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Abstract 

Parasite community structure is governed by functional traits of hosts and parasites. Notably, 

parasite populations and communities respond to host social and spatial behaviour. Many studies 

demonstrating these effects dealt with small-bodied host species, while the influence of host social 

patterns on parasite communities in large hosts remains understudied. In an earlier study on nyalas 

(Tragelaphus angasii), host age was more important than sex in structuring helminth communities 

and networks, but the influence of both was mediated by local environmental conditions, creating 

different locality patterns. Common reedbuck (Redunca arundinum) differ from nyalas in spatial 

and social behaviour. Based on helminth and ectoparasite data from 56 reedbuck examined at two 

localities in KwaZulu-Natal Province, we asked which patterns are similar and which differ 

between the two host species. Similar to nyalas, reedbuck age was more important than sex in 

structuring communities and networks. However, local environmental conditions exerted the 

strongest influence on transmission patterns, especially in ectoparasites. Complex interactions 

between reedbuck traits, parasite traits and local environmental conditions modulated the risk of 

infection differently at the two sites, confirming our earlier findings in nyalas that pooling data 

from different locations may obscure location-specific parasite community patterns. Similarities 

between patterns in reedbuck and nyalas, despite their behavioural differences, suggest some 

common patterns in parasite community ecology that, in turn, are determined mostly by parasite 

traits and population dynamics. 
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Introduction 

Studies on the patterns and processes that govern parasite community structure have shown that 

the interactions between host and parasite species are mediated by functional traits of both. From 

the aspect of the parasite, transmission success can be affected by, for example, its life cycle – 

direct or indirect, transmission mode, preferred site in the host, fecundity and/or host specificity 

(Cable et al., 2017; Cardoso et al., 2021). On the other hand, given the intimate ties between a host 

and its parasites, it is not surprising that host traits, morphological, physiological, behavioural or 

ecological, also affect parasite population and community ecology. 

In particular, parasite populations and communities respond to host social structure and spatial 

behaviour. Effects of host social and spatial behaviour on the transmission of both ecto- and 

endoparasites have been demonstrated in a number of studies, and positive correlations between 

group living and/or host group size and infection parameters such as parasite abundance, 

prevalence or parasite species richness have been found in a variety of ectoparasites or helminths 

(Arneberg et al., 1998; Stanko et al., 2002; Altizer et al., 2003; Patterson and Ruckstuhl, 2013). 

However, many of these studies dealt with fish (Poulin, 1991; Luque et al., 2004), avian hosts 

(Brown and Brown, 1986; Moore et al., 1988) or rodents (Bordes et al., 2007; Spickett et al., 

2017a). This obvious focus on small-bodied host species is likely because of the relative ease with 

which replicate samples can be obtained, whereas in large hosts, the influence of host social 

patterns on parasite communities is still poorly understood. 

In African antelopes (Bovidae), social structure and spatial behaviour is highly variable. In 

order to study associations between host social organization and gastrointestinal parasite burdens, 

established on the basis of faecal egg counts, Ezenwa (2004) assigned African bovids to four 

categories, based on grouping behaviour and spatial distribution according to Estes (1974): 
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solitary/territorial, solitary/non-territorial, gregarious/territorial and gregarious/non-territorial. In 

addition to this, intraspecific variation in gregarious species in group size and group stability as 

well as the existence of social classes (territorial males, bachelor males and nursery herd members) 

were found to result in intraspecific differences in parasite transmission and infection risk 

(Ezenwa, 2004).  

In an earlier study on the helminth communities of nyalas (Tragelaphus angasii), at three 

localities in South Africa, we found that host age was an important determinant of parasite 

community structure, while host sex was of less importance (Junker et al., 2022). Notably, the 

effects of host sex and age were mitigated by environmental factors and thus varied at the three 

localities. Nyalas are polygamous and non-territorial. While typically occurring in small groups, 

they are considered a gregarious species, with groups being fluid in their composition (Skinner 

and Chimimba, 2005). Parasite transmission opportunities are higher among gregarious species 

(Ezenva, 2004), and consequently, the patterns observed in nyalas may differ from those in solitary 

antelopes. 

To compare findings in social/polygamous versus solitary/monogamous antelopes, we studied 

the effects of sex and age and their variation across space (two localities) on patterns of parasite 

abundance, species richness, community structure and individual-based host-parasite networks in 

common reedbuck (Redunca arundinum). Reedbuck are not gregarious, occurring mainly singly 

or in pairs but also in small family groups of two to three individuals. Adult males tend to become 

solitary towards summer, and females are known to isolate themselves for about a month before 

and up to four months after parturition (Estes, 1974; Skinner and Chimimba, 2005). Female 

reedbuck are non-territorial, but males might display varying degrees of territoriality depending 

on locality (see below; Skinner and Chimimba, 2005). Following the reasoning of Ezenwa (2004) 
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that higher levels of aggregation and associated transmission opportunities in gregarious host 

species should lead to higher parasite species richness when compared to solitary species, we 

expected to find helminth species richness to be lower in reedbuck than nyalas. Howard (1986) 

reported that of 566 different sightings of reedbuck, approximately 36% were solitary animals. 

These did not only include adult males and females, but also subadults that had separated from 

their nursery group. Given that a solitary lifestyle is typical for both males and females as well as 

adult and young animals, we expected the effect of age or sex to be less pronounced in reedbuck 

than nyalas. 

In order to facilitate comparison between helminth communities from reedbuck and those from 

nyalas, we analyzed the data on reedbuck endoparasites in the same way as we had done for nyalas. 

Since data on the ectoparasites of these reedbucks were also available, we looked at the effect of 

host sex and age as well as locality on the population and community ecology of ectoparasites and 

asked whether these effects are similar between endo- and ectoparasites. We predicted that effects 

would differ between the two groups because of a much stronger environmental effect on 

ectoparasites relative to endoparasites. Consequently, the effect of locality on ectoparasites is 

expected to exceed that of host sex and age. 

 

Material and Methods 

Host species 

Common reedbuck used to be widespread in South Africa, but loss of specialized habitat has 

reduced their geographic range. Today, they occur in the central parts of Limpopo Province, 

eastern Mpumalanga Province and the extreme east of North West Province. They are widely 

distributed in KwaZulu-Natal, especially on the eastern and western shores of Lake St Lucia in the 
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isiMangaliso Wetland Park. Suitable habitat must meet two essential requirements: a water supply, 

and tall grass or reeds to provide cover as well as shelter against loss of body heat, especially 

during the harsh winters in the Drakensberg foothills (Skinner and Chimimba, 2005). While 

temporary groups of 15–20 animals may form briefly during cold and dry weather periods, 

reedbuck, as mentioned above, are not gregarious and live predominantly solitarily or in pairs. 

Small groups of two to three animals, including female groups, bachelor groups or family groups 

have also been observed. Territoriality in males appears to vary depending on locality. Males in 

the highland regions of KwaZulu-Natal become territorial during rut, with dominant males 

defending territories closest to the food source. At St. Lucia, a social hierarchy allows dominant 

males to mate with females in oestrus (Skinner and Chimimba, 2005). Common reedbuck are 

grazers but under exceptional circumstances, such as during winter when the quality of grasses is 

low, may supplement their diet with herbs or browse. Where available, they will readily use 

agriculturally irrigated pastures (Skinner and Chimimba, 2005). 

 

Study areas 

Common reedbuck were collected from two localities in KwaZulu-Natal Province in South Africa 

(Horak et al., 1988; Boomker et al., 1989b). Animals examined at Himeville (HM) were collected 

from five adjacent farms in the vicinity (29°43’ S; 29° 36’ E; 1550–2000 m above sea level). 

Himeville district is situated in a vegetation unit of the Grassland Biome called the Drakensberg 

Foothill Moist Grassland. The latter is characterized by forb-rich grassland dominated by short 

bunch grasses, including Themeda triandra and Tristachya leucothrix (Mucina and Rutherford, 

2006). However, at the time of sample collection, artificial, often irrigated, annual permanent 

pastures, and croplands of maize and Japanese radish were also prominent landscape features 
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(Horak et al., 1988). Himeville is part of the summer rainfall region with a mean annual 

precipitation of 890 mm. Most of the 1220 mm of rain recorded during the 13 months during which 

animals were collected fell between October and March. The mean annual temperature is 14.6°C; 

winters can be severe with an average of 26 frost days per year (Mucina and Rutherford, 2006). 

Other antelope species occurring sympatrically with common reedbuck in the Himeville 

area were eland (Taurotragus oryx), mountain reedbuck (Redunca fulvorufula), grey rhebok (Pelea 

capreolus), oribi (Ourebia ourebi), blesbok (Damaliscus dorcas philippsi), and common duiker 

(Sylvicapra grimmia). Farmed animals comprised mainly cattle and sheep (Horak et al., 1988). 

At the time of sample collection, Eastern Shores Nature Reserve (27°51’ S to 28°25’ S; 

32° 20’ E to 32°40’ E; ca. 250 km2), Charters Creek Nature Reserve and St Lucia Game Park, 

formed adjacent conservation areas in today’s iSimangaliso Wetland Park (see Horak et al., 1988). 

These conservation areas, referred to as ESNR, are situated within a patchwork of vegetation units 

of the Indian Ocean Coastal Belt, including the Maputaland Coastal Belt, the Maputaland Wooded 

Grassland and Subtropical Freshwater Wetlands (Mucina and Rutherford, 2006). Within these 

areas, the preferred habitat of reedbuck was low-lying, seasonally inundated grassland (Horak et 

al., 1988). Mean annual rainfall in the three vegetation units is 933–989 mm, but was 1109 mm at 

the time of sample collection, with January to April being the wettest and July to September the 

driest months. Mean annual temperature is 19.6–21.1°C, with the hottest month being February 

and the coolest July; winters are frost-free (Horak et al., 1988; Mucina and Rutherford, 2006). 

Other mammal species present at ESNR at the time reedbuck were collected were 

hippopotamus (Hippopotamus amphibius), bushpig (Potamochoerus porcus), common warthog 

(Phacochoerus africanus), buffalo (Syncerus caffer), bushbuck (Tragelaphus scriptus), nyala 

(Tragelaphus angasii), common duiker, steenbok (Raphicerus campestris), waterbuck (Kobus 

https://doi.org/10.1017/S0031182024000532 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182024000532


 
 

 

ellipsiprymnus), blue wildebeest (Connochaetes taurinus) and impala (Aepyceros melampus). 

Population densities of reedbuck were high, ranging from 0.46–0.86 per ha (Horak et al., 1988). 

 

Host and parasite collection 

A total of 26 animals (four adult and 10 young males; nine adult and 3 young females), were 

collected from Himeville. Two reedbuck each, one adult and one young animal, were examined 

monthly from May 1983 to May 1984. Only helminth but no tick data are available for a single 

young male, collected in November 1983. 

At ESNR, 30 reedbuck were examined (10 adult and five young males; nine adult and six young 

females). Of these, two to three reedbuck were taken at 3-monthly intervals from March 1983 to 

April 1984 and an additional five and four animals were examined during August 1984 and January 

1987, respectively. Males and females were classified as adult based on body size, pelage and/or 

horn conformation and length (Howard, 1983). 

Helminths were collected as described by Boomker et al. (1989 a, b). Briefly, the carcass 

was opened and the abdominal cavity macroscopically scanned for parasites. Subsequently, the 

heart, lungs, liver and the oesophagus, were examined separately. The remainder of the 

gastrointestinal tract was divided into rumen and reticulum, abomasum, small intestine, and large 

intestine. Aliquots were taken from the ingesta of each of these sections and the mucosae of the 

abomasum, small and large intestine digested in pepsin and HCL. The liver and right lung were 

cut into slices and incubated overnight in normal saline. Digests and incubated samples were 

washed on 150 µm sieves and sieve residues collected and kept for helminth recovery. Presence 

or absence of Taenia spp. metacestodes was determined by examining incisions of the masseter, 

triceps and ilio-psoas muscles. 
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Helminths were identified and counted under a compound microscope equipped with 

differential interference contrast, based on their original descriptions or, if applicable, the latest 

taxonomic revisions. Where applicable, aliquot counts were converted into total counts. 

Concerning cestodes, only specimens with the scolex still attached were counted. Members of the 

Paramphistominae reported from common reedbuck in Africa belong to the genera Calicophoron 

(four species) and Cotylophoron (one species) (Pfukenyi and Mukaratirwa, 2018). For the present 

study, specimens were identified to subfamily level. Females of the genera Cooperia and 

Cooperioides (Strongylida) are difficult to distinguish morphologically. Consequently, only males 

were identified to species level, whereas females and fourth-stage larvae were grouped as 

Cooperia-like females and Cooperia-like L4, respectively. 

Ticks were collected and their burdens determined as set out in Horak et al. (1982) and  

Horak et al. (1983), with the exception that only half of each animal was processed for ectoparasite 

recovery (Horak et al., 1988). Briefly, the hides of reedbuck were cut in half and all adult ticks 

collected, identified and counted and then multiplied by two. Subsequently the hides were washed 

and scrubbed. The water in which the hides had been scrubbed was sieved and subsamples of the 

collected sievings were examined for immature ticks. Counts were subsequently converted to full 

counts. Ticks were identified based on their original descriptions or, if applicable, the latest 

taxonomic revisions. 

 

Data analysis 

As mentioned above, we intentionally analyzed the current data in approximately the same way as 

in Junker et al. (2022 for nyalas) to make the results comparable with those of this earlier study. 

First, we tested whether counts and species richness of helminths and ectoparasites harboured by 
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reedbuck in the two localities depended on sex and/or age of a host and differed between localities 

from which a host was taken. For this part of the analyses, we selected helminth and ectoparasite 

species that were the most prevalent in both localities, namely (a) the helminths Cooperia yoshidai, 

Dictyocaulus viviparus, Haemonchus contortus, Longistrongylus schrenki and Setaria bicoronata; 

(b) the ticks Rhipicephalus decoloratus and Rhipicephalus evertsi and (c) a chewing louse, 

Damalinia reduncae and a sucking louse, Linognathus fahrenholzi (Supplementary Table S1 and 

S2). Data on counts (separately for each of the most prevalent parasite species) as well as on 

species richness of all parasites (separately for helminths and ectoparasites) were analyzed using 

Generalized Linear Mixed Models (GLMM) with year and season of sampling as random factors 

(season nested within year). To run the models, we searched for the distribution that best fitted the 

data using the package “fitdistrplus” (Delignette-Muller and Dutang, 2015) implemented in R 

statistical environment (R Core Team, 2022) by fitting negative binomial, geometric and Poisson 

distributions (all discrete) and then selecting the best distribution based on the Akaike Information 

Criterion (AIC) using maximum likelihood estimation as a fitting method. Negative binomial 

distribution appeared to be the best-fitted for count data, whereas Poisson distribution appeared to 

be the best-fitted for species richness. Consequently, we ran GLMMs using the R package 

“glmmTMB” (Brooks et al., 2017) with options “family=nbinom1” for counts and 

“family=genpois” for species richness. For each parasite species or species richness, we fitted the 

models that included (a) all main effects and all interactions and (b) all possible combinations of 

independent variables and interactions between them. Then, we selected the best models based on 

AIC corrected for small sample size (ΔAICc), using function “model.sel” of the R package 

“MuMin” (Barton, 2020). Among them, we selected models with ΔAICc < 2 and averaged these 

models using function “model.avg”.  
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Subsequently, we investigated differences in helminth or ectoparasite community 

composition between female and male adult and young reedbuck from different localities using 

non-parametric Permutational Multivariate Analysis of Variance using Distance Matrices 

(PERMANOVA; McArdle and Anderson, 2001) as implemented in function” adonis2” of the R 

package vegan (Oksanen et al., 2020) with the Bray-Curtis dissimilarity and 1000 permutations. 

To visualize differences in community composition of helminths and ectoparasites in dependence 

of sex and age of the reedbuck and the locality that they were taken from, we used Non-Metric 

Multidimensional Scaling (NMDS), a non-constrained ordination method (Minchin, 1987) with 

the function “metaMDS” from the “vegan” package. In contrast to other ordination methods in 

which many axes are calculated, but only a few are viewed due to graphical limitations, in NMDS 

a small number of axes are explicitly chosen prior to the analysis and the data are fitted to those 

dimensions, so there are no hidden axes of variation (Borcard et al., 2018). For this, we constructed 

two presence/absence matrices with helminth or ectoparasite species as columns and reedbuck 

individuals as rows. This was done because (a) counts cannot be compared between parasites 

belonging to different species, families and phyla and (b) parasite incidence data have been shown 

to represent information no less reliably than parasite count data for investigations of parasite 

community ecology, at least at the scale of parasite infracommunities (Krasnov et al., 2021). 

To explore patterns of compositional and functional similarity in helminth or ectoparasite 

species composition among female and male adult and young reedbuck from different localities, 

we used Double Similarity Principal Component Analysis, a recently developed ordination method 

(Pavoine, 2019). In brief, DSPCA places species (in our case, parasites) and communities (in our 

case, infracommunities of hosts belonging to a given sex/age cohort from a given locality) in the 

same ordination space and identifies those parasites that drive similarity patterns in accordance 
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with their occurrence or traits. First, DSPCA takes a matrix of compositional or trait-based 

similarity between parasite species, eigen-decomposes this matrix, produces a series of 

independent axes and places species into the space of these axes according to their compositional 

or trait-based similarity. Then, the matrix of parasites by host cohorts is used for placement of host 

cohorts in the centres of the parasites that they harbour and distributing them in this space so that 

the host cohorts are positioned in the ordination space according to the coordinates of the parasites 

they harboured. Following this, DSPCA produces new axes (principal components) that best 

describe the similarities between host cohorts based on composition of their parasite communities, 

and the coordinates of parasites and host cohorts are projected on these principal components 

which reflect (from the first to the last) the ever-decreasing portion of similarities and, 

concomitantly, the ever-increasing portion of dissimilarity in parasite species/trait composition 

between host cohorts. In the final ordination space of DSPCA, the coordinates of host cohorts and 

parasites are bounded between -1 and 1 with parasites and host cohorts being displayed by arrows, 

starting from the origin. A more acute angle between the arrows of any two host cohorts reflects 

higher similarity between them in terms of parasite species composition or parasite traits. An arrow 

of a host cohort is directed to the centre of its parasite species. An arrow of a parasite is directed 

towards the host cohorts in which it occurs, whereas its length reflects how well this parasite 

represents the composition of each parasite community in a host cohort. 

Given that traits of helminths and ectoparasites are vastly different, we (a) constructed 

separate community matrices for helminths and ticks (see below), with reedbuck of different 

sex/age cohorts and taken from different localities in rows and parasite species in columns, with 

prevalence of a given parasite in a given cohort from a given locality as entries and (b) parasite 

trait matrices with parasite species as rows and traits as columns separately for each trait. For 
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helminths, these traits (see Supplementary Table S3) were (a) life cycle (direct or indirect; two 

binary variables); (b) preferred site of parasitism within the host (nine binary variables) and (c) 

transmission mode (trophic, vector-borne, actively invading; three binary variables). For ticks, the 

traits (see Supplementary Table S4) were (a) preferred site of attachment of an adult tick (caudal 

region, underside, ears or any part of the body; four binary variables); (b) difference between main 

host of an adult and an immature stage (different or the same; two binary variables); and (c) 

seasonality of adults (summer, spring-summer, spring, winter or all year round; five binary 

variables). We did not apply DCPCA for lice because there were only two louse species which 

differed in a single main trait (feeding on either blood or epidermis of a host). Then, we calculated 

the compositional or functional (for each trait separately) similarity between parasite species found 

in reedbuck of different sex/age cohorts from different localities using the SOchiai index of 

similarity developed by Pavoine and Ricotta (2014) and implemented in the functions “dsimTree” 

(for compositional similarity) and “dsimFun” (for functional similarity) of the R package “adiv” 

(Pavoine, 2020). Subsequently, we ran the DCPCA for species composition or each trait using the 

function “dspca” of the package “adiv”. 

At the final stage of the analyses, we considered individual-based reedbuck-helminth and 

reedbuck-ectoparasite networks and (a) estimated the non-random structural patterns in these 

networks by calculating their nestedness (in our case, a pattern in which hosts exploited by more 

specialized parasites form a proper subset of those taken by more generalist parasites; Bascompte 

et al., 2003); (b) assessed importance of individual reedbuck in each network using three indices, 

namely index of individual host specialization (d’), individual host strength (IHS) and centrality 

(C) (see explanations below); and (c) tested for the associations between sex and age of a reedbuck 

individual and a locality from which it was taken and each of these indices. For each locality and 
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separately for helminth and ectoparasites, we constructed five interaction binary matrices with 

individual hosts in rows and parasites in columns, namely a matrix with all reedbuck, a matrix 

with female reedbuck only, a matrix with male reedbuck only, a matrix with adult reedbuck only 

and a matrix with young reedbuck only. 

Nestedness of each network was calculated based on the NODF index (Nestedness based 

on Overlap and Decreasing Fill; Almeida-Neto et al., 2008), using function “nestednodf” 

implemented in the R package “vegan”. We then tested for significance using function “oecosimu” 

of “vegan” with null model “r1” (preserves row frequencies and uses column marginal frequencies 

as probabilities of selecting species) and 1000 permutations. NODF varies from 0 (random 

network) to 100 (perfect nestedness). The indices of host importance in the networks were as 

follows. Individual host specialization (d’) compares the frequency distribution of host-parasite 

interactions with a null distribution when interactions between hosts and parasites are proportional 

to their observed total frequencies and may vary from 0 (no specialisation) to 1 (complete 

specialisation) (Blüthgen et al., 2006; Blüthgen, 2010). In other words, it describes the deviation 

from a neutral configuration of associations. IHS is the species-strength index of Bascompte et al. 

(2006) calculated as the sum of the dependencies of each parasite on each individual host. d’ and 

IHS were calculated using function “specieslevel” of the R package “bipartite” (Dormann, 2011; 

Dormann et al., 2008). The centrality metric estimates the role of each host in sharing parasites 

with other hosts. A higher centrality of a host reflects its greater connection with other hosts and, 

thus, high level of parasite transmission in the network (Morand et al., 2014; Pilosof et al., 2015). 

To calculate centrality, we projected each bipartite network to a unipartite network using the 

function “projecting_tm” of the R package “tnet” (Opsahl, 2009), transformed the latter into the 

network graph object using function “tnet_igraph” of the “tnet” and then calculated centrality as 

https://doi.org/10.1017/S0031182024000532 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182024000532


 
 

 

eigenvector centrality using function “evcent” of the R package “igraph” (Csardi and Nepusz, 

2006). Associations between sex and age of a reedbuck and a locality from which it was taken and 

each of the above three indices were tested using generalized linear models (GLM) with these 

factors as explanatory variables and each index as a response variable. GLMs for d’ and centrality 

were run using the option “family=quasibinomial” because these indices vary between 0 and 1. 

 

Results 

Helminth communities – general overview 

Helminths of infracommunities of common reedbuck in KwaZulu-Natal Province belonged to 18 

species of nematodes, one subfamily of trematodes (Paramphistominae) and two species of 

cestodes (Supplementary Table S1). Of these, 13 species were present at HM, and reedbuck there 

had a mean species richness of 4.4, ranging from 0–8, with a single young female harbouring no 

helminths. Eighteen helminth species were collected at ESNR and mean species richness was 5.3, 

ranging from 1–12. Seven species of nematodes, Paramphistominae and the cestode Moniezia 

benedeni were shared between the two sites, whereas Ostertagia ostertagi, Trichostrongylus 

falculatus, Setaria labiatopapillosa and metacestodes of Taenia hydatigena were only found at 

HM, where they had a prevalence of 15% or less. In contrast, eight species, Cooperia hungi, 

Cooperioides hepaticae, Cooperia-like females, Gongylonema sp., Impalaia tuberculata, 

Oesophagostomum columbianum, Setaria sp., and Skrjabinema sp., only infected reedbuck at 

ESNR. Of these, Setaria sp. and Skrjabinema sp. had a prevalence of 20% and 37%, respectively, 

while the prevalence of the remaining species was below 15% (Supplementary Table S1). Five 

species of nematodes were common and abundant members of the helminth communities of 

reedbuck at both localities and had a prevalence exceeding 50% (42% for H. contortus at HM). 
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These were C. yoshidai, the most prevalent helminth (89%) at HM, the abomasal nematodes H. 

contortus and L. schrenki, the most prevalent helminths (93%) at ESNR, as well as the lung worm 

D. viviparus and the filarial nematode S. bicoronata. In addition, Paramhistominae were abundant 

and had a high prevalence (65%) at HM, but only infected a single animal at ESNR. 

 

Ectoparasite communities – general overview 

Ectoparasite communities in KwaZulu-Natal Province comprised 11 species of ixodid ticks, one 

species of chewing lice, D. reduncae, and one species of sucking lice, L. fahrenholzi 

(Supplementary Table S2). Both louse species occurred at HM and ESNR, but prevalence as well 

as abundance of both adult and immature stages of these parasites were higher at the former 

locality. In addition, prevalence of adults was higher than that of immature stages in both louse 

species, irrespective of locality. A total of seven ectoparasite species were found on reedbuck at 

HM, and mean species richness was 3.2, with a range of 1–6, whereas 11 species of ectoparasites 

were collected at ESNR, with a mean species richness of 3.5 and a range of 1–8. Adults of three 

species of ticks, Ixodes sp., R. evertsi evertsi and R. lounsburyi infested reedbuck at HM, but 

prevalence for all three species was below 10%. Immatures of Ixodes sp. and R. evertsi evertsi at 

HM were more prevalent (36% and 88%, respectively), but no immatures of R. lounsburyi were 

found. However, immatures of R. appendiculatus and R. decoloratus had a prevalence of 8% and 

36%, respectively. The only adult tick species shared between HM and ESNR was R. evertsi 

evertsi. At ESNR, the adults of R. appendiculatus, R.decoloratus and R. muehlensi were recovered, 

with a prevalence ranging from 8% to 19%. The immatures of nine tick species were present at 

ESNR with only those of Ixodes sp. and R. lounsburyi being absent from this locality. As at HM, 

the immature stages of a particular tick species were more prevalent than adults. Irrespective of 
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the developmental stage, two tick species, Ixodes sp. and R. lounsburyi, were only found at HM, 

whereas six tick species were exclusively collected from reedbuck at ESNR, namely Amblyomma 

hebraeum, Amblyomma marmoreum, Haemaphysalis sp., Rhipicephalus maculatus, R. muehlensi 

and Rhipicephalus sp. Shared species between the two sites were R. appendiculatus, R. decoloratus 

and R. evertsi evertsi. 

 

Effect of host sex/age and locality on parasite abundance 

The counts of three of five of the most prevalent helminths differed significantly between localities 

only, with D. viviparus, H. contortus and L. schrenki being more numerous in reedbuck from 

ESNR than from HM (Table 1, Fig. 1). Female reedbuck harboured higher numbers of C. yoshidai 

than their male counterparts (Table 1, Fig. 1). The counts of S. bicoronata were affected by the 

interaction between a reedbuck’s age and a locality but not by either factor separately (Table 1). 

In particular, significantly more individuals of S. bicoronata were collected from young reedbuck 

in ESNR than in Himesville, whereas no locality difference in the counts of this nematode was 

found in adult reedbuck (Fig. 1).  

For the most prevalent ticks, we found a marginally significant difference in the numbers 

of R. decoloratus only, with a weak trend of counts being higher in young than adult reedbuck 

(Table 1, Fig. 2). Counts of the chewing louse D. reduncae differed significantly between the 

reedbuck from the two localities, being higher in HM than in ESNR (Table 1, Fig. 2). In addition, 

a marginally significant effect of a reedbuck’s sex on the number of these lice reflected a tendency 

of males harbouring higher numbers of D. reduncae than females (Table 1, Fig. 2). Counts of the 

sucking louse L. fahrenholzi differed significantly between localities only, being higher in 

reedbuck from Himesville than from ESNR (Table 1, Fig. 2). 
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Effect of host sex/age and locality on parasite species richness and species composition 

A single model returned for helminth species richness suggested no effect of either host sex or 

locality and only a marginally significant effect of host age (coefficient=-0.21±0.12, z=1.71, 

p=0.08), with the number of helminth species tending to be higher in adult animals (note reference 

level and the sign of the coefficient). In contrast, adult and  young female and male reedbuck 

harboured similar numbers of ectoparasite species in both localities. 

The results of PERMANOVA are presented in Table 2 and visualization of these results 

using NMDS is presented in Fig. 3. Helminth species composition in the infracommunities 

harboured by reedbuck differed solely between localities. Similarly, the effect of locality on 

differences in ectoparasite species composition was the strongest, although there was also a weaker 

effect of reedbuck age and a marginal effect of host sex (Fig. 3). In other words, both helminth and 

ectoparasite species composition differed mainly between localities. 

 

Effect of host and parasite traits on parasite infracommunities 

Helminth and tick infracommunities were similar between adult and  young male and female 

reedbuck from the two localities in terms of species composition (0.80 and 0.81, respectively). 

Trait-based similarities between infracommunities were even higher (Table 3). DSPCA 

demonstrated high similarities among host cohorts within each locality. Given that each DSPCA 

produced only one eigenvalue >1 (Table 3), helminth and tick infracommunities of all sex/age 

cohorts from both localities had similar scores on the PC1 for all DSPCA (Figs. 4–5), but the 

distribution of infracommunities along PC2 demonstrated a certain degree of dissimilarity. For 

example, when DSPCA was based solely on species composition, helminth and tick 
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infracommunities of reedbuck from ESNR and those from HM had PC2 scores of the opposite 

signs (Fig. 4A, Fig. 5A). The distribution of helminth infracommunities based on life cycle also 

showed differences between infracommunities of reedbuck from ESNR and HM (positive and 

negative, respectively, scores on PC2; Fig. 4C). However, infracommunities of young females in 

HM differed from those of the remaining sex/age cohorts there and were similar to those of the 

animals from ESNR. The ordination diagram of helminths (Fig. 4D) suggested that 

infracommunities from ESNR were dominated by helminths with direct life cycles, whereas those 

from HM were characterised by the comparatively greater presence of species requiring 

intermediate hosts (Supplementary Table S3). The distribution of helminth infracommunities 

based on predilection site again shown differences between infracommunities of the animals from 

ESNR and HM (Fig. 4E), with the former harbouring several species of parasites occurring in the 

large intestine, whereas the latter infracommunities were characterized by the high prevalence of 

helminths residing in the small intestine and rumen (Paramphistominae) (Fig. 4F). 

When similarity among ticks in terms of the preferred attachment site was considered, ticks 

preferring to attach to the ear pinnae of a host were mainly characteristic for reedbuck of ESNR 

except for young males (Supplementary Table S4). The latter as well as reedbuck from HM were 

mainly attacked by ticks preferring either the caudal region of the body or the underside or without 

clear preference (Fig. 5C, D). Regarding between-tick similarity in seasonal patterns of 

occurrence, DSPCA demonstrated that young animals at either locality were predominantly 

parasitized by R. decoloratus mostly occurring in spring (negative scores on PC2), whereas adult 

reedbuck harboured tick species occurring in summer, spring-summer, winter or all year round 

(Fig. 5E, F). 
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Reedbuck-parasite networks 

Individual-based reedbuck-parasite networks in the two localities are visualized in Fig. 6. In the 

ESNR, reedbuck-helminth networks were significantly nested for male and adult antelopes only, 

whereas in HM these networks were significantly nested when all animals were considered as well 

as for separate male and female networks (Table 4). In contrast, reedbuck-ectoparasite networks 

in both localities where significantly nested except female and young reedbuck in HM (Table 4). 

Summaries of GLM for the effect of a reedbuck’s sex, age, and locality on the values of network 

indices are presented in Table 5. In reedbuck-helminth networks, values of individual host 

specialization (d’) differed and were significantly higher in adult than young hosts (Fig. 7A), 

values of individual host strength and centrality differed between localities with the former being 

higher in HM than in the ESNR, whereas the opposite was true for the latter (Fig. 7B, C). Finally, 

in reedbuck-ectoparasite networks, the effect of a host’s sex, age or locality was found for 

centrality only with males being more central than females (Fig. 7D). 

 

Discussion 

Comprising a total of 21 helminth and 13 ectoparasite species, the parasite fauna of reedbuck in 

KwaZulu-Natal was moderately species rich. Despite our expectation that higher gregariousness 

in nyalas would lead to higher species richness when compared to predominantly solitary 

reedbuck, overall species richness did not differ much in the helminth communities of the two 

hosts. Helminth communities of nyalas comprised a total of 19 species, with an overall species 

richness at the three localities examined of 3.5, ranging from 0–7 (Junker et al., 2022). Both 

helminth communities were dominated by directly transmitted nematodes. The high density of 

reedbuck, especially at ESNR (Horak et al., 1988), might have resulted in increased contact rates 

https://doi.org/10.1017/S0031182024000532 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182024000532


 
 

 

between reedbuck individuals. 

As predicted, and likely linked to the low sociality in all cohorts studied, host age and sex 

affected host-parasite interactions in reedbuck less than in nyalas. Environmental conditions, 

however, had a strong influence on helminth community structure in both these hosts. 

Furthermore, similar to helminth communities in nyalas, host age was more important in driving 

community and network structure than host sex, and different parasite species were affected 

differently by host sex, age or the locality in which they were collected (Junker et al., 2022). 

Both the helminth and ectoparasite faunas of reedbuck were more diverse at ESNR than at 

HM. While nine species of helminths were shared between reedbuck at HM and ESNR, their 

species complement varied not only in prevalence and abundance, but also in the presence/absence 

of certain species at a given locality. Cooperiodes hepaticae, for example, was present only at 

ESNR. This liver parasite is predominantly a parasite of impala (Boomker et al., 1989b), which 

shared the habitat of reedbuck at ESNR but not at HM, emphasizing the influence of cross-

infection and parasite sharing between suitable host species and the role of reservoir hosts in 

parasite transmission (Boomker et al., 1989b; Fenton et al., 2015; Dallas et al., 2019; Horak et al., 

2021). Helminth species shared between the two localities generally had  lower prevalence and 

abundance at HM than ESNR. The harsher climatic conditions at HM, including colder and drier 

winters, could have impeded the survival of free-living stages of gastrointestinal Strongylida that 

have minimum humidity and temperature thresholds for their development (Rossanigo & Gruner, 

1995; O’Connor et al., 2006). Similarly, the wider spectrum of co-occurring hosts and different 

habitat conditions may have led to the larger variety seen in ixodid tick species at ESNR in relation 

to HM. Furthermore, livestock at Himeville were dipped on a regular basis to control tick 

infestations (Horak et al., 1988), decreasing the likelihood of domestic animals serving as 
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maintenance hosts for ticks.  

As for nyalas (Junker et al., 2022), the effects of sex, age and locality on parasite numbers 

differed between parasite species. A significant effect of host sex on helminth abundance was only 

seen in C. yoshidai, with females supporting larger numbers than males. Variation of helminth 

prevalence and intensity between hosts of different age and sex classes has been attributed to 

differential exposure and transmission rates, brought about by different behavioural patterns, 

habitat use, body size and/or immune competence (Amundson et al., 2016). Female bias in 

parasitism can be associated with higher parental care cost (Sitko and Heneberg, 2015). Female 

reedbuck may consume more forage to meet the heightened energy demands of parturition and 

suckling, increasing exposure rates to trophically transmitted parasite stages. In addition, suckling 

females are confined to a narrow habitat range while their lambs are hidden for a period of about 

three months (Skinner and Chimimba, 2005), which may increase levels of contamination in the 

vicinity. 

The interaction between host age and locality resulted in higher numbers of S. bicoronata 

in young reedbuck at ESNR when compared to HM. Setaria species are vector-born parasites, 

transmitted by haematophagous insects, mostly mosquitoes (Cancrini et al., 1997; Anderson, 

2000), whose populations can be limited by temperature (Guarido et al., 2021). Higher vector 

abundance at the ESNR, combined with lower immune competence in young reedbuck may be 

responsible for the observed pattern. 

With regard to ectoparasites, there was a weak but significant effect of host age on the 

abundance of R. decoloratus, reaching higher numbers in young animals. Cattle may have innate 

and acquired immunological responses to infestation with R. decoloratus and difference in coat 

characteristics is considered an important contributor to variation in resistance against this tick in 
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various cattle breeds (Marufu et al., 2011; Marima et al., 2020). Acquired immunity in adults and 

differences in coat characteristics, as evidenced by changes in colour patterns between young and 

adult reedbuck (Skinner and Chimimba, 2005), might result in higher burdens of R. decoloratus in 

young animals. 

Host age had a marginally significant effect on helminth species richness, with a larger 

variety of species found in adult reedbuck, possibly because of higher vagility, increased food 

intake or a time dependent increase in exposure to infective stages of parasites in older animals 

(Chaisiri et al., 2017; Bellay et al., 2020). 

As previously shown for small mammals (Behnke et al., 2001, 2004), the main differences 

concerning parasite communities in reedbuck were found between localities. Similarly, species 

composition of infracommunities (based on taxonomy as well as parasite traits) differed mostly 

between localities. It was the only effect regarding helminth infracommunities and the strongest 

effect with regard to ectoparasite infracommunities. 

Considering life cycle characteristics, helminth infracommunities at ESNR mostly 

encompassed helminths with direct life cycles, whereas helminths with indirect life cycles played 

a comparatively larger role in infracommunities at HM. The exception to this were young females 

at HM, whose infracommunities were similar to those of hosts at ESNR. While infracommunities 

at both localities included five indirect life cycle species each, at HM these formed part of a total 

helminth species complement of 13, compared to a total of 18 species at ESNR. Furthermore, 

Paramphistominae, which had a prevalence of 65% at HM, infected only one host at ESNR. Junker 

et al. (2022) attributed local differences in the prevalence of Paramphistominae in nyalas to 

variation in the distribution of the intermediate freshwater snail host. Crop irrigation, contributing 

to snail survival, and high livestock densities have been associated with high infection rates with 
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Paramphistominae (Pfukenyi and Mukaratirwa, 2018). Both conditions were met at HM. 

Tick infracommunities on reedbuck at ESNR were characterized by species preferring the 

ear pinnae of their host as attachment site. This pattern is mainly generated by the higher 

prevalence of R. appendiculatus on reedbuck at ESNR as well as the presence of R. muehlensi and 

Haemaphysalis sp., both of which were absent at HM. These tick species mostly attach to the ear 

pinnae. Both R. appendiculatus and R. muehlensi are generalists, their adults and immatures 

infesting large domestic and wild ruminants. However, nyalas, and probably bush buck, both of 

which were present at ESNR but absent at HM, are preferred hosts of all developmental stages of 

R. muehlensi (Horak et al., 1995). 

The seasonality of adult ticks affected tick distribution patterns at both localities in a similar 

way, with infracommunities on young animals being characterized by R. decoloratus, a tick of  

which the highest burdens are usually recorded in spring on wild herbivores in southern Africa 

(Walker et al., 2003; Horak et al., 2018). Rhipicephalus decoloratus is the only one-host tick 

among the tick fauna of reedbuck at the two localities. It is possible that the shortened life-cycle 

of one-host ticks when compared to two- or three-host ticks (Spickett, 2013), allows this species 

to be first to infect young animals. 

The structure of reedbuck-helminth and reedbuck-ectoparasite networks also varied mainly 

between localities, but the two networks showed opposite trends. At ESNR, reedbuck-helminth 

networks were significantly nested for male reedbuck and adults. Higher feeding rates in adults 

and males could contribute to the nested patterns seen in these host cohorts (González and Poulin, 

2005; Bellay et al., 2020). During rut, dominant males in the highland regions of KwaZulu-Natal 

defend territories closest to the food source (Skinner and Chimimba, 2005). These would typically 

be areas that attract higher host densities and therefore might have higher contamination levels as 
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well as variety of parasite species. 

Reedbuck-ectoparasite networks were typically nested, with the exception of those of 

females and young reedbuck at HM. The reasons behind the seemingly random accumulation of 

ectoparasites in these two host groups at HM are unclear. 

Individual host specialisation d’ with respect to helminths was higher in adult than young 

reedbuck. The opposite was found in nyala and sperm whale populations, where host specialisation 

decreased with host age (Bellay et al., 2020; Junker et al., 2022). Acquired immunity to helminth 

infection has been reported in several vertebrate hosts (Tinsley et al., 2012), including strongyle 

parasites in ruminants (Vercruysse and Claerebout, 1997). A naïve immune system combined with 

habitat shift and raised stress levels when young reedbuck leave their original family group could 

increase exposure and susceptibility to different parasite species. 

Host strength was influenced by locality and was higher in reedbuck at HM when compared 

to ESNR. Species composition varied significantly between the two localities, likely because 

different parasite species might have differential environmental tolerances as well as final and 

intermediate host density thresholds (Arneberg, 2002; Calvete et al., 2004; O’Connor et al., 2006; 

Cardoso et al., 2021). 

Centrality was higher in reedbuck at ESNR than at HM. Gómez et al. (2013) suggested 

that a higher probability of encounters between hosts would enhance conditions of parasite sharing. 

Population densities of reedbuck were especially high at ESNR (Horak et al., 1988). 

In terms of ectoparasite transmission, male reedbuck were more central than females. 

While mostly solitary, males move between females during the mating season, increasing contact 

levels with conspecifics. Junker et al. (2022) attributed higher centrality of males in nyala-helminth 

networks to their more varied social interactions. In addition, higher vagility and body mass have 
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been associated with increased species richness and/or abundance in helminth and ectoparasite 

communities (Gallivan and Horak, 1997; Spickett et al., 2017b). 

Conclusion. Despite the fact that the sample size for age/sex categories was relatively small, 

resulting in a fairly low power to detect differences in prevalence or burden, some effects of host 

age and sex on the helminth and ectoparasite communities of reedbuck were found . However, the 

effect of locality on parasite communities exceeded that of host sex and age, especially, and as 

predicted, in ectoparasites. In addition, complex interactions between reedbuck traits, parasite 

traits and local environmental conditions seem to modulate the risk of infection and thus helminth 

and ectoparasite community and network structure varied between locations. This emphasizes our 

earlier findings in nyalas that pooling communities from different locations when investigating 

parasite community and network structure may skew results and obscure location-specific patterns. 

While helminth communities of reedbuck were similar to those of nyalas in that host age played 

a larger role in structuring communities and networks than sex, host traits were less influential 

than in nyalas and the main differences in reedbuck-parasite interactions were locality dependent. 

We attribute this to the differences in sociality between the two host species. The mostly solitary, 

non-territorial lifestyle of reedbuck seems to negate some of the more pronounced age- and sex-

dependent variation in behavioural patterns seen in gregarious nyalas. 
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Table 1. Averaged coefficients of the best generalized linear mixed-effects models with the 

negative binomial distribution of the effect of a reedbuck’s sex (SX), age (A), and locality (Loc) 

from which a reedbuck was taken and their interactions on the numbers of the most prevalent 

helminth (H) and ectoparasite (EC) taxa. Random factor in all models was year and season of 

sampling. Reference levels of independent variables were female for sex, adult for age and the 

Eastern Shores Nature Reserve for locality. Only significant and marginally significant 

coefficients are shown. 

H/EC  Explanatory 

variable 

Coefficient±S.E z p 

H Cooperia yoshidai SX (males) -0.65±0.32 -2.03 0.04 

 Dictyocaulus viviparus Loc (Himeville) -1.41±0.35 -4.07 0.004 

 Haemonchus contortus Loc (Himeville) -2.10±0.36 -5.81 <0.001 

 Longistrongylus 

schrenki 

Loc (Himeville) -1.51±0.32 -4.74 <0.001 

 Setaria bicoronata A (young) x Loc 

(Himeville) 

-2.48±0.06 -2.61 0.01 

EC Rhipicephalus 

decoloratus 

A (young) -0.59±0.34 -1.71 0.08 

 Damalinia reduncae SX (males) 1.43±0.80 1.79 0.07 

  Loc (Himeville) 1.89±0.78 2.43 0.01 

 Linognathus fahrenholzi Loc (Himeville) 1.05±0.49 2.16 0.03 
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Table 2. Results of PERMANOVA of species composition (counts of each species) in helminth 

(H) and ectoparasite (EC) communities harboured by adult and  young male and female reedbuck 

from two localities 

H/EC Factor  DF Sum of Squares R2 F p 

H Age 1 0.19 0.03 2.12 0.09 

 Sex 1 0.00 0.00 -0.02 0.96 

 Locality 1 1.05 0.18 11.66 <0.001 

 Age x Sex 1 0.07 0.01 0.80 0.54 

 Age x Locality 1 0.16 0.03 1.73 0.15 

 Sex x Locality 1 -0.01 0.00 -0.13 0.97 

 Age x Sex x Locality 1 0.20 0.03 2.21 0.09 

 Residual 47 4.23 0.72   

 Total 54 5.88 1   

EC Age 1 0.37 0.04 2.91 0.04 

 Sex 1 0.31 0.04 2.42 0.07 

 Locality 1 1.78 0.21 13.99 <0.001 

 Age x Sex 1 0.12 0.01 0.91 0.46 

 Age x Locality 1 0.22 0.03 1.71 0.18 

 Sex x Locality 1 0.04 0.00 0.32 0.81 

 Age x Sex x Locality 1 0.09 0.01 0.73 0.58 

 Residual 43 5.46 0.65   

 Total 50 8.38 1   
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Table 3. Mean similarity (MS) in helminth (H) and tick (TK) communities of reedbuck and 

eigenvalues produced by Double Similarity Principal Component Analysis (DSPCA) for trait 

similarity in these communities (see text for details), N t: total number of eigenvalues, N1: number 

of eigenvalues > 1 

H/TK Trait MS Nt N1 1st 

eigenvalue 

Last 

eigenvalue 

H Life cycle strategy 0.97 8 1 7.78 0.01 

 Preferred site in host 0.93 8 1 7.48 0.001 

 Transmission mode 0.97 3 1 7.79 0.03 

TK Preferred site in host 0.84 4 1 6.94 0.02 

 Seasonality 0.94 5 1 7.59 0.001 

 Host shift between 

adults and immatures 

0.97 2 1 7.79 0.21 
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Table 4. Nestedness (NODF; see text for explanation) of individual-based reedbuck-helminth (H) 

and reedbuck-ectoparasite (EC) networks that include either all reedbuck individuals or males 

only, females only, adults only or young animals only from the two localities, the Eastern Shores 

Nature Reserve (ES) and Himeville (HM) 

H/EC Locality Reedbuck in the 

network 

NODF p 

H Eastern Shores All 48.88 0.05 

  Males 41.35 0.03 

  Females 44.44 0.23 

  Adult 50.97 0.01 

  Young 30.94 0.55 

 Himeville All 56.37 0.01 

  Males 44.03 0.01 

  Females 41.75 0.03 

  Adult 42.41 0.05 

  Young 38.78 0.07 

EC Eastern Shores All 54.73 0.01 

  Males 36.01 0.01 

  Females 40.2 0.01 

  Adult 44.06 0.01 

  Young 25.29 0.01 

 Himeville All 43.76 0.03 

  Males 33.02 0.03 
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  Females 22.61 0.13 

  Adult 37.73 0.03 

  Young 25.62 0.07 

NODF varies from 0 (random network) to 100 (perfect nestedness). Significance of each NODF value was determined 

using null model with 1000 permutations. 
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Table 5. Summary of generalized linear models of the effect of a reedbuck’s sex (SX), age (A) 

and locality (Loc) on individual reedbuck specialization (d’), individual host strength (IHS) and 

centrality (C) in individual-based reedbuck endo- (EN) and ectoparasites (EC) from two localities 

(see text for explanations). Models for d’ and C were with quasibinomial distribution and logit 

link. Models for IHS were with gaussian distribution and log link. Reference levels of independent 

variables were female for sex, adult for age and the Eastern Shores Nature Reserve for locality. 

Only significant and marginally significant coefficients are shown 

EN/EC  Dependent 

variable 

Explanatory variable Coefficient±S.E. t p 

EN d’ A (young)  -0.05±0.02 -1.99 0.05 

 IHS Loc (Himeville) 0.08±0.03 2.41 0.02 

 C Loc (Himeville) -0.18±0.05 -3.49 <0.01 

EC C SX (males) 0.10±0.05 1.91 0.06 
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Figure legends 

 

Figure 1. Median (horizontal line), lower and upper quartiles (boxes) and maximal and minimal 

numbers (whiskers) of (A) Cooperia yoshidai in female and male reedbuck; (B, C, D) 

Dictyocaulus viviparus, Haemonchus contortus, and Longistrongylus schrenki, respectively, in 

reedbuck from the Eastern Shores Nature Reserve (ES) and Himeville (HM); and (E) Setaria 

bicoronata in adult (white boxes) and young (grey boxes) reedbuck from the Eastern Shores 

Nature Reserve (ES) and Himeville (HM) 
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Figure 2. Median (horizontal line), lower and upper quartiles (boxes) and maximal and minimal 

numbers (whiskers) of (A) Rhipicephalus decoloratus in adult and young reedbuck; (B) Damalinia 

reduncae in female (white boxes) and male (grey boxes) reedbuck from the Eastern Shores Nature 

Reserve (ES) and Himeville (HM); and (C) Linognathus fahrenholzi in reedbuck from the Eastern 

Shores Nature Reserve (ES) and Himeville (HM). 
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Figure 3. Biplots of Non-Metric Multidimensional Scaling of species composition of helminth (A) 

and ectoparasite (B) infracommunities harboured by adult and young female and male reedbuck 

in the Eastern Shores Nature Reserve (ES) and Himeville (HM). 
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Figure 4. Results of DSPCA applied to helminth infracommunities in adult (ad in community 
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label) and young (y in community label) male (M in community label) and female (F in community 

label) reedbuck from the Eastern Shore Nature Reserve (ES in community label) and Himeville 

(HM in community label), based on parasite prevalence in sex/age cohorts from the two localities 

either considering helminth species as maximally dissimilar (A, B) or based on similarities in a 

helminth’s life cycle (C, D) or based on similarities among helminths according to preferred site 

within a host (E, F) (see text for details). Hosts: host scores on principal components PC1 and PC2; 

Helminths: parasites scores on principal components PC1 and PC2. See Supplementary Table S1 

for parasite species names. 
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Figure 5. Results of DSPCA applied to tick communities in adult (ad in community label) and 
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young (y in community label) male (M in community label) and female (F in community label) 

reedbuck from the Eastern Shore Nature Reserve (ES in community label) and Himeville (HM in 

community label), based on parasite prevalence in sex/age cohorts from the two localities either 

considering tick species as maximally dissimilar (A, B) or based on similarities among tick species 

according to their preferred sites of attachment (C,D) or based on similarities in seasonal patterns 

of occurrence (E, F) (see text for details). Hosts: host scores on principal components PC1 and 

PC2; Ticks: parasites scores on principal components PC1 and PC2. See Supplementary Table S2 

for parasite species names. 
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Figure 6. Nested (i.e., sorted by row/column sums) network matrices of (A) individual reedbuck–

helminth and (B) reedbuck-ectoparasite associations in two localities based on presence/absence 

data. M and F – male and female hosts, respectively; A and Y – adult and young hosts, respectively. 

See Supplementary Tables S1 and S2 for parasite species names.  

 

 

 

Figure 7. Mean (±SE) values of (A) individual host specialization (d’) of adult and young reedbuck 
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in reedbuck-helminth networks; (B, C) individual host strength and centrality, respectively, of 

reedbuck from the Eastern Shores Nature Reserve (ES) and Himeville (HM); (D) centrality of 

female (F) and male (M) reedbuck in reedbuck-ectoparasite networks. 
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