ISOMORPHISM CLASSES OF GRAPH BUNDLES

JIN HO KWAK AND JAEUN LEE

ABSTRACT. Recently, M. Hofmeister [4] counted all nonisomorphic double coverings of a graph by using its Z_2 cohomology groups, and J. Kwak and J. Lee [5] did the same work for some finite-fold coverings. In this paper, we give an algebraic characterization of isomorphic graph bundles, from which we get a formula to count all nonisomorphic graph-bundles. Some applications to wheels are also discussed.

1. Graph Bundles. Let G be a finite simple connected graph with vertex set V(G) and edge set E(G), and let |X| denote the cardinality of a set X. The number $\beta(G) = |E(G)| - |V(G)| + 1$ is equal to the number of independent cycles in G and it is referred to as the *Betti number* of G. We denote the set of vertices adjacent to $v \in V(G)$ by N(v) and call it the *neighborhood* of a vertex v. A graph means a finite simple graph throughout this paper.

A graph \tilde{G} is called a *covering* of G with the projection $p : \tilde{G} \to G$ if there is a surjection $p : V(\tilde{G}) \to V(G)$ such that $p|_{N(\tilde{v})} : N(\tilde{v}) \to N(v)$ is a bijection for any vertex $v \in V(G)$ and $\tilde{v} \in p^{-1}(v)$. We say that \tilde{G} is an *n*-fold covering of G if the covering projection p is *n*-to-one.

Every edge of a graph G gives rise to a pair of oppositely directed edges. We denote the set of directed edges of G by D(G). By e^{-1} we mean the reverse edge to an edge e. Each directed edge e has an initial vertex i_e and a terminal vertex t_e . Following [3], a permutation voltage assignment ϕ on a graph G is a map $\phi: D(G) \to S_n$ with the property that $\phi(e^{-1}) = \phi(e)^{-1}$ for each $e \in D(G)$, where S_n is the symmetric group on *n* elements $\{1, \ldots, n\}$. The permutation derived graph G^{ϕ} is defined as follows: $V(G^{\phi}) = V(G) \times \{1, \dots, n\}$, and for each edge $e \in D(G)$ and $j \in \{1, ..., n\}$ let there be an edge (e, j) in $D(G^{\phi})$ with $i_{(e,j)} = (i_e, j)$ and $t_{(e,j)} = (t_e, \phi(e)j)$. The natural projection $p_{\phi} : G^{\phi} \to G$ is a covering. An ordinary voltage assignment ϕ on G, with values in a finite group Γ , is a map $\phi: D(G) \to \Gamma$ such that $\phi(e^{-1}) = \phi(e)^{-1}$ for each $e \in D(G)$. The ordinary derived graph $G \times_{\phi} \Gamma$ has the vertex set $V(G) \times \Gamma$ and the edge set $E(G) \times \Gamma$. An edge (e,g) has $i_{(e,g)} = (i_e,g)$ and $t_{(e,g)} = (t_e, \phi(e)g)$. The natural projection $p_{\phi}: G \times_{\phi} \Gamma \longrightarrow G$ commutes with the left multiplication action of the $\phi(e)$ and the right action of Γ on the fibres $p_{\phi}^{-1}(v), v \in V(G)$, which is free and transitive, so that p_{ϕ} is Γ -regular. It is well-known [3] that every covering (resp. regular covering) graph \tilde{G} of a given graph G can be described by a permutation (resp. ordinary) voltage assignment ϕ such that the edges of an arbitrary fixed spanning tree T of G are assigned identity voltages.

Received by the editors September 19, 1989.

The first author was supported by grants from KOSEF and KRF.

We now consider a triple of the form (X, p, G), where X is a graph and p is a cell preserving projection of X onto G, written $p: X \to G$. The graph G is called the base and X is the total graph of the triple (X, p, G). Here we allow p to be degenerate. In other words, p maps vertices to vertices, but an image of an edge can be either an edge or a vertex. We say that an edge e is *degenerate* if p(e) is a vertex, and *non-degenerate* otherwise. The projection p thus induces a (fundamental) factorization $X = \tilde{G} \cup R$ of X into \tilde{G} and R, where if D is the set of degenerate edges then R = (V(X), D) contains all degenerate edges and $\tilde{G} = (V(X), E(X) - D)$ contains non-degenerate ones. For each vertex $v \in V(G)$ we define a fibre of v to be the graph $R_v = p^{-1}(v)$. Obviously, $R = \bigcup_{v \in V(G)} R_v$.

Let F be a graph. A triple $p : X \to G$ will be called a *graph bundle* with fibre F (or, briefly, an F-bundle) [6] if the following three conditions are satisfied:

(a) Each fibre R_v is isomorphic to F.

(b) $\tilde{p} = p|_{\tilde{G}} : \tilde{G} \to G$ is a |V(F)|-fold covering projection; this implies that for an arbitrary edge $e \in D(G)$ the set of $p^{-1}(e)$ of the lifted edges induces a bijection $\phi_e : V(R_{l_e}) \to V(R_{l_e})$.

(c) Each mapping ϕ_e determines a graph isomorphism $\phi_e : R_{i_e} \to R_{t_e}$.

To construct an *F*-bundle over an arbitrary graph *G* one can proceed as follows. Take a permutation voltage assignment ϕ on D(G) into $S_{|V(F)|}$ with values in the automorphism group Aut(*F*) of the graph *F*. Define a graph *X* so that $V(X) = V(G^{\phi})$ and $X = G^{\phi} \cup R$, where $R = (G - E(G)) \times F$ is the cartesian product. We denote the resulting graph *X* by $G \times^{\phi} F$. Then *X* is clearly an *F*-bundle over *G*. Conversely, every *F*-bundle over *G* admits such a description. More precisely, if (X, p, G) is an arbitrary *F*-bundle then *G* admits a permutation voltage assignment ϕ and there is an isomorphism $\Psi : X \to G \times^{\phi} F$ such that the diagram

commutes.

Clearly, a graph bundle is just an *n*-fold covering graph if its fibre *F* is the complement \overline{K}_n of the complete graph K_n of *n* vertices. Intuitively speaking, a graph bundle is the 1-skeleton of a fibre bundle where both the base and the fibre are graphs.

2. A characterization of isomorphic *F*-bundles. Let *G* be a graph and let Γ be a group of (graph-) automorphisms of *G*.

DEFINITION 1. Two *F*-bundles $G \times^{\phi} F$ and $G \times^{\psi} F$ are isomorphic with respect

to Γ if there exists an isomorphism $\Phi : G \times^{\phi} F \to G \times^{\psi} F$ and $\gamma \in \Gamma$ such that the diagram

commutes. We write $G \times^{\phi} F \simeq_{\Gamma} G \times^{\psi} F$. The corresponding isomorphism classes are called F-bundles over G with respect to Γ .

Example. It is well-known that the torus and the Klein bottle are the only topological bundles over the 1-sphere with the 1-sphere as fibre. Let's triangulate the 1-sphere as the complete graph K_3 . Then their total spaces receive the structure of 2-dimensional complexes and their 1-skeletons are graph bundles with base K_3 and fibre K_3 . But Figure 1 gives total graphs of at least three nonisomorphic graph bundles with base K_3 and fibre K_3 .

It will be shown later that any graph bundle with base K_3 and fibre K_3 is isomorphic to one of three bundles in Figure 1. Graph bundles of Types I and III are 1-skeletons of the torus, and a graph bundle of Type II is a 1-skeleton of the Klein bottle.

An isomorphism class of *F*-bundles over *G* can be characterized through the corresponding equivalence class of functions $\phi : D(G) \to \operatorname{Aut}(F)$ such that $\phi(e^{-1}) = \phi(e)^{-1}$.

Let $C^0(G; \operatorname{Aut}(F))$ denote the set of functions $f : V(G) \to \operatorname{Aut}(F)$ and let $C^1(G; \operatorname{Aut}(F))$ denote the set of functions $\phi : D(G) \to \operatorname{Aut}(F)$ such that $\phi(e^{-1}) = \phi(e)^{-1}$. Note that the set $C^1(G; \operatorname{Aut}(F))$ can fail to be a group with pointwise multiplication.

We define Γ -actions on the set $C^0(G; \operatorname{Aut}(F))$ and on the set $C^1(G; \operatorname{Aut}(F))$ as follows:

$$\gamma(f)(v) = f(\gamma^{-1}(v))$$

and

$$\gamma(\phi)(e) = \phi(\gamma^{-1}(i_e)\gamma^{-1}(t_e))$$

for any $\gamma \in \Gamma$, $f \in C^0(G; \operatorname{Aut}(F))$, and $\phi \in C^1(G; \operatorname{Aut}(F))$.

THEOREM 1. Two F-bundles $G \times^{\phi} F$ and $G \times^{\psi} F$ are isomorphic with respect to Γ , $\Gamma \leq \text{Aut}(G)$, if and only if there exist $\gamma \in \Gamma$ and $f \in C^0(G; \text{Aut}(F))$ such that $\gamma^{-1}\psi(e) = f(t_e)\phi(e)f(i_e)^{-1}$ for all $e \in D(G)$. 750

Figure 1. Three nonisomorphic graph bundles

Proof. Assume that $G \times^{\phi} F \simeq_{\Gamma} G \times^{\psi} F$ with an isomorphism $\Phi : G \times^{\phi} F \to G \times^{\psi} F$. Then $\Phi|_{p_{\phi}^{-1}(v)} : p_{\phi}^{-1}(v) \to p_{\psi}^{-1}(\gamma(v))$ is an isomorphism for all $v \in V(G)$ and for some $\gamma \in \Gamma$. Now, we define $f : V(G) \to \operatorname{Aut}(F)$ by $f(v) = \Phi|_{p_{\phi}^{-1}(v)}$ for all $v \in V(G)$. If (i_e, h) is joined to (t_e, k) in $G \times^{\phi} F$, then $\phi(e)(h) = k$ and $(\gamma(i_e), f(i_e)(h))$ is joined to $(\gamma(t_e), f(t_e)(k))$ in $G \times^{\psi} F$. Thus

$$\gamma^{-1}\psi(e) = \psi(\gamma(i_e)\gamma(t_e)) = f(t_e)\phi(e)f(i_e)^{-1}$$

for all $e \in D(G)$. Conversely, define $\Phi : G \times^{\phi} F \to G \times^{\psi} F$ by $\Phi(v,h) = (\gamma(v), f(v)(h))$ for any (v, h) in $V(G \times^{\phi} F)$. If (i_e, h) is joined to (t_e, k) in $G \times^{\phi} F$, then $\phi(e)(h) = k$ and $\Phi(i_e, h) = (\gamma(i_e), f(i_e)(h))$ is joined to $\Phi(t_e, k) = (\gamma(t_e), f(t_e)(k))$. Thus Φ is the desired isomorphism to complete the proof. \Box

Let T be a fixed spanning tree in G with root v_0 . Define a map $\mathfrak{F}^{\#}$: $C^1(G; \operatorname{Aut}(F)) \to C^0(G; \operatorname{Aut}(F))$ as follows: for any $v \in V(G)$ there exists a unique path $e_1e_2 \cdots e_m$ in the tree T from v_0 to v and we define

$$\mathfrak{F}^{\#}(\phi)(v) = (\phi(e_m) \cdots \phi(e_1))^{-1} = \phi(e_1)^{-1} \cdots \phi(e_m)^{-1}.$$

We write

$$C_T^1(G; \operatorname{Aut}(F)) = \{ \phi \in C^1(G; \operatorname{Aut}(F)) : \phi(e) \\ = \text{ identity for each } e \in D(T) \},\$$

and define $\mathfrak{F}^* : C^1(G; \operatorname{Aut}(F)) \to C^1_T(G; \operatorname{Aut}(F))$ by

$$\mathfrak{F}^*(\phi)(e) = \mathfrak{F}^{\#}(\phi)(t_e)\phi(e)\mathfrak{F}^{\#}(\phi)(i_e)^{-1}$$

for any $\phi \in C^1(G; \operatorname{Aut}(F))$ and any $e \in D(G)$. Then, \mathfrak{S}^* is clearly well-defined and the identity on $C^1_T(G; \operatorname{Aut}(F))$. Hence, we have

COROLLARY 1. Any F-bundle $G \times^{\phi} F$ over G, $\phi \in C^1(G; \operatorname{Aut}(F))$, is isomorphic to an F-bundle $G \times^{\psi} F$ with respect to the identity automorphism of G for some $\psi \in C^1_T(G; \operatorname{Aut}(F))$.

3. Some counting formulas. Let *T* be a fixed spanning tree of *G* and let Aut(*G*, *T*) denote the subgroup of Aut(*G*) consisting of all automorphisms *f* of *G* fixing *T*, i.e., f(T) = T. Then for any subgroup Γ of Aut(*G*, *T*), the subset $C_T^1(G; \operatorname{Aut}(F))$ of $C^1(G; \operatorname{Aut}(F))$ is invariant under the Γ -action. Denote the number of nonisomorphic *F*-bundles over *G* with respect to a subgroup Γ of Aut(*G*) by Iso_{Γ}(*G*; *F*). From now on, we only consider a group Γ of automorphisms of *G* which fix a given spanning tree *T* of *G* and voltage assignments ϕ which are in $C_T^1(G; \operatorname{Aut}(F))$. Note that $|C_T^1(G; \operatorname{Aut}(F))| = |\operatorname{Aut}(F)|^{\beta(G)}$, and it will be used later. Let *T*^{*} denote the cotree of *T* in the graph *G*.

THEOREM 2. $G \times^{\phi} F \simeq_{\Gamma} G \times^{\psi} F$ if and only if there exist $\gamma \in \Gamma$ and $g \in \operatorname{Aut}(F)$ such that $\gamma^{-1}\psi(e) = g\phi(e)g^{-1}$ for all $e \in D(T^*) = D(G) - D(T)$.

Proof. Since both $\gamma^{-1}\psi$ and ϕ are identity on the spanning tree *T*, the map *f* satisfying $\gamma^{-1}\psi(e) = f(t_e)\phi(e)f(i_e)^{-1}$ must be constant. The proof is now clear by Theorem 1.

LEMMA 1. For any $\gamma \in \Gamma$, any $\phi \in C^1_T(G; \operatorname{Aut}(F))$, and any $g \in \operatorname{Aut}(F)$, we have $g(\gamma \phi)g^{-1} = \gamma(g \phi g^{-1})$.

Proof. For any edge e in D(G), $(g(\gamma\phi)g^{-1})(e) = g(\gamma\phi(e))g^{-1} = g(\phi(\gamma^{-1}(i_e)\gamma^{-1}(t_e)))g^{-1} = \gamma(g\phi g^{-1})(e)$.

With the conjugate action of Aut (F) on $C_T^1(G; \operatorname{Aut}(F))$, we define an action of the product group $\Gamma \times \operatorname{Aut}(F)$ on $C_T^1(G; \operatorname{Aut}(F))$ by $(\gamma, g)(\phi) = \gamma(g\phi g^{-1})$ for $(\gamma, g) \in \Gamma \times \operatorname{Aut}(F)$ and $\phi \in C_T^1(G; \operatorname{Aut}(F))$. It is well-defined by Lemma 1. Now, Burnside's Lemma and Theorem 2 give

THEOREM 3. For any subgroup Γ of Aut(G, T)

$$\operatorname{Iso}_{\Gamma}(G;F) = \frac{1}{|\Gamma| |\operatorname{Aut}(F)|} \sum_{(\gamma,g)\in\Gamma\times\operatorname{Aut}(F)} |\operatorname{Fix}_{(\gamma,g)}|,$$

where $\operatorname{Fix}_{(\gamma,g)} = \{\phi \in C^1_T(G; \operatorname{Aut}(F)) : (\gamma, g)\phi = \phi\}.$

It is easy to show that if (γ_1, g_1) and (γ_2, g_2) are conjugate in $\Gamma \times \text{Aut}(F)$, then $|\text{Fix}_{(\gamma_1, g_1)}| = |\text{Fix}_{(\gamma_2, g_2)}|$. Thus, we can rewrite

THEOREM 4. For any subgroup Γ of Aut(G, T)

$$\operatorname{Iso}_{\Gamma}(G;F) = \frac{1}{|\Gamma| |\operatorname{Aut}(F)|} \sum_{(\gamma,g)} |C(\gamma,g)| |\operatorname{Fix}_{(\gamma,g)}|,$$

where (γ, g) runs over all representatives of the conjugacy classes of $\Gamma \times \text{Aut}(F)$, and $C(\gamma, g)$ denotes the conjugacy class of (γ, g) in $\Gamma \times \text{Aut}(F)$.

Every group is isomorphic to the automorphism group of some graph and many graphs can have the same automorphism group. For example, the automorphism group of a graph F is isomorphic to that of its complement \overline{F} , and with four small-order exceptions, the automorphism group of a connected graph is isomorphic to that of its line graph (see [8]).

COROLLARY 2. If Aut(F_1) is isomorphic to Aut(F_2), then $Iso_{\Gamma}(G; F_1) = Iso_{\Gamma}(G; F_2)$.

COROLLARY 3. If Γ is trivial, then

$$\operatorname{Iso}_{\{1\}}(G;F) = \frac{1}{|\operatorname{Aut}(F)|} \sum_{g} |C(g)| |\operatorname{Fix}_{g}|,$$

where g runs over all representatives of conjugacy classes of Aut(F), and C(g) is the conjugacy class of g in Aut(F).

If G is tree or Aut(F) is trivial, then $C_T^1(G; \text{Aut}(F))$ is trivial and $\text{Iso}_{\Gamma}(G; F) = 1$ for any Γ . Hence, we have

COROLLARY 4. (a) Any two bundles over a tree G with the same fibre are isomorphic with respect to any subgroup Γ of Aut(G). (b) Any two bundles over a graph G with a fibre having the trivial automorphism group are isomorphic with respect to any subgroup Γ of Aut(G).

Consider the case that Aut(*F*) is abelian, so that the action of Aut(*F*) on $C_T^1(G; \operatorname{Aut}(F))$ is trivial. Then the isomorphism classes of *F*-bundles $G \times^{\phi} F$ over *G* for $\phi \in C_T^1(G; \operatorname{Aut}(F))$ depend only on the Γ -action. Hence, Burnside's Lemma gives

THEOREM 5. If Aut(F) is abelian, then

$$\operatorname{Iso}_{\Gamma}(G; F) = \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} |\operatorname{Fix}_{\gamma}|$$

for any subgroup Γ of Aut(G, T). In particular, if Γ is trivial

$$\operatorname{Iso}_{\{1\}}(G;F) = |\operatorname{Aut}(F)|^{\beta(G)}.$$

Next, we aim to find a formula to find $|Fix_{(\gamma,g)}|$ for a given (γ, g) in $\Gamma \times Aut(F)$.

LEMMA 2. Let ϕ be an element in Fix_(γ,g). Then the voltage $\phi(\gamma^n e)$ is completely determined by the voltage $\phi(e)$ for all n and $e \in D(G)$.

Proof. For any $\phi \in Fix_{(\gamma,g)}$ and for any $e \in D(G)$,

$$\phi(e) = g(\phi(\gamma^{-1}(i_e) \ \gamma^{-1}(t_e)))g^{-1}$$

= $g^2(\phi(\gamma^{-2}(i_e) \ \gamma^{-2}(t_e)))g^{-2}$
= $g^3(\phi(\gamma^{-3}(i_e) \ \gamma^{-3}(t_e)))g^{-3}$
= \cdots .

Hence, for all n

$$\phi(\gamma^n e) = g^n \phi(e) g^{-n}.$$

Since all voltages are assumed to be the identity on the tree T, we need to consider only the voltages of edges which are in the cotree T^* of T.

For an element γ in Γ , we define an equivalence relation \sim_{γ} on $D(T^*) = D(G) - D(T)$ as follows: $e_1 \sim_{\gamma} e_2$ if and only if $e_1 = \gamma^{\ell} e_2$ for some ℓ . Note that if ϕ is an element of Fix_(\gamma,g), then the voltages ϕ in an equivalence class

[e] containing e are completely determined by the voltage of $\phi(e)$, by Lemma 2. An equivalence class [e] of e is called of class l if e and e^{-1} are contained in the same class, and of class 2 otherwise. For any edge $e \in D(T^*)$, we define a number $\eta(\gamma, e)$ to be the smallest natural number ℓ such that $e^{-1} = \gamma^{\ell} e$ if [e] is of class 1, and the smallest natural number ℓ such that $e = \gamma^{\ell} e$ if [e] is of class 2. This number is well-defined because γ has finite order in Γ .

Now, for an element ϕ in Fix_(γ,g) the voltage $\phi(e)$ of e must satisfy $g^{\eta(\gamma,e)}\phi(e)g^{-\eta(\gamma,e)} = \phi(e)^{-1}$ if [e] is of class 1, and $g^{\eta(\gamma,e)}\phi(e)g^{-\eta(\gamma,e)} = \phi(e)$ if [e] is of class 2. Denote that

$$I(g^{n}) = \{h \in Aut(F) : g^{n}hg^{-n} = h^{-1}\}$$

and

$$Z(g^n) = \{h \in \operatorname{Aut}(F) : g^n h g^{-n} = h\}$$

as a subset of Aut(*F*). Now, for $\phi \in \text{Fix}_{(\gamma,g)}$ the voltage $\phi(e)$ of *e* must be contained in $I(g^{\eta(\gamma,e)})$ if [e] is of class 1, and contained in $Z(g^{\eta(\gamma,e)})$ if [e] is of class 2. Note that if [e] is of class 2, so is $[e^{-1}]$, and the voltages of edges in $[e^{-1}]$ are also completely determined by the voltage of $\phi(e)$. Hence, we get the following formula to compute $|\text{Fix}_{(\gamma,g)}|$:

THEOREM 6.

$$|\operatorname{Fix}_{(\gamma,g)}| = \left(\prod_{[e]\in Class \ 1} |I(g^{\eta(\gamma,e)})|\right) \left(\prod_{[e]\in Class \ 2} |Z(g^{\eta(\gamma,e)})|\right)^{\frac{1}{2}},$$

where the product over the empty index set is defined to be 1.

Let Γ be trivial. Then, every edge in $D(T^*)$ is of class 2, and for any $g \in$ Aut(*F*), ϕ is contained in Fix_g if and only if $\phi(e) \in Z(g)$ for every positively oriented edge *e* in $D(T^*)$. Hence, we get

COROLLARY 5. If Γ is trivial, then

$$|\operatorname{Fix}_g| = |Z(g)|^{\beta(G)}$$

for any $g \in Aut(F)$.

We recall that a bundle having $F = \bar{K}_n$ as fibre over *G* is an *n*-fold covering of *G* and that each permutation in Aut(\bar{K}_n) = S_n can be resolved into a product of disjoint cycles in a unique manner up to the order of the cycle factors. And, each conjugacy class C(g) of S_n is determined by the cycle type (ℓ_1, \dots, ℓ_n) of *g*, where ℓ_k is the number of cycles of length *k* in the factorization of an element *g* in S_n into disjoint cycles, so that $\ell_1 + 2\ell_2 + \dots + n\ell_n = n$. Then $|Z(g)| = \ell_1! 2^{\ell_2} \ell_2! \dots n^{\ell_n} \ell_n!$ if *g* is of the cycle type $\ell = (\ell_1, \dots, \ell_n)$. THEOREM 7. The number of isomorphism classes of n-fold coverings of G with respect to the trivial automorphism group, is

$$\operatorname{Iso}_{\{1\}}(G; \bar{K}_n) = \sum_{\ell_1 + 2\ell_2 + \dots + n\ell_n = n} (\ell_1! \, 2^{\ell_2} \, \ell_2! \, \dots \, n^{\ell_n} \, \ell_n!)^{\beta(G) - 1}.$$

Proof. Clearly, $\operatorname{Aut}(\overline{K}_n) = S_n$, $|\operatorname{Aut}(\overline{K}_n)| = n !$ and |C(g)| |Z(g)| = n ! for any $g \in S_n$. The theorem comes from Corollaries 3 and 5.

For example, the number of isomorphism classes of n-fold coverings of the complete graph K_m with respect to the trivial automorphism group, is

$$\operatorname{Iso}_{\{1\}}(K_m; \bar{K}_n) = \sum_{\ell_1 + 2\ell_2 + \dots + n\ell_n = n} (\ell_1 ! 2^{\ell_2} \ell_2 ! \dots n^{\ell_n} \ell_n !)^{\frac{1}{2}m(m-3)}.$$

If Aut(*F*) is abelian, then the set $I(g^n)$ is the subgroup of Aut(*F*) consisting of all elements of order 2, and $Z(g^n)$ is the total group Aut(*F*) for all *n*. Hence, if we denote $\kappa(F) = |\{g \in Aut(F) : g^2 = identity\}|, o(F) = |Aut(F)|$, and the number of equivalence classes in $D(T^*)/\sim_{\gamma}$ of class *j* by $\kappa_j(\gamma)$ for j = 1, 2, then we have

COROLLARY 6. If Aut(F) is abelian,

$$|\operatorname{Fix}_{\gamma}| = \kappa(F)^{\kappa_1(\gamma)} o(F)^{\frac{1}{2}\kappa_2(\gamma)}.$$

For example, if $\operatorname{Aut}(F) = \mathbb{Z}_{p_1^{m_1}} \times \cdots \times \mathbb{Z}_{p_n^{m_n}}$, then, by Theorem 5 and Corollary 6,

Iso_Γ(G; F) =
$$\frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} 2^{\alpha \kappa_1(\gamma)} \left(\prod_{i=1}^n p_i^{m_i}\right)^{\frac{1}{2}\kappa_2(\gamma)}$$

where α is the number of p_i which is 2. In particular, if Γ is trivial, then

$$\operatorname{Iso}_{\{1\}}(G;F) = \left(\prod_{i=1}^{n} p_i^{m_i}\right)^{\beta(G)}$$

4. Applications to wheels. Let K_1 denote the trivial graph with vertex 0 and C_m an *m*-cycle with consecutively labelled vertices 1, 2, ..., m. Then the join $W_m = K_1 \vee C_m$ of K_1 and C_m is called a *wheel* for $m \ge 3$. Let T_m be the spanning tree of W_m consisting of all edges incident with the vertex 0. For convenience to apply our result, we only consider $m \ge 4$.

First we evaluate $Iso_{\Gamma}(W_m; F)$, $\Gamma \leq Aut(W_m)$ when Aut(F) is an abelian group. Note that $Aut(W_m)$ is the dihedral group D_m for $m \geq 4$. Let D_m denote the dihedral group generated by two permutations ρ and τ , where $\tau(i) = m+1-i$

and $\rho(i) = i + 1$. Note that all arithmetic is done modulo *m*. Then D_m is the semi-direct product of \mathbb{Z}_m and \mathbb{Z}_2 , where \mathbb{Z}_m and \mathbb{Z}_2 are cyclic groups generated by ρ and τ respectively, and any subgroup Γ of Aut $(W_m) = D_m$ fixes T_m for all $m \ge 4$. For each $\rho^k \in \mathbb{Z}_m$, let o(k) denote the order of ρ^k in \mathbb{Z}_m and $\iota(k)$ the index of the subgroup generated by ρ^k in \mathbb{Z}_m .

With notation discussed before Theorem 6, we first compute $\kappa_i(\gamma)$ and $\eta(\gamma, e)$ for any $\gamma \in \operatorname{Aut}(W_m)$ and $e \in D(W_m)$. Note that an element of $\operatorname{Aut}(W_m)$ is either of the form $\tau \rho^k$ or of the form ρ^k , i.e., either a reflection or a rotation. Geometrically, we can identify $\operatorname{Aut}(W_m) = D_m$ as the symmetric group of the regular *m*-gons. Hence, for any nontrivial symmetry $\gamma \in \operatorname{Aut}(W_m)$, [e] is of class 1 and $(\gamma, e) = 1$ if an edge *e* is fixed by γ , and [e] is of class 2 and $\eta(\gamma, e)$ is the order of γ otherwise. Hence, we get the following lemma.

LEMMA 3. Let $G = W_m, m \ge 4$ be a wheel. Then,

(a)
$$\kappa_1(\tau \rho^k) = \begin{cases} 1 & \text{if } m \text{ is odd and } 0 \leq k \leq m-1 \\ 2 & \text{if } m \text{ is even and } 0 \leq k = even \leq m-1 \\ 0 & \text{if } m \text{ is even and } 0 \leq k = odd \leq m-1, \end{cases}$$

and $\eta(\tau \rho^k, e) = 1$ for any k and any [e] in $D(T^*) / \sim_{\tau \rho^k} of$ class 1.

(b)
$$\kappa_2(\tau \rho^k) = \begin{cases} m-1 & \text{if } m \text{ is odd and } 0 \leq k \leq m-1 \\ m-2 & \text{if } m \text{ is even and } 0 \leq k = even \leq m-1 \\ m & \text{if } m \text{ is even and } 0 \leq k = odd \leq m-1, \end{cases}$$

and $\eta(\tau \rho^k, e) = 2$ for any k and any [e] in $D(T^*) / \sim_{\tau \rho^k} of$ class 2.

(c) $\kappa_1(\rho^k) = 0$, $\kappa_2(\rho^k) = 2\iota(k)$ and $\eta(\rho^k, e) = o(k)$ for any k and any e in $D(T^*)$.

By Theorem 5, Corollary 6 and Lemma 3, we get the following theorem.

THEOREM 8. Let Aut(F) be an abelian group. (a) If Γ is the total group $Aut(W_m) = D_m$, then

$$\operatorname{Iso}_{\operatorname{Aut}(W_m)}(W_m;F) = \begin{cases} \frac{1}{2m} \left(\sum_{k=0}^{m-1} o(F)^{\iota(k)} + m\kappa(F)o(F)^{\frac{m-1}{2}} \right) & \text{if } m \text{ is } odd \\ \\ \frac{1}{2m} \left(\sum_{k=0}^{m-1} o(F)^{\iota(k)} + \frac{m}{2} (o(F) + \kappa(F)^2)o(F)^{\frac{m-2}{2}} \right) & \text{if } m \text{ is } even. \end{cases}$$

(b) If $\Gamma \simeq \mathbf{Z}_m$ is the cyclic group generated by ρ , then

$$\operatorname{Iso}_{\mathbf{Z}_m}(W_m;F) = \frac{1}{m} \sum_{k=0}^{m-1} o(F)^{\iota(k)} \quad \text{for all } m.$$

(c) If $\Gamma \simeq \mathbf{Z}_2$ is the cyclic group generated by τ , then

$$\operatorname{Iso}_{Z_2}(W_m;F) = \begin{cases} \frac{1}{2} \left(o(F)^m + \kappa(F)o(F)^{\frac{m-1}{2}} \right) & \text{if } m \text{ is odd} \\ \frac{1}{2} \left(o(F)^m + \kappa(F)^2 o(F)^{\frac{m-2}{2}} \right) & \text{if } m \text{ is even.} \end{cases}$$

(d) If Γ is the cyclic group generated by $\tau \rho$, then

$$\operatorname{Iso}_{\Gamma}(W_m; F) = \begin{cases} \frac{1}{2} \left(o(F)^m + \kappa(F) o(F)^{\frac{m-1}{2}} \right) & \text{if } m \text{ is odd} \\ \frac{1}{2} \left(o(F)^m + o(F)^{\frac{m}{2}} \right) & \text{if } m \text{ is even.} \end{cases}$$

If the fibre $F = \bar{K}_n$ has only *n* vertices, then an *F*-bundle $G \times^{\phi} F$ over a graph *G* is an *n*-fold covering of *G*. Note that $\operatorname{Aut}(\bar{K}_n)$ is abelian only for n = 2.

COROLLARY 7. (a) The number of isomorphism classes of double covers of W_m with respect to $Aut(W_m) = D_m$ is

$$\operatorname{Iso}_{\operatorname{Aut}(W_m)}(W_m; \bar{K}_2) = \begin{cases} \frac{1}{2m} \left(\sum_{k=0}^{m-1} 2^{\mathfrak{i}(k)} + m2^{\frac{m+1}{2}} \right) & \text{if } m \text{ is odd} \\ \\ \frac{1}{2m} \left(\sum_{k=0}^{m-1} 2^{\mathfrak{i}(k)} + 3m2^{\frac{m-2}{2}} \right) & \text{if } m \text{ is even.} \end{cases}$$

(b) The number of isomorphism classes of double covers of W_m with respect to \mathbb{Z}_m is

$$\text{Iso}_{\mathbf{Z}_m}(W_m; \bar{K}_2) = \frac{1}{m} \sum_{k=0}^{m-1} 2^{i(k)}$$
 for all m .

(c) The number of isomorphism classes of double covers of W_m with respect to \mathbb{Z}_2 is

$$\operatorname{Iso}_{\mathbb{Z}_2}(W_m; \bar{K}_2) = \begin{cases} 2^{\frac{m-1}{2}} (2^{\frac{m-1}{2}} + 1) & \text{if } m \text{ is odd} \\ 2^{\frac{m}{2}} (2^{\frac{m-2}{2}} + 1) & \text{if } m \text{ is even} \end{cases}$$

In particular, if m is prime

- (d) $\operatorname{Iso}_{\operatorname{Aut}(W_m)}(W_m; \bar{K}_2) = \frac{1}{2m}(2^m + 2m 2 + m2^{\frac{m+1}{2}}).$ (e) $\operatorname{Iso}_{Z_m}(W_m; \bar{K}_2) = \frac{1}{m}(2^m + 2m - 2).$
- (f) $\operatorname{Iso}_{Z_2}(W_m; \bar{K}_2) = 2^{\frac{m-1}{2}} (2^{\frac{m-1}{2}} + 1).$

Finally, we consider the general case, i.e., Aut(F) is not necessarily abelian. By using Theorems 4, 6 and Lemma 3, we get

THEOREM 9. Let F be any graph as the fibre of W_m . (a) If Γ is the total group $Aut(W_m) = D_m$, then

$$\operatorname{Iso}_{\operatorname{Aut}(W_m)}(W_m;F) = \begin{cases} \frac{1}{2m} \frac{1}{o(F)} \sum_{g} |C(g)| \left(\sum_{k=0}^{m-1} |Z(g^{o(k)})|^{u(k)} + m|I(g)||Z(g^2)|^{\frac{m-1}{2}}\right) & \text{if } m \text{ is odd} \\\\ \frac{1}{2m} \frac{1}{o(F)} \sum_{g} |C(g)| \left(\sum_{k=0}^{m-1} |Z(g^{o(k)})|^{u(k)} + \frac{m}{2}(|I(g)|^2 + |Z(g^2)|)|Z(g^2)|^{\frac{m-2}{2}}\right) & \text{if } m \text{ is even} \end{cases}$$

(b) If $\Gamma \simeq \mathbf{Z}_m$ is the cyclic group generated by ρ , then

$$\operatorname{Iso}_{\mathbf{Z}_m}(W_m; F) = \frac{1}{m} \frac{1}{o(F)} \sum_{g} |C(g)| \left(\sum_{k=0}^{m-1} |Z(g^{o(k)})|^{\mathfrak{s}(k)} \right) \quad \text{for all } m.$$

(c) If $\Gamma \simeq \mathbf{Z}_2$ is the cyclic group generated by τ , then

$$\operatorname{Iso}_{Z_2}(W_m; F) = \begin{cases} \frac{1}{2} \frac{1}{o(F)} \sum_{g} |C(g)| (|Z(g)|^m + |I(g)| |Z(g^2)|^{\frac{m-1}{2}}) \\ & \text{if } m \text{ is odd} \\ \frac{1}{2} \frac{1}{o(F)} \sum_{g} |C(g)| (|Z(g)|^m + |I(g)|^2 |Z(g^2)|^{\frac{m-2}{2}}) \\ & \text{if } m \text{ is even.} \end{cases}$$

(d) If Γ is the cyclic group generated by $\tau \rho$, then

$$\operatorname{Iso}_{\Gamma}(W_m; F) = \begin{cases} \frac{1}{2} \frac{1}{o(F)} \sum_{g} |C(g)| (|Z(g)|^m + |I(g)||Z(g^2)|^{\frac{m-1}{2}}) \\ & \text{if } m \text{ is odd} \\ \frac{1}{2} \frac{1}{o(F)} \sum_{g} |C(g)| (|Z(g)|^m + |Z(g^2)|^{\frac{m}{2}}) \\ & \text{if } m \text{ is even} \end{cases}$$

Here, all summations are taken over the representatives g over the conjugacy classes of Aut(F).

In particular, if the fibre F is $\bar{K}_n, n \ge 3$, then we can count the number of isomorphism classes of n-fold covering of W_m . Note that |Z(g)||C(g)| = n! for all $g \in S_n$, where Z(g) is the centralizer subgroup of g in S_n and C(g) is the conjugacy class of g in S_n .

COROLLARY 8. (a) The number of isomorphism classes of n-fold coverings of W_m with respect to $Aut(W_m) = D_m$ is

$$\operatorname{Iso}_{\operatorname{Aut}(W_m)}(W_m; \bar{K}_n) = \begin{cases} \frac{1}{2m} \sum_{g} \frac{1}{|Z(g)|} \left(\sum_{k=0}^{m-1} |Z(g^{o(k)})|^{\mathfrak{s}(k)} + m|I(g)| |Z(g^2)|^{\frac{m-1}{2}} \right) & \text{if } m \text{ is odd} \\\\ \frac{1}{2m} \sum_{g} \frac{1}{|Z(g)|} \left(\sum_{k=0}^{m-1} |Z(g^{o(k)})|^{\mathfrak{s}(k)} + \frac{m}{2} (|Z(g^2)| + |I(g^2)| |Z(g^2)|^{\frac{m-2}{2}} \right) \\ & \text{if } m \text{ is even.} \end{cases}$$

(b) The number of isomorphism classes of n-fold coverings of W_m with respect to \mathbf{Z}_m is

Iso_{**Z**_m}(**W**_m;
$$\bar{K}_n$$
) = $\frac{1}{m} \sum_{g} \sum_{k=0}^{m-1} \frac{1}{|Z(g)|} |Z(g^{o(k)})|^{\iota(k)}$.

(c) The number of isomorphism classes of n-fold coverings of W_m with respect to \mathbb{Z}_2 is

$$\operatorname{Iso}_{Z_2}(W_m; \bar{K}_n) = \begin{cases} \frac{1}{2} \sum_g \frac{1}{|Z(g)|} \left((|Z(g)|^m + |I(g)| |Z(g^2)|^{\frac{m-1}{2}} \right) \\ & \text{if } m \text{ is odd} \\ \frac{1}{2} \sum_g \frac{1}{|Z(g)|} \left((|Z(g)|^m + |I(g)|^2 |Z(g^2)|^{\frac{m-2}{2}} \right) \\ & \text{if } m \text{ is even.} \end{cases}$$

In particular, if m is prime, then

(d)
$$\operatorname{Iso}_{\operatorname{Aut}(W_m)}(W_m; \bar{K}_n) = \frac{1}{2m} \sum_g \frac{1}{|Z(g)|} \left((|Z(g)|^m + (m-1)|Z(g^m)| + m|I(g)| |Z(g^2)|^{\frac{m-1}{2}}) \right)$$

(e)
$$\operatorname{Iso}_{Z_m}(W_m; \bar{K}_n) = \frac{1}{m} \sum_{g} \frac{1}{|Z(g)|} \left((|Z(g)|^m + (m-1)|Z(g^m)|) \right).$$

Here, all summations are taken over the representatives g of the conjugacy classes of S_n .

5. Counting of regular *p*-fold covering graphs. Let *p* be a prime number, and let *T* be a fixed spanning tree in a graph *G*. For the graph \bar{K}_p of *p* vertices, Aut(\bar{K}_p) is the symmetric group S_p . Let \mathbb{Z}_p denote the subgroup of S_p generated by the *p*-cycle $\rho = (0 \ 1 \ 2 \cdots \ p - 1)$ in S_p . Then, it is well-known [3] that every regular *p*-fold covering of *G* can be considered as an \bar{K}_p -bundle $G \times {}^{\phi} \bar{K}_p$ with ϕ in $C_T^1(G; \mathbb{Z}_p)$, where $C_T^1(G; \mathbb{Z}_p)$ denotes the set of functions $\phi : D(G) \to \mathbb{Z}_p$ such that $\phi(e^{-1}) = \phi(e)^{-1}$ and ϕ is the identity on D(T). Let $\operatorname{Iso}_{\{1\}}^R(G; p)$ denote the number of isomorphism classes of regular *p*-fold coverings of *G* with respect to the identity automorphism of *G*.

Let any two coverings $G \times^{\phi} \bar{K_p}$ and $G \times^{\psi} \bar{K_p}$, $\phi, \psi \in C_T^1(G; \mathbb{Z}_p)$, be isomorphic with respect to the identity automorphism, then there exists an element $\alpha \in$ Aut $(\bar{K_p}) = S_p$ such that $\psi(e) = \alpha \phi(e) \alpha^{-1}$ for all $e \in D(G) - D(T)$, by Theorem 2, and such α must be contained in the normalizer $N(\mathbb{Z}_p)$ of \mathbb{Z}_p in Aut $(\bar{K_p}) = S_p$. But the normalizer $N(\mathbb{Z}_p)$ of \mathbb{Z}_p in S_p is the set $N(\mathbb{Z}_p) = \{\alpha \in S_p : \alpha \rho \alpha^{-1} = \rho^i$ for some $i = 1, \ldots, p - 1\}$. The Aut $(\bar{K_p})$ -action on $C_T^1(G; \operatorname{Aut}(\bar{K_p}))$ induces an $N(\mathbb{Z}_p)$ -action on $C_T^1(G; \mathbb{Z}_p)$, on which \mathbb{Z}_p acts trivially. Hence, it induces an $N(\mathbb{Z}_p)/\mathbb{Z}_p$ -action on $C_T^1(G; \mathbb{Z}_p)$, and the quotient group $N(\mathbb{Z}_p)/\mathbb{Z}_p$ is clearly isomorphic to the cyclic group of order p - 1. Let us write $A_p = N(\mathbb{Z}_p)/\mathbb{Z}_p =$ $\{g_1, \ldots, g_{p-1}\}$ with $g_i g_j = g_{ij(\text{mod }p)}$.

Тнеогем 10 ([5]).

$$\operatorname{Iso}_{\{1\}}^{R}(G;p) = \frac{1}{(p-1)} \, (p^{\beta(G)} + p - 2).$$

Proof. Clearly

$$|\operatorname{Fix}_{g_i}| = \begin{cases} p^{\beta(G)} & \text{if } i = 1\\ 1 & \text{otherwise} \end{cases}$$

and Burnside's Lemma gives our theorem.

COROLLARY 9 ([4]). The number of double covers of G is

 $\operatorname{Iso}_{\{1\}}^{R}(G; 2) = 2^{\beta(G)}.$

Let Γ be any subgroup of Aut(G) which fixes a spanning tree T of G. Let $\text{Iso}_{\Gamma}^{R}(G;p)$ denote the number of isomorphism classes of regular p-fold coverings of G with respect to Γ . If we apply Theorem 3 to this situation, we have the following theorem.

THEOREM 11.

$$\operatorname{Iso}_{\Gamma}^{R}(G;p) = \frac{1}{(p-1)|\Gamma|} \sum_{(g_{i},\gamma)\in A_{p}\times\Gamma} |\operatorname{Fix}_{(g_{i},\gamma)}|.$$

COROLLARY 10. The number of double covers of G with respect to $\Gamma \leq \operatorname{Aut}(G;T)$ is

$$\operatorname{Iso}_{\Gamma}^{R}(G;2) = \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} 2^{\kappa_{1}(\gamma) + \frac{1}{2}\kappa_{2}(\gamma)}.$$

References

- 1. J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications* (Amer. Elsevier, New York, 1976)
- 2. J. L. Gross and T. W. Tucker, *Topological Graph Theory* (John Wiley and Sons, New York, 1987)
- 3. J. L. Gross and T. W. Tucker, Generating all graph coverings by permutation voltage assignments, Discrete Math. 18 (1977), 273–283.
- 4. M. Hofmeister, Counting double covers of graphs, J. Graph Theory 12 (1988), 437-444.
- 5. J. H. Kwak and J. Lee, Counting some finite-fold coverings, To appear.
- 6. B. Mohar, T. Pisanski and M. Škoviera, *The maximum genus of graph bundles*, Europ. J. Combinatorics 9 (1988), 215–224.
- 7. T. Pisanski, J.Shawe-Taylor and J. Vrabec, *Edge-colorability of graph bundles*, J. Combin. Theory, Ser. B 35 (1983), 12–19.
- 8. H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932), 150–168.

Mathematics, Pohang Institute of Science and Technology, Pohang, 790-600 Korea and Mathematics, Kyungpook National University,

Taegu, 702-701 Korea