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ON GROUP UNIFORMITIES ON SQUARE OF A SPACE
AND EXTENDING PSEUDOMETRICS II

MICHAEL G. TKACENKO

We find topological conditions on a space X under which the left (right, or two-
sided) uniformity of the free topological group F(X) induces the universal uni-
formity Uxi or the product uniformity Ux X Ux on the square of X. Special
attention is given to fcu-spaces and metrisable spaces. The main technical tool in
the paper is an extension of certain continuous pseudometrics from X* to F(X)
considered by the author in the previous volume of this journal.

0. INTRODUCTION

By a theorem of Graev [5], any continuous pseudometric d o n a Tikhonov space X
extends to an invariant pseudometric d on the free topological group F(X). This result
was applied by Pestov [9] to prove the equality *V*|jt = Ux for every Tikhonov space
X, where *V* is the two-sided uniformity of F(X) and Ux is the universal uniformity
of X (that is, the finest uniformity on X compatible with the topology of -X"). A
generalisation of the above equality for uniform free topological groups was obtained
by Nummela [8].

Our aim is to study the uniformities on X2 induced by *V, V* and *V*, the left,
right and two-sided group uniformities of F(X). In talking about induced uniformities
on X2, it is understood that we identify X2 with a subspace of F(X) under the
embedding (x,y) i—• x • y; x,y £ X. So, we can formulate the following three problems
(see [17]).

PROBLEM A. What are the relations between *V\X7, V*\X7 and *V*\X2 on the one
hand and Ux x Ux, Uxi on the other [Uxi stands for the universal uniformity on
X2)?

This general problem can be specialised as follows.

PROBLEM B. When does the equality *V*\xa = UX xUx hold?

PROBLEM C. For which spaces X does the equality *V*\X» = Uxt hold?
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42 M.G. Tkacenko [2]

One can as well replace *V* by *V or V* in Problems B and C, thus obtaining
four more problems. The resulting problems will be denoted by the same letters. The
majority of these problems is solved here by means of a simultaneous extension method
that applies to certain pairs ( t i i ,^) of continuous pseudometrics di and d-2 on X and
X2 respectively and produces continuous seminorms on F(X) (see Theorems 1.4, 2.1
and 3.1 of [17]).

We start with general assertions about uniformities on topological groups. Then we
show that both uniformities *V|;f2 an<l ^*lx2 a r e finer than Ux xUx (Theorem 1.6),
that contributes to Problem A. As an application of simple topological tools we prove
that the equality *V*|^2 = Ux xUx holds for every pseudocompact space X (Theorem
1.8), thus giving a partial answer to Problem B. A complete solution of Problem B is
given in Theorem 2.1: the equality *V*|^J = Ux x Ux holds if and only if there exists
an infinite cardinal r such that X is pseudo-r-compact and a PT-space simultanuously.
This characterisation remains valid if one replaces *V* by *V or V*.

Problem C seems the most difficult among the others. First, we characterise spaces
X satisfying the condition *V|;f3 = Ux* (or equivalently, V*|;j2 = £/jf» )'• if X is not a
P-space then the above condition is equivalent to the requirement that the projection
p : X2 —» X is z-closed, and for a P-space X it is equivalent to the condition that
for every open cover j of X2 there exists a disjoint open cover fj. of X such that
fi x n = {U x V : U,V £ fJ.} is finer than 7 (Theorem 3.1).

We also show that the equality * V*|^s = Uxi holds for each fc^-space X (Theorem
4.2) and characterise metrisable spaces satisfying it (Theorem 4.4): the criterion is that
a metrisable space must be locally compact or the set X' of all non-isolated points of
X must be compact.

All spaces considered are assumed completely regular. We say that X is a P-space
if every G{-set in X is open. A space X is said to be pseudo- r-compact if every locally
finite family of open sets in X has cardinality strictly less than T. The Cech-Stone
compactification of a space X is denoted by f3X.

The set of positive integers is denoted by N+; R stands for the reals with the
interval topology.

Every element g of the free topological group F(X) on a space X has the form
a:*1 • . . . • x£n for some xi,...,xn 6 X and e i , . . . , en = ±1 . We put l+(g) — {i ^ n :
£i - 1} and l-(g) = {i ^ n : e< = - 1 } . Then we define a subgroup G{X) of F(X) by

G(X) = {ge F(X) : /+(«,) = l-(g)}.

Note that G(X) is an open subgroup of F(X) [17].
All the necessary facts in uniform space theory are contained in [2, Chapter 8] or

[6, Chapters 1-3]. An exposition of results on uniform structures on topological groups

https://doi.org/10.1017/S0004972700014441 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014441


[3] Group uniformities 43

is given in [10].

1. PRELIMINARY FACTS AND RESULTS

Let G be a topological group with identity e and O a neighbourhood of e in G.
We put

Ulo = {(9,h) eGxG.g-^heO}, Uo = {{g,h) £ G x G : g • / T 1 £ O},

and Uo = Uof\Uo. Recall that a base of the left (right, two-sided) uniformity *VG
(respectively VQ, *VQ) of the group G consists of the sets Ul

o (respectively Uo, Uo)
where O runs through all neighbourhoods of e in G.

The following notion seems to be folklore.

DEFINITION 1.1: Let T be an infinite cardinal. A subset Y C X is said to be
r-bounded in a uniform space (X,U) if for each U EU there exists a subset A C. X,
\A\^T, such that y C |J B{a,U), where B{a,U) = {x £ X : (a,x) e U}.

a£A

If one puts Y = X in Definition 1.1, the notion of a r-bounded uniform space (X,U)
will be obtained. For the sake of completeness we present a proof of the following well-
known result. Recall that U\ always stands for the universal uniformity of a space
X.

ASSERTION 1.2. A uniform space {X,U) is T-bounded if and only if the space X is
pseudo- T+-compact.

PROOF: The necessity. Suppose that there exists a locally finite family 7 of open
sets in X, \-y\ = T + . For every V £ 7 define a continuous real-valued function fv on
X > 0 ^ fv ^ 1, such that fv is equal to 1 at some point of V and vanishes outside of
V. Put

d(x,y) = ^2 \fv(x)~ fv(y)\; x,y€X.
ve-y

Then d is a continuous pseudometric on X. The set W = {(x,y) £ X2 : d(x,y) < 1}
is an open entourage of the diagonal in X2 and W £ Ux • It is easy to verify that no
subset AC. X with |.A| ^ T satisfies the condition X = [j B(a,W) of Definition 1.1,

aGA
that is, the uniform space (X,lix) is not T-bounded.

Sufficiency. Suppose that (X,Ux) is not T-bounded and choose an element W £
Ux witnessing that. By Corollary 8.1.11 of [2] there exists a continuous pseudometric
g on X such that {{x,y) £ X2 : g(x,y) < 1} C W. Let if be a maximal subset of
X with the property that g{a,b) > 1 for all distinct a,b £ K. Then \K\ > r by the
choice of W and g. Obviously, the family of all balls of radius 1/3 with points of K
as centers is discrete (hence locally finite) and has cardinality greater than T . U
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DEFINITION 1.3: A subset Y of a topological group G is called left-T-bounded in

G if for every neighbourhood V of the identity in G there exists a subset ACG such

t h a t \A\ ^ r and Y C A • V ; analogously, the inclusion Y C. V • A defines the notion

of right-T-boundedness in G.
If a subset Y of G is left- and right-r-bounded in G, we shall simply say that Y

is r-bounded in G.

Note that Y is left- T-bounded (right-r-bounded) in G if and only if Y is a r-
bounded subset of (G,* V) (respectively (G, V*)). We also mention that the subset .4
of G in Definition 1.3 can be chosen to satisfy the condition AC.Y.

ASSERTION 1.4. If Y is (right-) left-r-bounded in a topological group G then Y Y is
(right-) left-r-bounded in G.

PROOF: It suffices to consider the "left" case. Let V and V\ be neighbourhoods
of the identity in G, V? C V. There exists a subset B of G, \B\ ^ r , such that
Y C B • Vi. For each b £ B choose a neighbourhood Wb of the identity satisfying
the condition 6"1 • Wb • b C Vj and find a subset C\, of G of cardinality ^ r with
Y Q CbWb. Put C = U Cb and .4 = C • B. Obviously, |;4| < \C\ ^ r . We claim

that Y Y C AV. Indeed, let a, y G Y be arbitrary. Then y £ 6 • Vi for some 6 G -B.
Since Y C C;, • Wb, there exists c £ Cb such that x £ c • Wb • We have

x-yec-Wb-b-Vi=c-b- (6"1 -Wb • b) • Vx C c • b • V? C c • 6 • V,

where cbeCB = A. Thus, Y Y C A V. D

ASSERTION 1.5. Suppose that Y is a r-bounded set in a topological group G with the
two-sided uniformity *V*. Then Y is a r-bounded subset of (G,*V*).

PROOF: Let V be a neighbourhood of the identity in G. It suffices to define a
subset A C G such that \A\ ^ r and Y C |J{a-FP|V-a : a G A}. Choose a symmetric
neighbourhood V\ of the identity so that V]3 C V and let the subset B of G satisfy
Y C JB • Vi, |2?| < r . For every 6 G 5 find a neighbourhood Wb of the identity such
that Wb C V and fe"1 • Wb • b C Va . For each b £ B there exists a subset vl;, C G such
that Y C Wb • Ab and |A6| ^ r . We claim that the set A = (J ^ 6 works. Indeed,

b€B

let y G Y be arbitrary. Then y G b • V\ for some b £ B and y G W& • a for some
a £ Ab Q A. Therefore y = b • v — w • a for some v £ V\ and w £ Wb. This implies
t h a t a'1 •b = v~1 -b'1 wb£ V f 1 • b'1 Wbb. We have

y£b-V1=a- (a-1 • b) • Vi C o • Vf1 • (fc"1 • Wb • b) • Vj C a • V? C a • V.

Thus, y £ a • V and y £ Wb • a C V • a. This proves the lemma. U
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We start considering Problem A. For the sake of generality the induced uniformities
on Xn for an arbitrary n G N+ are considered here. From now on the symbols *V, V*
and * V* always denote respectively the left, right and two-sided uniformities of the free
topological group F(X) on a given space X.

THEOREM 1 . 6 . Both uniformities * V|x- and V*\x« are finer than WJC x . . .
(n times) for every space X and each n G N+.

PROOF: Let V be an entourage of the diagonal A n in X2n, 7 e W x X . .
(n times). It suffices to find Wl G *V and WT G V* such that Wlf\X2n C V and

By the definition of a uniform product (see [2, Chapter 8] or [6]), one can find
an entourage U of the diagonal Ai in X2 such that (x,y) G V for all points x —

(xi,...,xn) G Xn and y = (yi,-.-,yn) € Xn satisfying (z.-.j/i) G U for each i ^ n.

Use Corollary 8.1.11 of [2] to define a continuous pseudometric d on X such that
{(X>1/) £ X : d(x,y) < 1} C XJ. Denote by d the Graev extension of d to a continuous
invariant pseudometric on G(X) and put O = {g G G(X) : d(g,e) < 1}, where e is
the identity of G(X). Then define the sets Wl and W by

Wl^{(x1,...,xn,y1,...,yn)eX2n:x-l-....x-1y1-...yneO},

Wr = { ( * ! , . . . , x n , y u . . . , y n ) & X 2 n : x 1 - . . . x n - y - 1 - . . . - y ^ eO}.

It is clear that W' G *V|x« and Wr G V*|x» • We claim that Wl C V a.nd Wr CV.
It suffices to verify the first of these inclusions. Assume that a:"1 • . . . • x^1 • yi •. . . • yn G O
where Xi,yi G X for each i ^ n. Then we have

n

1 > ^ ( a : " 1 - . . . - a s f 1 • j / i • ...yn,e) = 'Y^d{xi,yi),
t=i

which readily follows from the definition of d (see [5, 12]). In particular, d(x{,yi) < 1

for each i ^ n, and the choice of d and U implies that ( s i , . . . ,xn,yi,... ,yn) £ V.

This proves the inclusion Wl C V. An analogous argument shows that TV*" C V. D

A compact space admits only one uniformity compatible with the topology of the
space. Therefore, *V|xn = V*|xn — *V*|xn — Mxx- ••'X-Mx (*i times) for any compact
space X; n G N+. Theorem 1.8 below generalises this obvious fact. In its proof we
shall use one auxiliary result, which follows from [18, Theorem 2].

LEMMA 1 . 7 . Every pseudo-a^-compact, C-embedded subset Z of a space T is
P-embedded in T, that is, every continuous pseudometric on Z extends to a continuous
pseudometric on T.
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THEOREM 1 . 8 . For a pseudocompact space X, the equalities *V\xn = V*\xn =
* V*\xn = Ux x . . . x Ux (n times) hold for each n G N+.

PROOF: Let the space X be pseudocompact and n £ N+ be arbitrary. Since *V*
is finer than *V and V* and both uniformities *V\x*, V*|x» are finer than Un —
Ux x . . . x Ux (n times) (Theorem 1.6), it suffices to show that *V*|x" = Un. We
shall prove a more general result: the universal uniformity W of F(X) restricted to
Xn coincides with Un. Since W is finer than *V*, it suffices to verify that Un is finer
than W|jr« .

The uniformity W is generated by the family of all continuous pseudometrics on
F(X). Let d be one of them. It is necessary to verify that the restriction g — d\xn of
d to the subspace Xn of F(X) is uniformly continuous with respect to Un. Since X

is pseudocompact, the natural monomorphism of F(X) to F(f3X) is a homeomorphic
embedding by a theorem of Pestov [9], where (3X is the Cech-Stone compactification
of X. So, we can identify F(X) with the corresponding subgroup of F(f3X) generated
by the set X. Again, since X is pseudocompact, Theorem 3 of [16] implies that
F(X) is C-embedded into F((3X), that is, every continuous real-valued function on
F(X) extends to a continuous function on F(f3X). Furthermore, the group F{(3X)

is cr-compact, and hence has countable cellularity by Corollary 2 of [14]. Being dense
in F((3X), the group F(X) has countable cellularity as well. In particular, F(X)

is pseudo-wi-compact. Applying Lemma 1.7, we conclude that F(X) is P-embedded
in F(/3X). Let d be a continuous pseudometric on F{(3X) which extends d. The
restriction of d to the subspace Y = /3X x... x/3X (n times) of F(f3X) is an extension
of the pseudometric g. Since every continuous pseudometric on F(X) extends to a
continuous pseudometric on F{(3X), the universal uniformity W of F{f3X) induces the
universal uniformity W on F(X), that is, W|F(X) = VV. In particular, W|xn = VV|xn-
Denote by U\ the (unique) uniformity of the space /3X compatible with its topology.
Note that U\\x — Ux • Obviously, W induces the uniformity Un — U\ x . . . x U\ (n

times) on the compact space Y, and Un\x" = Un. Therefore, the uniform continuity of
d\y with respect to lln implies that g = d\x^ is a uniformly continuous pseudometric
with respect to Un. This proves that Un is finer than Wl^" = VV|jfn. D

We generalise the above theorem in the next section by means of more subtle
methods.

2. SOLUTION OF PROBLEM B

The following theorem completely characterises those spaces X satisfying the
equality *V*|^j = Ux x Ux • Recall [15] that a subset X of a topological group
G is said to be thin in G if for every neighbourhood U of the identity in G there exists
a neighbourhood V of the identity such that x • V • a;"1 C U for each x G X.
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THEOREM 2 . 1 . The following conditions are equivalent {or a Tikhonov space X:

(1) *V\X2=UxxUx;
(1') *V|x« = Ux x . . . x Ux (n times) for each n ̂  2;

(2) V*\x,=UxxUx;
(21) V*|x» = M x x . . . x « x (n times} for each n ̂  2;
(3) ' V I ^ ^ W x x W x ;

(31) *V*|JC» = Ux x . . . x Ux (n times) for each n > 2;
(4) *V|X 2=V*|X J;

( 4 ' ) *V\x* = V*\X« for each n^2;
(5) X is thin in F{X);
(6) there exists an infinite cardinal T such that X is a PT-space and pseudo-

T— compact.

PROOF: Obviously, (I1) implies (1),..., (41) implies (4). By Theorem 1.6, the
implications (3) => (1), (3) => (2) and (3') => (1'), (3') => (2') are valid. It is also
clear that (1)&(2) => (4) and (l')&(2') =>• (4'); so (3) implies (4) and (3') implies (4').
The equivalence of (5) and (6) follows from [15, Theorem 3].

(5) =>• (3'). Let n be any positive integer and O be a neighbourhood of the identity
in F(X). Put

Uo = { ( )

xi • • • x n • y ' 1 ... y ' 1 £ 0 , x ~ l ...x'1 -yi...yne O).

Then Uo € *V*|x» and we have to find U G Ux such that the uniform product
Un = U x ... x U [n times) is contained in Uo- To this end, choose a symmetric
neighbourhood V of the identity such that V n C 0. Since X is thin in F(X), one
can define a decreasing sequence V = Vo 2 Vj D . . , 3 Vn of open neighbourhoods
of the identity in F(X) such that x" • Vi+X • x~c C Vi for all x € X, i ^ n - 1 and
e = ± 1 . Put U = {{x,y) £ X2 : x-1 y £Vn, x- jT 1 £ V n } . Then Z7 £ Ux and
we claim that U works. Indeed, let p = (xi,...txn,yi,...,yn) be any point of X2n

satisfying (xi,yi) e U for each i ̂  n, that is, p £ Un. For every i with 2 ̂  i ̂  n put
(7i = Xi • ... • Xi-i. We have

(*)

By the choice of p and the sets Vi we also have x\ • yj"1 £ Vii, 52 • xz • y^1 • g^1 £

92-Vn-gi1 C Vn_!, , gnXn-y'1 g'1 QgnVng~l C Vi. In its turn, (*) implies
that

*1 • ••• • *n T/-1 • . . .-2/!"1 £ Vl • . .- • Vn-l • Vn C F C O.
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An analogous argument shows that a;"1 • . . . • x^1 • j/i • . . . • yn G Vn C 0. Thus, the
inclusion Un C Uo is proved.

(2) => (6). Let T be the topology of X. Denote by r the minimal cardinality
of a subfamily 8 C. T such that f) 0 (fc T. If the space X is a counterexample to the
implication, there must be a locally finite family 7 = {Ua : a < r} of open sets in X

with I7I = T . We can assume that 7 is discrete (see Lemma 1 of [11]). The definition
of T implies that there exist a point x* £ X and a decreasing sequence {Va : a < r}
of open neighbourhoods of x* such that x* does not belong to the interior of the
intersection f\ Va. For every a < r pick a point aa S Ua. Let continuous functions

fa and ga on X with values in [0,1] be such that fa(aa) — 1, ga(x*) = 1, fa vanishes
outside of Ua and ga vanishes outside of Va. Define continuous pseudometrics di>a

and ga on X by

di,a{x,y) = \fa{x) - /Q(y)|and ga(x,y) = \ga(x) - ga{y)\ for all x,y e X.

Apply Theorem 2.1 of [17] to obtain a continuous pseudometric c .̂a on X2 such that
di<a and ^2,0 are right-concordant in the sense of Definition 1.3 of [17] and ^2,0 satisfies
the condition

(RP) d2ia({a,x),(a,y)) = fa(a) • ga(x,y) for all a,x,y S X.

Put d\ = 5D ^i,a and <i2 = 52 ̂ 2,a- Clearly, di and (£2 are continuous right-
Ot<T Ot<.T

concordant pseudometrics on X and X2 respectively. By Theorem 1.4 of [17] there
exists a continuous seminorm N on G(X) satisfying the properties

(PI) N(ab-1) =^ (0 ,6 ) for all 0,6 € X ;

(P2) N{axy-1 a"1) = d2((a,x),(a,y)) for all a,x,y e X

Put O = { j € G(X) : iV(5) < 1}. Then 0 is open in G(X) and, a fortiori, in F(X).

Finally, define an open entourage UQ of the diagonal A2 in X* by

UT
O - {(x,y,z,t) GX'-.x-yt-'-z-'e O}.

Clearly, UQ G V*|jfj , and we claim that for each continuous pseudometric g on X there
exist an ordinal a < T and a point x 6 X such that g(x*,x) < 1 and aa-x*-x~1 -a"1 ^
O, that is, (aa,x*,aa,x) £ UQ. The latter will obviously contradict (2).

Indeed, let £ be a continuous pseudometric on X. Since x* £ Int |~) Va, one can

find an ordinal a <T and a point x £ X \Va such that g(x*,x) < 1. We have

N(aa • x* • x-1 • a"1) (=2) d2((aa ,**)>,„*))

> d2,a((aa,x*),(aa,x)) (*=P) / a ( a a ) • \ga(x) - ga{x*)\ = 1,
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because fa(aa) = ga(x*) = 1 and ga(x) = 0 (for x $ Va). Thus, N(aa • x* • a;"1 • a"1)

1, and hence aa • x* • x" 1 • a"1 (£ 0.

(1) =>• (6). Use the above argument along with Theorems 1.5 and 2.3 of [17].

(4) => (6). This is the last implication to be proved. However, it has almost

been shown in the proof of the implication (2) =>• (6). Indeed, if X does not satisfy

(6), define a continuous seminorm N on G{X) and an open neighbourhood 0 of the

identity in F{X) as above. It was shown that for every continuous pseudometric g

on X there exist an ordinal a < T and a point x £ X such that g(z*,x) < 1 and

aa-x*-x~1-a~1 (£ 0. We claim that for each neighbourhood W of the identity in F(X),

the set Ul
w \ TJT

O is not empty, where Ul
w = {(x, y,z,t) £ X* : y'1 x'1 • zt £ W}. To

see this, for a given neighbourhood W of the identity choose a continuous pseudometric

g on X such that g(x,y) < 1 implies a:"1 -y £ W for all x,y £ X. One can find a <T

and x € X satisfying the conditions g(x*,x) < 1 and aa • x* • a:"1 • o"1 ^ O. We have

(x')-1-aZ1-aa-x = (x*)-1-x€W,tot g{x*,x)<l. Thus, (aa,x*,aa,x) £ Ul
w \VT

0,

which proves our claim. However, this contradicts (4). The theorem is completely

proved. U

REMARK 2.2. Theorem 2.1 remains valid if one replaces "each" by "some" in conditions

3. SOLUTION OF PROBLEM C FOR *V AND V*

The following theorem is an almost complete solution (modulo Question 3.2 below)

of Problem C in the case of the left and right group uniformities *V and V* of

THEOREM 3 . 1 . The following implications are valid for every space X:

(1)<S>(2)<3>(3)=>(4)=>(5), (1)=>(6) and (5)&(6) =>• (1), where

(1) *

(2)

(3)

(4) there exists an infinite cardinal T such that X is a PT -space and X2 is

pseudo-T-compact;

(5) the projection TT : X x X —» X is z-dosed (that is, n takes zero-sets in

X2 to closed sets in X);

(6) for every disjoint open cover 7 of X2 there exists a disjoint open cover p.

of X such that fi x \i — {U x V : U, V £ fj,} is finer than 7 .

PROOF: (3) => (1). Obviously, Uxi is finer than *V|X2. From Theorem 1.6 it

follows that *V\X* is finer than Ux x Ux- This proves the implication.

(3) => (2). Just replace *V by V* in the above two lines.
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(1) =>• (4). Suppose that (1) holds. We claim that if there exists a locally finite
family of open sets in X2 of cardinality T + for some r , then the same is true for
X. Indeed, if X2 contains such a family, then the uniform space (X2,UX*) is not
r-bounded (Assertion 1.2), and by (1), (X2,*V\xi) is not r-bounded either. However,
*V induces the maximal uniformity 14x on X; hence by Assertion 1.4, (X,Ux) fails
to be r-bounded. By Assertion 1.2, this means that X contains a locally finite family
fi of open sets with \fi\ > r.

Now suppose that (4) does not hold. Let T be the topology of X. Denote by r
the minimal cardinality of a subfamily 7 of T such that f]y is not open in X, and
choose a family 7 C T with a non-open intersection satisfying |-y J = r . Pick a point
a € f]j \ Int(f)7). Since (4) fails, X2 contains a locally finite family of open sets of
cardinality r. The above assertion gives us a locally finite family fi of open sets in X of
the same cardinality r . By Lemma 1 of [11] the family \i can even be chosen discrete.
Let fj, — {Ua : a < r} and 7 = {Va : a < r}. For each a < r define continuous
real-valued functions fa and ga on X with values in [0,1] such that fa is equal to one
at some point of Ua and vanishes outside of Ua, 5a(o) = 1 and ga vanishes outside
Va. For any points x,y,z,t 6 X put

d((x,y),(z,t)) = £ !/«(*)•*«(») " /«(*) • 9c{t)\ •

Since the family {Ua X Va : a < T} is discrete in X2, d is a continuous pseudometric
on X2. Obviously, d ^ 1. Define an entourage W of the diagonal in X* by W =
{(x,y,z,t) G X4 : d((x,y), (z,t)) < 1}. Then W £ Uxi. We claim that the existence
of W contradicts (1).

Let O be any open neighbourhood of the identity in F(X). Put V(a) = X f]a-O;

V(a) is an open neighbourhood of a in X. Since a ^ IntP|7, one can find an ordinal
a<r such that V(a) \ Va ^ 0. Pick points b 6 V(a) \ Va and x 6 Ua with fa(x) = 1.
We have

d((x,a),(x,b)) > \fa(x) .ga(a) - /« (*) • ga(b)\ = \ga(a) - ga(b)\ = 1,

because b £ Va and ga{b) — 0. So, (x,a,x,b) ^ W. On the other hand, (x • a)~ •

(x-b) = a-1 -be O, for 6 G V(a) C a • 0. Thus, we have proved that Wo \ W ^ 0

for every neighbourhood O of the identity in F(X), where Wo = {(x,y,z,t) £ X* :

y'1 • x'1 -z-tsO}. This contradicts (1).

(2) => (4). Apply the above reasoning to the pseudometric g on X2 defined by

g((x,y),(z,t)) = d((y,x),(t,z)).

(1) => (3). Let (1) hold. Since (1) implies (4), there exists an infinite cardinal r

such that X is a iV-space and X2 (and, a fortiori, X) is pseudo-r-compact. In its
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turn, this and Theorem 2.1 together imply that *V|x» — Ux X Mx • This equality and
(1) imply that Uxi = Ux x Ux .

(2) => (3). Just repeat the above argument with V* instead of *V and apply (2)
instead of (1).

Thus, we have now proved the equivalence of (1), (2) and (3).

(4) =>• (5). We use the argument from [1]. Let Z be a zero-set in X x X and
/ : X x X —• [0,1] a continuous function such that Z — / - 1 ( 0 ) . Assume that ir(Z) is
not closed in X and choose a point a € clir(Z) \ ir(Z), where it is the projection of
XxX onto the first factor. We can assume that f(a,x) = 1 for each x £ X —otherwise
consider continuous function g on X x X denned by g{x,y) = min{f(x,y)/f(a,y),l}.
Since X is a PT-space, we can define by induction a sequence {(xa,ya) : a < T } of
points of Z and two sequences {Wa : a < T } and {W'a : a < T } of open subsets of
XxX such that Wa — Ua X Va is a neighbourhood of (xa,ya) satisfying f(Wa) C
[0,1/3], Wa = U'a x Va is a neighbourhood of (a,ya) satisfying f{W'a) C [2/3,1],
and clJ7a C Up, Ua+i \J U'a+1 C Ua whenever 0 < a < r. It is easy to verify that
the family {Wa : a < T } of open sets in X x X is locally finite, contradicting the
pseudo- T-compactness of X X X.

(1) => (6). It suffices to show that (3) implies (6). Let (3) hold. Consider two
cases.

(a) X is not a P-space. Since (3) implies (4), X2 is pseudocompact. By a theorem
of Glicksberg [4], /?(JT2) = /3X x (3X. Hence, to prove (6), one can assume that X is
compact. To this end, use the well-known facts that a quasicomponent of any point in
a compact space coincides with its component (see Theorem 6.1.23 of [2]) and that a
product of two connected sets is connected.

(b) X is a P-space. Let 7 be a disjoint open cover of X2. Define a continuous
pseudometric d on X2 by d{a,b) = 0 if both a and b lie in the same element of 7
and d{a,b) = 1 otherwise. By (3), there exists a continuous pseudometric g on X

such that the conditions g(x,z) < 1 and g(y, t) < 1 imply d((x,y),(z,t)) < 1 for all
xiVizii £ X. Consider the equivalence relation ~ on X defined by x ~ y if and only
if g(x,y) — 0. The relation ~ defines a partition fi of X to disjoint open sets, because
X is a P-space. The definition of g implies that the cover {U x V : U, V G fi} refines
7-

(5)&(6) => (1). Assume that both (5) and (6) hold and deduce (3). Consider two
cases.

(a) X is not a P-space. Then (5) implies that X is pseudocompact (otherwise one
can define a zero-set i n X x J f with a non-closed projection). By a theorem of Tamano
(see Problem 3.12.20(b) of [2]), pseudocompactness of X and (5) together imply that
X2 is pseudocompact. Therefore, /?(X2) = @X x f3X, which gives us (3).
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(b) X is a P-space. Then (6) implies (3). Indeed, let d be any continuous pseu-
dometric on X2 and ~ be an equivalence relation on X2 defined by a ~ 6 if and only
if d(a,b) = 0. Since X and X2 are P-spaces, the relation ~ defines a partition 7
of X2 into open subsets. By (6), there exists a disjoint open cover \i of X such that
{U x V : U,V G n} refines 7. Define a continuous pseudometric g on X by g(x,y) = 0
if both x and y lie in some element of /x, and g(x,y) = 1 otherwise. It is clear that
g(x,z) < 1 and g(y,t) < 1 imply d((x,y),(z,t)) = 0 for all x,y,z,t G X. This proves

(3), and hence (1). D

QUESTION 3.2. Does the condition (4) of Theorem 3.1 imply (1)?

4. TREATING PROBLEM C

We prove that every fc^-space X satisfies the equality *V*\xi = Uxi and charac-
terise metrisable spaces satisfying this equality. However, we still have not a complete
solution of Problem C. The case of a A;w-space X is considered first. Recall that X is
a &w-space (see [3, 7]) if there exists a countable increasing sequence {Kn : n G N} of
compact sets in X such that X = |J Kn and a subset F of X is closed if and only

nEN
if F n Kn is closed for each n e N+ .

Denote by C\,{X) the linear space of all continuous real-valued bounded functions
on X with the sup-norm defined by ||/ | | = sup |/(x)| .

x€X

LEMMA 4 . 1 . Let X be a k^-space and U an open neighbourhood of the diagonal
A2 in X 4 , A2 = {(x,y,x,y) G X* : x,y £ X}. Then there exists a continuous mapping
f : X —» Cb(X) such that for any x,y,z,t G X the inequalities

(IL) ||/(x)|| • ||/(s,) - f(t)\\ < 1, ||/(*)|| • \\f(y) - /(OH < 1;
(IR) ||/(y)|| • \\f{x) - f{z)\\ < 1, ||/(0|| • ||/(x) - f(z)\\ < 1

imply that (x,y,z,t) G U.

PROOF: There exists an increasing sequence {Xn : n G N} of compact subsets
of X = U Xn which determines the topology of X according to the definition of

a A^-space. Being o--compact and, a fortiori, paracompact, the space X2 admits a
continuous pseudometric d such that {(x,y,z,t) G X* : d((x,y),(z,t)) < 1} C U. (Use
Corollary 8.1.11 of [2].) Let AA. be the family of all continuous mappings of X onto
second-countable spaces. The family Ai is No-complete, that is, a diagonal product of
any countable subfamily of Ai (considered as a mapping onto its image) belongs to A\ •

Put Af = {(p* : f G M}. Then the family AT is Ho-complete and generates the topology
of X*. Since X4 is o--compact, and hence Lindelof, Corollary 1 of [13] implies that

https://doi.org/10.1017/S0004972700014441 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700014441


[13] Group uniformities 53

M has the factorisation property, that is, for every continuous mapping p : XA —> R
one can find if> G M and a continuous mapping q : if) (X4) —* R such that p = q o TJJ .
In particular, there exist ip £ M. and a continuous pseudometric d\ on f(X) x <p{X)
such that d({x,y),(z,t)) = d1{{<p{x),ip{y)),{<p(z),<p(t))) for all x,y,z,t G X. Denote
y = y(-X^). Let go be a metric on Y generating the topology of Y. Of course, we can
assume that \Y\ > 1. One can find a, b € Y and an integer k such that k • Qo(a, b) > 2.
Put g = min {l,kgo}. Then g is a continuous pseudometric on Y with the following
property:
(*) for any point x E. Y there exists y G Y such that g(x,y) = 1.

The function g2 defined by 02((x,2/),(z,<)) = g(x,2) + g(y,<) for all x,y,z,t G Y"
is a continuous metric on Y2 . For every point (x,y) G Y2 denote

B(x,y) = {(z,t) G Y2 : ^ ( ( x . y ) , ^ , * ) ) < 1} and e{x,y) - e2((x,2/),y2 \ B(x,y)).

Obviously, e(x,y) > 0 for all x, y G Y. Since Y"n — y>(Xn) is compact, for every
n G N there exists en > 0 such that gz[x, y) < en implies di(x, y) < 1 for all x, y G
7,? . Denote Vn = {{x, y)&Y2 : g2((x, y), yn

2) < e n / 2 } , an open neighbourhood of Y2

in y 2 . By compactness of Yn, there exists an open subset On of Y such that y n C 0n

and On x On C Vn. For every n £ N define a continuous real-valued function hn on Y

such that hn(Yn) = 0, / i n (y \ On) = 4 / e n + 1 and hn ^ 0. Then put h = £ ^n, where
n=l

ho = 4 + 4/eo. Obviously, 4 < /i(y) < oo for each y (E.Y, but h can be discontinuous.

We claim that the function h = h o <p on X is continuous. This readily follows from.
oo

the fact that X is a fc^-space with the decomposition X = \J Xn and the choice of
n=0

the functions hn\ n G N. Put g~(x,y) = g(<p(x),<p(y)) for i , y 6 X . Clearly, g is a

bounded continuous pseudometric on X.

Consider the mapping / : X —> Cb(X) defined by [f(x)](y) = h(x) • g{x,y); x,y G
X. Obviously, | | / (x) | | ^ h(x), because g~ ^ 1. On the other hand, (*) implies that
there exists a point y G Y such that g(x,y) — 1; hence | | /(x)| | = h(x) for each x G X.

Let us check the continuity of / . For any xi,X2,y G X we have

xi)g(xi,y) -H{x2)g~(x2,y)

Taking the supremum over y G Y in both left and right parts of the above inequalities,

we get | | / (*i) - / ( x 2 ) | | ^ ft(xi) • g(xi,x2) + A(xi ) - f t (x 2 ) . The latter inequality

implies the continuity of / .

We claim that the mapping / is as required. To this end, one auxiliary assertion
will be useful.
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CLAIM. | | / (O) - /(6)|| > g{a,b) for all a, b G X. Moreover, if (p(a) $ On for some
n G N then ||/(a) - /(6)|| > ?(a,6)/en+1.

Indeed, by the definition of the sup-norm and the function / we have ||/(a) — f(b)\\

^ h.(a)g(a, y) — h.(6)g(6, y) for each y G Y. Putting y = b in the above inequality,

we get ||/(a) — f(b)\\ ^ h(a)g~(a, b) ^ g[a,b), because h(a) = h(ip(a)) ^ 1 for each
a G X. Furthermore, if <p(a) $• On then the definition of the function h implies
h{(p(a)) > l / e n + i , and hence \\f(a) - f(b)\\ > h(a)g(a, b) > g(a,b)/en+1. This proves
the claim.

Let x,y,z,t be arbitrary points of X satisfying (IL) and (IR). Denote x' =
<p(x),... ,t' = v(*)- First, we show that di((x',y'), (z',t')) < 1, or equivalently,
d{(x,y),(z,t)) < 1. Consider two cases.

CASE 1. {x',y',z',t'} C O0- By the definition of VQ and O0, we have e(x',y') > eo/2.
By the definition of e(z',y'), the latter inequality means that di((x',y'),(z',t')) < 1
whenever the point (z',t') 6 Y2 satisfies the condition Q2{{^' i y'), {z> ,t')) ^ £o/2. So,
it suffices to check the inequality g2({x',y'),(z',t')) ^ £o/2. Using (IL), (IR) and the
Claim, we have

e{x\z') = g(x,z) ^ \\f(x) -f(z)\\ ^ 1/ ||/(y)|| - 1/%) ^ eo/4,

because h — <p o h and h ^ 4/eo. The same argument shows that g(y',t') ^ £o/4-
Thus, ^2((aJ',3/')>(z'i^')) = 8(x'•>*') + s(j/')^') ^ £o/2, which imph'es the inequality
*((*',»'),(*',*')) < 1 -

CASE 2. {«',y',0',<'} \ Oo 7̂  0- Let n be the maximal integer with the property
{x',y',z',t'} \ 0n 7̂  0- Without loss of generality we can assume that x' (ji On. From
the definition of n it follows that (z',y') G On+i x 0n+\ C Fn+i, and hence e(x',y') >
en+i/2. The definition of h and the fact that x' ^ On imply h(x') ^ 4/en+i- Apply
Claim and (IL), (IR) to get the following estimate:

g(y',t') = e(y,t) < \\f(y) - f(t)\\ < 1/ \\f(x)\\ = i/h(x') $ £n+1/4.

Then apply the 'V(a) i On" part of the Claim and (IL), (IR) to the points x,y,z,t:

*?(*',Z') = g(x,z) ^ e n + 1 • ||/(x) - f{z)\\ ^ en+1/ ||/(y)|| < en + 1/4,

because ||/(y)|| = h(y') and h ^ 4. This imphes the estimate

g2((x',y'),{z',t')) - g(x',z') + e(y',<() < en+1/4 + en+1/4 = en+1/2.

Since e(x',y') > en+1/2, the above inequality implies that di((x',y'),(z',t')) < 1. (The
argument here is just the same as in Case 1.)
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So, the inequality d((x,y), (z,t)) < 1 is proved. From the definition of the pseu-
dometric d it readily follows that (x,y, z,t) G U. This completes the proof. D

THEOREM 4 . 2 . If X is a fcw-space tien *V*\X2 = Uxi.

PROOF: Let U be an open entourage of the diagonal A2 in X*. Define a
continuous mapping / : X —> Cb{X) as in Lemma 4.1. Put g(x) — | | /(x)| | and
Q(x,y) = \\f(x) — f(y)\\ for all x,y G X. Then Q\ = min {g,l} is a continuous
bounded pseudometric on X, and we can apply Theorem 2.1 of [17] to the function /
and the pseudometric Qi to get two continuous seminorms Ni and NT on the subgroup
G(X) of F(X) satisfying the following conditions for all x,y,z,t G X:

(1) N^y"1 X'1 zy) = g(y) • Qi(x,z) and Nr(x • y • z'1 • x'1) = g(x) •

Qi(y,z);

(2) Ni{y~l • x-1 • z • y) ^ Ni^y'1 • x"1 • z • t) and Nr(x • y • t'1 • x'1) ^

Nr(x • y • t-1 • z-1) .

Put N = Ni + Nr and define an open neighbourhood 0 of the identity in F(X) by
O = {g G G{X) : N(g) < 1}. We claim that the element Vo = {(g, h) G F(X) x F(X):
g~x • h G O, g • h~l G 0} of the uniformity *V* on F(X) satisfies the condition
Vo n (X2 x X2) C U. (Recall that we identify X2 with the image i2(X

2) C F(X)
under the homeomorphic embedding 12, where 12(1,3/) = x • y.) Indeed, let x,y,z,t
be arbitrary points of X and suppose that ((x,y),(z,t)) G Vo- By the definition of 0
and Vo , we have

Nifo'1 • x~l • z • t) = Ni^t'1 • z'1 • x • y) < 1

and N r ( x • y • t'1 • z ~ l ) = N r ( z t y ' 1 • x " 1 ) < 1 .

Use (1) and (2) to conclude that

- /(Oil < 1, II/WII • ll/(i/) - /(Oil < 1.

These inequalities and the choice of the mapping / together imply that ((x,y),(z,t)) G

U. Therefore, the inclusion Vo D (X2 x X 2 ) C U is proved. D

Theorem 4.4 below gives a solution to Problem C for metrisable spaces. We start

with an auxiliary result.

Let 7 be a cover of a space Y and 3/1,1/2 £ Y. We say that yi and 3/2 are 7-
neighbours and write 3/1 ~ 3/2 if there exists U G 7 such that 3/1,1/2 G U. Again, Cb{X)
stands for the linear space of continuous real-valued bounded functions on X with the
sup-norm.
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LEMMA 4 . 3 . Let K be a compact space with a metric QK and X a locally

compact metrisable space. Then for any open covers 71 of X x K and 72 of K X X

there exists a continuous mapping f : X —> C(,(X) such that for all a,b £ K and x G X

the inequality ||/(a;)|| • £K-(a,&) < 1 implies that (x,a) ~ (x,b) and (a,x) ~ (b,x).

PROOF: Every locally compact metrisable space is a free topological sum of its open
<7-compact subspaces [2, Theorem 5.1.27], so we can assume that X is tr-compact.

00

Represent X as a union (J Xi, where X,- is open in X, c\Xi C X,-+i and clXj is
»=i

compact for each i £ N+. Let d be a metric on X, d ^ 1. Denote by i0 the standard
embedding of X to Cb(X), [io(a)](x) — d(a,x) for all a,a; £ A". Obviously, we have

||io(a) — io(i)|| = d(a,b) for all a,b £ X, so to is a homeomorphic embedding.
Define metrics «i and K2 respectively on XxK and K x X by Ki((x,a),(y,b)) =

d(x,y) + Qjc(a,b) = /c2((a,x),{b,y)) for all a,b £ K and x,y £ X. For every j £ N+ ,
let Ej-,1 be a Lebesgue number of the cover {V D (Xj x K) : V £ 71} of the compact
space clXj x K with respect to «i , that is, a positive real number with the property
that every pair of points x,y of clXj x K satisfying K\{x,y) < e;-,i is contained in
some element of 71. Analogously, we define EJJ as a Lebesgue number of the cover
{V D {K x c\Xj) : V £ 72} with respect to /s2.

Denote by ny a positive integer with 1/rij ^ min{ej)i,e;i2}; j £ iV+. There
exists a continuous mapping g : X —* R such that g(x) ^ ni for each x £ Xi and
^(a;) ^ Tij-+i for each x £ Xy+i \ Xj, j £ JV+. Indeed, for every ; ' ^ 2 we can find a
continuous function gj : X —> R such that gj(x) = n^+i whenever x £ clX,-+i \ Xj
and 5j(a:) = 0 for each x £ clX;_i |J (X \ Xj+2). Let also gi be a continuous function
such that gi(x) — max{ni,n2} for all a; £ CIX2 and gi(x) — 0 for each x £ X \ X3.

cx>

Then the function g — 52 9j ls continuous and has the above property.
i=i

Put f(x) = g{x) • io(x) for every x £ X. Obviously, the mapping / : X —»
C&(X) is continuous. Let points a,b £ K and a; £ X be arbitrary and suppose that
Il/C1)!! " QK(a,b) < 1. Denote by j the minimal integer with x £ Xj. Then ||/(a;)|| =
\g(x)\ • ||to(a:)|| = g{x) ^ nj. It is clear that /Ci((z,a),(a;,6)) = d(x,a;) + ffic(a,6) =

&), and hence

b) > nj-eK(a,b) = n5

So, the choice of nj and ej implies that (a;, a) ~ (x,b). The same argument shows

that (a, x) ^2(6, x). D

THEOREM 4 . 4 . Tie following conditions are equivalent for any metrisable space

X:

(a) *V*\x>=Uxi;
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(b) either X is locally compact or the set X' of non-isolated points of X is

compact.

PROOF: (a) => (6). Assume the contrary. Let X be not locally compact and
X' be not compact. By our assumption, there exists a point a G X the closure of
any neighbourhood of which is not compact. Using the non-compactness of X', we can
choose a base {Un : n G N+} of X at a such that cl Vn+i C Vn, clVn \ Vn+i is not
compact for each n G N+ and X1 \ Vi is not compact as well. For every n G N+

choose an infinite closed discrete subset {xn<k : A; G N+} of X lying in Vn \ V n + i .
Let also {yn : n G N+} be an infinite closed discrete subset of X' \V\. For every
n G N+ choose a sequence {zn<i : I G N+} C X \ (Vi U {yn}) converging to yn. It
is easy to see that the set F = {(xnik,zn,k,xn<k,yn) '• n, k G N+} is closed in X*.

Let A2 = {(x,y,x,y) : x,y G X} be the diagonal in X*. Obviously, F and A2 are
disjoint, so U = X 4 \ F is an open neighbourhood of A2 in X*. The metrisability of
X implies that U G Uxi.

Let O be an arbitrary neighbourhood of the identity e in F(X). There exists a
neighbourhood O\ of e such that O^1 = O\ and O\ C O. Choose a neighbourhood
02 of e so that O^1 = 02 Q 0 and a • 02 • a'1 C Oi. Put W = X D (Oi • a) . Since
the sets Un, n G iV+ , form a base of X at a and I f is a neighbourhood of the point
a in X, there exists an integer p G 7V+ such that xn>k G W for all n ^ p and fc G JV+

(it suffices to choose p with Up Q W). Choose I G N+ so that zPifc £ O2 • yP for all
fc > /. The choice of / implies that

(1) *p,i • y^1 e 02 and yp • a",1 G O^1 = O2.

We have also

(2) ^ ( z p . r l / - 1 ) * - } G {O1a)O2(a-1O;1) = 0x • {a • 02 • a'1) Oi QO\QO.

Consider the entourage Uo of the diagonal in X* generated by 0,

Uo = {(x,y,z,t) G X4 ix-y-r1 • z"1 G O and y" 1 • z " 1 • 2 • < G O}.

Then t / o G *V*|X» and from (1), (2) and the inclusion O2 C O it follows that

(z^ijZp^^p^jj/p) G Uo H JF1. Thus, we have proved that Uo \ U ^ 0 for each neigh-

bourhood O of the identity in F{X), that is, *V\X7 ^Uxi.

(b) => (a) . We consider two cases.

I. X' is compact. Let U be an open entourage of the diagonal A2 in X 4 . Since
X2 is paracompact, there exists an open symmetric neighbourhood U\ of A2 in XA

such that U\ o U\ C U. Denote by go a bounded metric on X that induces the
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topology of X . Define another metric g on X by g(x,y) = 0 if x = y and g(x,y) =

ini{go(,x,a) + go(a,y) : a £ X'} otherwise. We omit an easy proof of the fact that
g satisfies the inequality of triangle, is continuous bounded and generates the same
topology of X. From the definition of g it also follows that

(3) g\x< = go\x' a n d e(a>&) ^ g(a,X') for all a,b £ X, a ̂  6.

Since X' is compact, there exists e > 0 such that (x,y, z,t) £ U\ when-
ever x,y £ X', z,t £ X and g(x,z) < e, g(y,t) < e. Put V = {a; £ X :
g(x,X') < e/2}. Then V is a clopen neighbourhood of X' in X. Using the com-
pactness of X' once again, for each x £ X \ V choose ex > 0 so that all the points
(x,t,x,y), (x,y,x,t), (t,x,y,x), (y,x,t,x) belong to U\ for all y £ X' and t £ X
satisfying g(y,t) <ex.

Denote by Cj(X) the space of all continuous real-valued bounded functions on X
with the sup-norm ||-||. Let h : X —> R be a continuous function such that h(y) ^
1 + 2/e for all y £ X and h(x) ^ 1 + 2/ex for all x £ X \ V. Define a mapping
/ : X —> C;,(X) by [/(x)](l/) = fe(a:) • g{x,y); x,y £ X. Apply the argument in the
proof of Lemma 4.1 to verify that / is continuous and has the following properties:

(4) ||/(x) - f(y)\\ > (1 + 2/e) • g(x,y) for all x,y £ X;

(5) \\f(x) - f(y)\\ > (1 + 2/c.) • e(ss,y) whenever z £ X \ V and y £ X.

In particular, the inequality ||/(a:) - f(y)\\ ^ ff(a;)2/) holds for all x,y £ X.

Put 01(1,2/) = ||/(x) - /(y) | | for all x,y £ X and apply Theorems 2.1 and 2.3 of
[17] to the metric gi and the function / on X to obtain continuous seminorms N[ and
Nr on G?(X) satisfying the following conditions for all x,y, z,t £ X:

(i) iV,^-1 • x - 1 • * • y) = \\f(y)\\ .ei(z, z) and NT{x • y • t'1 • x"1) = ||/(x)||-

ei(y,t);
(ii) iV^y"1 - z - 1 zt) ^ g1(x,z)+g1(y,t) and Nr(x • y • t-1 • z'1) > ei(x,z)

+ ei{y,t).

We put N = Nt + Nr and 0 = {g £ G(X) : iV(5) < 1}. Then O is
an open neighbourhood of the identity in .F(X) and we claim that the entourage
Vo = {(x,y,z,t) £ X4 : y'1 • x'1 • z • t £ O, x • y • t'1 • z'1 £ 0} of the diagonal A2

in X 4 is contained in U. Indeed, if (x,y,z,t) £ Vo then N[(r/~1 • x - 1 • z • i) < 1 and
NT(x • y • t~x • z"1) < 1. Suppose that {x,y,z,t} C V. There exist points x i , ^ £ X'
such that g(x,xi) < e/2 and g(y,yi) < e/2. Applying (4) and (ii), we get

2/e- g(x,z) ^ gi{x,z) ^ A^r(x yt~l • z~l) < 1, that is, g(x,z) < e/2.
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From the choice of the point x\ it follows that g(x,x\) < e/2; therefore g{xi,z) <
Q(X\ , x) + Q(X, z) < e/2 + e/2 — e. Analogously, one can show that g(y\, t) < e. These
two inequalities and the choice of e together imply that (xi,yi,z,t) G Z7i. By the same
reasoning we also have (xi,yi,x,y) £ Ui. It remains to note that U\ is symmetric,
and hence (x,y,z,t) £ U\ o U\ C U•

We can now assume that {a;,y, z, t} \ V ^ 0. It suffices to consider the case x (f: V.

We claim that z = x. Indeed, by (3), g{x,z) ^ g(x,X') ^ ex/2 if z ^ x. So, (ii) and
(5) imply that

NT(x -yt-1 • z'1) > 6l{x,z) > 2/ex • g{x,z) > 1,

which contradicts the inequality NT{x • y • t~1 • z-1) < 1- Thus, z = x. Further, by (i)
and (5), we have

1 > NT{x y-r1 • x-1) = \\f{x)\\ • ei(y,t) ^ 2/ex • g(y,t), that is, e(y,t) < ex/2.

We claim that either y = t or g(y,X') < ez /2 . Suppose not, let y ^ t and g(y, X') ^
EJJ/2. Then g(y,t) ^ g{y,X') ^ ex/2 by (3), which contradicts the above inequality.
The case y — t is trivial: (x,y,z,t) = (x,y,x,y) £ A2 C U; hence we assume that
y 7̂  t. There exists a point yj 6 X' such that g(y,yi) < ex/2, and we have 0(2/1,<) ^
e(2/iil/) + Q{yJ) < e*/2 + Ci/2 = £„, that is, g(yi,t) < ex. Since 2/1 G Jf', these
two inequalities together with the definition of ex imply that (x,y,x,yi) £ Ui and
(x,yi,x,t) € t^i. Therefore, (x,y,z,t) = (x,y,x,t) G Ux 0U1 C 17. This completes the
proof of the inclusion Vo Q U. Since the entourage U of the diagonal A2 in -<̂ 4 was
chosen arbitrarily and Vo G *V*|XJ , the equality Uxi = *V*\xi is proved.

II. X is locally compact. Suppose we are given an entourage U of the diagonal A2 in
X*, U £ Uxi. Choose an entourage V of A2 in X* with V o V C U. There exists
an open cover 7 of X2 such that |J{-^- x 4 : A 6 7} C 7 . Since X is paracompact,
there exists an open locally finite cover \i of X such that cl W is compact for each
W G fi. Let g be a bounded continuous metric on X such that {(x,y) G X2 :

g(x,y) < 1} C \J{W xW : W £ fi}. By Lemma 4.3, for every W £ fi there exists
a continuous mapping fw : X —> Cb(X) such that for all a,b £ clW and x £ X the
inequality | |/w(z)|| ' 2(a>&) < 1 implies that (a:, a) ~ {x,b) and (a, s) ~ (b,x). Apply
Theorem 3.1 of [17] to define a continuous seminorm N on G(X) such that N(g) ^
g\g,e) for each g £ G(X) ('g is the Graev extension of g to an invariant pseudometric
on G{X)) and JV(ae • xe • y-' • b~') > max{| | /w(a)| | , |1/VK(&)||> • g{x,y) whenever the
points a,b,x,y £ X satisfy the conditions N(a* • xc • y~e • b~') < 1, e = ±1 and
x,y £ W £ (i. Then 0 = {g £ G(X) : N(g) < 1} is an open neighbourhood of the
identity in F(X), and we claim that the entourage

Uo = {(a,x,b,y) £ XA :axy-x • b'1 £ 0, x ' 1 • a " 1 • b • y £ 0}
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of the diagonal A2 in X* is contained in U. Indeed, let (a,x,b,y) G Uo- Then
N(axy-1 b'1) < 1 and N(x~1 • o"1 • b • y) < 1. Since N(g) > g\g,e) for each
g G G(X), we have

g ( a , b ) + g ( x , y ) = g ( a x - y ' 1 • b ~ \ e ) ^ N { a x - 1 / " 1 • b ' 1 ) < 1 .

In particular, g(a,b) < 1 and g(x,y) < 1. The choice of g implies that there exist

elements W, W of fj. such that a,b £W and x,y G W. By the choice of N, we have

\\fw(a)\\-g{x,y) ^ N ( a x - y " 1 • 6 " 1 ) < 1 a n d \\fw(y)\\-g{a,b) ^ ^ ( x " 1 • a'1 • b • y) <

1. In its turn, the choice of the functions fw and fwi implies that (a, x) ~ (a,y) and

(a,y) ~ {b,y). Since [J{A x A : A G 7} C V, we conclude that (a ,x ,a ,y) G V and

(a, 3/, b,y) G V. It remains to note that V o V C J7, and hence (a, x,b,y) G ?7. This

proves the inclusion Uo Q U. U
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