Bull. Austral. Math. Soc. Vol. 52 (1995) [41-61]

ON GROUP UNIFORMITIES ON SQUARE OF A SPACE AND EXTENDING PSEUDOMETRICS II

MICHAEL G. TKAČENKO

We find topological conditions on a space X under which the left (right, or twosided) uniformity of the free topological group F(X) induces the universal uniformity \mathcal{U}_{X^2} or the product uniformity $\mathcal{U}_X \times \mathcal{U}_X$ on the square of X. Special attention is given to k_{ω} -spaces and metrisable spaces. The main technical tool in the paper is an extension of certain continuous pseudometrics from X^2 to F(X)considered by the author in the previous volume of this journal.

0. INTRODUCTION

By a theorem of Graev [5], any continuous pseudometric d on a Tikhonov space X extends to an invariant pseudometric \hat{d} on the free topological group F(X). This result was applied by Pestov [9] to prove the equality $*\mathcal{V}^*|_X = \mathcal{U}_X$ for every Tikhonov space X, where $*\mathcal{V}^*$ is the two-sided uniformity of F(X) and \mathcal{U}_X is the universal uniformity of X (that is, the finest uniformity on X compatible with the topology of X). A generalisation of the above equality for uniform free topological groups was obtained by Nummela [8].

Our aim is to study the uniformities on X^2 induced by $*\mathcal{V}$, \mathcal{V}^* and $*\mathcal{V}^*$, the left, right and two-sided group uniformities of F(X). In talking about induced uniformities on X^2 , it is understood that we identify X^2 with a subspace of F(X) under the embedding $(x, y) \mapsto x \cdot y$; $x, y \in X$. So, we can formulate the following three problems (see [17]).

PROBLEM A. What are the relations between ${}^*\mathcal{V}|_{X^2}$, $\mathcal{V}^*|_{X^2}$ and ${}^*\mathcal{V}^*|_{X^2}$ on the one hand and $\mathcal{U}_X \times \mathcal{U}_X$, \mathcal{U}_{X^2} on the other (\mathcal{U}_{X^2} stands for the universal uniformity on X^2)?

This general problem can be specialised as follows.

PROBLEM B. When does the equality ${}^*\mathcal{V}^*|_{X^2} = \mathcal{U}_X \times \mathcal{U}_X$ hold?

PROBLEM C. For which spaces X does the equality ${}^*\mathcal{V}^*|_{X^2} = \mathcal{U}_{X^2}$ hold?

Received 7th September, 1994

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/95 \$A2.00+0.00.

One can as well replace ${}^*\mathcal{V}{}^*$ by ${}^*\mathcal{V}$ or $\mathcal{V}{}^*$ in Problems B and C, thus obtaining four more problems. The resulting problems will be denoted by the same letters. The majority of these problems is solved here by means of a simultaneous extension method that applies to certain pairs (d_1, d_2) of continuous pseudometrics d_1 and d_2 on X and X^2 respectively and produces continuous seminorms on F(X) (see Theorems 1.4, 2.1 and 3.1 of [17]).

We start with general assertions about uniformities on topological groups. Then we show that both uniformities ${}^*\mathcal{V}|_{X^2}$ and $\mathcal{V}^*|_{X^2}$ are finer than $\mathcal{U}_X \times \mathcal{U}_X$ (Theorem 1.6), that contributes to Problem A. As an application of simple topological tools we prove that the equality ${}^*\mathcal{V}^*|_{X^2} = \mathcal{U}_X \times \mathcal{U}_X$ holds for every pseudocompact space X (Theorem 1.8), thus giving a partial answer to Problem B. A complete solution of Problem B is given in Theorem 2.1: the equality ${}^*\mathcal{V}^*|_{X^2} = \mathcal{U}_X \times \mathcal{U}_X$ holds if and only if there exists an infinite cardinal τ such that X is pseudo- τ -compact and a P_{τ} -space simultanuously. This characterisation remains valid if one replaces ${}^*\mathcal{V}^*$ by ${}^*\mathcal{V}$ or \mathcal{V}^* .

Problem C seems the most difficult among the others. First, we characterise spaces X satisfying the condition ${}^*\mathcal{V}|_{X^2} = \mathcal{U}_{X^2}$ (or equivalently, $\mathcal{V}^*|_{X^2} = \mathcal{U}_{X^2}$): if X is not a P-space then the above condition is equivalent to the requirement that the projection $p: X^2 \to X$ is z-closed, and for a P-space X it is equivalent to the condition that for every open cover γ of X^2 there exists a disjoint open cover μ of X such that $\mu \times \mu = \{U \times V : U, V \in \mu\}$ is finer than γ (Theorem 3.1).

We also show that the equality ${}^*\mathcal{V}^*|_{X^2} = \mathcal{U}_{X^2}$ holds for each k_{ω} -space X (Theorem 4.2) and characterise metrisable spaces satisfying it (Theorem 4.4): the criterion is that a metrisable space must be locally compact or the set X' of all non-isolated points of X must be compact.

All spaces considered are assumed completely regular. We say that X is a P-space if every G_{δ} -set in X is open. A space X is said to be pseudo- τ -compact if every locally finite family of open sets in X has cardinality strictly less than τ . The Čech-Stone compactification of a space X is denoted by βX .

The set of positive integers is denoted by N^+ ; **R** stands for the reals with the interval topology.

Every element g of the free topological group F(X) on a space X has the form $x_1^{\varepsilon_1} \cdot \ldots \cdot x_n^{\varepsilon_n}$ for some $x_1, \ldots, x_n \in X$ and $\varepsilon_1, \ldots, \varepsilon_n = \pm 1$. We put $l_+(g) = \{i \leq n : \varepsilon_i = 1\}$ and $l_-(g) = \{i \leq n : \varepsilon_i = -1\}$. Then we define a subgroup G(X) of F(X) by

$$G(X) = \{g \in F(X) : l_+(g) = l_-(g)\}.$$

Note that G(X) is an open subgroup of F(X) [17].

All the necessary facts in uniform space theory are contained in [2, Chapter 8] or [6, Chapters 1-3]. An exposition of results on uniform structures on topological groups

is given in [10].

1. PRELIMINARY FACTS AND RESULTS

Let G be a topological group with identity e and O a neighbourhood of e in G. We put

$$U_O^l = \{(g,h) \in G \times G : g^{-1} \cdot h \in O\}, \quad U_O^r = \{(g,h) \in G \times G : g \cdot h^{-1} \in O\},$$

and $U_O = U_O^l \cap U_O^r$. Recall that a base of the left (right, two-sided) uniformity ${}^*\mathcal{V}_G$ (respectively \mathcal{V}_G^* , ${}^*\mathcal{V}_G^*$) of the group G consists of the sets U_O^l (respectively U_O^r , U_O) where O runs through all neighbourhoods of e in G.

The following notion seems to be folklore.

DEFINITION 1.1: Let τ be an infinite cardinal. A subset $Y \subseteq X$ is said to be τ -bounded in a uniform space (X, U) if for each $U \in U$ there exists a subset $A \subseteq X$, $|A| \leq \tau$, such that $Y \subseteq \bigcup_{a \in A} B(a, U)$, where $B(a, U) = \{x \in X : (a, x) \in U\}$.

If one puts Y = X in Definition 1.1, the notion of a τ -bounded uniform space (X, \mathcal{U}) will be obtained. For the sake of completeness we present a proof of the following well-known result. Recall that \mathcal{U}_X always stands for the universal uniformity of a space X.

ASSERTION 1.2. A uniform space (X, U) is τ -bounded if and only if the space X is pseudo- τ^+ -compact.

PROOF: The necessity. Suppose that there exists a locally finite family γ of open sets in X, $|\gamma| = \tau^+$. For every $V \in \gamma$ define a continuous real-valued function f_V on X, $0 \leq f_V \leq 1$, such that f_V is equal to 1 at some point of V and vanishes outside of V. Put

$$d(x,y) = \sum_{V \in \gamma} \left| f_V(x) - f_V(y) \right|; \qquad x,y \in X.$$

Then d is a continuous pseudometric on X. The set $W = \{(x, y) \in X^2 : d(x, y) < 1\}$ is an open entourage of the diagonal in X^2 and $W \in \mathcal{U}_X$. It is easy to verify that no subset $A \subseteq X$ with $|A| \leq \tau$ satisfies the condition $X = \bigcup_{a \in A} B(a, W)$ of Definition 1.1, that is, the uniform space (X, \mathcal{U}_X) is not τ -bounded.

Sufficiency. Suppose that (X, \mathcal{U}_X) is not τ -bounded and choose an element $W \in \mathcal{U}_X$ witnessing that. By Corollary 8.1.11 of [2] there exists a continuous pseudometric ϱ on X such that $\{(x, y) \in X^2 : \varrho(x, y) < 1\} \subseteq W$. Let K be a maximal subset of X with the property that $\varrho(a, b) \ge 1$ for all distinct $a, b \in K$. Then $|K| > \tau$ by the choice of W and ϱ . Obviously, the family of all balls of radius 1/3 with points of K as centers is discrete (hence locally finite) and has cardinality greater than τ .

DEFINITION 1.3: A subset Y of a topological group G is called left- τ -bounded in G if for every neighbourhood V of the identity in G there exists a subset $A \subseteq G$ such that $|A| \leq \tau$ and $Y \subseteq A \cdot V$; analogously, the inclusion $Y \subseteq V \cdot A$ defines the notion of right- τ -boundedness in G.

If a subset Y of G is left- and right- τ -bounded in G, we shall simply say that Y is τ -bounded in G.

Note that Y is left- τ -bounded (right- τ -bounded) in G if and only if Y is a τ bounded subset of (G, \mathcal{V}) (respectively (G, \mathcal{V}^*)). We also mention that the subset A of G in Definition 1.3 can be chosen to satisfy the condition $A \subseteq Y$.

ASSERTION 1.4. If Y is (right-) left- τ -bounded in a topological group G then $Y \cdot Y$ is (right-) left- τ -bounded in G.

PROOF: It suffices to consider the "left" case. Let V and V_1 be neighbourhoods of the identity in G, $V_1^2 \subseteq V$. There exists a subset B of G, $|B| \leq \tau$, such that $Y \subseteq B \cdot V_1$. For each $b \in B$ choose a neighbourhood W_b of the identity satisfying the condition $b^{-1} \cdot W_b \cdot b \subseteq V_1$ and find a subset C_b of G of cardinality $\leq \tau$ with $Y \subseteq C_b \cdot W_b$. Put $C = \bigcup_{b \in B} C_b$ and $A = C \cdot B$. Obviously, $|A| \leq |C| \leq \tau$. We claim that $Y \cdot Y \subseteq A \cdot V$. Indeed, let $x, y \in Y$ be arbitrary. Then $y \in b \cdot V_1$ for some $b \in B$. Since $Y \subseteq C_b \cdot W_b$, there exists $c \in C_b$ such that $x \in c \cdot W_b$. We have

$$x \cdot y \in c \cdot W_b \cdot b \cdot V_1 = c \cdot b \cdot (b^{-1} \cdot W_b \cdot b) \cdot V_1 \subseteq c \cdot b \cdot V_1^2 \subseteq c \cdot b \cdot V,$$

where $c \cdot b \in C \cdot B = A$. Thus, $Y \cdot Y \subseteq A \cdot V$.

ASSERTION 1.5. Suppose that Y is a τ -bounded set in a topological group G with the two-sided uniformity $*\mathcal{V}^*$. Then Y is a τ -bounded subset of $(G, *\mathcal{V}^*)$.

PROOF: Let V be a neighbourhood of the identity in G. It suffices to define a subset $A \subseteq G$ such that $|A| \leq \tau$ and $Y \subseteq \bigcup \{a \cdot V \cap V \cdot a : a \in A\}$. Choose a symmetric neighbourhood V_1 of the identity so that $V_1^3 \subseteq V$ and let the subset B of G satisfy $Y \subseteq B \cdot V_1$, $|B| \leq \tau$. For every $b \in B$ find a neighbourhood W_b of the identity such that $W_b \subseteq V$ and $b^{-1} \cdot W_b \cdot b \subseteq V_1$. For each $b \in B$ there exists a subset $A_b \subseteq G$ such that $Y \subseteq W_b \cdot A_b$ and $|A_b| \leq \tau$. We claim that the set $A = \bigcup_{b \in B} A_b$ works. Indeed, let $y \in Y$ be arbitrary. Then $y \in b \cdot V_1$ for some $b \in B$ and $y \in W_b \cdot a$ for some $a \in A_b \subseteq A$. Therefore $y = b \cdot v = w \cdot a$ for some $v \in V_1$ and $w \in W_b$. This implies that $a^{-1} \cdot b = v^{-1} \cdot b^{-1} \cdot w \cdot b \in V_1^{-1} \cdot b^{-1} \cdot W_b \cdot b$. We have

$$y \in b \cdot V_1 = a \cdot (a^{-1} \cdot b) \cdot V_1 \subseteq a \cdot V_1^{-1} \cdot (b^{-1} \cdot W_b \cdot b) \cdot V_1 \subseteq a \cdot V_1^3 \subseteq a \cdot V.$$

Thus, $y \in a \cdot V$ and $y \in W_b \cdot a \subseteq V \cdot a$. This proves the lemma.

0

[4]

Group uniformities

We start considering Problem A. For the sake of generality the induced uniformities on X^n for an arbitrary $n \in N^+$ are considered here. From now on the symbols $*\mathcal{V}, \mathcal{V}^*$ and $*\mathcal{V}^*$ always denote respectively the left, right and two-sided uniformities of the free topological group F(X) on a given space X.

THEOREM 1.6. Both uniformities $*\mathcal{V}|_{X^n}$ and $\mathcal{V}^*|_{X^n}$ are finer than $\mathcal{U}_X \times \ldots \times \mathcal{U}_X$ (*n* times) for every space X and each $n \in N^+$.

PROOF: Let V be an entourage of the diagonal \triangle_n in X^{2n} , $V \in \mathcal{U}_X \times \ldots \times \mathcal{U}_X$ (*n* times). It suffices to find $W^l \in {}^*\mathcal{V}$ and $W^r \in \mathcal{V}^*$ such that $W^l \bigcap X^{2n} \subseteq V$ and $W^r \bigcap X^{2n} \subseteq V$.

By the definition of a uniform product (see [2, Chapter 8] or [6]), one can find an entourage U of the diagonal Δ_1 in X^2 such that $(\bar{x}, \bar{y}) \in V$ for all points $\bar{x} = (x_1, \ldots, x_n) \in X^n$ and $\bar{y} = (y_1, \ldots, y_n) \in X^n$ satisfying $(x_i, y_i) \in U$ for each $i \leq n$. Use Corollary 8.1.11 of [2] to define a continuous pseudometric d on X such that $\{(x, y) \in X : d(x, y) < 1\} \subseteq U$. Denote by \hat{d} the Graev extension of d to a continuous invariant pseudometric on G(X) and put $O = \{g \in G(X) : \hat{d}(g, e) < 1\}$, where e is the identity of G(X). Then define the sets W^l and W^r by

$$W^{l} = \{(x_1, \ldots, x_n, y_1, \ldots, y_n) \in X^{2n} : x_n^{-1} \cdot \ldots \cdot x_1^{-1} \cdot y_1 \cdot \ldots \cdot y_n \in O\},\$$
$$W^{r} = \{(x_1, \ldots, x_n, y_1, \ldots, y_n) \in X^{2n} : x_1 \cdot \ldots \cdot x_n \cdot y_n^{-1} \cdot \ldots \cdot y_1^{-1} \in O\}.$$

It is clear that $W^l \in {}^*\mathcal{V}|_{X^n}$ and $W^r \in \mathcal{V}^*|_{X^n}$. We claim that $W^l \subseteq V$ and $W^r \subseteq V$. It suffices to verify the first of these inclusions. Assume that $x_n^{-1} \cdots x_1^{-1} \cdot y_1 \cdots y_n \in O$ where $x_i, y_i \in X$ for each $i \leq n$. Then we have

$$1 > \widehat{d}(x_n^{-1} \cdot \ldots \cdot x_1^{-1} \cdot y_1 \cdot \ldots \cdot y_n, e) = \sum_{i=1}^n d(x_i, y_i),$$

which readily follows from the definition of \hat{d} (see [5, 12]). In particular, $d(x_i, y_i) < 1^{-1}$ for each $i \leq n$, and the choice of d and U implies that $(x_1, \ldots, x_n, y_1, \ldots, y_n) \in V$. This proves the inclusion $W^l \subseteq V$. An analogous argument shows that $W^r \subseteq V$.

A compact space admits only one uniformity compatible with the topology of the space. Therefore, ${}^*\mathcal{V}|_{X^n} = \mathcal{V}^*|_{X^n} = {}^*\mathcal{V}^*|_{X^n} = \mathcal{U}_X \times \ldots \times \mathcal{U}_X$ (*n* times) for any compact space X; $n \in N^+$. Theorem 1.8 below generalises this obvious fact. In its proof we shall use one auxiliary result, which follows from [18, Theorem 2].

LEMMA 1.7. Every pseudo- ω_1 -compact, C-embedded subset Z of a space T is P-embedded in T, that is, every continuous pseudometric on Z extends to a continuous pseudometric on T.

THEOREM 1.8. For a pseudocompact space X, the equalities ${}^*\mathcal{V}|_{X^n} = \mathcal{V}^*|_{X^n} = {}^*\mathcal{V}^*|_{X^n} = \mathcal{U}_X \times \ldots \times \mathcal{U}_X$ (n times) hold for each $n \in N^+$.

PROOF: Let the space X be pseudocompact and $n \in N^+$ be arbitrary. Since $*\mathcal{V}^*$ is finer than $*\mathcal{V}$ and \mathcal{V}^* and both uniformities $*\mathcal{V}|_{X^n}$, $\mathcal{V}^*|_{X^n}$ are finer than $\mathcal{U}_n = \mathcal{U}_X \times \ldots \times \mathcal{U}_X$ (*n* times) (Theorem 1.6), it suffices to show that $*\mathcal{V}^*|_{X^n} = \mathcal{U}_n$. We shall prove a more general result: the universal uniformity \mathcal{W} of F(X) restricted to X^n coincides with \mathcal{U}_n . Since \mathcal{W} is finer than $*\mathcal{V}^*$, it suffices to verify that \mathcal{U}_n is finer than $\mathcal{W}|_{X^n}$.

The uniformity W is generated by the family of all continuous pseudometrics on F(X). Let d be one of them. It is necessary to verify that the restriction $\rho = d|_{X^n}$ of d to the subspace X^n of F(X) is uniformly continuous with respect to \mathcal{U}_n . Since X is pseudocompact, the natural monomorphism of F(X) to $F(\beta X)$ is a homeomorphic embedding by a theorem of Pestov [9], where βX is the Cech-Stone compactification of X. So, we can identify F(X) with the corresponding subgroup of $F(\beta X)$ generated by the set X. Again, since X is pseudocompact, Theorem 3 of [16] implies that F(X) is C-embedded into $F(\beta X)$, that is, every continuous real-valued function on F(X) extends to a continuous function on $F(\beta X)$. Furthermore, the group $F(\beta X)$ is σ -compact, and hence has countable cellularity by Corollary 2 of [14]. Being dense in $F(\beta X)$, the group F(X) has countable cellularity as well. In particular, F(X)is pseudo- ω_1 -compact. Applying Lemma 1.7, we conclude that F(X) is P-embedded in $F(\beta X)$. Let d be a continuous pseudometric on $F(\beta X)$ which extends d. The restriction of d to the subspace $Y = \beta X \times \ldots \times \beta X$ (*n* times) of $F(\beta X)$ is an extension of the pseudometric ρ . Since every continuous pseudometric on F(X) extends to a continuous pseudometric on $F(\beta X)$, the universal uniformity \widetilde{W} of $F(\beta X)$ induces the universal uniformity \mathcal{W} on F(X), that is, $\widetilde{\mathcal{W}}|_{F(X)} = \mathcal{W}$. In particular, $\widetilde{\mathcal{W}}|_{X^n} = \mathcal{W}|_{X^n}$. Denote by $\tilde{\mathcal{U}}_1$ the (unique) uniformity of the space βX compatible with its topology. Note that $\widetilde{\mathcal{U}}_1|_X = \mathcal{U}_X$. Obviously, $\widetilde{\mathcal{W}}$ induces the uniformity $\widetilde{\mathcal{U}}_n = \widetilde{\mathcal{U}}_1 \times \ldots \times \widetilde{\mathcal{U}}_1$ (n times) on the compact space Y, and $\tilde{\mathcal{U}}_n|_{X^n} = \mathcal{U}_n$. Therefore, the uniform continuity of $\widetilde{d}|_Y$ with respect to $\widetilde{\mathcal{U}}_n$ implies that $\varrho = \widetilde{d}|_{X^n}$ is a uniformly continuous pseudometric with respect to \mathcal{U}_n . This proves that \mathcal{U}_n is finer than $\widetilde{\mathcal{W}}|_{X^n} = \mathcal{W}|_{X^n}$. Ο

We generalise the above theorem in the next section by means of more subtle methods.

2. SOLUTION OF PROBLEM B

The following theorem completely characterises those spaces X satisfying the equality ${}^*\mathcal{V}^*|_{X^2} = \mathcal{U}_X \times \mathcal{U}_X$. Recall [15] that a subset X of a topological group G is said to be *thin* in G if for every neighbourhood U of the identity in G there exists a neighbourhood V of the identity such that $x \cdot V \cdot x^{-1} \subseteq U$ for each $x \in X$.

THEOREM 2.1. The following conditions are equivalent for a Tikhonov space X:

- (1) $^*\mathcal{V}|_{X^2} = \mathcal{U}_X \times \mathcal{U}_X;$
- (1') $^*\mathcal{V}|_{X^n} = \mathcal{U}_X \times \ldots \times \mathcal{U}_X$ (n times) for each $n \ge 2$;
- (2) $\mathcal{V}^*|_{X^2} = \mathcal{U}_X \times \mathcal{U}_X;$
- (2') $\mathcal{V}^*|_{X^n} = \mathcal{U}_X \times \ldots \times \mathcal{U}_X$ (n times) for each $n \ge 2$;
- $(3) \quad {}^*\mathcal{V}^*|_{X^2} = \mathcal{U}_X \times \mathcal{U}_X;$
- (3') $^*\mathcal{V}^*|_{X^n} = \mathcal{U}_X \times \ldots \times \mathcal{U}_X$ (n times) for each $n \ge 2$;
- (4) ${}^{*}\mathcal{V}|_{X^2} = \mathcal{V}^{*}|_{X^2};$
- (4') $\mathcal{V}|_{X^n} = \mathcal{V}^*|_{X^n}$ for each $n \ge 2$;
- (5) X is thin in F(X);
- (6) there exists an infinite cardinal τ such that X is a P_{τ} -space and pseudo- τ -compact.

PROOF: Obviously, (1') implies (1),..., (4') implies (4). By Theorem 1.6, the implications $(3) \Rightarrow (1)$, $(3) \Rightarrow (2)$ and $(3') \Rightarrow (1')$, $(3') \Rightarrow (2')$ are valid. It is also clear that $(1)\&(2) \Rightarrow (4)$ and $(1')\&(2') \Rightarrow (4')$; so (3) implies (4) and (3') implies (4'). The equivalence of (5) and (6) follows from [15, Theorem 3].

 $(5) \Rightarrow (3')$. Let n be any positive integer and O be a neighbourhood of the identity in F(X). Put

$$U_{O} = \{ (x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}) \in X^{2n} \\ x_{1} \ldots x_{n} \cdot y_{n}^{-1} \ldots y_{1}^{-1} \in O, \ x_{n}^{-1} \ldots x_{1}^{-1} \cdot y_{1} \ldots y_{n} \in O \}.$$

Then $U_O \in {}^*\mathcal{V}^*|_{X^n}$ and we have to find $U \in \mathcal{U}_X$ such that the uniform product $U^n = U \times \ldots \times U$ (*n* times) is contained in U_O . To this end, choose a symmetric neighbourhood V of the identity such that $V^n \subseteq O$. Since X is thin in F(X), one can define a decreasing sequence $V = V_0 \supseteq V_1 \supseteq \ldots \supseteq V_n$ of open neighbourhoods of the identity in F(X) such that $x^e \cdot V_{i+1} \cdot x^{-e} \subseteq V_i$ for all $x \in X$, $i \leq n-1$ and $\varepsilon = \pm 1$. Put $U = \{(x, y) \in X^2 : x^{-1} \cdot y \in V_n, x \cdot y^{-1} \in V_n\}$. Then $U \in \mathcal{U}_X$ and we claim that U works. Indeed, let $p = (x_1, \ldots, x_n, y_1, \ldots, y_n)$ be any point of X^{2n} satisfying $(x_i, y_i) \in U$ for each $i \leq n$, that is, $p \in U^n$. For every i with $2 \leq i \leq n$ put $g_i = x_1 \cdot \ldots \cdot x_{i-1}$. We have (*)

$$x_{1} \cdot \ldots \cdot x_{n} \cdot y_{n}^{-1} \cdot \ldots \cdot y_{1}^{-1} = (g_{n} \cdot x_{n} \cdot y_{n}^{-1} \cdot g_{n}^{-1}) \cdot (g_{n-1} \cdot x_{n-1} \cdot y_{n-1}^{-1} \cdot g_{n-1}^{-1}) \cdot \ldots \cdot (x_{1} \cdot y_{1}^{-1}).$$

By the choice of p and the sets V_i we also have $x_1 \cdot y_1^{-1} \in V_n$, $g_2 \cdot x_2 \cdot y_2^{-1} \cdot g_2^{-1} \in g_2 \cdot V_n \cdot g_2^{-1} \subseteq V_{n-1}, \ldots, g_n \cdot x_n \cdot y_n^{-1} \cdot g_n^{-1} \subseteq g_n \cdot V_n \cdot g_n^{-1} \subseteq V_1$. In its turn, (*) implies that

$$x_1 \cdot \ldots \cdot x_n \cdot y_n^{-1} \cdot \ldots \cdot y_1^{-1} \in V_1 \cdot \ldots \cdot V_{n-1} \cdot V_n \subseteq V^n \subseteq O.$$

An analogous argument shows that $x_n^{-1} \cdot \ldots \cdot x_1^{-1} \cdot y_1 \cdot \ldots \cdot y_n \in V^n \subseteq O$. Thus, the inclusion $U^n \subseteq U_O$ is proved.

(2) \Rightarrow (6). Let \mathcal{T} be the topology of X. Denote by τ the minimal cardinality of a subfamily $\theta \subseteq \mathcal{T}$ such that $\bigcap \theta \notin \mathcal{T}$. If the space X is a counterexample to the implication, there must be a locally finite family $\gamma = \{U_{\alpha} : \alpha < \tau\}$ of open sets in Xwith $|\gamma| = \tau$. We can assume that γ is discrete (see Lemma 1 of [11]). The definition of τ implies that there exist a point $x^* \in X$ and a decreasing sequence $\{V_{\alpha} : \alpha < \tau\}$ of open neighbourhoods of x^* such that x^* does not belong to the interior of the intersection $\bigcap_{\alpha < \tau} V_{\alpha}$. For every $\alpha < \tau$ pick a point $a_{\alpha} \in U_{\alpha}$. Let continuous functions f_{α} and g_{α} on X with values in [0,1] be such that $f_{\alpha}(a_{\alpha}) = 1$, $g_{\alpha}(x^*) = 1$, f_{α} vanishes outside of U_{α} and g_{α} vanishes outside of V_{α} . Define continuous pseudometrics $d_{1,\alpha}$ and ϱ_{α} on X by

$$d_{1,lpha}(x,y)=|f_{lpha}(x)-f_{lpha}(y)| ext{ and } arrho_{lpha}(x,y)=|g_{lpha}(x)-g_{lpha}(y)| ext{ for all } x,y\in X.$$

Apply Theorem 2.1 of [17] to obtain a continuous pseudometric $d_{2,\alpha}$ on X^2 such that $d_{1,\alpha}$ and $d_{2,\alpha}$ are right-concordant in the sense of Definition 1.3 of [17] and $d_{2,\alpha}$ satisfies the condition

(RP)
$$d_{2,\alpha}((a,x),(a,y)) = f_{\alpha}(a) \cdot \varrho_{\alpha}(x,y)$$
 for all $a, x, y \in X$.

Put $d_1 = \sum_{\alpha < \tau} d_{1,\alpha}$ and $d_2 = \sum_{\alpha < \tau} d_{2,\alpha}$. Clearly, d_1 and d_2 are continuous rightconcordant pseudometrics on X and X^2 respectively. By Theorem 1.4 of [17] there exists a continuous seminorm N on G(X) satisfying the properties

(P1)
$$N(a \cdot b^{-1}) = d_1(a,b) \text{ for all } a, b \in X;$$

(P2)
$$N(a \cdot x \cdot y^{-1} \cdot a^{-1}) = d_2((a,x),(a,y)) \text{ for all } a, x, y \in X.$$

Put $O = \{g \in G(X) : N(g) < 1\}$. Then O is open in G(X) and, a fortiori, in F(X). Finally, define an open entourage U_O^r of the diagonal Δ_2 in X^4 by

$$U_O^r = \{(x, y, z, t) \in X^4 : x \cdot y \cdot t^{-1} \cdot z^{-1} \in O\}.$$

Clearly, $U_O^r \in \mathcal{V}^*|_{X^2}$, and we claim that for each continuous pseudometric ϱ on X there exist an ordinal $\alpha < \tau$ and a point $x \in X$ such that $\varrho(x^*, x) < 1$ and $a_{\alpha} \cdot x^* \cdot x^{-1} \cdot a_{\alpha}^{-1} \notin O$, that is, $(a_{\alpha}, x^*, a_{\alpha}, x) \notin U_O^r$. The latter will obviously contradict (2).

Indeed, let ϱ be a continuous pseudometric on X. Since $x^* \notin \text{Int} \bigcap_{\alpha < \tau} V_{\alpha}$, one can find an ordinal $\alpha < \tau$ and a point $x \in X \setminus V_{\alpha}$ such that $\varrho(x^*, x) < 1$. We have

$$egin{aligned} &Nig(a_lpha\cdot x^*\cdot x^{-1}\cdot a_lpha^{-1}ig)\stackrel{(P2)}{=}d_2((a_lpha,x^*),(a_lpha,x))\ &\geqslant d_{2,lpha}((a_lpha,x^*),(a_lpha,x))\stackrel{(RP)}{=}f_lpha(a_lpha)\cdot |g_lpha(x)-g_lpha(x^*)|=1, \end{aligned}$$

because $f_{\alpha}(a_{\alpha}) = g_{\alpha}(x^*) = 1$ and $g_{\alpha}(x) = 0$ (for $x \notin V_{\alpha}$). Thus, $N(a_{\alpha} \cdot x^* \cdot x^{-1} \cdot a_{\alpha}^{-1}) \ge 1$, and hence $a_{\alpha} \cdot x^* \cdot x^{-1} \cdot a_{\alpha}^{-1} \notin O$.

 $(1) \Rightarrow (6)$. Use the above argument along with Theorems 1.5 and 2.3 of [17].

(4) \Rightarrow (6). This is the last implication to be proved. However, it has almost been shown in the proof of the implication (2) \Rightarrow (6). Indeed, if X does not satisfy (6), define a continuous seminorm N on G(X) and an open neighbourhood O of the identity in F(X) as above. It was shown that for every continuous pseudometric ϱ on X there exist an ordinal $\alpha < \tau$ and a point $x \in X$ such that $\varrho(x^*, x) < 1$ and $a_{\alpha} \cdot x^* \cdot x^{-1} \cdot a_{\alpha}^{-1} \notin O$. We claim that for each neighbourhood W of the identity in F(X), the set $U_W^l \setminus U_O^r$ is not empty, where $U_W^l = \{(x, y, z, t) \in X^4 : y^{-1} \cdot x^{-1} \cdot z \cdot t \in W\}$. To see this, for a given neighbourhood W of the identity choose a continuous pseudometric ϱ on X such that $\varrho(x, y) < 1$ implies $x^{-1} \cdot y \in W$ for all $x, y \in X$. One can find $\alpha < \tau$ and $x \in X$ satisfying the conditions $\varrho(x^*, x) < 1$ and $a_{\alpha} \cdot x^* \cdot x^{-1} \cdot a_{\alpha}^{-1} \notin O$. We have $(x^*)^{-1} \cdot a_{\alpha}^{-1} \cdot a_{\alpha} \cdot x = (x^*)^{-1} \cdot x \in W$, for $\varrho(x^*, x) < 1$. Thus, $(a_{\alpha}, x^*, a_{\alpha}, x) \in U_W^l \setminus U_O^r$, which proves our claim. However, this contradicts (4). The theorem is completely proved.

REMARK 2.2. Theorem 2.1 remains valid if one replaces "each" by "some" in conditions (1') - (4').

3. Solution of Problem C for $*\mathcal{V}$ and \mathcal{V}^*

The following theorem is an almost complete solution (modulo Question 3.2 below) of Problem C in the case of the left and right group uniformities $*\mathcal{V}$ and \mathcal{V}^* of F(X).

THEOREM 3.1. The following implications are valid for every space X: (1) \Leftrightarrow (2) \Leftrightarrow (3) \Rightarrow (4) \Rightarrow (5), (1) \Rightarrow (6) and (5)&(6) \Rightarrow (1), where

- (1) $^{*}\mathcal{V}|_{X^{2}} = \mathcal{U}_{X^{2}};$
- (2) $\mathcal{V}^*|_{X^2} = \mathcal{U}_{X^2};$
- $(3) \quad \mathcal{U}_{X^2} = \mathcal{U}_X \times \mathcal{U}_X;$
- (4) there exists an infinite cardinal τ such that X is a P_τ-space and X² is pseudo-τ-compact;
- (5) the projection $\pi : X \times X \to X$ is z-closed (that is, π takes zero-sets in X^2 to closed sets in X);
- (6) for every disjoint open cover γ of X^2 there exists a disjoint open cover μ of X such that $\mu \times \mu = \{U \times V : U, V \in \mu\}$ is finer than γ .

PROOF: (3) \Rightarrow (1). Obviously, \mathcal{U}_{X^2} is finer than $*\mathcal{V}|_{X^2}$. From Theorem 1.6 it follows that $*\mathcal{V}|_{X^2}$ is finer than $\mathcal{U}_X \times \mathcal{U}_X$. This proves the implication.

(3) \Rightarrow (2). Just replace * \mathcal{V} by \mathcal{V}^* in the above two lines.

[10]

(1) \Rightarrow (4). Suppose that (1) holds. We claim that if there exists a locally finite family of open sets in X^2 of cardinality τ^+ for some τ , then the same is true for X. Indeed, if X^2 contains such a family, then the uniform space (X^2, \mathcal{U}_{X^2}) is not τ -bounded (Assertion 1.2), and by (1), $(X^2, *\mathcal{V}|_{X^2})$ is not τ -bounded either. However, $*\mathcal{V}$ induces the maximal uniformity \mathcal{U}_X on X; hence by Assertion 1.4, (X, \mathcal{U}_X) fails to be τ -bounded. By Assertion 1.2, this means that X contains a locally finite family μ of open sets with $|\mu| > \tau$.

Now suppose that (4) does not hold. Let \mathcal{T} be the topology of X. Denote by τ the minimal cardinality of a subfamily γ of \mathcal{T} such that $\bigcap \gamma$ is not open in X, and choose a family $\gamma \subseteq \mathcal{T}$ with a non-open intersection satisfying $|\gamma| = \tau$. Pick a point $a \in \bigcap \gamma \setminus \operatorname{Int}(\bigcap \gamma)$. Since (4) fails, X^2 contains a locally finite family of open sets of cardinality τ . The above assertion gives us a locally finite family μ of open sets in X of the same cardinality τ . By Lemma 1 of [11] the family μ can even be chosen discrete. Let $\mu = \{U_{\alpha} : \alpha < \tau\}$ and $\gamma = \{V_{\alpha} : \alpha < \tau\}$. For each $\alpha < \tau$ define continuous real-valued functions f_{α} and g_{α} on X with values in [0,1] such that f_{α} is equal to one at some point of U_{α} and vanishes outside of U_{α} , $g_{\alpha}(a) = 1$ and g_{α} vanishes outside V_{α} . For any points $x, y, z, t \in X$ put

$$d((x,y),(z,t)) = \sum_{lpha < au} \left| f_lpha(x) \cdot g_lpha(y) - f_lpha(z) \cdot g_lpha(t)
ight|.$$

Since the family $\{U_{\alpha} \times V_{\alpha} : \alpha < \tau\}$ is discrete in X^2 , d is a continuous pseudometric on X^2 . Obviously, $d \leq 1$. Define an entourage W of the diagonal in X^4 by W = $\{(x, y, z, t) \in X^4 : d((x, y), (z, t)) < 1\}$. Then $W \in \mathcal{U}_{X^2}$. We claim that the existence of W contradicts (1).

Let O be any open neighbourhood of the identity in F(X). Put $V(a) = X \bigcap a \cdot O$; V(a) is an open neighbourhood of a in X. Since $a \notin \operatorname{Int} \bigcap \gamma$, one can find an ordinal $\alpha < \tau$ such that $V(a) \setminus V_{\alpha} \neq \emptyset$. Pick points $b \in V(a) \setminus V_{\alpha}$ and $x \in U_{\alpha}$ with $f_{\alpha}(x) = 1$. We have

$$d((x,a),(x,b)) \geqslant |f_{lpha}(x) \cdot g_{lpha}(a) - f_{lpha}(x) \cdot g_{lpha}(b)| = |g_{lpha}(a) - g_{lpha}(b)| = 1,$$

because $b \notin V_{\alpha}$ and $g_{\alpha}(b) = 0$. So, $(x, a, x, b) \notin W$. On the other hand, $(x \cdot a)^{-1} \cdot (x \cdot b) = a^{-1} \cdot b \in O$, for $b \in V(a) \subseteq a \cdot O$. Thus, we have proved that $W_O \setminus W \neq \emptyset$ for every neighbourhood O of the identity in F(X), where $W_O = \{(x, y, z, t) \in X^4 : y^{-1} \cdot x^{-1} \cdot z \cdot t \in O\}$. This contradicts (1).

(2) \Rightarrow (4). Apply the above reasoning to the pseudometric ρ on X^2 defined by $\rho((x,y),(z,t)) = d((y,x),(t,z))$.

(1) \Rightarrow (3). Let (1) hold. Since (1) implies (4), there exists an infinite cardinal τ such that X is a P_{τ} -space and X^2 (and, a fortiori, X) is pseudo- τ -compact. In its

turn, this and Theorem 2.1 together imply that ${}^*\mathcal{V}|_{X^2} = \mathcal{U}_X \times \mathcal{U}_X$. This equality and (1) imply that $\mathcal{U}_{X^2} = \mathcal{U}_X \times \mathcal{U}_X$.

(2) \Rightarrow (3). Just repeat the above argument with \mathcal{V}^* instead of $^*\mathcal{V}$ and apply (2) instead of (1).

Thus, we have now proved the equivalence of (1), (2) and (3).

(4) \Rightarrow (5). We use the argument from [1]. Let Z be a zero-set in $X \times X$ and $f: X \times X \to [0,1]$ a continuous function such that $Z = f^{-1}(0)$. Assume that $\pi(Z)$ is not closed in X and choose a point $a \in \operatorname{cl} \pi(Z) \setminus \pi(Z)$, where π is the projection of $X \times X$ onto the first factor. We can assume that f(a, x) = 1 for each $x \in X$ — otherwise consider continuous function g on $X \times X$ defined by $g(x, y) = \min\{f(x, y)/f(a, y), 1\}$. Since X is a P_{τ} -space, we can define by induction a sequence $\{(x_{\alpha}, y_{\alpha}) : \alpha < \tau\}$ of points of Z and two sequences $\{W_{\alpha} : \alpha < \tau\}$ and $\{W'_{\alpha} : \alpha < \tau\}$ of open subsets of $X \times X$ such that $W_{\alpha} = U_{\alpha} \times V_{\alpha}$ is a neighbourhood of (x_{α}, y_{α}) satisfying $f(W_{\alpha}) \subseteq [0, 1/3]$, $W'_{\alpha} = U'_{\alpha} \times V_{\alpha}$ is a neighbourhood of (a, y_{α}) satisfying $f(W'_{\alpha}) \subseteq [2/3, 1]$, and $\operatorname{cl} U_{\alpha} \subseteq U_{\beta}$, $U_{\alpha+1} \bigcup U'_{\alpha+1} \subseteq U_{\alpha}$ whenever $\beta < \alpha < \tau$. It is easy to verify that the family $\{W_{\alpha} : \alpha < \tau\}$ of open sets in $X \times X$ is locally finite, contradicting the pseudo- τ -compactness of $X \times X$.

(1) \Rightarrow (6). It suffices to show that (3) implies (6). Let (3) hold. Consider two cases.

(a) X is not a P-space. Since (3) implies (4), X^2 is pseudocompact. By a theorem of Glicksberg [4], $\beta(X^2) \cong \beta X \times \beta X$. Hence, to prove (6), one can assume that X is compact. To this end, use the well-known facts that a quasicomponent of any point in a compact space coincides with its component (see Theorem 6.1.23 of [2]) and that a product of two connected sets is connected.

(b) X is a P-space. Let γ be a disjoint open cover of X^2 . Define a continuous pseudometric d on X^2 by d(a,b) = 0 if both a and b lie in the same element of γ and d(a,b) = 1 otherwise. By (3), there exists a continuous pseudometric ρ on X such that the conditions $\rho(x,z) < 1$ and $\rho(y,t) < 1$ imply d((x,y),(z,t)) < 1 for all $x, y, z, t \in X$. Consider the equivalence relation \sim on X defined by $x \sim y$ if and only if $\rho(x,y) = 0$. The relation \sim defines a partition μ of X to disjoint open sets, because X is a P-space. The definition of ρ implies that the cover $\{U \times V : U, V \in \mu\}$ refines γ .

 $(5)\&(6) \Rightarrow (1)$. Assume that both (5) and (6) hold and deduce (3). Consider two cases.

(a) X is not a P-space. Then (5) implies that X is pseudocompact (otherwise one can define a zero-set in $X \times X$ with a non-closed projection). By a theorem of Tamano (see Problem 3.12.20(b) of [2]), pseudocompactness of X and (5) together imply that X^2 is pseudocompact. Therefore, $\beta(X^2) \cong \beta X \times \beta X$, which gives us (3).

(b) X is a P-space. Then (6) implies (3). Indeed, let d be any continuous pseudometric on X^2 and \sim be an equivalence relation on X^2 defined by $a \sim b$ if and only if d(a,b) = 0. Since X and X^2 are P-spaces, the relation \sim defines a partition γ of X^2 into open subsets. By (6), there exists a disjoint open cover μ of X such that $\{U \times V : U, V \in \mu\}$ refines γ . Define a continuous pseudometric ρ on X by $\rho(x,y) = 0$ if both x and y lie in some element of μ , and $\rho(x,y) = 1$ otherwise. It is clear that $\rho(x,z) < 1$ and $\rho(y,t) < 1$ imply d((x,y),(z,t)) = 0 for all $x, y, z, t \in X$. This proves (3), and hence (1).

QUESTION 3.2. Does the condition (4) of Theorem 3.1 imply (1)?

4. TREATING PROBLEM C

We prove that every k_{ω} -space X satisfies the equality ${}^*\mathcal{V}^*|_{X^2} = \mathcal{U}_{X^2}$ and characterise metrisable spaces satisfying this equality. However, we still have not a complete solution of Problem C. The case of a k_{ω} -space X is considered first. Recall that X is a k_{ω} -space (see [3, 7]) if there exists a countable increasing sequence $\{K_n : n \in N\}$ of compact sets in X such that $X = \bigcup_{n \in N} K_n$ and a subset F of X is closed if and only if $F \cap K_n$ is closed for each $n \in N^+$.

Denote by $C_b(X)$ the linear space of all continuous real-valued bounded functions on X with the sup-norm defined by $||f|| = \sup_{x \in X} |f(x)|$.

LEMMA 4.1. Let X be a k_{ω} -space and U an open neighbourhood of the diagonal \triangle_2 in X^4 , $\triangle_2 = \{(x, y, x, y) \in X^4 : x, y \in X\}$. Then there exists a continuous mapping $f: X \to C_b(X)$ such that for any $x, y, z, t \in X$ the inequalities

(IL)
$$||f(x)|| \cdot ||f(y) - f(t)|| < 1, ||f(z)|| \cdot ||f(y) - f(t)|| < 1;$$

(IR)
$$||f(y)|| \cdot ||f(x) - f(z)|| < 1, ||f(t)|| \cdot ||f(x) - f(z)|| < 1$$

imply that $(x, y, z, t) \in U$.

PROOF: There exists an increasing sequence $\{X_n : n \in N\}$ of compact subsets of $X = \bigcup_{n \in N} X_n$ which determines the topology of X according to the definition of a k_{ω} -space. Being σ -compact and, a fortiori, paracompact, the space X^2 admits a continuous pseudometric d such that $\{(x, y, z, t) \in X^4 : d((x, y), (z, t)) < 1\} \subseteq U$. (Use Corollary 8.1.11 of [2].) Let \mathcal{M} be the family of all continuous mappings of X onto second-countable spaces. The family \mathcal{M} is \aleph_0 -complete, that is, a diagonal product of any countable subfamily of \mathcal{M} (considered as a mapping onto its image) belongs to \mathcal{M} . Put $\mathcal{N} = \{\varphi^4 : \varphi \in \mathcal{M}\}$. Then the family \mathcal{N} is \aleph_0 -complete and generates the topology of X^4 . Since X^4 is σ -compact, and hence Lindelöf, Corollary 1 of [13] implies that Group uniformities

 \mathcal{N} has the factorisation property, that is, for every continuous mapping $p: X^4 \to \mathbf{R}$ one can find $\psi \in \mathcal{N}$ and a continuous mapping $q: \psi(X^4) \to \mathbf{R}$ such that $p = q \circ \psi$. In particular, there exist $\varphi \in \mathcal{M}$ and a continuous pseudometric d_1 on $\varphi(X) \times \varphi(X)$ such that $d((x,y),(z,t)) = d_1((\varphi(x),\varphi(y)),(\varphi(z),\varphi(t)))$ for all $x,y,z,t \in X$. Denote $Y = \varphi(X)$. Let ϱ_0 be a metric on Y generating the topology of Y. Of course, we can assume that |Y| > 1. One can find $a, b \in Y$ and an integer k such that $k \cdot \varrho_0(a, b) > 2$. Put $\varrho = \min\{1, k\varrho_0\}$. Then ϱ is a continuous pseudometric on Y with the following property:

(*) for any point $x \in Y$ there exists $y \in Y$ such that $\varrho(x, y) = 1$.

The function ϱ_2 defined by $\varrho_2((x,y),(z,t)) = \varrho(x,z) + \varrho(y,t)$ for all $x, y, z, t \in Y$ is a continuous metric on Y^2 . For every point $(x,y) \in Y^2$ denote

$$B(x,y) = \{(z,t) \in Y^2 : d_1((x,y),(z,t)) < 1\} \text{ and } \varepsilon(x,y) = \varrho_2\big((x,y),Y^2 \setminus B(x,y)\big).$$

Obviously, $\varepsilon(x,y) > 0$ for all $x, y \in Y$. Since $Y_n = \varphi(X_n)$ is compact, for every $n \in \mathbb{N}$ there exists $\varepsilon_n > 0$ such that $\varrho_2(\overline{x}, \overline{y}) < \varepsilon_n$ implies $d_1(\overline{x}, \overline{y}) < 1$ for all $\overline{x}, \overline{y} \in Y_n^2$. Denote $V_n = \{(x, y) \in Y^2 : \varrho_2((x, y), Y_n^2) < \varepsilon_n/2\}$, an open neighbourhood of Y_n^2 in Y^2 . By compactness of Y_n , there exists an open subset O_n of Y such that $Y_n \subseteq O_n$ and $O_n \times O_n \subseteq V_n$. For every $n \in N$ define a continuous real-valued function h_n on Y such that $h_n(Y_n) = 0$, $h_n(Y \setminus O_n) = 4/\varepsilon_{n+1}$ and $h_n \ge 0$. Then put $h = \sum_{n=1}^{\infty} h_n$, where $h_0 \equiv 4 + 4/\varepsilon_0$. Obviously, $4 < h(y) < \infty$ for each $y \in Y$, but h can be discontinuous. We claim that the function $\tilde{h} = h \circ \varphi$ on X is continuous. This readily follows from the fact that X is a k_{ω} -space with the decomposition $X = \bigcup_{n=0}^{\infty} X_n$ and the choice of the functions h_n ; $n \in N$. Put $\tilde{\varrho}(x, y) = \varrho(\varphi(x), \varphi(y))$ for $x, y \in X$. Clearly, $\tilde{\varrho}$ is a bounded continuous pseudometric on X.

Consider the mapping $f: X \to C_b(X)$ defined by $[f(x)](y) = \tilde{h}(x) \cdot \tilde{\varrho}(x,y); x, y \in X$. Obviously, $||f(x)|| \leq \tilde{h}(x)$, because $\tilde{\varrho} \leq 1$. On the other hand, (*) implies that there exists a point $y \in Y$ such that $\varrho(x,y) = 1$; hence $||f(x)|| = \tilde{h}(x)$ for each $x \in X$. Let us check the continuity of f. For any $x_1, x_2, y \in X$ we have

$$ig| \widetilde{h}(x_1) \widetilde{arrho}(x_1,y) - \widetilde{h}(x_2) \widetilde{arrho}(x_2,y) ig| \leqslant ig| \widetilde{h}(x_1) \widetilde{arrho}(x_1,y) - \widetilde{h}(x_1) \widetilde{arrho}(x_2,y) ig| + ig| \widetilde{h}(x_1) \widetilde{arrho}(x_2,y) - \widetilde{h}(x_2) \widetilde{arrho}(x_2,y) ig| \leqslant \widetilde{h}(x_1) \widetilde{arrho}(x_1,x_2) + ig| \widetilde{h}(x_1) - \widetilde{h}(x_2) ig|.$$

Taking the supremum over $y \in Y$ in both left and right parts of the above inequalities, we get $||f(x_1) - f(x_2)|| \leq \tilde{h}(x_1) \cdot \varrho(x_1, x_2) + |\tilde{h}(x_1) - \tilde{h}(x_2)|$. The latter inequality implies the continuity of f.

We claim that the mapping f is as required. To this end, one auxiliary assertion will be useful.

CLAIM. $||f(a) - f(b)|| \ge \tilde{\varrho}(a, b)$ for all $a, b \in X$. Moreover, if $\varphi(a) \notin O_n$ for some $n \in N$ then $||f(a) - f(b)|| \ge \tilde{\varrho}(a, b)/\varepsilon_{n+1}$.

Indeed, by the definition of the sup-norm and the function f we have $||f(a) - f(b)|| \ge |\tilde{h}(a)\tilde{\varrho}(a,y) - \tilde{h}(b)\tilde{\varrho}(b,y)|$ for each $y \in Y$. Putting y = b in the above inequality, we get $||f(a) - f(b)|| \ge \tilde{h}(a)\tilde{\varrho}(a,b) \ge \tilde{\varrho}(a,b)$, because $\tilde{h}(a) = h(\varphi(a)) \ge 1$ for each $a \in X$. Furthermore, if $\varphi(a) \notin O_n$ then the definition of the function h implies $h(\varphi(a)) \ge 1/\varepsilon_{n+1}$, and hence $||f(a) - f(b)|| \ge \tilde{h}(a)\tilde{\varrho}(a,b) \ge \tilde{\varrho}(a,b)/\varepsilon_{n+1}$. This proves the claim.

Let x, y, z, t be arbitrary points of X satisfying (IL) and (IR). Denote $x' = \varphi(x), \ldots, t' = \varphi(t)$. First, we show that $d_1((x', y'), (z', t')) < 1$, or equivalently, d((x, y), (z, t)) < 1. Consider two cases.

CASE 1. $\{x', y', z', t'\} \subseteq O_0$. By the definition of V_0 and O_0 , we have $\varepsilon(x', y') > \varepsilon_0/2$. By the definition of $\varepsilon(x', y')$, the latter inequality means that $d_1((x', y'), (z', t')) < 1$ whenever the point $(z', t') \in Y^2$ satisfies the condition $\varrho_2((x', y'), (z', t')) \leq \varepsilon_0/2$. So, it suffices to check the inequality $\varrho_2((x', y'), (z', t')) \leq \varepsilon_0/2$. Using (IL), (IR) and the Claim, we have

$$arrho(oldsymbol{x}',oldsymbol{z}')=\widetilde{arrho}(oldsymbol{x},oldsymbol{z})\leqslant \|f(oldsymbol{x})-f(oldsymbol{z})\|\leqslant 1/\|f(oldsymbol{y})\|=1/\widetilde{h}(oldsymbol{y})\leqslant arepsilon_0/4,$$

because $\tilde{h} = \varphi \circ h$ and $h \ge 4/\varepsilon_0$. The same argument shows that $\varrho(y',t') \le \varepsilon_0/4$. Thus, $\varrho_2((x',y'),(z',t')) = \varrho(x',z') + \varrho(y',t') \le \varepsilon_0/2$, which implies the inequality $d_1((x',y'),(z',t')) < 1$.

CASE 2. $\{x',y',z',t'\} \setminus O_0 \neq \emptyset$. Let *n* be the maximal integer with the property $\{x',y',z',t'\} \setminus O_n \neq \emptyset$. Without loss of generality we can assume that $x' \notin O_n$. From the definition of *n* it follows that $(x',y') \in O_{n+1} \times O_{n+1} \subseteq V_{n+1}$, and hence $\varepsilon(x',y') > \varepsilon_{n+1}/2$. The definition of *h* and the fact that $x' \notin O_n$ imply $h(x') \ge 4/\varepsilon_{n+1}$. Apply Claim and (IL), (IR) to get the following estimate:

$$\varrho(y',t') = \widetilde{\varrho}(y,t) \leqslant \|f(y) - f(t)\| \leqslant 1/\|f(x)\| = 1/h(x') \leqslant \varepsilon_{n+1}/4$$

Then apply the " $\varphi(a) \notin O_n$ " part of the Claim and (IL), (IR) to the points x, y, z, t:

$$\varrho(x',z') = \widetilde{\varrho}(x,z) \leqslant \varepsilon_{n+1} \cdot \|f(x) - f(z)\| \leqslant \varepsilon_{n+1}/\|f(y)\| \leqslant \varepsilon_{n+1}/4,$$

because ||f(y)|| = h(y') and $h \ge 4$. This implies the estimate

$$\varrho_2((x',y'),(z',t')) = \varrho(x',z') + \varrho(y',t') < \varepsilon_{n+1}/4 + \varepsilon_{n+1}/4 = \varepsilon_{n+1}/2.$$

Since $\varepsilon(x',y') > \varepsilon_{n+1}/2$, the above inequality implies that $d_1((x',y'),(z',t')) < 1$. (The argument here is just the same as in Case 1.)

So, the inequality d((x,y),(z,t)) < 1 is proved. From the definition of the pseudometric d it readily follows that $(x,y,z,t) \in U$. This completes the proof.

THEOREM 4.2. If X is a k_{ω} -space then $*\mathcal{V}^*|_{X^2} = \mathcal{U}_{X^2}$.

PROOF: Let U be an open entourage of the diagonal Δ_2 in X^4 . Define a continuous mapping $f: X \to C_b(X)$ as in Lemma 4.1. Put g(x) = ||f(x)|| and $\varrho(x,y) = ||f(x) - f(y)||$ for all $x, y \in X$. Then $\varrho_1 = \min \{\varrho, 1\}$ is a continuous bounded pseudometric on X, and we can apply Theorem 2.1 of [17] to the function f and the pseudometric ϱ_1 to get two continuous seminorms N_l and N_r on the subgroup G(X) of F(X) satisfying the following conditions for all $x, y, z, t \in X$:

(1) $N_l(y^{-1} \cdot x^{-1} \cdot z \cdot y) = g(y) \cdot \varrho_1(x, z)$ and $N_r(x \cdot y \cdot z^{-1} \cdot x^{-1}) = g(x) \cdot \varrho_1(y, z);$ (2) $N_l(y^{-1} \cdot x^{-1} \cdot z \cdot y) \leq N_l(y^{-1} \cdot x^{-1} \cdot z \cdot t)$ and $N_r(x \cdot y \cdot t^{-1} \cdot x^{-1}) \leq N_r(x \cdot y \cdot t^{-1} \cdot z^{-1}).$

Put $N = N_l + N_r$ and define an open neighbourhood O of the identity in F(X) by $O = \{g \in G(X) : N(g) < 1\}$. We claim that the element $V_O = \{(g,h) \in F(X) \times F(X) : g^{-1} \cdot h \in O, g \cdot h^{-1} \in O\}$ of the uniformity $*V^*$ on F(X) satisfies the condition $V_O \cap (X^2 \times X^2) \subseteq U$. (Recall that we identify X^2 with the image $i_2(X^2) \subseteq F(X)$ under the homeomorphic embedding i_2 , where $i_2(x,y) = x \cdot y$.) Indeed, let x, y, z, t be arbitrary points of X and suppose that $((x, y), (z, t)) \in V_O$. By the definition of O and V_O , we have

$$egin{aligned} &N_lig(y^{-1}\cdot x^{-1}\cdot z\cdot tig) = N_lig(t^{-1}\cdot z^{-1}\cdot x\cdot yig) < 1\ &N_rig(x\cdot y\cdot t^{-1}\cdot z^{-1}ig) = N_rig(z\cdot t\cdot y^{-1}\cdot x^{-1}ig) < 1. \end{aligned}$$

Use (1) and (2) to conclude that

and

$$\|f(y)\| \cdot \|f(x) - f(z)\| < 1, \qquad \|f(t)\| \cdot \|f(x) - f(z)\| < 1, \ \|f(x)\| \cdot \|f(y) - f(t)\| < 1, \qquad \|f(z)\| \cdot \|f(y) - f(t)\| < 1.$$

These inequalities and the choice of the mapping f together imply that $((x,y),(z,t)) \in U$. Therefore, the inclusion $V_O \cap (X^2 \times X^2) \subseteq U$ is proved.

Theorem 4.4 below gives a solution to Problem C for metrisable spaces. We start with an auxiliary result.

Let γ be a cover of a space Y and $y_1, y_2 \in Y$. We say that y_1 and y_2 are γ -neighbours and write $y_1 \stackrel{\gamma}{\sim} y_2$ if there exists $U \in \gamma$ such that $y_1, y_2 \in U$. Again, $C_b(X)$ stands for the linear space of continuous real-valued bounded functions on X with the sup-norm.

LEMMA 4.3. Let K be a compact space with a metric ϱ_K and X a locally compact metrisable space. Then for any open covers γ_1 of $X \times K$ and γ_2 of $K \times X$ there exists a continuous mapping $f: X \to C_b(X)$ such that for all $a, b \in K$ and $x \in X$ the inequality $||f(x)|| \cdot \varrho_K(a,b) < 1$ implies that $(x,a) \stackrel{\gamma_1}{\sim} (x,b)$ and $(a,x) \stackrel{\gamma_2}{\sim} (b,x)$.

PROOF: Every locally compact metrisable space is a free topological sum of its open σ -compact subspaces [2, Theorem 5.1.27], so we can assume that X is σ -compact. Represent X as a union $\bigcup_{i=1}^{\infty} X_i$, where X_i is open in X, $clX_i \subseteq X_{i+1}$ and clX_i is compact for each $i \in N^+$. Let d be a metric on X, $d \leq 1$. Denote by i_0 the standard embedding of X to $C_b(X)$, $[i_0(a)](x) = d(a,x)$ for all $a, x \in X$. Obviously, we have $||i_0(a) - i_0(b)|| = d(a, b)$ for all $a, b \in X$, so i_0 is a homeomorphic embedding.

Define metrics κ_1 and κ_2 respectively on $X \times K$ and $K \times X$ by $\kappa_1((x,a), (y,b)) = d(x,y) + \varrho_K(a,b) = \kappa_2((a,x), (b,y))$ for all $a, b \in K$ and $x, y \in X$. For every $j \in N^+$, let $\varepsilon_{j,1}$ be a Lebesgue number of the cover $\{V \cap (X_j \times K) : V \in \gamma_1\}$ of the compact space $\operatorname{cl} X_j \times K$ with respect to κ_1 , that is, a positive real number with the property that every pair of points $\overline{x}, \overline{y}$ of $\operatorname{cl} X_j \times K$ satisfying $\kappa_1(\overline{x}, \overline{y}) < \varepsilon_{j,1}$ is contained in some element of γ_1 . Analogously, we define $\varepsilon_{j,2}$ as a Lebesgue number of the cover $\{V \cap (K \times \operatorname{cl} X_j) : V \in \gamma_2\}$ with respect to κ_2 .

Denote by n_j a positive integer with $1/n_j \leq \min\{\varepsilon_{j,1}, \varepsilon_{j,2}\}; j \in N^+$. There exists a continuous mapping $g: X \to \mathbb{R}$ such that $g(x) \geq n_1$ for each $x \in X_1$ and $g(x) \geq n_{j+1}$ for each $x \in X_{j+1} \setminus X_j, j \in N^+$. Indeed, for every $j \geq 2$ we can find a continuous function $g_j: X \to \mathbb{R}$ such that $g_j(x) = n_{j+1}$ whenever $x \in \operatorname{cl} X_{j+1} \setminus X_j$ and $g_j(x) = 0$ for each $x \in \operatorname{cl} X_{j-1} \bigcup (X \setminus X_{j+2})$. Let also g_1 be a continuous function such that $g_1(x) = \max\{n_1, n_2\}$ for all $x \in \operatorname{cl} X_2$ and $g_1(x) = 0$ for each $x \in X \setminus X_3$. Then the function $g = \sum_{i=1}^{\infty} g_i$ is continuous and has the above property.

Put $f(x) = g(x) \cdot i_0(x)$ for every $x \in X$. Obviously, the mapping $f : X \to C_b(X)$ is continuous. Let points $a, b \in K$ and $x \in X$ be arbitrary and suppose that $||f(x)|| \cdot \varrho_K(a,b) < 1$. Denote by j the minimal integer with $x \in X_j$. Then $||f(x)|| = |g(x)| \cdot ||i_0(x)|| = g(x) \ge n_j$. It is clear that $\kappa_1((x,a),(x,b)) = d(x,x) + \varrho_K(a,b) = \varrho_K(a,b)$, and hence

$$1 > \|f(x)\| \cdot \varrho_K(a,b) \ge n_j \cdot \varrho_K(a,b) = n_j \cdot \kappa_1((x,a),(x,b)).$$

So, the choice of n_j and ε_j implies that $(x,a) \stackrel{\gamma_1}{\sim} (x,b)$. The same argument shows that $(a,x) \stackrel{\gamma_2}{\sim} (b,x)$.

THEOREM 4.4. The following conditions are equivalent for any metrisable space X:

(a) ${}^*\mathcal{V}^*|_{X^2} = \mathcal{U}_{X^2};$

Group uniformities

(b) either X is locally compact or the set X' of non-isolated points of X is compact.

PROOF: (a) \Rightarrow (b). Assume the contrary. Let X be not locally compact and X' be not compact. By our assumption, there exists a point $a \in X$ the closure of any neighbourhood of which is not compact. Using the non-compactness of X', we can choose a base $\{U_n : n \in N^+\}$ of X at a such that $\operatorname{cl} V_{n+1} \subseteq V_n$, $\operatorname{cl} V_n \setminus V_{n+1}$ is not compact for each $n \in N^+$ and $X' \setminus V_1$ is not compact as well. For every $n \in N^+$ choose an infinite closed discrete subset $\{x_{n,k} : k \in N^+\}$ of X lying in $V_n \setminus V_{n+1}$. Let also $\{y_n : n \in N^+\}$ be an infinite closed discrete subset of $X' \setminus V_1$. For every $n \in N^+$ choose a sequence $\{z_{n,l} : l \in N^+\} \subseteq X \setminus (V_1 \cup \{y_n\})$ converging to y_n . It is easy to see that the set $F = \{(x_{n,k}, z_{n,k}, x_{n,k}, y_n) : n, k \in N^+\}$ is closed in X^4 . Let $\Delta_2 = \{(x, y, x, y) : x, y \in X\}$ be the diagonal in X^4 . Obviously, F and Δ_2 are disjoint, so $U = X^4 \setminus F$ is an open neighbourhood of Δ_2 in X^4 . The metrisability of X implies that $U \in U_{X^2}$.

Let O be an arbitrary neighbourhood of the identity e in F(X). There exists a neighbourhood O_1 of e such that $O_1^{-1} = O_1$ and $O_1^3 \subseteq O$. Choose a neighbourhood O_2 of e so that $O_2^{-1} = O_2 \subseteq O$ and $a \cdot O_2 \cdot a^{-1} \subseteq O_1$. Put $W = X \cap (O_1 \cdot a)$. Since the sets U_n , $n \in N^+$, form a base of X at a and W is a neighbourhood of the point a in X, there exists an integer $p \in N^+$ such that $x_{n,k} \in W$ for all $n \ge p$ and $k \in N^+$ (it suffices to choose p with $U_p \subseteq W$). Choose $l \in N^+$ so that $z_{p,k} \in O_2 \cdot y_p$ for all $k \ge l$. The choice of l implies that

(1)
$$z_{p,l} \cdot y_p^{-1} \in O_2 \text{ and } y_p \cdot z_{p,l}^{-1} \in O_2^{-1} = O_2.$$

We have also

(2)
$$x_{p,l} \cdot (z_{p,l} \cdot y_p^{-1}) \cdot x_{p,l}^{-1} \in (O_1 \cdot a) \cdot O_2 \cdot (a^{-1} \cdot O_1^{-1}) = O_1 \cdot (a \cdot O_2 \cdot a^{-1}) \cdot O_1 \subseteq O_1^3 \subseteq O.$$

Consider the entourage U_O of the diagonal in X^4 generated by O,

$$U_O = \{(x, y, z, t) \in X^4 : x \cdot y \cdot t^{-1} \cdot z^{-1} \in O \text{ and } y^{-1} \cdot x^{-1} \cdot z \cdot t \in O\}.$$

Then $U_O \in {}^*\mathcal{V}^*|_{X^2}$ and from (1), (2) and the inclusion $O_2 \subseteq O$ it follows that $(x_{p,l}, z_{p,l}, x_{p,l}, y_p) \in U_O \cap F$. Thus, we have proved that $U_O \setminus U \neq \emptyset$ for each neighbourhood O of the identity in F(X), that is, ${}^*\mathcal{V}^*|_{X^2} \neq \mathcal{U}_{X^2}$.

 $(b) \Rightarrow (a)$. We consider two cases.

I. X' is compact. Let U be an open entourage of the diagonal \triangle_2 in X^4 . Since X^2 is paracompact, there exists an open symmetric neighbourhood U_1 of \triangle_2 in X^4 such that $U_1 \circ U_1 \subseteq U$. Denote by ϱ_0 a bounded metric on X that induces the

topology of X. Define another metric ρ on X by $\rho(x,y) = 0$ if x = y and $\rho(x,y) = \inf \{\rho_0(x,a) + \rho_0(a,y) : a \in X'\}$ otherwise. We omit an easy proof of the fact that ρ satisfies the inequality of triangle, is continuous bounded and generates the same topology of X. From the definition of ρ it also follows that

(3)
$$\varrho|_{X'} = \varrho_0|_{X'}$$
 and $\varrho(a,b) \ge \varrho(a,X')$ for all $a,b \in X, a \neq b$.

Since X' is compact, there exists $\varepsilon > 0$ such that $(x, y, z, t) \in U_1$ whenever $x, y \in X'$, $z, t \in X$ and $\varrho(x, z) < \varepsilon$, $\varrho(y, t) < \varepsilon$. Put $V = \{x \in X :$ $<math>\varrho(x, X') < \varepsilon/2\}$. Then V is a clopen neighbourhood of X' in X. Using the compactness of X' once again, for each $x \in X \setminus V$ choose $\varepsilon_x > 0$ so that all the points (x, t, x, y), (x, y, x, t), (t, x, y, x), (y, x, t, x) belong to U_1 for all $y \in X'$ and $t \in X$ satisfying $\varrho(y, t) < \varepsilon_x$.

Denote by $C_b(X)$ the space of all continuous real-valued bounded functions on Xwith the sup-norm $\|\cdot\|$. Let $h: X \to \mathbb{R}$ be a continuous function such that $h(y) \ge 1 + 2/\varepsilon$ for all $y \in X$ and $h(x) \ge 1 + 2/\varepsilon_x$ for all $x \in X \setminus V$. Define a mapping $f: X \to C_b(X)$ by $[f(x)](y) = h(x) \cdot \varrho(x, y)$; $x, y \in X$. Apply the argument in the proof of Lemma 4.1 to verify that f is continuous and has the following properties:

(4)
$$||f(x) - f(y)|| \ge (1 + 2/\varepsilon) \cdot \varrho(x, y) \text{ for all } x, y \in X;$$

$$(5) ||f(x) - f(y)|| \ge (1 + 2/\varepsilon_x) \cdot \varrho(x, y) \text{ whenever } x \in X \setminus V \text{ and } y \in X.$$

In particular, the inequality $||f(x) - f(y)|| \ge \rho(x, y)$ holds for all $x, y \in X$.

Put $\varrho_1(x,y) = ||f(x) - f(y)||$ for all $x, y \in X$ and apply Theorems 2.1 and 2.3 of [17] to the metric ϱ_1 and the function f on X to obtain continuous seminorms N_l and N_r on G(X) satisfying the following conditions for all $x, y, z, t \in X$:

(i) $N_l(y^{-1} \cdot x^{-1} \cdot z \cdot y) = ||f(y)|| \cdot \varrho_1(x, z) \text{ and } N_r(x \cdot y \cdot t^{-1} \cdot x^{-1}) = ||f(x)|| \cdot \varrho_1(y, t);$ (ii) $N_l(y^{-1} \cdot x^{-1} \cdot z \cdot t) \ge \varrho_1(x, z) + \varrho_1(y, t) \text{ and } N_r(x \cdot y \cdot t^{-1} \cdot z^{-1}) \ge \varrho_1(x, z) + \varrho_1(y, t).$

We put $N = N_l + N_r$ and $O = \{g \in G(X) : N(g) < 1\}$. Then O is an open neighbourhood of the identity in F(X) and we claim that the entourage $V_O = \{(x, y, z, t) \in X^4 : y^{-1} \cdot x^{-1} \cdot z \cdot t \in O, x \cdot y \cdot t^{-1} \cdot z^{-1} \in O\}$ of the diagonal Δ_2 in X^4 is contained in U. Indeed, if $(x, y, z, t) \in V_O$ then $N_l(y^{-1} \cdot x^{-1} \cdot z \cdot t) < 1$ and $N_r(x \cdot y \cdot t^{-1} \cdot z^{-1}) < 1$. Suppose that $\{x, y, z, t\} \subseteq V$. There exist points $x_1, y_1 \in X'$ such that $\varrho(x, x_1) < \varepsilon/2$ and $\varrho(y, y_1) < \varepsilon/2$. Applying (4) and (ii), we get

$$2/\varepsilon \cdot \varrho(x,z) \leqslant \varrho_1(x,z) \leqslant N_r \big(x \cdot y \cdot t^{-1} \cdot z^{-1}\big) < 1, \text{ that is, } \varrho(x,z) < \varepsilon/2.$$

From the choice of the point x_1 it follows that $\varrho(x, x_1) < \varepsilon/2$; therefore $\varrho(x_1, z) \leq \varrho(x_1, x) + \varrho(x, z) < \varepsilon/2 + \varepsilon/2 = \varepsilon$. Analogously, one can show that $\varrho(y_1, t) < \varepsilon$. These two inequalities and the choice of ε together imply that $(x_1, y_1, z, t) \in U_1$. By the same reasoning we also have $(x_1, y_1, x, y) \in U_1$. It remains to note that U_1 is symmetric, and hence $(x, y, z, t) \in U_1 \circ U_1 \subseteq U$.

We can now assume that $\{x, y, z, t\} \setminus V \neq \emptyset$. It suffices to consider the case $x \notin V$. We claim that z = x. Indeed, by (3), $\varrho(x, z) \ge \varrho(x, X') \ge \varepsilon x/2$ if $z \ne x$. So, (ii) and (5) imply that

$$N_r(x \cdot y \cdot t^{-1} \cdot z^{-1}) \geqslant \varrho_1(x,z) \geqslant 2/\varepsilon_x \cdot \varrho(x,z) \geqslant 1,$$

which contradicts the inequality $N_r(x \cdot y \cdot t^{-1} \cdot z^{-1}) < 1$. Thus, z = x. Further, by (i) and (5), we have

$$1 > N_r \big(x \cdot y \cdot t^{-1} \cdot x^{-1} \big) = \| f(x) \| \cdot \varrho_1(y,t) \ge 2/\varepsilon_x \cdot \varrho(y,t), \text{ that is, } \varrho(y,t) < \varepsilon_x/2.$$

We claim that either y = t or $\varrho(y, X') < \varepsilon_x/2$. Suppose not, let $y \neq t$ and $\varrho(y, X') \ge \varepsilon_x/2$. Then $\varrho(y, t) \ge \varrho(y, X') \ge \varepsilon_x/2$ by (3), which contradicts the above inequality. The case y = t is trivial: $(x, y, z, t) = (x, y, x, y) \in \Delta_2 \subseteq U$; hence we assume that $y \neq t$. There exists a point $y_1 \in X'$ such that $\varrho(y, y_1) < \varepsilon_x/2$, and we have $\varrho(y_1, t) \le \varrho(y_1, y) + \varrho(y, t) < \varepsilon_x/2 + \varepsilon_x/2 = \varepsilon_x$, that is, $\varrho(y_1, t) < \varepsilon_x$. Since $y_1 \in X'$, these two inequalities together with the definition of ε_x imply that $(x, y, x, y_1) \in U_1$ and $(x, y_1, x, t) \in U_1$. Therefore, $(x, y, z, t) = (x, y, x, t) \in U_1 \circ U_1 \subseteq U$. This completes the proof of the inclusion $V_O \subseteq U$. Since the entourage U of the diagonal Δ_2 in X^4 was chosen arbitrarily and $V_O \in *\mathcal{V}^*|_{X^2}$, the equality $\mathcal{U}_{X^2} = *\mathcal{V}^*|_{X^2}$ is proved.

II. X is locally compact. Suppose we are given an entourage U of the diagonal Δ_2 in X^4 , $U \in \mathcal{U}_{X^2}$. Choose an entourage V of Δ_2 in X^4 with $V \circ V \subseteq U$. There exists an open cover γ of X^2 such that $\bigcup \{A \times A : A \in \gamma\} \subseteq V$. Since X is paracompact, there exists an open locally finite cover μ of X such that cl W is compact for each $W \in \mu$. Let ϱ be a bounded continuous metric on X such that $\{(x,y) \in X^2 : \varrho(x,y) < 1\} \subseteq \bigcup \{W \times W : W \in \mu\}$. By Lemma 4.3, for every $W \in \mu$ there exists a continuous mapping $f_W : X \to C_b(X)$ such that for all $a, b \in cl W$ and $x \in X$ the inequality $||f_W(x)|| \cdot \varrho(a, b) < 1$ implies that $(x, a) \stackrel{\gamma}{\sim} (x, b)$ and $(a, x) \stackrel{\gamma}{\sim} (b, x)$. Apply Theorem 3.1 of [17] to define a continuous seminorm N on G(X) such that $N(g) \ge \widehat{\varrho}(g, e)$ for each $g \in G(X)$ ($\widehat{\varrho}$ is the Graev extension of ϱ to an invariant pseudometric on G(X)) and $N(a^e \cdot x^e \cdot y^{-e} \cdot b^{-e}) \ge \max\{||f_W(a)||, ||f_W(b)||\} \cdot \varrho(x, y)$ whenever the points $a, b, x, y \in X$ satisfy the conditions $N(a^e \cdot x^e \cdot y^{-e} \cdot b^{-e}) < 1$, $\varepsilon = \pm 1$ and $x, y \in W \in \mu$. Then $O = \{g \in G(X) : N(g) < 1\}$ is an open neighbourhood of the identity in F(X), and we claim that the entourage

$$U_O = \{(a, x, b, y) \in X^4 : a \cdot x \cdot y^{-1} \cdot b^{-1} \in O, \ x^{-1} \cdot a^{-1} \cdot b \cdot y \in O\}$$

of the diagonal \triangle_2 in X^4 is contained in U. Indeed, let $(a, x, b, y) \in U_O$. Then $N(a \cdot x \cdot y^{-1} \cdot b^{-1}) < 1$ and $N(x^{-1} \cdot a^{-1} \cdot b \cdot y) < 1$. Since $N(g) \ge \hat{\varrho}(g, e)$ for each $g \in G(X)$, we have

$$\varrho(a,b) + \varrho(x,y) = \widehat{\varrho} \big(a \cdot x \cdot y^{-1} \cdot b^{-1}, e \big) \leqslant N \big(a \cdot x \cdot y^{-1} \cdot b^{-1} \big) < 1.$$

In particular, $\varrho(a,b) < 1$ and $\varrho(x,y) < 1$. The choice of ϱ implies that there exist elements W, W' of μ such that $a, b \in W$ and $x, y \in W'$. By the choice of N, we have $\|f_W(a)\| \cdot \varrho(x,y) \leq N(a \cdot x \cdot y^{-1} \cdot b^{-1}) < 1$ and $\|f_W(y)\| \cdot \varrho(a,b) \leq N(x^{-1} \cdot a^{-1} \cdot b \cdot y) < 1$. In its turn, the choice of the functions f_W and $f_{W'}$ implies that $(a,x) \stackrel{\gamma}{\sim} (a,y)$ and $(a,y) \stackrel{\gamma}{\sim} (b,y)$. Since $\bigcup \{A \times A : A \in \gamma\} \subseteq V$, we conclude that $(a,x,a,y) \in V$ and $(a,y,b,y) \in V$. It remains to note that $V \circ V \subseteq U$, and hence $(a,x,b,y) \in U$. This proves the inclusion $U_O \subseteq U$.

References

- [1] W.W. Comfort and A.W. Hager, 'The projection mapping and other continuous functions on a product space', *Math. Scand.* 28 (1971), 77-90.
- [2] R. Engelking, General topology (PWN, Warsaw, 1977).
- [3] S.P. Franklin and B.V.S. Thomas, 'A survey of k_{ω} -spaces', Topology Proc. 2 (1977), 111–124.
- [4] I. Glicksberg, 'Stone-Čech compactifications of products', Trans. Amer. Math. Soc. 90 (1959), 369-382.
- [5] M.I. Graev, 'Free topological groups', (in Russian), Izv. Akad. Nauk SSSR 12 (1948), 279-324 (English translation: Translat. Amer. Math. Soc. 8 (1962), 305-364.).
- [6] J.R. Isbell, Uniform spaces, Mathematical Surveys 12 (American Mathematical Society, Providence, 1964).
- [7] E. Katz, 'Free products in the category of k_{ω} -groups', Pacific J. Math. 59 (1975), 493-495.
- [8] E.C. Nummela, 'Uniform free topological groups and Samuel compactifications', Topology Appl. 13 (1982), 77-83.
- [9] V.G. Pestov, 'Some properties of free topological groups', (in Russian), Vestnik Moskov. Univ. Ser. I Matem. Mekh. (1982), 35-37 (English translation: Moscow Univ. Math. Bull. 37, 46-49).
- [10] W. Roelcke and S. Dierolf, Uniform structures on topological groups and their quotients (New York, 1981).
- [11] E.V. Ščepin, 'Real-valued functions and canonical sets in Tikhonov products and topological groups', (in Russian), Uspekhi Mat. Nauk 31 (1976), 17-27 (English translation: Russian Math. Surveys 31 (1976)).
- [12] O.V. Sipacheva and V.V. Uspenskii, 'Free topological groups with no small subgroups and Graev metrics', (in Russian), Vestnik Moskov. Univ. Ser. I Mat. Mekh. (1987), 21-24, (English translation: Moscow Univ. Math. Bull. 42, 24-29).

[20]

- [13] M.G. Tkačenko, 'Some results on inverse spectra I', Comment. Math. Univ. Carolin. 22 (1981), 621-633.
- [14] M.G. Tkačenko, 'The Souslin property in free topological groups on bicompacta', (in Russian), Mat. Zametki 34 (1983), 601-607, (English translation: Mathematical Notes 34, 790-793).
- [15] M.G. Tkačenko, 'On some properties of free topological groups', (in Russian), Mat. Zametki 37 (1985), 110-118, (English translation: Mathematical Notes 37 (1985), 62-66).
- [16] M.G. Tkačenko, 'Boundedness and pseudocompactness in topological groups', (in Russian), Matem. Zametky 41 (1987), 400-405, (English translation: Mathematical Notes 41, 229-231).
- [17] M.G. Tkačenko, 'On group uniformities on square of a space and extending pseudometrics', Bull. Austral. Math. Soc. 51 (1995), 309-335.
- [18] V.V. Uspenskii, 'Free topological groups on mertizable spaces', (in Russian), Izv. Acad. Nauk SSSR 54 (1990), 1295-1319.

Departamento de Matemáticas Universidad Autónoma Metropolitana Av. Michoacan y La Purísima Istapalapa, A.P. 55-532, C.P. 09340 México, D.F. e-mail: mich@xanum.uam.mx

[21]