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Macroscopic models based on moment equations are developed to describe the
transport of mass and energy near the phase boundary between a liquid and its rarefied
vapour due to evaporation and hence, in this study, condensation. For evaporation
from a spherical droplet, analytic solutions are obtained to the linearised equations
from the Navier–Stokes–Fourier, regularised 13-moment and regularised 26-moment
frameworks. Results are shown to approach computational solutions to the Boltzmann
equation as the number of moments are increased, with good agreement for Knudsen
number . 1, whilst providing clear insight into non-equilibrium phenomena occurring
adjacent to the interface.
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1. Introduction
The study of two phase systems is both of practical significance in engineering and

fundamental interest in the pure sciences. For example, continued miniaturisation
of mechanical and electrical components has led to steep increases in power
density, making thermal management a critical aspect of microelectronics and
microelectromechanical systems (MEMS) design today. Evaporation and condensation
are very efficient modes of heat transfer and as such are employed in component
cooling and in energy conversion systems (Ling et al. 2014; Plawsky et al. 2014)
leading to considerable research into the study of phase transition at the micro and
nano scales. Understanding the evaporation of liquid droplets is critical to a broad
range of natural processes, such as body temperature control of mammals (Sherwood
2005), and many industrial cooling processes, such as spray drying, spray cooling
and microelectronics cooling (Dhavaleswarapu, Murthy & Garimella 2012; Plawsky
et al. 2014; Hodes et al. 2015).

One of the main difficulties in the description of phase-change microflows is that
the classical Navier–Stokes–Fourier (NSF) model can fail to accurately capture the
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vapour flow. The breakdown of the NSF model can be quantified by the Knudsen
number, Kn = λ/L, which is defined as the ratio of the molecular mean free path
λ to the macroscopic length scale L. The classical description of the NSF equations
is applicable only when the Knudsen number is sufficiently small (Kn . 10−1); also
known as the continuum and slip flow regime. In the opposite limiting case, Kn& 10,
the mean free path is large as compared to the macroscopic dimensions of the system;
this is known as the free molecular flow regime. The intermediate range between these
extremes is the transitional regime (10−1 . Kn . 10).

Many interesting rarefaction effects are observed in the transitional regime, such as
velocity slip and temperature jump at boundaries, Knudsen layers, transpiration flow,
thermal stress and heat flux without temperature gradients (Sone 2007; Struchtrup
& Torrilhon 2008; Gu, Emerson & Tang 2010; Rana, Torrilhon & Struchtrup 2013);
these non-equilibrium effects cannot be described by the classical NSF equations
and associated boundary conditions. This means that although the liquid phase is
often accurately captured by the NSF equations, since the considered length scales
are well above the molecular dimensions in the liquid, the properties of vapour in
the vicinity of the liquid–vapour interface need to be modelled with more accurate
transport models.

At sufficiently low temperatures, the saturated vapour can be treated as an ideal
gas, which is well described by the Boltzmann equation, an evolution equation
for the distribution function of the gas particles (Cercignani 1975). The Boltzmann
equation involves detailed information of phase space and thus its direct solution
typically requires considerable computational resources. Often, it is solved by utilising
the direct simulation Monte Carlo (DSMC) method (Bird 1994). However, this is
computationally expensive, particularly for the low-speed, moderate Knudsen number
flows encountered in micro/nano devices.

When the perturbation of the distribution function from the equilibrium state is
assumed small, the Boltzmann equation can be simplified through linearisation. Further
simplification can be obtained when the Boltzmann collision operator is approximated
by simplified collision models; such as the Bhatnagar–Gross–Krook (BGK) model
(Bhatnagar, Gross & Krook 1954), the ellipsoidal statistical BGK (ES-BGK) model
and the S-model (Sharipov & Seleznev 1998). Applications of these methods to
the droplet evaporation process are reported in the literature; see e.g. Chernyak &
Margilevskiy (1989), Takata et al. (1998) and Sone (2007). However, in all these
simplified models the phase space still needs to be resolved, making them in many
cases prohibitively computationally expensive.

Besides the Boltzmann equation, rarefaction effects that are beyond the resolution
of the NSF system can be predicted by extended macroscopic moment equations
(Struchtrup 2005; Struchtrup & Torrilhon 2008; Gu & Emerson 2009), which were
the subject of a recent article in the Annual Review of Fluid Mechanics (Torrilhon
2016). The moment equations form a set of partial differential equations describing
the evolution of macroscopic quantities, such as mass density, temperature, velocity,
heat flux, stress tensor and so on, defined as moments of the distribution function.
These equations are obtained by an asymptotic reduction of the Boltzmann equation at
different levels of approximation. The moment method was introduced to gas kinetic
theory by Grad (1949), who expressed the distribution function in terms of Hermite
polynomials. More recently, the regularisation of Grad’s 13-moment (G13) equations
have been obtained by Struchtrup & Torrilhon (2003). The regularised 13-moment
(R13) equations introduce additional terms to the G13 equations that overcome
various deficiencies, such as the prediction of sub-shocks at high Mach number
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(Ma & 1.65). Gu & Emerson (2007) presented a set of wall boundary conditions
for the R13 equations derived from the Maxwell accommodation model. However,
in their work unphysical oscillations were reported near the boundary due to the
over-prescription of the boundary conditions, as identified and rectified by Torrilhon
& Struchtrup (2008). Thus far, the R13 equations have been considered for canonical
boundary-value problems, such as planar and cylindrical Couette and Poiseuille flows
(Taheri et al. 2009; Taheri & Struchtrup 2009), transpiration flows and gas flow past
a sphere (Torrilhon 2010), among others, in one- and two-dimensional numerical
simulations.

To extend the applicability of the moment method further into the transition regime,
Gu & Emerson (2009) used the regularisation process to obtain the regularised 26-
moment (R26) equations. The kinetic wall boundary conditions for the R26 equations
were also derived in the same paper using the Maxwell accommodation model. The
R26 theory describes Knudsen layers (regions of strongly non-equilibrium behaviour
within a few mean free paths of the boundary) more accurately than the R13 equations
(Gu & Emerson 2014); the NSF and G13 equations are not able to predict these at
all. The R13/R26 systems have produced accurate results for small to moderate Kn
and have the advantage that they offer fast, sometimes analytic, solutions to enable
us to understand, and develop intuition for the general flow behaviour. In this article,
we shall consider whether similar results can be derived for phase-change phenomena.

1.1. Modelling evaporation and condensation
Flows involving evaporation/condensation processes are usually modelled using a
sharp interface approach, where the interface separating the vapour and liquid phases
is assumed to be infinitely thin. The phase transition process itself is modelled by
setting the appropriate boundary conditions on the interface. Different variants of these
boundary conditions have been employed in the literature. The standard assumptions,
found in numerous classical textbooks and incorporated into most computational fluid
dynamics software, is that the temperature and the velocity tangential to the interface
are continuous across it. However, it is now well established, both experimentally
and theoretically, that such assumptions are invalid at small length scales, where a
velocity slip and temperature jump are observed (McGaughey & Ward 2002; Rahimi
& Ward 2005).

The first mathematical model for the evaporation and condensation processes was
developed by Maxwell (1867) for quasi-steady flow, where the flow at the interface
can be assumed equal to the diffusion vapour flow far away from the interface.
However, the classical diffusion flow of vapour starts beyond the Knudsen layer. The
Hertz–Knudsen–Schrage (HKS) relation (Schrage 1953) can be applied to model the
mass flux across the interface, along with the NSF equations in the bulk, provided Kn
is sufficiently small (Persad & Ward 2016). Fuchs (1959) obtained a semi-empirical
formula to account for the Knudsen layer by matching the free molecular solution,
valid at the interface, with the diffusion solution valid at the edge of the Knudsen
layer, the width of which is used as a fitting parameter to give a good match for all
Kn. Young (1991) furthered this approach by deriving expressions for the mass and
energy fluxes across a fluid droplet in a pure vapour assuming the G13 distribution
inside the Knudsen layer. However, Young’s approach also involves an empirical
parameter (related to thickness of the Knudsen layer) and does not resolve the
Knudsen layer properly.

Bond & Struchtrup (2004) considered interface conditions using the kinetic theory
of gases and irreversible thermodynamics (using NSF equations) to develop predictive
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expressions for the mass and energy fluxes across the interface and compared the
results between irreversible thermodynamics, statistical rate theory and experimental
data. In particular, they considered a condensation coefficient which depends on the
impact energy of the condensing particle and also pointed out the effect of interfacial
curvature on temperature jump. More recently, steps towards using higher-order
moment methods for mass and energy transport across the phase boundary were
made by Struchtrup & Frezzotti (2016), with a full set of boundary conditions
for the R13 equations derived and solved for a planar case. In this article, we
extend this work to both curved interfaces, using spherical drops, and also derive
phase-change boundary conditions for the R26 moment equations. This will allow
us to compare the NSF, R13 and R26 models for evaporation and condensation for
both a spherical droplet and a planar interface, in order to establish their accuracy
against benchmark solutions from the Boltzmann equation. In this article, due to the
linearity of the equations and boundary conditions considered, the results obtained
for the evaporation process can simply be translated to condensation by reversing the
signs of thermodynamics forces.

The article is organised as follows. A brief summary of basic elements of kinetic
theory and the moment method is given in § 2, followed by the derivation of moment
equations, namely the NSF, R13 and R26 equations for a spherical geometry, in § 3. In
§ 4, analytical solutions to these equations are found. In § 5, boundary conditions for
the R26 equations are derived and applied for the evaporation problem. Throughout
§§6–8, Boltzmann solutions provide the benchmark for our analytic results; beginning,
in § 6, by considering Kn→ 0. In § 9, we analyse the magnitude of competing higher-
order contributions to the total normal stress. Finally, in § 10 we conclude and discuss
future directions of research.

2. Moment methods in kinetic theory
Sufficiently far from the critical point, the vapour can be treated as an ideal gas and

one can use the kinetic theory of dilute gases for this phase. A monoatomic ideal gas
can be characterised by a one-particle distribution function f which depends on time t,
spatial coordinates xi and molecular velocity ci. The distribution function is governed
by the Boltzmann equation (Kogan 1969; Cercignani 1975)

∂f
∂t
+ ck

∂f
∂xk
+Gk

∂f
∂ck
= S, (2.1)

where Gk is the external force per unit mass acting on the gas and is assumed to be
independent of the microscopic velocity ck. The term S is the collision operator that
describes the change of the distribution function due to interaction between particles.

For most engineering processes, the main interest is not in detailed information
about the distribution function f , but in the macroscopic quantities, such as mass
density %, macroscopic velocity vi, and temperature T . These are defined as moments
of the distribution function:

%=

∫
f dc, (2.2)

vi =
1
%

∫
cif dc, (2.3)

T =
1

3R%

∫
C2f dc, (2.4)
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where Ci = ci − vi is the peculiar velocity, R is the gas constant and dc= dc1 dc2 dc3.
The temperature is related to the pressure ℘ and density by the ideal-gas law ℘ =
%RT . The pressure tensor pij, and the heat-flux vector qi are the second and contracted
third-order moments of the distribution function f , respectively, i.e.

pij =

∫
CiCjf dc, (2.5)

qi =
1
2

∫
C2Cif dc. (2.6)

Furthermore, the pressure tensor can be separated as pij = ℘δij + σij, where δij is the
Kronecker delta, σij= p〈ij〉 is the deviatoric stress tensor, and ℘= pkk/3 is the pressure.
The angular brackets are used to denote the traceless part of a symmetric tensor.

Instead of attempting a direct solution of the Boltzmann equation (2.1), the moment
method provides a bridge between kinetic theory and classical hydrodynamics via
evolution equations, known as moment equations, for the macroscopic moments. A
set of moment equations is obtained by multiplication of the Boltzmann equation (2.1)
with an arbitrary function ΨA and subsequent integration over the microscopic velocity
space. For example, by choosing ΨA = 1, ci and C2/2, we get the conservation laws
for mass, momentum and energy densities, respectively. However, in pronounced
non-equilibrium situations, it is necessary to extend the set of macroscopic variables
beyond the 5 conservative variables, so as to include higher-order moments. For
instance, in the 13-moment approximation ΨA= 1, ci, CiCj and C2Ci/2, corresponding
to the 13 moments (5 conservative variables, 5 components of σij and 3 components of
qi). A further extension of the moment equations contain even higher-order moments
(see below) and here we follow the same notation as used in Gu & Emerson (2009)
for the R26 equations, where ∆, Ωi, Rij, mijk, ψijk and φijkl are scalar, first-, second-,
third- and fourth-order symmetric trace-free tensors, respectively, defined as

∆=

∫
C4f dc− 15℘RT,

Rij =

∫
C〈 iCj 〉f dc− 7RTσij,

mijk =

∫
C〈 iCjCk 〉f dc,

ψijk =

∫
C2C〈 iCjCk 〉f dc− 9RTmijk,

φijkl =

∫
C〈 iCjCkCl 〉f dc,

Ωi =

∫
C4Cif dc− 28RTqi.



(2.7)

Here, the higher moments have been constructed in such a way that they vanish
in the 13-moment theory. The governing equations for the moments can be readily
obtained from the Boltzmann equation (2.1), see e.g. Struchtrup (2005); however,
they cannot be solved as they stand, since they do not form a closed set of equations.
The regularisation process presented by Struchtrup & Torrilhon (2003) and Struchtrup
(2004) provides a framework to derive a closed set of moment equations, giving
the R13 equations at third-order accuracy while at the fifth order we arrive at the
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Vapour

Far-field

Droplet

r

FIGURE 1. Schematic representation of a liquid droplet surrounded by its own vapour. Tl
is the temperature of liquid at the interface which corresponds to the saturation pressure
℘l. The temperature and pressure of the vapour at distance far from the surface of the
droplet are given as T∞ and ℘∞, respectively.

R26 equations, see Struchtrup (2005) and Gu & Emerson (2009). The derivation of
the R13 and R26 moment equations for a monatomic gas of Maxwell molecules
(i.e. molecules repelling each other with an intermolecular force ∝ r−5) and their
linearised version can be found in Taheri & Struchtrup (2009), Gu et al. (2010) and
Gu & Emerson (2014). The equations of these models will now be presented for the
spherically symmetric case.

2.1. Problem statement
Consider a liquid droplet of fixed radius R0 at a given temperature Tl, with
corresponding saturation pressure in the liquid ℘l, immersed in its own vapour;
see figure 1. This problem has been studied fairly extensively, e.g. Sone & Onishi
(1978), Chernyak & Margilevskiy (1989), Takata et al. (1998), which allows us to
test the accuracy of the derived evaporation/condensation boundary conditions for
the extended moment equations. Let the temperature and pressure of the vapour at a
distance far from the surface of the droplet be given by T∞ and ℘∞, respectively. In
general, the saturation pressure ℘l is a function of Tl given by the Clausius–Clapeyron
relation; however, when the droplet has fixed properties this is not invoked so that ℘l
and Tl can be varied independently.

A spherical coordinate system (r, θ , ϕ) is considered, and because of the spherical
symmetry, the flow is independent of the azimuthal and polar directions. Two cases
will be considered.

(i) Pressure-driven flow. The process in the vapour is driven by a dimensionless
pressure difference pl = (℘l − ℘∞)/℘∞ while the temperature of the liquid is
equal to the far-field temperature.

(ii) Temperature-driven flow. The process is driven by a dimensionless temperature
difference θl = (Tl − T∞)/T∞ while the saturation pressure in the liquid is same
as the far-field pressure.

In general, any combination of these two cases can be superimposed, owing to the
linearity of the equations and boundary conditions considered.
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As a result of the flow configuration, the velocity vector v, the heat-flux vector q
and stress tensor σ simplify to

v≡{v(r), 0, 0} , q≡{q(r), 0, 0} and σ ≡


σ(r) 0 0

0 −
σ(r)

2
0

0 0 −
σ(r)

2

 . (2.8a−c)

Furthermore, the only non-zero components of the higher-order tensors Ωi, Rij, mijk,
ψijk and φijkl are

Ωr ≡ω(r), (2.9a)
Rrr =−2Rϕϕ =−2Rθθ ≡ R(r), (2.9b)

mrrr =−2mrϕϕ =−2mrθθ ≡m(r), (2.9c)
ψrrr =−2ψrϕϕ =−2ψrθθ ≡ψ(r), (2.9d)

φrrrr =−2φrrϕϕ =−2φrrθθ =
8
3φθθθθ =

8
3φϕϕϕϕ ≡Φ(r), (2.9e)

with the remaining components either zero or following from the symmetry and trace-
free conditions.

2.2. Relation to the unsteady evaporation of a drop
The steady process considered in this article will form the basis of future work
into the unsteady problem, where one is interested in how long it takes a drop to
completely evaporate. In this case, the temperature distribution inside the liquid drop
Tl(t, r) must be calculated as part of the solution, as must the position of the drop’s
radius R(t), see e.g. the molecular dynamics study by Holyst & Litniewski (2008)
and the experimental and theoretical study by Holyst et al. (2013). The pressure
inside the liquid is also now part of the solution with the saturation pressure ℘l
a function of Tl and R given by the Clausius–Clapeyron relation with corrections
(Kelvin equation) that account for the curvature of the liquid–vapour interface (Young
1991). The problem can be significantly simplified owing to the high density ratio
between the liquid and the vapour phase, which creates a quasi-steady process in the
vapour phase.

To determine the radius of the drop and the temperature distribution in the liquid the
mass flux j and heat flux q into the vapour must be calculated. For small deviations
from equilibrium, i.e. pl� 1 and θl� 1, the pressure-driven and temperature-driven
cases can be combined to give the mass flux j and the heat flux q as

j= jppl + jτθl, (2.10)
q= qppl + qτθl, (2.11)

where, jp(qp) and jτ (qτ ) are the mass (heat) flux for the pressure-driven and the
temperature-driven cases, respectively, and are derived in this article.

3. Extended moment equations in spherical geometry
Let R0, ℘∞, T∞ be the reference length, pressure and temperature, respectively. The

equations are made dimensionless by introducing

θ̂ =
T − T∞

T∞
, p̂=

℘ −℘∞

℘∞
, σ̂ =

σ

℘∞
, v̂ =

v
√

RT∞
, (3.1a−d)

q̂=
q

℘∞
√

RT∞
and r̂=

r
R0
, (3.1e,f )
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where θ̂ and p̂ are the dimensionless deviation of the temperature and pressure from
their far-field values, respectively. The Knudsen number is defined as

Kn=
µ∞
√

RT∞
℘∞R0

=
λ
√

2R0
, (3.2)

where µ∞ is the gas viscosity coefficient at the reference state. The mean free path,
λ, is related to the usual definition of the mean free path `0 (Sone 2007) by

λ=

√
π

2
A`0. (3.3)

Here, A= 1.27 for the hard-sphere model and A= 1 for the BGK model, which gives
the same fluid viscosity for different models and allows for a consistent comparison.
For brevity, the hat will be removed hereafter, and unless otherwise stated, all
variables will be given in dimensionless form.

For the linearised equations, only terms that are linear in deviations from the
reference equilibrium state are considered. Accordingly, dimensionless and linearised
conservation laws for mass, momentum and energy, in spherically symmetric
coordinates, read

1
r2

∂(r2v)

∂r
= 0,

∂p
∂r
+

1
r3

∂(r3σ)

∂r
= 0,

1
r2

∂(r2q)
∂r
= 0, (3.4a−c)

which contain the normal component of the viscous stress, σ and the radial heat flux,
q as unknowns. The various theories for transport provide equations for stress and
heat flux which are presented in the following subsections.

3.1. Linearised NSF equations

In the dimensionless form and one-dimensional spherical geometry, the NSF
constitutive laws for stress and heat flux are given by

σ =−
4r
3

Kn
∂(r−1v)

∂r
, (3.5)

q=−
5Kn
2Pr

∂θ

∂r
. (3.6)

Here, the Prandtl number Pr = 2/3 for Maxwell molecules (MM) model and Pr = 1
for the BGK model.

The linearised form of the mass and momentum conservation laws (3.4) along
with the constitutive relation for stress tensor (3.5) give the Stokes equations. In
this case, the flow problem decouples from the Fourier-based energy problem, so
that non-equilibrium cross-effects, such as thermal stress and non-Fourier heat flux
(Sone 2007; Rana et al. 2013), cannot be predicted by the NSF system. High-order
macroscopic models based on moment equations are developed to describe these
effects.
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3.2. Higher-order moment equations
The balance equations for the heat-flux vector and stress tensor follow from the
Boltzmann equation as

8r
15
∂(r−1q)
∂r

+
1
r4

∂(r4m)
∂r
=−

1
Kn

[
σ +

4r
3

Kn
∂(r−1v)

∂r

]
, (3.7a)

1
r3

∂(r3σ)

∂r
+

1
2r3

∂(r3R)
∂r
+

1
6
∂∆

∂r
=−

Pr
Kn

[
q+

5
2

Kn
Pr
∂θ

∂r

]
. (3.7b)

The right-hand side terms of these balance equations contain NSF constitutive laws
(3.5–3.6), which can also be obtained by a first-order Chapman–Enskog expansion
(Chapman & Cowling 1970) of the stress and heat-flux balance equations (3.7).

3.2.1. R13 constitutive relations
The balance equations (3.7) do not form a closed set, since they contain additional

higher moments m, R and ∆. In G13 theory, m, R and ∆ all are set to zero. A
non-vanishing closure for these higher-order moments is given by the R13 constitutive
relations (Struchtrup 2005). The linear R13 constitutive relations, for the considered
geometry, take the following form

m=−
9r2

5
Kn
PrM

∂(r−2σ)

∂r
, (3.8a)

R=−
56r
15

Kn
PrR

∂(r−1q)
∂r

, (3.8b)

∆=−
8
r2

Kn
Pr∆

∂(r2q)
∂r

, (3.8c)

where transport coefficients PrM, PrR and Pr∆ depend upon the choice of inter-
molecular potential function appearing in Boltzmann collision operator. For the MM
model they are given by Pr = 2/3, PrM = 3/2, PrR = 7/6, Pr∆ = 2/3 and all are 1
for BGK approximations (Truesdell & Muncaster 1980; Gu & Emerson 2009).

The conservation laws (3.4), the balance equations for heat-flux vector and stress
tensor (3.7) along with the constitutive relations (3.8) form the R13 equations.

3.2.2. R26 constitutive relations
The 26-moment theory consists of the conservation laws, the balance equations for

the heat flux and stress and the balance equations for the higher moments, mijk, Rij

and ∆. The evolution equations for mijk, Rij and ∆ were obtained from the Boltzmann
equation in Gu & Emerson (2009), which for the present problem read

9r2

35
∂(r−2R)
∂r

+
1
r5

∂(r5Φ)

∂r
=−

PrM

Kn

[
m+

9r2

5
Kn
PrM

∂(r−2σ)

∂r

]
, (3.9a)

2
r4

∂(r4m)
∂r
+

4r
15
∂(r−1ω)

∂r
+

1
r4

∂(r4ψ)

∂r
=−

PrR

Kn

[
R+

56r
15

Kn
PrR

∂(r−1q)
∂r

]
, (3.9b)

1
r2

∂(r2ω)

∂r
=−

Pr∆
Kn

[
∆+

8
r2

Kn
Pr∆

∂(r2q)
∂r

]
. (3.9c)
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As for the NSF and the R13 cases, constitutive relations are needed to express
the fluxes Φ, ψ and ω, to form a closed system. The R26 equations include the
constitutive relations for these higher-order terms as (Gu & Emerson 2009)

Φ =−
16r3

7
Kn
PrΦ

∂(r−3m)
∂r

, (3.10a)

ψ =−
81r2

35
Kn
Prψ

∂(r−2R)
∂r

, (3.10b)

ω=−
7Kn

3
∂∆

∂r
−

4
r3

Kn
∂(r3R)
∂r

, (3.10c)

where more transport coefficients appear as PrΦ = 2.097 and Prψ = 1.698 for MM
and PrΦ =Prψ = 1 for the BGK model. The constitutive relations (3.10) with balance
equations (3.9) and (3.7) and conservation laws (3.4) form the system of the R26
equations.

Comparison of the R13 constitutive relations (3.8) with the balance equations
(3.9) reveals that the R13 constitutive relations (3.8) stem from a Chapman–Enskog
expansion of (3.9) in Kn, i.e. taking the right-hand side of (3.9) to be zero. Likewise,
the R26 constitutive relations (3.10) follow from the Chapman–Enskog expansion of
the evolution equations for the moments φijkl, ψijk and ωi from the 45-moment theory.

In the next section, we shall derive analytic solutions to the NSF, R13 and R26
equations for the spherical geometry and then in § 5 formulate and apply the boundary
conditions required for the evaporation problem.

4. Analytical solutions of the moment equations
Due to the linearity of the equations and the simple geometry, we have found

that all equations can be solved analytically. By integrating the mass and energy
conservation laws (3.4a,c), we immediately find

v =
c1

r2
and q=

c2

r2
, (4.1a,b)

where c1 and c2 are integration coefficients. These solutions are obtained from the
conservation laws without any assumption on constitutive relations and therefore
they are valid for all values of the Knudsen number. The integration coefficients c1
and c2, however, depend on other field variables through boundary conditions, and
consequently, these depend on the constitutive relations.

4.1. Solution to the NSF equations
Substitution of the velocity and heat flux from (4.1) into the NSF constitutive
equations (3.1), leads to the solutions

σ =
4Knc1

r3
and θ = c3 +

2Pr
5Kn

c2

r
, (4.2a,b)

and the momentum equation (3.4b) gives

p= c4. (4.3)

Applying the far-field boundary conditions, we find that c3 = c4 = 0, since

lim
r→∞

θ = 0 and lim
r→∞

p= 0. (4.4a,b)
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Therefore, for the given flow configurations, the solutions of the NSF equations
include two integration constants, c1 and c2. These constants need to be fixed from
two boundary conditions at the interface at r= 1.

4.2. Solution to the R13 equations
The integration of the heat-flux and stress balance equations (3.7) and use of the R13
constitutive relations (3.8) with the solutions (4.1), give

σ =
4Knc1

r3
+

8Knc2

5r3
− 3a1

(
Kn3
+Kn2rβ1 +Kn

r2β2
1

3

)
e−rβ1/Kn

β3
1 r3

, (4.5a)

θ =
2Pr
5Kn

c2

r
+

2a1

5
Kn

e−rβ1/Kn

β1r
, (4.5b)

where β1 =
√

5PrM/3. In (4.5) we have already used the far-field conditions (4.4).
Similarly, the momentum equations (3.4b) and (4.5a) give the pressure

p= a1Kn
e−rβ1/Kn

β1r
. (4.6)

The R13 equations therefore allow for a non-uniform pressure in the gas that
decays exponentially with the scaled distance rβ1 from the interface. It is a purely
non-equilibrium effect caused by the Knudsen layer. The non-uniform pressure has
been observed in molecular dynamics (MD) simulations (Holyst & Litniewski 2008;
Cheng et al. 2011; Rana et al. 2016), kinetic theory computations (Sone & Onishi
1978) and previous works (Taheri et al. 2009; Taheri & Struchtrup 2009; Struchtrup
& Taheri 2011) for different flow configurations. Evidently, the NSF equations fail to
capture this phenomenon.

Solutions (4.5)–(4.6) of the R13 equations have three integration constants, c1,2 and
a1, which need to be determined from the three boundary conditions at r= 1.

4.3. Solution to the R26 equations
The integration of the R26 equations is more involved and can be found in the
appendix; here we present only the final results. The pressure and normal stress are
given as the superposition of three decaying exponentials expressed as

p=
3∑

i=1

aiKn
e−rγi/Kn

γir
, (4.7a)

σ =
4Kn c1

r3
+

8Kn c2

5r3
− 3

3∑
i=1

ai

(
Kn3
+Kn2rγi +Kn

r2γ 2
i

3

)
e−rγi/Kn

r3γ 3
i
, (4.7b)

where, γi ∈R+ for the MM model and BGK model are given in table 1.
Interestingly, the normal stress σ (4.7b) has three contributions: (i) Newtonian

stress (with Kn c1), (ii) thermal stress (with Kn c2) and (iii) Knudsen layer contributed
stress (with exponentials). The origin of these different contributions to the stress are
best explained by the stress balance equation (3.7a) from which the Newtonian stress
and thermal stress arise due to the velocity gradient and the heat-flux gradient terms,
respectively, and derivative of the higher-order moment m produces the Knudsen layer.
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γ1 γ2 γ3

BGK 0.4145 0.5448 0.9427
MM 0.4526 0.6772 1.1625

TABLE 1. The Knudsen layer coefficients γi associated with the R26 equations for BGK
and Maxwell molecules (MM) models.

The only non-zero contribution to the pressure (4.7a) is due to Knudsen layer, given
by the radial momentum conservation (3.4b).

As the NSF equations are only accurate up to first order in Kn (by Chapman–
Enskog expansion), they capture the Newtonian stress (first order) but not the thermal
stress (second order). The effect of these different contributions on the vapour flow
will be studied later in § 9.

The temperature from the R26 equations reads

θ =
2Pr
5Kn

c2

r
+

3∑
i=1

aiKn(k1γ
4
i + k2γ

2
i + k3)

e−rγi/Kn

rγ 3
i
. (4.8)

The temperature θ has a Fourier contribution, (2Pr/5Kn)(c2/r), which comes from
the right-hand side terms in the heat-flux balance equation (3.7b), plus an additional
contribution due to the Knudsen layer (superposition of exponential functions), which
describes the influence of higher moments in (3.7b). The coefficient k1, k2 and k3 in
(4.8) depend on the collision model, they are given in equation (A 6) of the appendix.

The solutions of the R26 equations for p, σ and θ given in (4.7) and (4.8) and
other variables (given in appendix A) contain 5 integration constants, c1,2 and a1,2,3.
These constants are to be evaluated from interface conditions at r= 1. The boundary
conditions for NSF, R13 and R26 equations are derived in the next section.

5. Formulation of the boundary conditions
The boundary conditions for evaporating and condensing interfaces for the R13

equations have been derived by Struchtrup & Frezzotti (2016), and here we follow
the same steps for the derivation of the evaporating/condensing interface conditions
for the R26 equations.

A phase interface, where particles approaching the interface from the vapour phase
(cI

knk < 0) are described by the Grad 45-moment (G45) distribution function f |G45
and molecules entering the gas (cI

knk > 0) are distributed according to a known
distribution f+, see figure 2. Note that f |G45 reconstructs the distribution function
in Hermite polynomials such that it reproduces all 45 moments appearing in the
R26 equations. Similarly, for the NSF and R13 equations, G13 and G26 distribution
functions are used, respectively.

Here, nk denotes the normal vector to the wall pointing into the vapour phase, and
cI

k is the velocity of vapour molecules in the reference frame of the interface. The
explicit form of f |G45 can be found in the literature, for example by Gu & Emerson
(2009). The distribution of molecules entering the gas is written as (Struchtrup &
Frezzotti 2016)

f+ = ϑ fM(θl, pl; cI
k)+ (1− ϑ)

[
χ fM(T, p; cI

k)+ (1− χ)f |G45(T, p; c∗k)
]
, (5.1)
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Vapour molecules leaving 

Diffusive Specular

ReflectionsEvaporation

FIGURE 2. (Colour online) Schematic of the evaporation and reflection (specular and
diffusive) process at the liquid–vapour interface. The distribution of molecules entering
from vapour phase is approximated by Grad’s distribution function, i.e. fgas ' f |G45 in
equation (5.1).

where, ϑ is defined as the evaporation/condensation coefficient, and χ is the
accommodation coefficient, defined as the fraction of reflected molecules being
thermalised. Here c∗k represents the specularly reflected values of cI

k with respect
to nk. In (5.1), θl is the temperature of the liquid phase at the interface and pl is
saturation pressure at θl, following the definitions and the notations in (3.1). Note
that, for non-evaporating interfaces (ϑ = 0), the above model reduces to the Maxwell
accommodation model (Torrilhon & Struchtrup 2008; Gu & Emerson 2009).

At the interface, the distribution function f̄ of the vapour molecules is
therefore written as

f̄ =

{
f |G45, cI

knk < 0

f+, cI
knk > 0.

(5.2)

Once the distribution function at the interface is defined, the process of deriving the
interface boundary conditions is the same as that for the wall boundary conditions
(Torrilhon & Struchtrup 2008; Gu & Emerson 2009). Again, assuming small
deviations, i.e. |pl| � 1 and |θl| � 1, linearisation of the distribution (5.2) can be
performed. The distribution function (5.2) is further simplified when relations (2.8)
and (2.9) specifying the flow configuration are introduced.

5.1. Boundary conditions for NSF, R13 and R26
The evaporation and condensation boundary conditions for the R26 equations read

v =−ς

(
p− pl −

T
2
+
σ

2
−

R
28
−
Φ

24

)
, (5.3a)

q+
v

2
=−τ

(
2T +

σ

2
+

5R
28
+
∆

15
−
Φ

12

)
, (5.3b)

m+
2 v
5
= τ

(
2T
5
−

7σ
5
−

R
14
+
∆

75
−

13Φ
30

)
, (5.3c)
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ψ−
6 v
5
= τ

(
6T
5
+

9σ
5
−

93R
70
+
∆

5
−
Φ

2

)
, (5.3d)

ω− 3v = τ
(

8T + 2σ − R−
4∆
3

)
. (5.3e)

Here

ς =
ϑ

2− ϑ

√
2
π

and τ =
ϑ + χ(1− ϑ)

2− ϑ − χ(1− ϑ)

√
2
π
, (5.4a,b)

and T = θ − θl denotes the temperature jump at the interface. As expected, for non-
evaporating interfaces (ϑ = 0), the above interface boundary conditions are reduced to
the wall boundary conditions for the R26 equations derived by Gu & Emerson (2009).

The R13 equations are obtained from the first three equations (5.3a–c), with R, m
and ∆ replaced by the R13 constitutive laws (3.8) and Φ = 0.

The NSF boundary conditions, permitting a temperature jump, require that both
the stress and the heat flux in (5.3a) and (5.3b) are replaced by the NSF laws (3.1)
alongside R=m=∆=Φ = 0.

5.2. Comparison with classical theories
At thermodynamic equilibrium, the chemical potential and temperature are assumed
continuous across the liquid/vapour interface. These conditions lead to the Clausius–
Clapeyron relations, i.e. a relation between the saturation pressure and temperature at
equilibrium. However, when the interface is not under local equilibrium conditions,
it is usually assumed that the mass flux j (in dimensional form) obeys the Hertz–
Knudsen–Schrage (HKS) relation, derived from the kinetic theory of gases as (Schrage
1953)

j=
1

2− σc

√
2
π

(
σe

℘l
√

RTl
− σc

℘
√

RT

)
, (5.5)

where σe and σc denote the evaporation and condensation coefficients, respectively,
representing the fraction of molecules that strike the interface and change phases from
their initial liquid or vapour states, respectively. When written in the dimensionless
and linearised form, the HKS relation (5.5) for σc = σe = ϑ reduces to

v =−ς

(
p− pl −

T
2

)
, (5.6)

which is the linear Hertz–Knudsen–Schrage (LHKS) relation.
In the standard approach, the HKS is combined with the equality of liquid and

vapour temperatures at the interface, i.e.

θ = θl. (5.7)

Comparing with our boundary conditions for the R26 equations, we see that (5.3a)
is a generalisation of the LHKS relation which contains the higher-order moments
(R, Φ) and an additional term (σ/2) in (5.3a) due to the geometric curvature. In
what follows, the results obtained from macroscopic models are compared with the
linearised Boltzmann solutions in order to determine the gains in accuracy from using
the R13 or R26 theories over the classical one.
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5.3. Summary of models
Below, we summarise the hierarchy of models which are to be investigated in the
forthcoming sections. Each is composed of bulk equations for r>1 supplemented with
boundary conditions at the droplet surface (r= 1).

(i) NSF: The NSF equations are used alongside LHKS given in (5.6) and the
classical no-temperature-jump condition from (5.7). That is, the integration
constants (c1,2) appearing in the NSF solutions (4.1)–(4.3) are determined from
the boundary conditions (5.6) and (5.7).

(ii) NSF (+jump): The NSF equations are used with the mass-flux boundary condition
(5.3a) and the temperature jump boundary condition (5.3b). These two boundary
conditions give two integration constants (c1,2) appearing in the NSF solutions
(4.1)–(4.3).

(iii) R13: The R13 moment equations are solved, with integration constants c1,2 and
a1 in their solutions (4.1), (4.5) and (4.6) calculated from the first three boundary
conditions (5.3a–c).

(iv) R26: The R26 moment equations are solved, with integration constants c1,2 and
a1,2,3 appearing in the R26 solutions (4.1), (4.7) and (4.8) obtained from all five
boundary conditions (5.3a–e).

A Mathematica script can be found in the online supplementary material (available
at https://doi.org/10.1017/jfm.2018.85), which computes and lists these integration
constants for the NSF, R13 as well as the R26 equations.

6. Evaporation of a spherical drop as Kn→ 0

As a starting point we consider Kn→ 0 for the two cases of pressure-driven flow
(pl = 1, θl = 0) and temperature-driven flow (pl = 0, θl = 1), which allows us to
compare the results with previously obtained solutions of the linearised Boltzmann
equation (LBE).

To establish the limits of applicability of our analytic solutions, we will compare
them with numerical solution of the LBE based on both the S-model (Chernyak &
Margilevskiy 1989), and hard-sphere molecules (Sone & Onishi 1978; Takata et al.
1998; Sone 2007), for the case of complete evaporation (ϑ = 1). Therefore, henceforth,
ϑ = 1.

6.1. Pressure-driven flow (pl = 1, θl = 0)

The LBE with S-model predicts that the mass-flux coefficient c1 (= vr2)→ 0.6654
as Kn→ 0 (Chernyak & Margilevskiy 1989) whilst Sone & Onishi (1978) applied
the asymptotic method to the LBE for hard-sphere molecules to obtain c1→ 0.6633
as Kn→ 0. The value 0.66–0.67 can be directly compared to those obtained from
the macroscopic models, as tabulated in table 2, for a gas composed of Maxwell
molecules and for the BGK model.

For both the R13 and R26 theories, c1 is predicted to within two significant figures
of the LBE result with very little dependence on the collision model used. In contrast,
the NSF (+jump) model only agrees to one significant figure and the NSF fails to
even match this. Interestingly, even in the limit Kn → 0 where, naively, one may
expect all of the models to coincide, including higher moments enables more accurate
prediction of pressure-driven evaporative flow. This poor behaviour of macroscopic
boundary conditions for the NSF equations stems from the approximation fgas ' f |G13
for molecules impinging the liquid from within the Knudsen layer.
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NSF NSF(+jump) R13 R26

BGK 0.7979 0.7092 0.6739 0.6741
MM 0.7979 0.7092 0.6703 0.6692

TABLE 2. Results of pressure-driven calculations (pl = 1, θl = 0). Asymptotic values as
Kn→ 0 of c1 for different macroscopic models with complete evaporation (ϑ = 1) for
BGK and Maxwell molecules models. Note the LBE benchmark for c1 is in the range
0.66–0.67.

NSF NSF(+jump) R13 R26

BGK 0 −0.5555 −0.5777 −0.5341
MM 0 −0.5555 −0.5799 −0.5343

TABLE 3. Results of pressure-driven calculations (pl = 1, θl = 0). Values of
limKn→0 (c2Pr/Kn) for different macroscopic models with complete evaporation (ϑ = 1)
for BGK and MM models. These should be compared to −0.5250 for the S-model
(Chernyak & Margilevskiy 1989).

Notably, many studies use fitting parameters, such as effective condensation
coefficients or effective temperature jump coefficients, which are fitted to the
asymptotic solutions to the kinetic equation for a specific problem. However, the
boundary conditions used in this study contain no fitting parameters; hence the
results presented are fully predictive and the model is not problem specific.

For the pressure-driven case, the heat-flux coefficient c2 (= qr2)→ 0 as Kn→ 0,
for all the cases, including the LBE solutions from Chernyak & Margilevskiy (1989).
Therefore, we study the O(Kn) term as Kn→ 0, i.e. we look at limKn→0 (c2Pr/Kn),
which was calculated to be −0.5250 for the S-model (Chernyak & Margilevskiy
1989).

As one can see from table 3, the NSF fails to predict a gradient in c2 as Kn→ 0
whilst all the NSF(+jump)/R13/R26 theories provide reasonable agreement with the
LBE results. Notably, the R26 theory gives the best prediction out of these models.

6.2. Temperature-driven flow (pl = 0, θl = 1)
Our benchmark results from the LBE equation (Chernyak & Margilevskiy 1989) as
Kn→ 0 are

lim
Kn→0

c1

Kn
Pr=−0.5293, (6.1)

lim
Kn→0

c2

Kn
Pr=

5
2

(
=

cp

R

)
. (6.2)

The value for limKn→0 (c1Pr/Kn) predicted by the moment equations for the
temperature-driven case is the same as limKn→0 (c2Pr/Kn) for the pressure-driven
case. These values were discussed in § 6.1 and are tabulated in table 3. The equality
of c1 for temperature-driven case and c2 for pressure-driven case follows from
Onsager’s reciprocal relations (De Groot & Mazur 1984; Takata et al. 1998).

All macroscopic models describe the correct asymptotic limit for limKn→0 (c2Pr/Kn)
= (5/2), which follows from Fourier’s law (3.6).
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FIGURE 3. (Colour online) Knudsen layer functions in pressure-driven flow (pl = 1, θl =

0): curves of the normalised pressure p (a) and the temperature defect Θ (b) are plotted
against scaled distance from the interface η, for the NSF, R13 and R26 theories with
complete evaporation (ϑ=1). Note that NSF curves do not deviate from zero. Also plotted
are the results for the LBE from Sone & Onishi (1978).

In summary, our results indicate that the R26 equations with evaporation boundary
conditions yield an excellent quantitative description in all cases, for both MM and
BGK collision models, which are not matched by the NSF or R13 theories.

7. Evaporation from a planar surface: Knudsen layer structure and Ytrehus’
problem
Whilst no flow profiles within the Knudsen layer are available from kinetic theory

for the case of an evaporating sphere, Sone and coauthors have examined the structure
of Knudsen layers for evaporation/condensation from a planar interface (Sone &
Onishi 1978; Takata et al. 1998). The planar interface can be derived as a particular
case of the solutions in the spherical geometry obtained in § 4, recovered by defining

η=
r− 1

Kn
√

2
, (7.1)

and taking an asymptotic limit Kn→ 0. Here, η is the dimensionless distance from the
interface, which is made dimensionless with the mean free path, λ=µ∞

√
2RT∞/p∞.

It is convenient to introduce a dimensionless temperature defect Θ as

Θ = θ −
2
5

c2

Kn
Pr, (7.2)

which has been defined so as to vanish for the NSF and NSF(+jump) models so that
Θ is a purely non-Fourier contribution to the temperature that only appears inside
Knudsen layer.

7.1. Knudsen layer: pressure-driven flow (pl = 1, θl = 0)
Figure 3 compares the pressure p and temperature defect Θ for the different
macroscopic theories with the results by Sone & Onishi (1978). The results indicate
that NSF and NSF(+jump) cannot describe non-zero pressure and temperature defects,
whilst the Knudsen layer profile for pressure (figure 3a) is captured quite accurately
by both the R13 and R26 equations. However, the temperature defect Θ near the
wall (figure 3b) is only accurately predicted by the R26 equations, with the LBE
result around three times smaller than that predicted by the R13 equations at η= 0.
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FIGURE 4. (Colour online) Knudsen layer functions in temperature-driven flow (pl = 0,
θl = 1): curves of the normalised pressure p/Kn (a) and the temperature defect Θ/Kn (b)
are plotted against scaled distance from the interface η, for the NSF, R13 and R26 theories
with complete evaporation (ϑ = 1). Also plotted are the results for the LBE from Sone &
Onishi (1978).

7.2. Knudsen layer: temperature-driven flow (pl = 0, θl = 1)
Unlike the pressure-driven case, in temperature-driven flow (figure 4a,b), the pressure
and temperature defect both vanish as Kn→ 0 with O(Kn). Therefore, to obtain the
next-order terms in Kn, the results are divided with the Knudsen number before the
limit is taken to recover the most relevant values in this limit.

Figure 4(a) shows that the LBE benchmark for the pressure profile exhibits a
maxima at a finite distance from the boundary, inside the Knudsen layer, which
is only captured by the R26 model. According to our analytical solutions, the
ultimate source of the fascinating behaviour can be traced to the combination of
unique exponentials appearing in the solution of the R26 equations in (4.7a). The
actual Knudsen layer is a linear superposition of many exponential functions e−rγi/Kn

(Struchtrup 2008) – with different coefficients γi – the R13 equations give only one
such contribution so that non-monotonic behaviour cannot be captured. In contrast,
the R26 system provides three exponential functions to form the Knudsen layer, thus
capturing the more complex behaviour. For the temperature defect (figure 4b) the
R26 solution still provides far greater accuracy in the Knudsen layer.

7.3. Summary of the behaviour of the Knudsen layer
The Knudsen layer is the kinetic boundary layer, found in the region of gas flow
adjacent to the boundary. Whilst the R13 and R26 theories pick up the existence of
Knudsen layer, it is the R26 theory which has access to three exponential functions
to approximate this region. Therefore, R26 can (i) capture intricate qualitative features
of the LBE solution and (ii) provide a good quantitative accuracy. Consequently, from
here on, we focus on comparing the R26 equations with the classical approach of
the NSF and its extension NSF(+jump). Henceforth, we consider only MM collision
model.

7.4. Comparison of predicted mass- and heat-flux coefficients for evaporation from a
planar surface (Ytrehus’ problem)

As a special case, we can find relevant flow coefficients for the steady evaporation
from a planar surface into a half-space by using the reduced distance (7.1) and taking
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NSF NSF(+jump) R26 Ytrehus & Ostmo (1996)

αp 1.7724 1.9940 2.1133 2.1254
αθ 0 0.4431 0.4517 0.4472

TABLE 4. The solution of Ytrehus’ problem obtained from the classical NSF,
NSF(+jump) and R26 theories compared with Ytrehus & Ostmo (1996).

an asymptotic limit Kn→ 0. The half-space evaporation problem, often referred to as
Ytrehus’ problem (Ytrehus & Ostmo 1996), concerns an evaporating liquid surface
kept at a temperature θl and evaporation pressure pl. Far from the interface, the flow
is in a uniform equilibrium state with bulk velocity v = v∞ > 0 and q= 0. With the
v∞ and q prescribed, the coefficients c1 and c2 in (4.1) are

c1 = v∞ and c2 = 0, (7.3a,b)

and the temperature θl and evaporation pressure pl are determined from the boundary
conditions. Defining

pl = αp
v∞
√

2
and θl = αθ

v∞
√

2
, (7.4a,b)

where the coefficients αp and αθ are determined by solving different macroscopic
models. In table 4, we compare our results obtained from the NSF, NSF(+jump), R26
models with Ytrehus’ solution using half-range moment method (Ytrehus & Ostmo
1996).

As expected, NSF without the temperature jump boundary condition gives αθ = 0,
but also gives 16 % deviation for the pressure coefficient αp. The NSF(+jump) with
temperature jump boundary condition provide excellent agreement for the temperature
coefficient αθ but underpredicts the pressure coefficient by 6 %. The agreement of
the R26 equation for both the pressure and temperature coefficients is excellent
(. 1 %), highlighting the importance of kinetic effects in the Knudsen layer next to
the evaporating interface and reinforcing our conclusions from § 7.3.

8. Evaporation from a spherical drop: comparison of predicted mass and heat-
flux coefficients
Figures 5 and 6 show the variations in flow coefficients (c1 and c2) with Knudsen

number, for the pressure-driven and temperature-driven flows, respectively. In all the
figures, the solid (red) curves show the R26 solutions, the NSF(+jump) solutions
are denoted by the dashed (blue) curves and the NSF with the classical boundary
conditions without temperature jump are depicted as dotted (green) curves. The
results are compared with the LBE solutions from Chernyak & Margilevskiy (1989)
and Takata et al. (1998), which are denoted by the symbols.

8.1. Pressure-driven flow (pl = 1, θl = 0)
Figures 5(a) and 5(b) show the variations in mass-flux coefficient (c1) and the heat-
flux coefficient (c2) with the Knudsen number, respectively. In this case, mass flux
goes from liquid to vapour (i.e. c1 > 0) and heat flows from vapour to liquid (c2 < 0)
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FIGURE 5. (Colour online) (a) Mass-flux coefficient c1= vr2 and (b) heat-flux coefficient
c2 = qr2 as a function of the Knudsen number for the pressure-driven case (pl = 1,
θl = 0). The symbols, circles and diamonds, denoting the results obtained in Chernyak &
Margilevskiy (1989) and Takata et al. (1998), respectively, from the linearised Boltzmann
equation.

because the enthalpy of phase change must be supplied to the droplet to keep its
temperature constant.

The LHKS relation (5.6) used for NSF gives a constant mass flow coefficient for
all Knudsen numbers, as shown in figure 5(a). The LHKS relation is derived for a
planar interface; therefore, it does not take the curvature of the interface into account.
Furthermore, the heat-flux coefficient is zero (figure 5b) for the NSF model, which
follows from the no temperature jump condition at the interface. Consequently, the
NSF model is insensitive to variations in Kn and loses validity for microflows. On the
other hand, the NSF(+jump) model includes the temperature jump and the curvature
effects, and gives a non-constant mass flux and non-zero heat flux, with an offset of
approximately 10 % for Kn . 0.4 in mass-flux coefficient and Kn . 0.1 in heat-flux
coefficient.

As illustrated in figure 5, the R26 results for c1 are within 10 % of kinetic data for
Kn . 3 (figure 5a), while for c2 they are valid for Kn . 0.5 (figure 5b).

8.2. Temperature-driven flow (pl = 0, θl = 1)
In this case, figure 6 shows that c1 < 0 and c2 > 0; that is, a mass flux from vapour
to liquid (condensation) and a positive heat flux from liquid are induced. This flow
behaviour is governed by the boundary conditions (5.3a) and (5.3b). For θl > 0,
the heat goes from liquid to vapour giving c2 > 0 from the boundary condition
(5.3b); therefore the mass-flux equation (5.3b) leads to condensation at the interface,
i.e. c1 < 0.

From figure 6(a,b), it can be seen that all models agree well with the LBE
simulations for small Kn, but in both cases the R26 model shows considerable
improvement over the NSF-based models at moderate Kn. The R26 results are within
10 % of kinetic data for Kn . 0.8 for both c1 and c2, while the NSF(+jump) model
shows similar agreement for Kn . 0.3.

8.3. Onsager reciprocity relations
Due to the microscopic reversibility of the evaporation and condensation processes, the
Onsager reciprocity relations should hold (Xu et al. 2006), which in this case state
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FIGURE 6. (Colour online) Mass flow coefficient c1 = vr2 and (b) heat-flux coefficient
c2 = qr2 as a function of the Knudsen number for the temperature-driven case (pl = 0,
θl = 1). The symbols, circles and diamonds, denote the results obtained in Chernyak &
Margilevskiy (1989) and Takata et al. (1998), respectively, from the linearised Boltzmann
equation.

that the heat-flux coefficient (c2) driven by the pressure difference should be equal
to the mass flow coefficient (c1) driven by the temperature difference. In figure 7,
our theoretical results for the heat-flux coefficient in the pressure-driven case and the
mass flow coefficient in the temperature-driven case are compared to kinetic data from
Takata et al. (1998). As shown, in the kinetic simulations Onsager reciprocity relations
are valid for the entire range of Knudsen numbers. On the other hand, macroscopic
theories derived here give agreement extending up to Kn . 0.5 for R26 and Kn .
0.03 for NSF(+jump), with approximately 10 % deviation. Note that for the classical
NSF both c1 and c2 vanish. Therefore, within the range which we expect R26 to be
accurate, Onsager reciprocity is approximately satisfied.

It has been shown by Rana & Struchtrup (2016) that the macroscopic wall
boundary conditions, derived using Grad’s closure at the boundary, violate the
reciprocity relation for high Knudsen numbers. Violation of the reciprocity relation
is a serious concern for macroscopic boundary conditions; therefore, a more careful
study of the thermodynamically admissible boundary conditions based on a full
second law analysis with proper Onsager coefficients is required, which is beyond
the scope of this paper. However, as observed in Rana & Struchtrup (2016), the
evaporation/condensation boundary conditions derived here should allow us to
identify and estimate the values of the unknown coefficients appearing in such
thermodynamically admissible boundary conditions.

To summarise our findings in § 8, it has been shown in this section that the classical
NSF model fails to even qualitatively describe LBE results. The R26 model shows
significant quantitative improvements over the popular NSF(+jump) approach and,
impressively, is within 10 % of all LBE data for Kn. 1 as compared to Kn. 0.1 for
NSF(+jump). With respect to practical computations of microflows, this means the
R26 theory can be relied upon for an order of magnitude smaller characteristic scales
than the NSF(+jump) theory.

9. Non-Newtonian total normal stress

Having an analytic solution allows us to analyse the magnitude of competing
contributions to this non-equilibrium flow. Here we study the total normal stress
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FIGURE 7. (Colour online) Validity of Onsager’s reciprocity relation, c2(pl = 1, θl = 0)=
c1(pl = 0, θl = 1), is examined for NSF with jump boundary conditions (dashed blue
lines) and R26 equations (solid red lines). Our analytic solutions for MM over moderate
Knudsen numbers are compared to LBE kinetic data symbols from Takata et al. (1998).
The LBE solutions for c1 and c2 (symbols) coincide.
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FIGURE 8. (Colour online) Total normal stress (p+ σ ) for (a) pressure-driven case and
(b) temperature-driven case for Kn= 0.1. The solid (red) curves show the R26 solutions,
the NSF(+jump) solutions are denoted by the dashed (blue) curves and the NSF with
the classical boundary conditions without temperature jump are depicted by dotted (green)
curves.

(p + σ ) experienced by the liquid droplet, whose sign will be seen to change
depending on which theory is used. Our primary focus is to understand how this
happens by studying the competing contributions from the Newtonian stress, thermal
stress and stress due to the Knudsen layer, as defined in § 4.3.

Figure 8 shows the total normal stress obtained from three macroscopic models
(NSF, NSF(+jump) and R26) for the pressure-driven case (figure 8a) and the
temperature-driven case (figure 8b). The results evaluated are for a relatively small
Knudsen number Kn= 0.1.

In pressure-driven flow (figure 8a), all data, including the classical NSF theory,
predict essentially the same qualitative behaviour: a maximum at the interface and
decay to zero in the far field. Nonetheless, there is a substantial gap in case of the
classical NSF theory, in particular, near the interface, whereas a somewhat better
agreement is observed between the NSF(+jump) and R26 models.

Notably, there is a fundamental difference in case of temperature-driven flow in
figure 8(b): the total normal stress is zero for the classical NSF model, negative for
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FIGURE 9. (Colour online) Different contributions to the total normal stress (p+ σ ) for
(a) pressure-driven case and (b) temperature-driven case obtained from the R26 equations
for Kn= 0.1. The Newtonian stress is denoted by the dot-dashed (grey) curves, thermal
stress is denoted by the dashed (green) curves, normal stress due to Knudsen layer are
depicted by the dotted (purple) curves and the total normal stress is denoted by the solid
(red) curves.

the NSF(+jump) model and positive for the R26 model. The ultimate origin of this
behaviour can be explained in a concise way by the non-Newtonian contributions to
the total normal stress in the R26 theory.

Figure 9 shows the different contributions to the total normal stress for the
pressure-driven case (figure 9a) and the temperature-driven case (figure 9b) obtained
from the R26 equations for Kn = 0.1. In both of these figures, due to the small
Kn, the Knudsen layer (denoted by the dotted purple lines) is restricted close to the
interface. Furthermore, in both the cases, the thermal stress (dashed green lines) is of
second order in Knudsen number, as the term Kn c2 ∼O(Kn2), see § 6.

For the pressure-driven case (figure 9a), the hydrodynamic stress (denoted by the
dot-dashed grey lines) is of first order in Kn. Hence, for this case, the thermal stress
contribution as is one order of magnitude smaller than the Newtonian stress; so that
the total normal stress (solid red lines) away from the interface is dominated by the
Newtonian stress.

More interestingly, for the temperature-driven case (figure 9b), the Newtonian stress
is of second order, as Kn c1 ∼ O(Kn2), i.e. of the same order as the thermal stress,
but, critically, of opposite sign. As a result the thermal stress forces the total stress
to become positive whereas without its contribution, as in the NSF, this contribution
would be negative.

10. Summary and conclusion

This article has developed the macroscopic modelling of phase-change processes
and shown that the R26 equations provide a significant improvement over conventional
models, accurately approximating benchmark Boltzmann equation results up to Kn≈ 1.
Notably, the analytic solutions provide unique insight, by allowing us to decompose
our solution and determine the relative contributions of different physical effects,
particularly in and around the Knudsen layers.

The R26 equations have been considered for planar wall boundary-value problems,
for example in Gu & Emerson (2009), Gu et al. (2010), Gu & Emerson (2014).
However, the analytical solution in a spherical geometry and more importantly for

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

85
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2018.85


Evaporation-driven vapour microflows 985

a liquid–vapour phase boundary was attempted for the first time here. Our analytic
solution highlights why the R26 model is superior to the R13: it has access to
three exponential functions to describe the Knudsen layer rather than just one. These
findings are consistent with those of Gu & Emerson (2014), where superposition
of three exponentials from the R26 theory produced an improved description of the
thermal Knudsen layer.

The general interest of the present study is to explore boundary-value problems for
moderately rarefied gas flows, with an emphasis on evaporation from nanostructures.
For example, evaporative cooling from nano pores ∼O(100 nm) can lead to thermal
management in electrical systems directly at the source of hot spots. Such a device
operates around atmospheric pressure, with mean free path λ∼O(10 nm) (based upon
the saturation temperature) in the vapour phase, giving a Knudsen number Kn.O(1).
For the purpose of design optimisation, which requires repetition of simulations with
different parameters, Boltzmann solvers can become impractical due to the large
computational time involved. Macroscopic models, despite limitations on the their
accuracy, give a computationally fast and detailed access to quantities of interest. The
R26 theory developed here, which we have benchmarked against LBE, gives us a
framework to study evaporation/condensation for Kn . O(1), i.e. down to nanoscales.

Very recently, fundamental solutions (Green’s functions) were derived for the
linearised R13 equations by Claydon et al. (2017). The numerical framework
based upon these fundamental solutions, generalised to account for phase-change
phenomena, should allow for three-dimensional multiphase microflows to be modelled
at remarkably low computational cost. Extension of the method of fundamental
solutions for the R26 equations and development of a simulation tool for moment
equations to capture geometrically complex flows will be the subject of future work.

Another line of inquiry is to study thermodynamically admissible boundary
conditions for higher-order moment equations. It has been shown by Rana &
Struchtrup (2016) that the macroscopic boundary conditions, derived using Grad’s
closure at the boundary, violate the reciprocity relation for high Knudsen numbers, i.e.
there arises the problem of boundary conditions for a finite system of equations that
approximate the microscopic boundary conditions for the Boltzmann equation. The
boundary conditions must be consistent with the moment equations and the resulting
problem must be resolved. Looking forward, a more careful study of the boundary
conditions based on a full second law analysis with proper Onsager coefficients
should lead to improved agreement between macroscopic theories and exact solutions
of the Boltzmann equation.
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Appendix A. Solution for the R26 equations
Here we shall give a step by step procedure to obtain the analytic solution for the

R26 equations. As a Step 1 we assume that the pressure is given as the superposition
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of exponential functions given by (4.7a). In Step 2, by substituting this ansatz in the
momentum balance equation (3.4b) and integrating, we readily obtain the expression
for σ given in (4.7b). Step 2 introduces a constant integration b1. In Step 3, we shall
use the stress balance equation (3.7a) to get m

m=
b2

r4
− 15

3∑
i=1

ai

(
1+

rγi

Kn
+

2r2γ 2
i

5Kn2 +
r3γ 3

i

15Kn3

)
Kn4e−rγi/Kn

r4γ 5
i

, (A 1)

where, b2 is a new constant of integration. By substituting m from the previous
equation into (3.10a), in Step 4, we obtain Φ. Note that, Step 4 does not introduces
any additional integration constants. In Step 5, we substitute σ , m and Φ, from
previous steps into the balance equation for m (3.9a), to obtain R. This step brings
one new integration constant b3, scaling with r2, as

R= b3r2
+

1
r
(·)+

1
r3
(·)+ 3

3∑
i=1

ai

(
1+

rγi

Kn
+

r2γ 3
i

3Kn3

)
(·)

e−rγi/Kn

r3γ 3
i
, (A 2)

where, expressions inside the brackets (·) do not depend on r. For any physically
meaningful solutions, R must vanish as r→∞, therefore b3 = 0. An expression for
ψ is obtained from the equation (3.10b) in Step 6. In Step 7, ω is obtained from the
balance equation for R (3.9b), which again gives an integration constant b4 scaling
with r, therefore b4 = 0. At this point, in Step 8, we have to obtain a solution for ∆
which satisfies equation (3.9c) and equation (3.10c), at the same time. We get ∆ from
(3.9c) and substitute ω, ∆ and R in (3.10c) to get

b1 =
4
5(5c1 + 2c2)Kn, (A 3a)

b2 =

(
2c2

5PrMPrR
+

5c1 + 2c2

5PrM

)
36Kn2, (A 3b)

and a polynomial in γ as

120374γ 6
− 242756γ 4

+ 119400γ 2
− 1 5306.4 = 0, (A 4)

for the MM model, and

81081γ 6
− 110055γ 4

+ 37905γ 2
− 3675 = 0, (A 5)

for the BGK model. The positive roots of these polynomials were listed in table 1.
Finally, the expression for the temperature θ is obtained by substituting ∆, R, σ and q
into (3.7b) and then solving for θ . The new constant c3 following from this integration
vanishes due to (4.4).

The coefficients k1, k2 and k3 appearing in (4.8) depend on the transport coefficients
in the collision model and are given by

k1 =
9(63Prφ + 80)
140Pr∆PrψPrφ

, (A 6a)

k2 = −
81PrMPrφ + Prψ(64Pr∆ + 9Prφ(4Pr∆ + 7PrR + 2)+ 80PrR)

36Pr∆PrψPrφ
, (A 6b)

k3 =
7PrM(4Pr∆ + 5PrR)

36Pr∆
. (A 6c)
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