globally attractive.
This completes the proof.

Next, we consider the extinction of system (1.2).

Theorem 2.2. Suppose that (H1) holds. If ω<ω∗, then the trivial equilibrium point 0 of system (1.2)
is globally asymptotically stable.
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Proof. Let x(t) be a solution of (1.2). Define x̄ = Me−λtψ(t), where M is chosen large enough such that
x(0) ≤ x̄(0) and ψ is the one chosen in the proof of Theorem 2.1. Then we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx̄

dt
− x̄f (t, x̄, α) − x̄f (t, 0, α) + x̄f (t, 0, α)

= (−f (t, x̄, α) + f (t, 0, α))x̄ ≥ 0, t ∈ (nT , nT + T],

dx̄

dt
− x̄g(t, x̄, α) − x̄g(t, 0, α) + x̄g(t, 0, α)

= (−g(t, x̄, α) + g(t, 0, α))x̄ ≥ 0, t ∈ (nT + T , (n + 1)T],

x̄(0) ≥ x(0),

where we have used (H1). By the comparison principle, we can obtain that x(t) ≤ x̄(t) for all t> 0. Note
that ω<ω∗ implies λ> 0. It follows that x̄(t) → 0 exponentially as t → +∞. Therefore, x(t) must decay
toward zero exponentially as well. This demonstrates that the trivial equilibrium point 0 is globally
asymptotically stable.

The result below gives the asymptotical stability of 0 when ω=ω∗ under a little stronger condition.

Theorem 2.3. Suppose that (H1) holds and the inequalities there are strict. If ω=ω∗, then the trivial
equilibrium point 0 of system (1.2) is globally asymptotically stable.

Proof. We first show that there is no positive T-periodic solution to system (1.2). Assume, by
contradiction, that there exists x̄(t)> 0 for t ∈ [0, T] satisfying system (2.5), that is,⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx̄

dt
= x̄f (t, x̄, α), t ∈ (0, T],

dx̄

dt
= x̄g(t, x̄, α), t ∈ (T , T],

x̄(0) = x̄(T).

or, equivalently ⎧⎪⎪⎨
⎪⎪⎩

1

x̄

dx̄

dt
= f (t, x̄, α), t ∈ (0, T],

1

x̄

dx̄

dt
= g(t, x̄, α), t ∈ (T , T].

It follows that ∫ T

0

f (t, x̄, α) dt +
∫ T

0

g(t, x̄, α) dt = 0.

This combined with (2.4) implies that

λT =
∫ T

0

[f (t, x̄, α) − f (t, 0, α)] dt +
∫ T

0

[g(t, x̄, α) − g(t, 0, α)] dt.

By the assumption that f (t, 0, α)> f (t, x, α) and g(t, 0, α)> g(t, x, α) for any x> 0, we obtain that λ< 0.
However, since ω=ω∗, we have λ= 0. This leads to a contradiction, and hence (1.2) has no positive
T-periodic solution.

By a standard monotone iteration scheme and the nonexistence of positive T-periodic solution of sys-
tem (1.2), the trivial equilibrium point 0 of system (1.2) is globally asymptotically stable. This completes
the proof.
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3 Two illustrating examples

In this section, we apply the results established in Section 2 to two switching systems from population
dynamics.

3.1 A harvesting model

Due to overfishing, many fish resources are facing depletion worldwide, which has broken the balance
of ecosystems. This has led to changes in the populations of other species and a weakening of overall
ecosystem functions. As a response, many countries have implemented fishing bans to restore and protect
marine biological resources, ensure ecosystem stability and diversity, and safeguard the livelihoods of
fishermen as well as future food for humans.

However, a complete ban on all forms of fishing, though potentially beneficial for resource recovery,
also presents several potential problems and negative impacts. Such a ban could lead to significant
socioeconomic issues, particularly in communities that rely heavily on fishing as it is their primary
economic activity. These communities may face severe livelihood losses. Additionally, fish are a critical
source of protein for millions of people, especially in some poor countries. A total fishing ban could
reduce their nutritional intake, potentially leading to malnutrition and associated health problems.

Therefore, developing reasonable fishing ban strategies is crucial for policymakers. The works [6,
11, 13, 23] have explored how to determine appropriate fishing ban thresholds based on varying fishing
intensities. Following the idea in [6, 11], the main objective of this subsection is to understand the
dynamics of the following problem,⎧⎪⎪⎨

⎪⎪⎩
du

dt
= ru

(
1 − u

G

)
, t ∈ (nT , nT + T],

du

dt
= ru

(
1 − u

G

)
− q(t)E(t)u

cE(t) + lu
, t ∈ (nT + T , (n + 1)T],

(3.1)

where u(t) represents the population size of a single species at time t. T is the period of the seasonal
fluctuation environment where the single species lives; T measures the length of the closed season (non-
harvesting season) and hence T − T is the length of the open season (harvesting season); the parameter
r is the intrinsic growth rate of the species; and G is the carrying capacity of the environment. The term
q(t)E(t)u
cE(t)+lu

is the harvesting rate, which is the Michaelis–Menten type functional form for the catch rate. Here
q(t) is the catch-ability coefficient at time t and E(t) is the external effort devoted to harvesting at time
t. We further assume that q(t) and E(t) are continuous and T-periodic in t. c and l are two constants. All
parameters are assumed to be non-negative.

Corresponding to (1.2), here for (3.1), we have

f (t, u, α) = r
(

1 − u

G

)
and g(t, u, α) = r

(
1 − u

G

)
− q(t)E(t)

cE(t) + lu
.

Then

�(T , T , α) =
∫ T

0

f (t, 0, α) dt +
∫ T

T

g(t, 0, α) dt

=
∫ T

0

r dt +
∫ T

T

(
r − q(t)

c

)
dt

= rT − 1

c

∫ T

T

q(t) dt.

We first make some reasonable assumptions on the parameters. On the one hand, in the absence of
fishing, that is, T = T , system (3.1) reduces to

du

dt
= ru

(
1 − u

G

)
, t> 0.

https://doi.org/10.1017/S0956792525100065 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525100065


European Journal of Mathematics 7

It is necessary to assume that the population is persistent in the absence of fishing and hence r> 0. On
the other hand, when there is no fishing ban, that is, T = 0, system (3.1) reduces to

du

dt
= ru

(
1 − u

G

)
− q(t)E(t)u

cE(t) + lu
, t> 0.

Let inft∈[T ,T] E(t) = E0 and inft∈[T ,T] q(t) = q0. Then
du

dt
= ru

(
1 − u

G

)
− q(t)E(t)u

cE(t) + lu
≤ ru

(
1 − u

G

)
− q0E0u

cE0 + lu
.

Consider the system
dū

dt
= rū

(
1 − ū

G

)
− q0E0ū

cE0 + lū
. (3.2)

By comparison principle, u(t) ≤ ū(t), where u is the solution of system (3.1) and ū(t) is the solution of
(3.2) with u(0) = ū(0). Clearly, ū = 0 is the trivial equilibrium of (3.2) and its other positive equilibria
are determined by the quadratic equation

rl

G
ū2 +

(
rcE0

G
− rl

)
ū + (q0 − cr)E0 = 0. (3.3)

It is clear that equation (3.3) has no positive solution if

E0 ≥ Gl

c
and q0 ≥ cr. (3.4)

Thus, if (3.4) holds, then ū(t) → 0 and hence u(t) → 0 as t → +∞. This means that the population will
become extinct without fishing ban. Based on the above discussion, throughout the remainder of this
subsection, for system (3.1), we always assume that (3.4) holds.

Clearly, �(T , T , α) is monotonically increasing in T for fixed T and α. Moreover,

�(T , 0, α) = rT − 1

c

∫ T

0

q(t) dt ≤ rT − q0

c
T ≤ 0

by (3.4) and
�(T , T , α) = rT > 0

Thus (H)(b) is satisfied. Let T
∗ be the unique non-negative root of �(T , T , α) = 0 with fixed T and α.

Actually, T
∗ = q̄−cr

q̄
, where q̄ =

∫ T
T q(t) dt

T−T
.

Viewed from different perspectives, the fishing ban policy in high seas is usually a pre-established
norm by countries, mainly aimed at protecting the breeding of marine fish during the breeding season.
This means that the closing period T is fixed. Hence, from (H)(c), we have r∗ = (T−T)q̄

T
for fixed T and

T . In this case, the parameter α in system (1.2) is the parameter r. However, in this subsection, we only
considered the case of the threshold T

∗. The case of threshold r∗ can be handled in a similar manner,
and hence it is omitted here.

Now, we are ready to apply the results in Section 2 to system (3.1).

Theorem 3.1. Suppose that T > T
∗. Then system (3.1) has at least one positive T-periodic solution.

Furthermore, if E0 >
q0lG
rc2 , then system (3.1) has a unique positive T-periodic solution, which is globally

asymptotically stable, where q0 := supt∈[T ,T] q(t).

Proof. Clearly (H2) holds for M1 = M2 = G and fu(t, u, α)< 0 for t ∈ (nT , nT + T] and u> 0. Moreover,
when E0 >

q0 lG
rc2 , for t ∈ (nT + T , (n + 1)T] and u> 0, we have

gu(t, u, α) = − r

G
+ q(t)E(t)l

(cE(t) + lu)2
≤ − r

G
+ q(t)E(t)l

(cE(t))2
≤ − r

G
+ q0l

c2E0

< 0.

Thus (H3) holds if E0 >
q0lG
rc2 . According to Theorem 2.1, we are left to show that if E0 >

q0 lG
rc2 then the

unique globally attractive positive T-periodic solution ū(t) is locally stable.
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Since ū(t) satisfies ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dū

dt
= rū

(
1 − ū

G

)
, t ∈ (0, T],

dū

dt
= rū

(
1 − ū

G

) − q(t)E(t)ū

cE(t) + lū
, t ∈ (T , T],

ū(0) = ū(T),

(3.5)

dividing the first two equations of (3.5) by ū, then integrating the first resultant over (0, T] and the latter
over (T , T], and adding up the integrals, we obtain∫ T

0

1

ū

dū

dt
dt = rT − r

∫ T

0

ū

G
dt −

∫ T

T

q(t)E(t)

cE(t) + lū
dt.

Since ū is T-periodic, we have
∫ T

0
1
ū

dū
dt

dt = 0 and hence

rT − r
∫ T

0

ū

G
dt −

∫ T

T

q(t)E(t)

cE(t) + lū
dt = 0. (3.6)

Let v = u − ū. Then the linearised system of (3.1) about ū is⎧⎪⎪⎨
⎪⎪⎩

dv

dt
= rv

(
1 − 2ū

G

)
, t ∈ (0, T],

dv

dt
= rv

(
1 − 2ū

G

)
− cE2(t)q(t)v

(cE(t) + lū)2
, t ∈ (T , T].

Let v = e−τ tϕ(t) with ϕ(0) = ϕ(T). This leads to the following eigenvalue problem,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dϕ

dt
= r

(
1 − 2ū

G

)
ϕ + τϕ, t ∈ (0, T],

dϕ

dt
= r

(
1 − 2ū

G

)
ϕ − cE2(t)q(t)ϕ

(cE(t) + lū)2
+ τϕ, t ∈ (T , T],

ϕ(0) = ϕ(T).

Similar to obtain (3.6), we can get

τT −
∫ T

T

cE2(t)q(t)

(cE(t) + lū)2
dt + rT − 2

r

G

∫ T

0

ū dt = 0. (3.7)

It follows from (3.6) and (3.7) that

τT =
∫ T

T

cE2(t)q(t)

(cE(t) + lū)2
dt + rT − 2

∫ T

T

q(t)E(t)

cE(t) + lū
dt,

= rT −
∫ T

T

cE2(t)q(t) + 2E(t)q(t)lū

(cE(t) + lū)2
dt,

≥ rT −
∫ T

T

q(t)

c
dt

= q̄

c
(T − T

∗
).

Thus, τ > 0 due to T > T
∗, which implies that ū is locally stable. This completes the proof.

Note that, for u> 0,

f (t, 0, α) = r> r
(

1 − u

G

)
= f (t, u, α)
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and

g(t, 0, α) − g(t, u, α) = u

(
r

G
− q(t)l

c(cE(t) + lu)

)

≥ u

(
r

G
− q(t)l

c2E(t)

)

≥ u

(
r

G
− q0l

c2E0

)
.

These combined with Theorem 2.2 and Theorem 2.3 produce the following result on the extinction of
system (3.1).

Theorem 3.2. The trivial equilibrium point 0 of system (3.1) is globally asymptotically stable if either

T < T
∗ and E0 ≥ q0lG

rc2

or

T = T
∗ and E0 >

q0lG

rc2
.

3.2 A switching mosquito population suppression model

Mosquito-borne diseases are caused by bacteria, viruses or parasites transmitted to people by
mosquitoes. Typical mosquito-borne diseases include Zika, West Nile, Chikungunya, dengue, yellow
fever, and malaria. These diseases have become a serious threat to public health worldwide, which cause
over 725,000 deaths and nearly 700 million infections each year [18]. Due to the lack of vaccines and
effective clinical treatments for most of the above-mentioned mosquito-borne diseases, and the addi-
tional risks associated with inadequate preventive measures, mosquito vector control has become the
most important strategy [3, 7, 19]. The traditional measure is the application of chemical insecticides.
This not only brings some environment problems and public health issues but also has limited effects on
depressing the mosquito population as mosquitoes can quickly develop insecticide resistance [10, 14].
Therefore, scientists have started to develop environment-friendly insect control measures, including
Sterile insect technique (SIT) and Incompatible insect technology (IIT).

SIT is an environment-friendly insect control technology that aimed to reduce the population of target
pests by releasing radiation-sterilised males into the field to mate with wild females so that these wild
females cannot produce viable offsprings. In practice, SIT has been successfully applied in the control
of several important pests in agriculture and animal husbandry [5].

IIT is an approach that releases male mosquitoes infected with the maternally inherited endosymbi-
otic bacteria Wolbachia into the field, resulting in cytoplasmic incompatibility so that the matings with
wild females that are not infected with the same Wolbachia strain become sterile – thereby suppressing
the mosquito population [21, 22]. Wolbachia is an endosymbiotic bacterium that is parasitised exclu-
sively in invertebrates and can be transmitted through eggs [17]. It is estimated that about 65% insect
species and 28% mosquito species naturally carry Wolbachia [8, 16]. IIT is very promising since it is not
only environment friendly but also very efficient with strong specificity and low cost. In 2005, a group
led by Xi successfully transplanted Wolbachia carried by fruit flies into the germ cells of Aedes aegypti
and made it spread stably in Aedes aegypti [22]. This made the mass release of millions of factory-reared
incompatible adult Aedes aegypti technically feasible.

The basic principles of mosquito population suppression based on SIT and IIT are the same, both
involving the release of sterile male mosquitoes in the target area to suppress the target mosquito popu-
lation. In a recent work [24], Yu and Li formulated and analysed the following interactive model of wild
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and sterile mosquitoes,

dw

dt
=

[
aw

w + g(t)
− (μ+ ξ (w + g(t)))

]
w. (3.8)

Here w is the number of wild male mosquitoes at time t, a represents the birth rate of wild mosquitoes,
μ denotes the density-independent death rate and ξ is the density-dependent death coefficient. In this
context, g is treated as a given function rather than an independent variable governed by a dynamic
equation. They assumed that a fixed number c of mosquitoes is released at regular intervals of length
T . Additionally, their research highlights the importance of a crucial parameter – the sexual lifespan,
denoted by T – which plays a significant role in mosquito suppression strategies. It is assumed that
after the sexually active period, mosquitoes are no longer vigorous, and their competitive impact on
wild mosquitoes becomes negligible, though alive. Under the assumption that g(t) becomes a piecewise
constant T-periodic function defined by

g(t) =
{

c, t ∈ (nT , nT + T],

0, t ∈ (nT + T , (n + 1)T],
(3.9)

for n = 0, 1, 2, . . ., system (3.8) becomes⎧⎪⎪⎨
⎪⎪⎩

dw

dt
= w

(
aw

w + c
− (μ+ ξ (w + c))

)
, t ∈ (nT , nT + T],

dw

dt
= w (a −μ− ξw) , t ∈ (nT + T , (n + 1)T].

One assumption that cannot be overlooked in [24] is that mosquitoes released during the period
(nT , nT + T] will not die. In this subsection, we propose a more reasonable assumption: mosquitoes do
die during their sexual lifespan. As a result, the constant c in (3.9) should be a monotonically decreasing
function of t with period T . This leads to the following model on mosquito suppression,⎧⎪⎪⎨

⎪⎪⎩
dw

dt
= w

(
aw

w+c(t)
− (μ+ ξ (w + c(t)))

)
, t ∈ (nT , nT + T],

dw

dt
= w (a −μ− ξw) , t ∈ (nT + T , (n + 1)T].

(3.10)

Similarly as in Section 3.1, on the one hand, we assume persistence of system (3.10) in the absence
of sterile male mosquitoes, which leads to the condition that a>μ. On the other hand, we assume that
extinction occurs when T = T (meaning the release frequency equals the mosquito’s sexual lifespan).
Under this assumption, system (3.10) becomes

dw

dt
= w

(
aw

w + c(t)
− (μ+ ξ (w + c(t)))

)
, t> 0.

Since inft∈[0,T] c(t) = c(T), we have

dw

dt
= w

(
aw

w + c(t)
− (μ+ ξ (w + c(t)))

)
≤ w

(
aw

w + c(T)
− (μ+ ξ (w + c(T)))

)
.

Now, consider the following auxiliary equation,

dw

dt
= w

(
aw

w + c(T)
− (μ+ ξ (w + c(T)))

)
, t> 0. (3.11)

When c(T)> g∗ := (a−μ)2

4ξa
, 0 is the only equilibrium of (3.11) and it is globally asymptotically stable. By

the comparison principle, under this assumption, the mosquito population will be extinct. As a result,
we assume that

a>μ and c(T)> g∗.

https://doi.org/10.1017/S0956792525100065 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525100065


European Journal of Mathematics 11

In terms of (1.2), for (3.10), we have

f (t, w, α) = aw

w + c(t)
− (μ+ ξ (w + c(t))), g(t, w, α) = a −μ− ξw.

Thus,

�(T , T , α) =
∫ T

0

f (t, 0, α) dt +
∫ T

T

g(t, 0, α) dt

=
∫ T

0

[ − (μ+ ξc(t))] dt +
∫ T

T

(a −μ) dt

= −μT + a(T − T) − ξ

∫ T

0

c(t) dt.

Clearly, for fixed T > 0 and α > 0, �(T , T , α) is strictly monotonically increasing in T ,

�(T , T , α) = −μT − ξ

∫ T

0

c(t) dt< 0,

and lim
T→+∞

�(T , T , α) = +∞ as a>μ. Thus, (H)(b) holds. Let T∗ be the unique positive root of

�(T , T , α) = 0, that is,

T∗ = aT + ξ
∫ T

0
c(t) dt

a −μ
.

One can easily check that

f (t, w, α) ≤ 0 for w ≥ M1 := a

ξc(T)

and
g(t, w, α) ≤ 0 for w ≥ M2 := a

ξ
,

that is, (H2) holds. Moreover, for w> 0,

fw(t, w, α) = ac(t)

(w + c(t))2
− ξ <

a

c(t)
− ξ ≤ a

c(T)
− ξ

and
gw(t, w, α) = −ξ < 0.

It follows that (H3) holds if c(T) ≥ a
ξ
. According to Theorem 2.1 and arguing similarly as in the proof of

Theorem 3.1 for local stability, we have the following result on the existence and stability of T-periodic
solutions to (3.10).

Theorem 3.3. Suppose T > T∗. Then system 3.10) has at least one positive T-periodic solution.
Furthermore, if c(T) ≥ a

ξ
, then it has a unique positive T-periodic solution, which is globally asymp-

totically stable.

Now, for w> 0, we observe that

f (t, 0, α) − f (t, w, α) = w

(
− a

w + c(t)
+ ξ

)

> w

(
− a

c(t)
+ ξ

)

≥ w

(
− a

c(T)
+ ξ

)

> 0

(
if c(T) ≥ a

ξ

)
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Figure 1 When T > T∗ and c(T) ≥ a
ξ
, (3.10) has a globally asymptotically stable positive T-periodic

solution.

and

g(t, 0, α) = a −μ> a −μ− ξw = g(t, w, α).

Therefore, if c(T) ≥ a
ξ

then (H1) holds and the inequalities there are strict ones. Applying Theorems 2.2
and 2.3 to (3.10) produces the following result on extinction.

Theorem 3.4. Assume that T ≤ T∗ and c(T) ≥ a
ξ
. Then the trivial equilibrium 0 of system (3.10) is

globally asymptotically stable.

Finally, we provide some numerical simulations to support the theoretical results obtained for system
(3.10). We take

a = 10, μ= 0.3, ξ = 0.2, T = 2.5.

With c(t) = 32.5 − 2t for t ∈ [0, T], we have c(T) = 27.5> a
ξ
= 11.7612. Corresponding to this release

strategy, the threshold of release waiting period is T∗ = aT+ξ ∫ T
0 c(t) dt

(a−μ)
= 400/97 ≈ 4.124. If the release

waiting period T = 4.5> T∗, it follows from Theorem 3.3 that system (3.10) has a unique globally
asymptotically stable positive T-periodic solution as shown in Figure 1. If T ≤ T∗, then Theorem 3.4
tells us that the origin is globally asymptotically stable for (3.10). Figure 2 is for the case where T = T∗

whereas Figure 3 shows the case T = 4.024< T∗. The initial values for the figures in Figure 2 are cho-
sen from the intervals [10, 30], [5, 10), [1, 4], and (0, 1], respectively. Though the rate approaching 0 is
somewhat slow, they do indicate the convergence to 0.

4 Conclusion and discussion

The evolution of many biological processes are affected by seasonal factors. In this paper, we proposed a
general periodic switching system to describe such phenomena. Under some reasonable assumptions, we

https://doi.org/10.1017/S0956792525100065 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525100065


European Journal of Mathematics 13

Figure 2 When T = T∗ and c(T) ≥ a
ξ
, the origin is globally asymptotically stable for (3.10). The initial

values for the four figures are chosen form the four intervals, [10, 30], [5, 10), (1, 4], and (0, 1]. From
the four figures, it can be seen that the origin is stable, although its approach to the origin is somewhat
slow.

established a threshold dynamics, which is completely characterised by a threshold value ω∗. Roughly
speaking, when ω>ω∗, there is a positive periodic solution, which is globally attractive under further
conditions; when ω≤ω∗, the origin is globally asymptotically stable.

We also applied the theoretical results to two situations. One is for a population model with harvesting
and the other is for mosquito control. For the harvesting model, we obtained a globally asymptotically
stable positive periodic solution when T̄ > T̄∗. This implies that for resource sustainability, the harvesting
should be banned at least for a certain time during a cycle. While for the mosquito suppression model,
for a better control result, the waiting period for releasing Wolbachia-infected male mosquitoes should
not be too large.

We mention that the obtained theoretical results for the general system (1.2) is applicable to other
situations. To end this paper, we briefly introduce an SIS model without conducting the detailed analysis.
The classical SIS model is described by the system of ordinary differential equations,⎧⎪⎪⎨

⎪⎪⎩
dS

dt
= −βf (S, I) + γ I,

dI

dt
= βf (S, I) − γ I,

where S(t) and I(t) are the numbers of susceptible and infectious individuals at time t, respectively.
Here f (S, I) is the incidence, β is the infection rate, and γ is the recovery rate. Seasonal succession, the
start of the school season and holiday breaks periodically alter behaviour patterns of people whereas
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Figure 3 When T < T∗ and c(T) ≥ a
ξ
, the origin is globally asymptotically stable for (3.10).

environmental conditions and medical resources affect the infection and recovery rates [20]. With these
factors in consideration, we introduce the following modified periodic SIS model,⎧⎪⎪⎨

⎪⎪⎩
dS

dt
= −β(t)f (S, I) + γ I,

dI

dt
= β(t)f (S, I) − γ I.

(4.1)

It is easy to see that d(S+I)
dt

= 0. This means that the total population size S(t) + I(t) is a constant and is
denoted by N. Then (4.1) is reduced to

dI

dt
= β(t)f (N − I, I) − γ I. (4.2)

Now, we assume that the infection rate fluctuate periodically due to seasonal changes (such as tempera-
ture variations) as well as the effects of the school season and holiday breaks. Consequently, the infection
rate exhibits cyclical alternations, that is, we assume

β(t) =
⎧⎨
⎩
β1(t), t ∈ (nT , nT + T],

β2(t), t ∈ (nT + T , (n + 1)T]

for n = 0, 1, 2, . . .. Here T is the period of the disease transmissions. Due to variations in weather tem-
perature and timing factors such as the school season and holidays, the parameter T ∈ (0, T) is used to
describe the transition points between different seasons. Similar to the analysis in the preceding sec-
tions, under certain assumptions, we can derive the threshold value of the recovery rate γ based on
assumption (H).
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