THE CONVOLUTION $x^{-r_{*} x^{s}}$

by B. FISHER

(Received 6 January, 1975)

1. Introduction. In a recent paper [1], Jones extended the definition of the convolution of distributions so that further convolutions could be defined. The convolution $w_{1} * w_{2}$ of two distributions w_{1} and w_{2} was defined as the limit of the sequence $\left\{w_{1 n} * w_{2 n}\right\}$, provided the limit w exists in the sense that

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} \phi(x) w_{1 n}{ }^{*} w_{2 n} d x=\int_{-\infty}^{\infty} \phi(x) w(x) d x
$$

for all fine functions ϕ in the terminology of Jones [2], where

$$
w_{1 n}(x)=w_{1}(x) \tau(x / n), \quad w_{2 n}(x)=w_{2}(x) \tau(x / n)
$$

and τ is an infinitely differentiable function satisfying the following conditions:
(i) $\tau(x)=\tau(-x)$,
(ii) $0 \leqslant \tau(x) \leqslant 1$,
(iii) $\tau(x)=1$ for $|x| \leqslant 1 / 2$,
(iv) $\tau(x)=0$ for $|x| \geqslant 1$.
2. The convolution $x^{-r_{*}} x^{s}$. We prove that in the sense of Jones' definition of convolution for distributions that

$$
\begin{equation*}
x^{-r} * x^{s}=0 \tag{1}
\end{equation*}
$$

for $s=0,1,2, \ldots, r-1$ and $r=1,2, \ldots$.
We write

$$
\left(x^{-r}\right)_{n}=x^{-r} \tau(x / n), \quad\left(x^{s}\right)_{n}=x^{5} \tau(x / n) .
$$

Formally we have

$$
\left(x^{-r}\right)_{n} *\left(x^{s}\right)_{n}=\int_{-\infty}^{\infty} t^{-r} \tau(t / n)(x-t)^{s} \tau\left(\frac{x-t}{n}\right) d t
$$

but since t^{-r} is not a summable function we must interpret the integral in the distributional sense. Putting

$$
\phi_{s}(t)=\tau(t / n)(x-t)^{s} \tau\left(\frac{x-t}{n}\right)
$$

we note that $\phi_{s}(t)$ is a fine function so that we can write

$$
\left(x^{-r}\right)_{n} *\left(x^{s}\right)_{n}=\left(t^{-r}, \phi_{s}(t)\right)
$$

We must now distinguish between odd and even r. First of all we have

$$
\begin{aligned}
\left(x^{-2 r-1}\right)_{n} *\left(x^{s}\right)_{n} & =\left(t^{-2 r-1}, \phi_{s}(t)\right) \\
& =\int_{0}^{\infty} t^{-2 r-1}\left\{\phi_{s}(t)-\phi_{s}(-t)-2 \sum_{i=1}^{r} \frac{t^{2 i-1}}{(2 i-1)!} \phi_{s}^{(2 i-1)}(0)\right\} d t \\
& =\int_{0}^{n} t^{-2 r-1}\left\{\phi_{s}(t)-\phi_{s}(-t)-2 \sum_{i=1}^{r} \frac{t^{2 i-1}}{(2 i-1)!} \phi_{s}^{(2 i-1)}(0)\right\} d t
\end{aligned}
$$

since $\phi_{s}(t)=0$ for $|t| \geqslant n$.
Now for arbitrary fixed $c>0$ choose N such that $4 c<N$. Then if

$$
\begin{equation*}
0 \leqslant t \leqslant n / 4, \quad|x| \leqslant c, \quad N \leqslant n \tag{2}
\end{equation*}
$$

it follows that

$$
\left|\frac{x \pm t}{n}\right| \leqslant 1 / 2 .
$$

From Taylor's Theorem we have

$$
\phi_{s}(t)-\phi_{s}(-t)-2 \sum_{i=1}^{r} \frac{t^{2 i-1}}{(2 i-1)!} \phi_{s}^{(2 i-1)}(0)=\frac{2 \xi t^{2 r+1}}{(2 r)!} \phi_{s}^{(2 r+1)}\left(t_{0}\right),
$$

where $0 \leqslant \xi \leqslant 1$ and $-\xi t \leqslant t_{0} \leqslant \xi t$. But since

$$
\phi_{s}(t)=\tau(t / n)(x-t)^{s} \tau\left(\frac{x-t}{n}\right)
$$

and

$$
\tau(t / n)=1 \quad \text { for } \quad|t| \leqslant n / 2
$$

it follows that if t, x and n are subject to the above inequalities (2), then

$$
\phi_{s}^{(2 r+1)}\left(t_{0}\right)=0
$$

Thus

$$
\begin{aligned}
\left(x^{-2 r-1}\right)_{n} *\left(x^{s}\right)_{n} & =\int_{n / 4}^{n} t^{-2 r-1}\left\{\phi_{s}(t)-\phi_{s}(-t)-2 \sum_{i=1}^{r} \frac{t^{2 i-1}}{(2 i-1)!} \phi_{s}^{(2 i-1)}(0)\right\} d t \\
& =n^{-2 r} \int_{\frac{t}{4}}^{1} u^{-2 r-1}\left\{\phi_{s}(n u)-\phi_{s}(-n u)-2 \sum_{i=1}^{r} \frac{(n u)^{2 i-1}}{(2 i-1)!} \phi_{s}^{(2 i-1)}(0)\right\} d u
\end{aligned}
$$

where $t=n u$. Obviously

$$
\lim _{n \rightarrow \infty} n^{-2 r} \int_{t}^{1} u^{-2 r-1} \sum_{i=1}^{r} \frac{(n u)^{2 i-1}}{(2 i-1)!} \phi_{s}^{(2 i-1)}(0) d u=0
$$

Since

$$
\phi_{s}(n u)-\phi_{s}(-n u)=\tau(u)(x-n u)^{s} \tau\left(\frac{x}{n}-u\right)-\tau(u)(x+n u)^{s} \tau\left(\frac{x}{n}+u\right)
$$

it is obvious that, if $s<2 r$,

$$
\lim _{n \rightarrow \infty} n^{-2 r} \int_{ \pm}^{1} u^{-2 r-1}\left\{\phi_{s}(n u)-\phi_{s}(-n u)\right\} d u=0
$$

and if $s=2 r$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} n^{-2 r} \int_{\frac{1}{4}}^{1} u^{-2 r-1}\left\{\phi_{2 r}(n u)-\phi_{2 r}(-n u)\right\} d u \\
& \quad=\lim _{n \rightarrow \infty} \int_{\frac{z}{2}}^{1} u^{-1} \tau(u)\left\{\tau\left(\frac{x}{n}-u\right)-\tau\left(\frac{x}{n}+u\right)\right\} d u \\
& \quad=0
\end{aligned}
$$

since

$$
\lim _{n \rightarrow \infty} \tau\left(\frac{x}{n}-u\right)=\lim _{n \rightarrow \infty} \tau\left(\frac{x}{n}+u\right)=\tau(u)
$$

We have thus proved that

$$
\lim _{n \rightarrow \infty}\left(x^{-2 r-1}\right)_{n} *\left(x^{s}\right)_{n}=0
$$

for each x, the convergence obviously being uniform on every finite interval.
Thus for arbitrary fine function ϕ we have

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} \phi(x)\left(x^{-2 r-1}\right)_{n} *\left(x^{s}\right)_{n} d x=0
$$

since a fine function vanishes identically outside a finite interval. This completes the proof of equation (1) for odd τ.

Next we have

$$
\begin{aligned}
\left(x^{-2 r}\right)_{n} *\left(x^{s}\right)_{n} & =\left(t^{-2 r}, \phi_{s}(t)\right) \\
& =\int_{0}^{\infty} t^{-2 r}\left\{\phi_{s}(t)+\phi_{s}(-t)-2 \sum_{i=0}^{r-1} \frac{t^{2 i}}{(2 i)!} \phi_{s}^{(2 i)}(0)\right\} d t \\
& =\int_{0}^{n} t^{-2 r}\left\{\phi_{s}(t)+\phi_{s}(-t)-2 \sum_{i=0}^{r-1} \frac{t^{2 i}}{(2 i)!} \phi_{s}^{(2 i)}(0)\right\} d t .
\end{aligned}
$$

From Taylor's Theorem we have

$$
\phi_{s}(t)+\phi_{s}(-t)-2 \sum_{i=0}^{r-1} \frac{t^{2 i}}{(2 i)!} \phi_{s}^{(2 i)}(0)=\frac{2 \xi t^{2 r}}{(2 r-1)!} \phi_{s}^{(2 r)}\left(t_{0}\right)
$$

where $0 \leqslant \xi \leqslant 1$ and $-\xi t \leqslant t_{0} \leqslant \xi t$. It follows that if t, x and n again satisfy inequalities (2), then

$$
\phi_{s}^{(2 r)}\left(t_{0}\right)=0
$$

Thus

$$
\left(x^{-2 r}\right)_{n} *\left(x^{s}\right)_{n}=\int_{n / 4}^{n} t^{-2 r}\left\{\phi_{s}(t)+\phi_{s}(-t)-2 \sum_{i=0}^{r-1} \frac{t^{2 i}}{(2 i)!} \phi_{s}^{(2 i)}(0)\right\} d t
$$

and it follows, as in the previous case, that if $s \leqslant 2 r-1$

$$
\lim _{n \rightarrow \infty}\left(x^{-2 r}\right)_{n} *\left(x^{5}\right)_{n}=0
$$

for each x, the convergence being uniform on every finite interval.
Again, for arbitrary fine function ϕ, we have

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} \phi(x)\left(x^{-2 r}\right)_{n} *\left(x^{s}\right)_{n} d x=0
$$

which completes the proof of equation (1).

REFERENCES

1. D. S. Jones, The convolution of generalized functions, Quart. J. of Math. (Oxford) (2), 24 (1973), 145-163.
2. D. S. Jones, Generalized functions (McGraw-Hill, 1966).

Department of Mathematics
 University of Leicester

