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ON GROUP UNIFORMITIES ON SQUARE OF A SPACE
AND EXTENDING PSEUDOMETRICS II

MICHAEL G. TKACENKO

We find topological conditions on a space X under which the left (right, or two-
sided) uniformity of the free topological group F(X) induces the universal uni-
formity Ux2 or the product uniformity Ux X Ux on the square of X. Special
attention is given to k.-spaces and metrisable spaces. The main technical tool in
the paper is an extension of certain continuous pseudometrics from X? to F(X)
considered by the author in the previous volume of this journal.

0. INTRODUCTION

By a theorem of Graev [5], any continuous pseudometric d on a Tikhonov space X
extends to an invariant pseudometric d on the free topological group F(X). This result
was applied by Pestov [9] to prove the equality *V*|x = Ux for every Tikhonov space
X, where *V* is the two-sided uniformity of F(X) and Ux is the universal uniformity
of X (that is, the finest uniformity on X compatible with the topology of X ). A
generalisation of the above equality for uniform free topological groups was obtained
by Nummela [8].

Our aim is to study the uniformities on X? induced by *V, V* and *V*, the left,
right and two-sided group uniformities of F(X). In talking about induced uniformities
on X2, it is understood that we identify X? with a subspace of F(X) under the
embedding (z,y) — z-y; =,y € X. So, we can formulate the following three problems
(see [17}).

PROBLEM A. What are the relations between *V|xa, V*|x3 and *V*|x2 on the one
hand and Ux x Ux, Uxa on the other (Uxz stands for the universal uniformity on
X2)?

This general problem can be specialised as follows.

PROBLEM B. When does the equality *V*|y: = Ux x Ux hold?

PROBLEM C. For which spaces X does the equality *V*|x: = Uxs hold?
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One can as well replace *V* by *V or V* in Problems B and C, thus obtaining
four more problems. The resulting problems will be denoted by the same letters. The
majority of these problems is solved here by means of a simultaneous extension method
that applies to certain pairs (d;,dz) of continuous pseudometrics d; and d; on X and
X? respectively and produces continuous seminorms on F(X) (see Theorems 1.4, 2.1
and 3.1 of [17]).

We start with general assertions about uniformities on topological groups. Then we
show that both uniformities *V|x2 and V*|x3 are finer than Ux x Ux (Theorem 1.6),
that contributes to Problem A. As an application of simple topological tools we prove
that the equality *V*|x2 = Ux xUx holds for every pseudocompact space X (Theorem
1.8), thus giving a partial answer to Problem B. A complete solution of Problem B is
given in Theorem 2.1: the equality *V*|y2 = Ux x Ux holds if and only if there exists
an infinite cardinal T such that X is pseudo-7-compact and a P,-space simultanuously.
This characterisation remains valid if one replaces *V* by *V or V*.

Problem C seems the most difficult among the others. First, we characterise spaces
X satisfying the condition *V|x2: = Ux2 (or equivalently, V*|x2 =Uy2): if X isnot a
P-space then the above condition is equivalent to the requirement that the projection
p: X? - X is z-closed, and for a P-space X it is equivalent to the condition that
for every open cover 7 of X? there exists a disjoint open cover u of X such that
pxpu={UxV:UV € pu} is finer than 7 (Theorem 3.1).

We also show that the equality *V*|x: = Uxa holds for each k.-space X (Theorem
4.2) and characterise metrisable spaces satisfying it (Theorem 4.4): the criterion is that
a metrisable space must be locally compact or the set X' of all non-isolated points of
X must be compact.

All spaces considered are assumed completely regular. We say that X is a P-space
if every Gg-set in X is open. A space X is said to be pseudo- 7-compact if every locally
finite family of open sets in X has cardinality strictly less than 7. The Cech-Stone
compactification of a space X is denoted by X .

The set of positive integers is denoted by N*; R stands for the reals with the
interval topology.

Every element g of the free topological group F(X) on a space X has the form
z;! - ... zir for some #i,...,2n, € X and €,...,6n = 1. Weput li(g) ={i<n:
€; =1} and I_(g) = {i < n:¢e; = —1}. Then we define a subgroup G(X) of F(X) by

G(X) = {g € F(X) : l+(9) = I-(9)}-

Note that G(X) is an open subgroup of F(X) [17].
All the necessary facts in uniform space theory are contained in {2, Chapter 8] or
[6, Chapters 1-3]. An exposition of results on uniform structures on topological groups
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is given in {10].

1. PRELIMINARY FACTS AND RESULTS

Let G be a topological group with identity e and O a neighbourhood of e in G.
We put

Ub={(g,h)€EGxG:9g*-he0}, U;={(g,h)eGxG:g-h7" €0},

and Uo = UL N UL . Recall that a base of the left (right, two-sided) uniformity *Ve
(respectively Vg, *V§) of the group G consists of the sets Ul (respectively Ug, Uo)
where O runs through all neighbourhoods of e in G.

The following notion seems to be folklore.

DEFINITION 1.1: Let 7 be an infinite cardinal. A subset Y C X is said to be
T-bounded in a uniform space (X,U) if for each U € U there exists a subset A C X,

|A] € 7, such that Y C |J B(e,U), where B(a,U) = {z € X : (a,z) € U}.
a€A

If one puts Y = X in Definition 1.1, the notion of a T-bounded uniform space (X,U)
will be obtained. For the sake of completeness we present a proof of the following well-

known result. Recall that I/x always stands for the universal uniformity of a space
X.

ASSERTION 1.2. A uniform space (X,U{) is 7-bounded if and only if the space X is
pseudo-T7T-compact.

PRrROOF: The necessity. Suppose that there exists a locally finite family 4 of open
sets in X, |y| = 7t. For every V € v define a continuous real-valued function fy on
X, 0< fv €1, such that fy is equal to 1 at some point of V' and vanishes outside of
V. Put

dz,y) = Y Ifv(e) - fr(¥)l; =yeX.
Vey
Then d is a continuous pseudometric on X. The set W = {(z,y) € X? : d(z,y) < 1}
is an open entourage of the diagonal in X2 and W € Ux . It is easy to verify that no

subset A C X with |A4| < 7 satisfies the condition X = |J B(a, W) of Definition 1.1,
a€A
that is, the uniform space (X,Ux) is not 7-bounded.

Sufficiency. Suppose that (X,Ux) is not 7-bounded and choose an element W €
Ux witnessing that. By Corollary 8.1.11 of [2] there exists a continuous pseudometric
g on X such that {(z,y) € X% : o(z,y) <1} C W. Let K be a maximal subset of
X with the property that g(a,b) > 1 for all distinct a,b € K. Then |K| > 7 by the
choice of W and g. Obviously, the family of all balls of radius 1/3 with points of K
as centers is discrete (hence locally finite) and has cardinality greater than 7. 0
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DEFINITION 1.3: A subset Y of a topological group G is called left-7-bounded in
G if for every neighbourhood V of the identity in G there exists a subset A C G such
that |A] <7 and Y C A . V; analogously, the inclusion ¥ C V - A defines the notion
of right- r-boundedness in G.

If a subset Y of G is left- and right-7-bounded in G, we shall simply say that ¥
is T-bounded in G.

Note that Y is left-T-bounded (right-r-bounded) in G if and only if Y is a 7-
bounded subset of (G,* V) (respectively (G,V*)). We also mention that the subset 4
of G in Definition 1.3 can be chosen to satisfy the condition A C Y.

ASSERTION 1.4. If Y is (right-) left-7-bounded in a topological group G then Y -Y is
(right-) left-r-bounded in G. '

PRroOF: It suffices to consider the “left” case. Let V and V; be neighbourhoods
of the identity in G, V C V. There exists a subset B of G, |B| < 7, such that
Y C B-V;. For each b € B choose a neighbourhood W; of the identity satisfying
the condition 5! - Wy - b C V; and find a subset Cp of G of cardinality < T with

Y CCy-Wy. Put C= |J Cp and A =C - B. Obviously, |4| < |C| < 7. We claim
beB
that Y-Y C A-V. Indeed, let @,y € Y be arbitrary. Then y € b- V; for some b€ B.

Since Y C C} - Wp, there exists ¢ € Cp such that z € ¢- Wy. We have
:z:-yEc-Wb-b-Vl=c-b-(b_1-W5'b)-VlQc-b-Vlzgc-b-V,

where ¢ b€ C-B=A. Thus, Y - YCA.V. 0

ASSERTION 1.5. Suppose that Y is a 7-bounded set in a topological group G with the
two-sided uniformity *V*. Then Y is a 7-bounded subset of (G,*V*).

PROOF: Let V' be a neighbourhood of the identity in G. It suffices to define a
subset A C G such that [A| < 7and Y C|J{a-V[)V-a:a € A}. Choose a symmetric
neighbourhood V; of the identity so that V3 C V and let the subset B of G satisfy
Y CB-W, |B|<T. Forevery b € B find a neighbourhood W} of the identity such
that W, CV and b7 - W,,-b C V;. For each b € B there exists a subset 4, C G such

that Y C W, - 4, and |4;| < 7. We claim that the set 4 = |J Ay works. Indeed,
beB
let y € Y be arbitrary. Then y € b-V; for some b € B and y € W}, - a for some

a€ Ay C A. Therefore y =b-v = w- a for some v € V; and w € W,,. This implies
that ! -b=2"1-b"1-w-be V;7'- b7 - W, -b. We have

yeb-Vi=a-(a'-b) - ViCa- V- (b7 Wp-b)- V1 Ca-VPCa-V.

Thus, y€ a-V and y € W-a C V -a. This proves the lemma. 0
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We start considering Problem A. For the sake of generality the induced uniformities
on X™ for an arbitrary n € Nt are considered here. From now on the symbols *V, V*
and *V* always denote respectively the left, right and two-sided uniformities of the free
topological group F(X) on a given space X.

THEOREM 1.6. Both uniformities *V|xn and V*|xn are finer than Ux x...xUx
(n times) for every space X and each n € N*.

PROOF: Let V be an entourage of the diagonal A, in X2, V € Ux x ... xUx
(n times). It suffices to find W' € *V and W" € V* such that W!X?** C V and
wWrNXCv.

By the definition of a uniform product (see [2, Chapter 8] or [6]), one can find
an entourage U of the diagonal £; in X? such that (Z,y) € V for all points z =
(z1y---2Zn) € X™ and ¥ = (y1,.--,Yn) € X" satisfying (zi,y;) € U for each 1 < n.
Use Corollary 8.1.11 of [2] to define a continuous pseudometric d on X such that
{(z,y) € X : d(z,y) <1} CU. Denote by d the Graev extension of d to a continuous
invariant pseudometric on G(X) and put O = {g € G(X) : d(g,€) < 1}, where ¢ is
the identity of G(X). Then define the sets W' and W™ by

W'={(1:1,...,:c,.,y1,...,y,,)€X2"::z:;l~...~zl_1 “yYy1-...-Yn € O},

W™ ={(21,--1ZnyY1s--->Yn) EX ™ izy oo -y -y € O}

It is clear that W' € *V|xn and W™ € V*|xn. We claim that W/ CV and W™ C V.
It suffices to verify the first of these inclusions. Assume that z;}-...-z] Yy yn €0
where z;,y; € X for each 1 < n. Then we have

n
1>d(z;l-...-z;1-y1 -...~y,.,e) =Zd(z.',yi),
i=1

which readily follows from the definition of d (see [5, 12]). In particular, d(zi,y:) < 1
for each i < n, and the choice of d and U implies that (z1,...,24,¥1,-..,¥n) € V.
This proves the inclusion W C V. An analogous argument shows that W™ C V. [

A compact space admits only one uniformity compatible with the topology of the
space. Therefore, *V|xn = V*|xn = *V*|xn = Ux X...xUx (n times) for any compact
space X; n € N*. Theorem 1.8 below generalises this obvious fact. In its proof we
shall use one auxiliary result, which follows from [18, Theorem 2].

LEMMA 1.7. Every pseudo-w,-compact, C-embedded subset Z of a space T is
P-embedded in T', that is, every continuous pseudometric on Z extends to a continuous

pseudometricon T'.
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THEOREM 1.8. For a pseudocompact space X , the equalities *V|xn = V*|xn =
*V*|xn =Ux X ... x Ux (n times) hold for each n € N*.

PROOF: Let the space X be pseudocompact and n € Nt be arbitrary. Since *V*
is finer than *V and V* and both uniformities *V|xn, V*|xn are finer than U, =
Ux X ... xUx (n times) (Theorem 1.6), it suffices to show that *V*|x» = U,,. We
shall prove a more general result: the universal uniformity W of F(X) restricted to
X™ coincides with U, . Since W is finer than *V*, it suffices to verify that U, is finer
than W|xn.

The uniformity W is generated by the family of all continuous pseudometrics on
F(X). Let d be one of them. It is necessary to verify that the restriction ¢ = d|x» of
d to the subspace X™ of F(X) is uniformly continuous with respect to U, . Since X
is pseudocompact, the natural monomorphism of F(X) to F(8X) is a homeomorphic
embedding by a theorem of Pestov [9], where 8X is the Cech-Stone compactification
of X. So, we can identify F(X) with the corresponding subgroup of F(8X) generated
by the set X. Again, since X is pseudocompact, Theorem 3 of [16] implies that
F(X) is C-embedded into F(AX), that is, every continuous real-valued function on
F(X) extends to a continuous function on F(8X). Furthermore, the group F(8X)
is o-compact, and hence has countable cellularity by Corollary 2 of [14]. Being dense
in F(BX), the group F(X) has countable cellularity as well. In particular, F(X)
is pseudo-w;-compact. Applying Lemma 1.7, we conclude that F(X) is P-embedded
in F(BX). Let d be a continuous pseudometric on F (BX) which extends d. The
restriction of d to the subspace Y = #X x...xf8X (n times) of F(BX) is an extension
of the pseudometric g. Since every continuous pseudometric on F(X) extends to a
continuous pseudometric on F(#X), the universal uniformity W of F(BX) induces the
universal uniformity W on F(X), that is, Wlp(x) W. In particular, W[xn = W|xn.
Denote by U the (unique) umformty of the space X compatible with its topology
Note that U1| x = Ux . Obviously, W induces the uniformity Un = Lﬁ . X ZA (n
times) on the compact space Y, and Unl xn = Un. Therefore, the uniform contmmty of
J]y with respect to iU, implies that g = J| x» is a uniformly continuous pseudometric
with respect to U, . This proves that U, is finer than Wlxn = W|xn. 0

We generalise the above theorem in the next section by means of more subtle
methods.
2. SOLUTION OF PROBLEM B

The following theorem completely characterises those spaces X satisfying the
equality *V*|x2 = Ux X Ux. Recall [15] that a subset X of a topological group
G is said to be thin in G if for every neighbourhood U of the identity in G there exists
a neighbourhood V of the identity such that -V . 2z7! C U foreach z € X .
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THEOREM 2.1. The following conditions are equivalent for a Tikhonov space X :

(1) *V[Xz =Ux xUx;

(1') *V|x» =Ux x...xUx (n times) for each n > 2;
(2) V*|x2 =Ux xUx;

(2') V*|xn =Ux x...xUx (n times) for each n > 2;
(3) *V*|x2 =Ux xUx;

(3") *V*|xn =Ux % ...xUx (n times) for each n > 2;
(4) “Vixz =V"Ix2;

(4') *V]|xn =V*|xn foreachn > 2;
(5) X is thin in F(X);
(6) there exists an infinite cardinal T such that X is a P,-space and pseudo-

T— compact.

PROOF: Obviously, (1') implies (1),..., (4') implies (4). By Theorem 1.6, the
implications (3) = (1), (3) = (2) and (3') = (1'), (3') = (2') are valid. It is also
clear that (1)&(2) = (4) and (1')&(2') = (4'); so (3) implies (4) and (3') implies (4').
The equivalence of (5) and (6) follows from [15, Theorem 3].

(5) = (3'). Let n be any positive integer and O be a neighbourhood of the identity
in F(X). Put

UO ={($1,.-.,2n,y1,...yn) Ein
Ty...Tny eyt €0, 2t 27 cy1...yn € O}

Then Up € *V*|xn and we have to find U € Ux such that the uniform product
U = U x ... x U (n times) is contained in Up. To this end, choose a symmetric
neighbourhood V' of the identity such that V* C O. Since X is thin in F(X), one
can define a decreasing sequence V = V5, 2 V; D ... D V, of open neighbourhoods
of the identity in F(X) such that 2°-V;4; - 27* C V; foral z € X, i < n—1 and
e==%1. Pt U ={(z,y) e X2:27'-ye€ Vo, z2-y~! € V,}. Then U € Ux and
we claim that U works. Indeed, let p = (1,...,Zn,¥1,---,¥n) be any point of X"
satisfying (zi,y:i) € U for each ¢ < n, thatis, p € U™. For every i with 2 <i < n put
gi==&1 ... Ti—1. We have

(*)

Zioo T Yn e = (G 2 YRt 90 ) (Gner - Znorwnly cgnt) (oo w0 )

By the choice of p and the sets V; we also have z; - y;' € Vi, g2 - 22 - 95" - gt €
92 Vo975 CVartyeun .. » n ZnYn'  Gnl C gn-Va-g21 C V4. Inits turn, (*) implies
that

Ty Zaypt ey €V LV VT VR CO.
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An analogous argument shows that z;'-... 2! -y -... -y, € V* C O. Thus, the
inclusion U™ C Up is proved.

(2) = (6). Let T be the topology of X. Denote by 7 the minimal cardinality
of a subfamily 8 C 7 such that (18 ¢ 7. If the space X is a counterexample to the
implication, there must be a locally finite family ¥ = {U, : @ < 7} of open sets in X
with |y| = 7. We can assume that v is discrete (see Lemma 1 of [11]). The definition
of T implies that there exist a point z* € X and a decreasing sequence {V, : a < 7}
of open neighbourhoods of z* such that z* does not belong to the interior of the

intersection [ V. For every a < 7 pick a point e, € U,. Let continuous functions
alT

fa and go on X with values in [0,1] be such that fa(ae) =1, ga{z*) = 1, fo vanishes
outside of U, and g vanishes outside of V. Define continuous pseudometrics d; o
and g, on X by

d1,a(2,y) = |fa(z) — fa(y)|and ga(2,y) = |9a(z) — ga(y)]| for all z,y € X.

Apply Theorem 2.1 of [17] to obtain a continuous pseudometric d; o on X? such that
d1,o and d; o are right-concordant in the sense of Definition 1.3 of [17] and d; o satisfies
the condition

(RP) d2,a((a,2),(a,y)) = fala) pa(=z,y) for all a,z,y € X.
Put dy = Y dio and d; = 3 dy,q. Clearly, d; and d; are continuous right-
a<lT alT

concordant pseudometrics on X and X? respectively. By Theorem 1.4 of [17] there
exists a continuous seminorm N on G(X) satisfying the properties

(P1) N(a-b71) = di(a,b) for all a,b € X;
(P2) N(a-z-y~'-a™!) = dy((a,z),(a,y)) for all a,z,y € X.

Put O = {g € G(X): N(g) < 1}. Then O is open in G(X) and, a fortiori, in F(X).
Finally, define an open entourage U, of the diagonal A, in X* by
U5 ={(z,9,2,t) €EX*:z-y-t71. 271 € O}.

Clearly, U5 € V*|x2, and we claim that for each continuous pseudometric g on X there
exist an ordinal a < 7 and a point z € X such that p(z*,z) < 1 and ay-z*-z71-a]! ¢
O, that is, (@q,z*,84,z) ¢ U5. The latter will obviously contradict (2).

Indeed, let p be a continuous pseudometric on X . Since z* ¢ Int [ V,, one can
a<lr

find an ordinal a < 7 and a point z € X \ V, such that g(z*,z) < 1. We have
N(aa-=" 27 -a3") 2 dy((aa,2%), (02, 2))

> dy,a((ar2"), (20s2)) 2 fal@a) - 19a(z) — galz*)| = 1,
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because fo(da) = ga(z*) = 1 and go(z) =0 (for z ¢ V,). Thus, N(ag-2z*-z7! - a3?)
1, and hence ao-z* -z71-a;! ¢ O.

(1) = (6). Use the above argument along with Theoreras 1.5 and 2.3 of [17].

(4) = (6). This is the last implication to be proved. However, it has almost
been shown in the proof of the implication (2) = (6). Indeed, if X does not satisfy
(6), define a continuous seminorm N on G(X) and an open neighbourhood O of the
identity in F(X) as above. It was shown that for every continuous pseudometric g
on X there exist an ordinal @ < T and a point @ € X such that g(z*,2) < 1 and
aq-z*-z a7l ¢ O. We claim that for each neighbourhood W of the identity in F(X),
the set Usy \ U5 is not empty, where UL, = {(z,y,2,t) € X* : gy~ -z7 . 2.t € W}. To
see this, for a given neighbourhood W of the identity choose a continuous pseudometric
p on X suchthat p(z,y) <1 implies 27! -y € W forall z,y € X. Onecanfind a < T
and z € X sa.tisfying the conditions o(z*,2) <1 and aa-z*-271-a3! ¢ O. We have
(*)'-azlaq-z = (2*) -z € W, for g(z*,2) < 1. Thus, (Ga,z*,0q,z) € Uk, \ U,
which proves our claim. However, this contradicts (4). The theorem is completely
proved. g

REMARK 2.2. Theorem 2.1 remains valid if one replaces “cach” by “some” in conditions

(1) - (4).

3. SoLuTIiON OF PrOBLEM C FOR *V AND V*

The following theorem is an almost complete solution (modulo Question 3.2 below)
of Problem C in the case of the left and right group uniformities *V and V* of F(X).

THEOREM 3.1. The following implications are valid for every space X :
MNe@e3)=>14)=(5), (1)=(6) and (5)&(6) => (1), where
(1) *Vlx2 =Uxs;
(2) V*ix2 =Uxz;
(3) Uxs =Ux xUx;
(4) there exists an infinite cardinal T such that X is a P,-space and X? is
pseudo-T-compact;
(5) the projection w: X x X — X is z2-closed (that is, w takes zero-sets in
X? to closed sets in X );
(6) for every disjoint open cover ¥ of X? there exists a disjoint open cover p
of X such that p x p={U xV : U,V € pu} is finer than 7.

PROOF: (3) = (1). Obviously, Ux: is finer than *V|x2. From Theorem 1.6 it
follows that *V|x: is finer than Ux X Ux . This proves the implication.
(3) = (2). Just replace *V by V* in the above two lines.
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(1) => (4). Suppose that (1) holds. We claim that if there exists a locally finite
family of open sets in X2 of cardinality 7+ for some 7, then the same is true for
X . Indeed, if X? contains such a family, then the uniform space (X 2,sz) is not
T-bounded (Assertion 1.2), and by (1), (Xz, *V|x2) is not 7-bounded either. However,
*V induces the maximal uniformity /x on X; hence by Assertion 1.4, (X,Ux) fails
to be 7-bounded. By Assertion 1.2, this means that X contains a locally finite family
u of open sets with |u| > 7.

Now suppose that (4) does not hold. Let 7 be the topology of X. Denote by T
the minimal cardinality of a subfamily ¥ of T such that (] is not open in X, and
choose a family ¥ C 7 with a non-open intersection satisfying |y| = 7. Pick a point
a € v\ Int(N7). Since (4) fails, X2 contains a locally finite family of open sets of
cardinality 7. The above assertion gives us a locally finite family g of open setsin X of
the same cardinality 7. By Lemma 1 of [11] the family g can even be chosen discrete.
Let p = {Us:a <7} and v = {V4 : @ < 7}. For each a < T define continuous
real-valued functions f, and go on X with values in [0,1] such that f, is equal to one
at some point of U, and vanishes outside of Us, go(a) =1 and g, vanishes outside
Vo. For any points z,y,z,t € X put

d((z,9),(2,)) = Z fa(2) - 9a(y) — fa(z) - ga(t)] .

a<lT

Since the family {Uy X Vo : @ < 7} is discrete in X%, d is a continuous pseudometric
on X2. Obviously, d €< 1. Define an entourage W of the diagonal in X* by W =
{(z,y,2,t) € X*: d((=,¥),(2,t)) < 1}. Then W € Ux2. We claim that the existence
of W contradicts (1).

Let O be any open neighbourhood of the identity in F(X). Put V(a) = X\ a-O;
V(a) is an open neighbourhood of a in X. Since a ¢ Int [}, one can find an ordinal
a < 7 such that V(a)\ Vo # 0. Pick points b € V(a)\V, and z € U, with fa(z) =1.
We have

d((z,a),(z,b)) 2 |fa(z) - ga(a) - fa(z) - 9a(b)| = |gala) — ga(b)| = 1,

because b ¢ V, and go(b) = 0. So, (z,a,2,b) ¢ W. On the other hand, (z-a)™" -
(z-8)=a'-b€O,for be V(a) C a-O. Thus, we have proved that Wo \ W # 0
for every neighbourhood O of the identity in F(X), where Wo = {(z,y,2,t) € X4
y~l-z71.2.te O}. This contradicts (1).

(2) = (4). Apply the above reasoning to the pseudometric p on X? defined by
o((z,9),(2,1)) = d((y,2), (¢, 2)).

(1) = (3). Let (1) hold. Since (1) implies (4), there exists an infinite cardinal T
such that X is a P,-space and X? (and, a fortiori, X ) is pseudo-r-compact. In its
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turn, this and Theorem 2.1 together imply that *V|x3: = Ux x Ux . This equality and
(1) imply that Uxs =Ux x Ux.

(2) = (3). Just repeat the above argument with V* instead of *V and apply (2)
instead of (1).

Thus, we have now proved the equivalence of (1), (2) and (3).

(4) = (5). We use the argument from [1]. Let Z be a zero-set in X x X and
f:X x X —[0,1] a continuous function such that Z = f~!(0). Assume that n(Z) is
not closed in X and choose a point a € clw(Z) \ n(Z), where = is the projection of
X xX onto the first factor. We can assume that f(a,z) = 1 for each z € X — otherwise
consider continuous function g on X x X defined by g(z,y) = min{f(z,y)/f(a,¥),1}.
Since X is a P,-space, we can define by induction a sequence {(zq4,¥a): & < 7} of
points of Z and two sequences {W, : @ < 7} and {W : @ < 7} of open subsets of
X x X such that W, = U, x V,, is a neighbourhood of (z,ya) satisfying f(W,) C
[0,1/3], W) = Ul x V, is a neighbourhood of (a,y.) satisfying f(W.) C [2/3,1],
and clUs C Ug, Uas1UUSy, C Us whenever f < a < 7. It is easy to verify that
the family {W, : & < 7} of open sets in X x X is locally finite, contradicting the
pseudo- T-compactness of X x X .

(1) = (6). It suffices to show that (3) implies (6). Let (3) hold. Consider two
cases. .

() X is not a P-space. Since (3) implies (4), X? is pseudocompact. By a theorem
of Glicksberg [4], B(X?) = BX x BX . Hence, to prove (6), one can assume that X is
compact. To this end, use the well-known facts that a quasicomponent of any point in
a compact space coincides with its component (see Theorem 6.1.23 of [2]) and that a
product of two connected sets is connected.

(b) X is a P-space. Let v be a disjoint open cover of X2. Define a continuous
pseudometric d on X? by d(a,b) = 0 if both a and b lie in the same element of v
and d(a,b) = 1 otherwise. By (3), there exists a continuous pseudometric ¢ on X
such that the conditions p(z,2) < 1 and g(y,t) < 1 imply d((z,y),(z,t)) < 1 for all
z,y,2,t € X. Consider the equivalence relation ~ on X defined by z ~ y if and only
if o(z,y) = 0. The relation ~ defines a partition p of X to disjoint open sets, because
X is a P-space. The definition of p implies that the cover {U x V : U,V € p} refines
v.

(5)&(6) = (1). Assume that both (5) and (6) hold and deduce (3). Consider two
cases.

(a) X is not a P-space. Then (5) implies that X is pseudocompact (otherwise one
can define a zero-set in X x X with a non-closed projection). By a theorem of Tamano
(see Problem 3.12.20(b) of (2]), pseudocompactness of X and (5) together imply that
X? is pseudocompact. Therefore, B(X?) = X x X, which gives us (3).
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(b) X is a P-space. Then (6) implies (3). Indeed, let d be any continuous pseu-
dometric on X2 and ~ be an equivalence relation on X? defined by a ~ b if and only
if d(a,b) = 0. Since X and X? are P-spaces, the relation ~ defines a partition «
of X? into open subsets. By (6), there exists a disjoint open cover u of X such that
{U XV :U,V € p} refines . Define a continuous pseudometric g on X by o(z,y) =0
if both z and y lie in some element of p, and g(z,y) = 1 otherwise. It is clear that
o(z,z) <1 and p(y,t) < 1 imply d((z,y),(z,t)) =0 for all z,y,2,t € X. This proves
(3), and hence (1). i

QUESTION 3.2. Does the condition (4) of Theorem 3.1 imply (1)?

4. TREATING PROBLEM C

We prove that every k,-space X satisfies the equality *V*|x2 = Uxz and charac-
terise metrisable spaces satisfying this equality. However, we still have not a complete
solution of Problem C. The case of a k,-space X is considered first. Recall that X is
a k,-space (see [3, 7]) if there exists a countable increasing sequence {K, :n € N} of

compact sets in X such that X = |J K, and a subset F' of X is closed if and only
neN

if FN K, is closed for each n € N*.
Denote by Cy(X) the linear space of all continuous real-valued bounded functions
on X with the sup-norm defined by ||f| = sup |f(z)].
z€X

LEMMA 4.1. Let X bea k,-spaceand U an open neighbourhood of the diagonal
Az in X*, Ay = {(z,y,2,y) € X*: z,y € X}. Then there exists a continuous mapping
f: X — Cy(X) such that for any z,y,z,t € X the inequalities

(IL) 1@ - I1F @) — F@OU <1, [ - If(w) - FOI < 15
(IR) WA - 1£(=) — £ <1, IFEN - N1 f(=) — f(2)ll <1

imply that (z,y,z,t) € U.

PROOF: There exists an increasing sequence {X, : n € N} of compact subsets

of X = |J X, which determines the topology of X according to the definition of
neEN
a k,-space. Being o-compact and, a fortiori, paracompact, the space X? admits a

continuous pseudometric d such that {(z,y,2,t) € X*: d((z,9),(2,t)) <1} CU. (Use
Corollary 8.1.11 of [2].) Let M be the family of all continuous mappings of X onto
second-countable spaces. The family M is Ry-complete, that is, a diagonal product of
any countable subfamily of M (considered as a mapping onto its image) belongs to M.
Put VN = {p*: ¢ € M}. Then the family A is Ry-complete and generates the topology
of X*. Since X* is o-compact, and hence Lindelsf, Corollary 1 of [13] implies that
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N has the factorisation property, that is, for every continuous mapping p: X* - R
one can find ¥ € A and a continuous mapping q : ¢(X4) — R such that p = qo 9.
In particular, there exist ¢ € M and a continuous pseudometric d; on u(X) x ¢(X)
such that d((z,y),(z,t)) = di((¢(z),¢(¥)), (¢(z),¢(t))) for all z,y,2,t € X. Denote
Y = ¢(X). Let po be a metric on Y generating the topology of Y. Of course, we can
assume that |Y| > 1. One can find a,b € Y and an integer k such that k- go(e,b) > 2.
Put p = min {1,kg0}. Then g is a continuous pseudometric on Y with the following
property:
(*) for any point z € Y there exists y € Y such that o(z,y) =1.

The function g, defined by g2((z,%),(2,t)) = o(z,2) + o(y,t) for all z,y,z,t €Y
is a continuous metric on Y?2. For every point (z,y) € Y2 denote

B(z,y) = {(=,1) € Y?: di1((z,9),(z,t)) < 1} and e(z,y) = o2 ((:c,y),Y2 \B(z,y)).

Obviously, e(z,y) > 0 for all z,y € Y. Since Y, = ¢(X,) is compact, for every

n € N there exists £, > 0 such that p,(Z, ¥) < €n implies d,(Z,y) <1 for all Z,7 €

Y?. Denote V,, = {(z, y) € Y?: p2((z, y), i) < €n/2}, an open neighbourhood of ¥?

in Y2. By compactness of Y,,, there exists an open subset O,, of Y such that Y, C O,

and O, x O, C V,,. For every n € N define a continuous real-valued function h, on Y

such that hn(Y) = 0, An(Y \ On) = 4/enss and hn > 0. Thenput b= 3° hy, where
n=1

ho =4+ 4/eo. Obviously, 4 < h(y) < oo for each y €Y, but A can be discontinuous.
We claim that the function h = ho ¢ on X is continuous. This readily follows from

the fact that X is a k,-space with the decomposition X = U X, and the choice of

the functions h,; n € N. Put g(z,y) = o(¢(z),¢(y)) for :c,y € X. Clearly, p is a
bounded continuous pseudometric on X.

Consider the mapping f: X — Cy(X) defined by [f(z)](y) = k(z)-3(z,y); =,y €
X . Obviously, [|f(z)|| < R(z), because g < 1. On the other hand, (*) implies that
there exists a point y € ¥ such that g(z,y) = 1; hence ||f(z)|| = R(z) for each z € X.
Let us check the continuity of f. For any z1,2;,y € X we have

W(z1)(e1,) ~ B(22)&(23,9)| < [Me1)2(e1,) - Blz)Ela2,9)|
+ Z(751)5(22,11) - 7&(22)5(3:2,!1)| < z(-‘131)21'(“51,22) + |71(zl) — h(z2)|-

Taking the supremum over y € Y in both left and right parts of the above inequalities,
we get [|f(z1) — f(z2)ll € R(z1) - e(z1,22) + |‘I;(a:1) —Tz(zz)l. The latter inequality
implies the continuity of f.

We claim that the mapping f is as required. To this end, one auxiliary assertion
will be useful.
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CrLaM. [[f(a) — f(b)]| > 8(a,b) for all a,b € X. Moreover, if p(a) ¢ O, for some
n € N then | f(a) ~ f(b)|| 2 8(a,b)/ent1-

Indeed, by the definition of the sup-norm and the function f we have ||f(a) — f(b)]|
> Tz(a)E(a,,y) - Z(b)’é’(b,y) for each y € Y. Putting y = b in the above inequality,
we get [|f(a) — f(b)|| > R(a)a(a,b) > &(a,b), because h(a) = h(p(a)) > 1 for each
a € X. Furthermore, if ¢(a) ¢ O, then the definition of the function h implies
h{¢(a)) = 1/ensy1, and hence |[f(a) — f(B)| > Z(a)'ﬁ(a, b) > p(a,b)/ept1. This proves
the claim.

Let z,y,2,¢t be arbitrary points of X satisfying (IL) and (IR). Denote 2' =
e(z),...,t' = (t). First, we show that di((2',y'),(#',t')) < 1, or equivalently,
d((z,y),(2,t)) < 1. Consider two cases.

Case 1. {z',y',2',t'} C Op. By the definition of Vy and Oy, we have (z',y') > €0/2.
By the definition of £(z',y'), the latter inequality means that d;((z',y'),(z',t")) < 1
whenever the point (2',t') € Y2 satisfies the condition g2((z',3'),(2',t')) < €0/2. So,
it suffices to check the inequality g2((z',¥'),(2',1')) < €/2. Using (IL), (IR) and the
Claim, we have

o(z',2') = 8(=,2) < 1f(2) = £(2)]| < 1/ | F(®)l| = 1/R(y) < €0 /4,

because h = poh and h > 4/eq. The same argument shows that p(y',t') < &0/4.
Thus, g2((=',v'),(2',t')) = eo(2',2') + o(y',t') < €o0/2, which implies the inequality
di((z',9'),(#,#)) < 1.

CastE 2. {',y,2",'} \ Oy # 0. Let n be the maximal integer with the property
{z',y',2',t'} \ On # 0. Without loss of generality we can assume that z’ ¢ O,. From
the definition of n it follows that (z',3') € Opnt1 X Ont1 € Vigs, and hence e(z',y') >
€n+1/2. The definition of k and the fact that z' ¢ O, imply h(z') > 4/eat1. Apply
Claim and (IL), (IR) to get the following estimate:

e(y',t') = 2(y,1) < If () — FOI < /NI f(=)l| = 1/h(=") € ensr/4.
Then apply the “p(a) ¢ O,” part of the Claim and (IL}, (IR) to the points z,y, z, ¢:
olz',2') = o(=,2)  ens1 - | £(2) = f(2) € enta/ IF ()| < €nt2/4,
because ||f(y)l| = A(y') and h > 4. This implies the estimate
ex((=',9'), (2", ¢)) = o(2',2") + o(y',t') < €nt1/4 + €ns1/4 = €nt1/2-

Since e(z’,y') > €n41/2, the above inequality implies that di((z',y'), (2',t')) < 1. (The
argument here is just the same as in Case 1.)
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So, the inequality d((z,y),(z,t)) < 1 is proved. From the definition of the pseu-
dometric d it readily follows that (z,y,2,t) € U. This completes the proof. 0

THEOREM 4.2. If X is a k,-space then *V*|x2 = Uxa.

PROOF: Let U be an open entourage of the diagonal A; in X*. Define a
continuous mapping f : X — Cy(X) as in Lemma 4.1. Put g(z) = ||f(z)|| and
e(z,y) = |If(z) — f(y)|| for all z,y € X. Then gy = min {g,1} is a continuous
bounded pseudometric on X, and we can apply Theorem 2.1 of [17] to the function f
and the pseudometric g, to get two continuous seminorms N; and N, on the subgroup
G(X) of F(X) satisfying the following conditions for all z,y,2,t € X:

(1) N,(y'l -zt 2. y) = g(y) - o1(z,z) and N,.(z cy-2z7t- 2:_1) = g(z)-
o1y, 2);

(2) My t-zl-z-y) € Ny ' z7'-z-t) and No(z-y-t71-27!) <
N,(z sy-t7t. z'l).

Put N = N;+ N, and define an open neighbourhood O of the identity in F(X) by
O ={g€ G(X): N(g) < 1}. We claim that the element Vo = {(g,h) € F(X)x F(X):
gl-h€ 0, g-h™! € O} of the uniformity *V* on F(X) satisfies the condition
Vo N (X2 x X2) C U. (Recall that we identify X2 with the image 12 (X?) C F(X)
under the homeomorphic embedding i;, where i3(z,y) = z - y.) Indeed, let z,y,z,t
be arbitrary points of X and suppose that ((z,y),(2,t)) € Vo. By the definition of O
and Vo, we have

Nl(y'1 cg1 -z-t) = N,(t_1 .zt -:c-y) <1
and N,.(:l:~y-t'1 -z_l) = N,(z-t-y'1 -:c‘l) <1

Use (1) and (2) to conclude that

WFN - f(=) — <1, [F - 1Lf(=) = f(2)Il < 1,
W@ - If) - FON <1, AN - () = £l < 1.

These inequalities and the choice of the mapping f together imply that ((z,y),(z,t)) €
U. Therefore, the inclusion Vo N (X x X 2) C U is proved.

Theorem 4.4 below gives a solution to Problem C for metrisable spaces. We start
with an auxiliary result.

Let v be a cover of a space Y and y,,y, € Y. We say that y; and y, are v-
neighbours and write y; ~ y, if there exists U € v such that y;,y2 € U. Again, Cu(X)
stands for the linear space of continuous real-valued bounded functions on X with the
sup-norm.
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LEMMA 4.3. Let K be a compact space with a metric px and X a locally
compact metrisable space. Then for any open covers v; of X x K and 72 of K x X
there exists a continuous mapping f : X — Cy(X) such that forall a,b € K andz € X
the inequality ||f(z)|| - ex(a,b) < 1 implies that (z,a) % (z,b) and (a,z) < (b,z).

PROOF: Every locally compact metrisable space is a free topological sum of its open

o-compact subspaces [2, Theorem 5.1.27], so we can assume that X is o-compact.
[+ -]

Represent X as a union |J X;, where X; is open in X, clX; C X;4; and clX; is

i=1

compact for each 1 € N*. Let d be a metricon X, d < 1. Denote by iy the standard
embedding of X to Cy(X), [io(a)](z) = d(a,z) for all a,z € X. Obviously, we have
[lZ0(a) — 20(b)]] = d(a,b) for all a,b € X, so iy is a homeomorphic embedding.

Define metrics £, and k; respectively on X x K and K x X by x1((z,a),(,8)) =
d(z,y) + ex(a,b) = x2((a,z),(b,y)) forall a,b € K and z,y € X. Forevery j€ N*,
let €, be a Lebesgue number of the cover {V N (X; X K): V € 11} of the compact
space clX; x K with respect to &, that is, a positive real number with the property
that every pair of points Z,7 of clX; x K satisfying 1(Z,y) < €;,1 is contained in
some element of v;. Analogously, we define ¢;, as a Lebesgue number of the cover
{VN(K xclX;):V € v,} with respect to x,.

Denote by n; a positive integer with 1/n; < min{ej1,6j2}; 7 € Nt. There
exists a continuous mapping g : X — R such that g(z) > n, for each z € X; and
g(z) = nj4y for each z € X;j41 \ X;, j € N*. Indeed, for every j > 2 we can find a
continuous function g; : X — R such that gj(z) = nj;; whenever z € cl X;4; \ Xj
and gj(z) = 0 for each z € cl X;_; |J(X \ X;4+2). Let also g; be a continuous function
such that gi(z) = max{n,,n2} for all z € c1 X, and g;(z) = 0 for each z € X \ X5s.
Then the function g = § g; is continuous and has the above property.

j=1

Put f(z) = g(z) - io{(z) for every z € X. Obviously, the mapping f : X —
Cis(X) is continuous. Let points a,b € K and z € X be arbitrary and suppose that
[1f(2)ll - ex(a,bd) < 1. Denote by j the minimal integer with z € X;. Then ||f(z)|| =
lg(=)| - llio(2)|l = g(z) > nj. It is clear that ,((z,a),(z,d)) = d(z,z) + ox(a,b) =
ok(a,b), and hence

1> || f(2)ll - ex(a,b) > n; - ex(a,b) = n; - £1((=, a),(2,))-
So, the choice of n; and ¢; implies that (z,a) = (z,b). The same argument shows
that (a,z) = (5,z). 0
THEOREM 4.4. The following conditions are equivalent for any metrisable space
X:

(a.) *V‘lx: =uX2,'
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(b) either X is locally compact or the set X' of non-isolated points of X is
compact.

PROOF: (a) = (b). Assume the contrary. Let X be not locally compact and
X' be not compact. By our assumption, there exists a point a € X the closure of
any neighbourhood of which is not compact. Using the non-compactness of X', we can
choose a base {U, : n € Nt} of X at a such that clV,4y1 C Va, clV, \ Vay is not
compact for each n € Nt and X'\ V; is not compact as well. For every n € N*
choose an infinite closed discrete subset {znx : k € Nt} of X lying in V, \ Voy.
Let also {yn : n € N*} be an infinite closed discrete subset of X'\ V;. For every
n € N* choose a sequence {z,;:1 € Nt} C X \ (V4 U{yn}) converging to yn. It
is easy to see that the set F = {(Zn,ky2n k)Znk,Yn) : B,k € Nt} is closed in X*.
Let Az = {(=,y,2,y) : 2,y € X} be the diagonal in X*. Obviously, F and A, are
disjoint, so U = X*\ F is an open neighbourhood of A; in X*. The metrisability of
X implies that U € Uxa .

Let O be an arbitrary neighbourhood of the identity e in F(X). There exists a
neighbourhood O; of e such that Oy ! = 0, and 0% C O. Choose a neighbourhood
O of e sothat 0;' =0, C O and a-0;-a™ ! C O;. Put W =X nN(0;-a). Since
the sets U,, n € N1, form a base of X at a and W is a neighbourhood of the point
ain X, there exists an integer p € N* such that z,x € W forall n > p and k€ N*
(it suffices to choose p with U, C W). Choose Il € Nt so that zpx € O, - y, for all
k > 1. The choice of | implies that

(1) zp,py;lEOzandyp-z;,lEO;l:Oz.
We have also
(2) 2p1 (294 9;') 2,1 €(01-a)-0z-(a™* - 07') = O1-(a- 02 -a71)-0: S 03 C 0.
Consider the entourage Up of the diagonal in X* generated by O,
Uo ={(z,y,2,t) € X*:z-y-t7' .27 €Oandy -2 -2-t € O}.

Then Up € *V*|x2 and from (1), (2) and the inclusion O, C O it follows that
(zp,05 2p,1,Zp,1,¥p) € Uo N F. Thus, we have proved that Uo \ U # 9 for each neigh-
bourhood O of the identity in F(X), that is, *V*|x2 # Ux2.

() = (a). We consider two cases.

I. X' is compact. Let U be an open entourage of the diagonal A, in X*. Since
X? is paracompact, there exists an open symmetric neighbourhood U; of A, in X*
such that U; o U; C U. Denote by gy a bounded metric on X that induces the
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topology of X. Define another metric ¢ on X by g(z,y) =0 if z = y and p(z,y) =
inf{go(z,a) + go(a,y) : a € X'} otherwise. We omit an easy proof of the fact that
¢ satisfies the inequality of triangle, is continuous bounded and generates the same
topology of X. From the definition of g it also follows that

(3) olx' = polx' and p(a,b) > o(a,X') for all a,b € X, a #b.

Since X' is compact, there exists € > 0 such that (z,y,2,t) € U; when-
ever z,y € X', 2,t € X and p(z,2) < ¢ p(y,t) < €. Put V = {&c € X :
o(z,X') < €/2}. Then V is a clopen neighbourhood of X' in X. Using the com-
pactness of X' once again, for each ¢ ¢ X \ V choose £, > 0 so that all the points
(z,t,2,y), (2,y,2,t), (t,2,9,2), (y,2,t,2) belong to Uy forall y € X' and t € X
satisfying o(y,t) <e..

Denote by Cy(X) the space of all continuous real-valued bounded fur.ctions on X
with the sup-norm ||-||. Let A : X — R be a continuous function such that h(y) >
1+2/e forall y € X and h(z) > 1+ 2/e, for all z € X \ V. Define a mapping
f: X > Cu(X) by [f(=)](y) = h(z) - o(z,y); z,y € X. Apply the argument in the
proof of Lemma 4.1 to verify that f is continuous and has the following properties:

(4) (=) = F(W)I > (1 +2/¢) - o(=,y) for all 2,y € X;
(5) 1 f(=) = fF(¥)ll 2 (1 + 2/ez) - o(z,y) wheneverz € X\ V and y € X.

In particular, the inequality ||f(z) — f(¥)|| = o(z,y) holds for all z,y € X.

Put gi(z,y) = ||f(z) — f(y)|| for all z,y € X and apply Theorems 2.1 and 2.3 of
[17] to the metric g, and the function f on X to obtain continuous seminorms N; and
N, on G(X) satisfying the following conditions for all z,y,2,t € X:

() My -27'-z-y) = f(¥)l-ei(z,2) and No(z -y - t71-271) = || f(=)]|-
gl(yat);

(@) M(y™'-z7t-z-t) > e1(z,2)+oi(y,t) and No(z -y - t71 - 271) > py(z, 2)
+ 01(y,1).

We put N = N;+ N, and O = {g € G(X) : N(g) < 1}. Then O is
an open neighbourhood of the identity in F(X) and we claim that the entourage
Vo ={(z,y,2,t) € X*:y -2 - 2-t€0, z-y-t71-27! € O} of the diagonal A,
in X* is contained in U. Indeed, if (z,y,2,t) € Vo then Ni(y™!-z71.2-¢) <1 and
Ny (z-y-t7t. z~') < 1. Suppose that {z,y,2z,t} C V. There exist points z;,; € X'
such that g(z,z;) < e/2 and o(y,y1) <¢/2. Applying (4) and (ii), we get

2/e - o(z,z) < p1(2,2) S Np(z-y-t71 - 271) < 1, that is, o(z,2) < /2.
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From the choice of the point z, it follows that g(z,z,) < €/2; therefore p(z1,2) <
o(z1,z) + o(z,z) < €/2+ €/2 = e. Analogously, one can show that g(y1,t) < €. These
two inequalities and the choice of € together imply that (z1,y1,2,t) € U1. By the same
reasoning we also have (z1,y1,z,y) € U;. It remains to note that U; is symmetric,
and hence (z,y,2,t) €U0 U; CU.

We can now assume that {z,y,2,t}\V 3 0. It suffices to consider thecase z ¢ V.
We claim that z = z. Indeed, by (3), g(z,2) > o(z,X') > ez/2 if 2 # z. So, (i1) and
(5) imply that

N,.(:c cy-t? -z'l) 2 o01(z,2) 2 2/e; - o(2,2) 2 1,

which contradicts the inequality N, (:c cy-t7t. z’l) < 1. Thus, z = z. Further, by (i)
and (5), we have

1> Nf(z ‘Y- . z—l) = "f(z)” ' Ql(y,t) 2 2/52 : Q(yat)’ that is, g(y,t) < ez/z'

We claim that either y = ¢ or g(y,X') < €2/2. Suppose not, let y # t and p(y, X') 2
€z/2. Then po(y,t) 2> o(y,X') 2 €2/2 by (3), which contradicts the above inequality.
The case y =t is trivial: (z,y,2,t) = (2,¥,2,y) € Az C U; hence we assume that
y # t. There exists a point y; € X' such that p(y,¥1) < £2/2, and we have o(y1,t) <
o(v1,y) + o(y,t) < €2/2 + €./2 = €., that is, p(y1,t) < €,. Since y1 € X', these
two inequalities together with the definition of ¢, imply that (z,y,z,y1) € U; and
(z,91,2,t) € Uy. Therefore, (z,y,2,t) = (z,y,2,t) € U1 oUy C U. This completes the
proof of the inclusion Vo C U. Since the entourage U of the diagonal A, in X* was
chosen arbitrarily and Vg € *V*|x2, the equality Uxz = *V*|x2 is proved.

II. X is locally compact. Suppose we are given an entourage U of the diagonal A, in
X*, U € Uxa. Choose an entourage V of A, in X* with VoV C U. There exists
an open cover 7 of X? such that (J{A x A: A€ v} C V. Since X is paracompact,
there exists an open locally finite cover gy of X such that ¢I W is compact for each
W € p. Let g be a bounded continuous metric on X such that {(z,y) € X? :
o(z,y) <1} CUY{W x W : W € u}. By Lemma 4.3, for every W € p there exists
a continuous mapping fw : X — Cp(X) such that for all a,b € clW and z € X the
inequality ||fw(z)| - o(a,b) < 1 implies that (z,a) X (z,b) and (a,z) X (b,z). Apply
Theorem 3.1 of [17] to define a continuous seminorm N on G(X) such that N(g) >
2(g,¢) for each g € G(X) (2 is the Graev extension of g to an invariant pseudometric
on G(X)) and N(a®-2z°-y~°-b7%) 2 max{||fw(a)|, | fw(®)|l} - o(z,y) whenever the
points a,b,z,y € X satisfy the conditions N(e®-z° -y~ °-b7°) < 1, € = %1 and
z,y € W € p. Then O = {g € G(X) : N(g) < 1} is an open neighbourhood of the
identity in F(X), and we claim that the entourage

Uo = {(a,z,b,y) e X*:a-2-y7 - b7 €0,z . a"?-b-yc O}
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of the diagonal A; in X* is contained in U. Indeed, let (a,z,b,y) € Uo. Then
N(@a-z-y™*-b7!) <1 and N(z7'-a!-b-y) < 1. Since N(g) > 2(g,¢) for each
g € G(X), we have

e(a,b) +o(z,y) =2(a-z -y b7 e <N(a-z-y7'-577) < 1.

In particular, g(a,b) < 1 and g(z,y) < 1. The choice of g implies that there exist
elements W, W' of u such that a,b € W and =,y € W'. By the choice of N, we have
| fw(a)ll-e(z,y) < N(a-z-y™*-b71) <1 and ||fw(y)]-0(a,) S N(z™'-a=!-b-y) <
1. In its turn, the choice of the functions fi and fy» implies that (a,z) 2 (a,y) and
(a,%) R (b,y). Since YU{A x A: A € 4} C V, we conclude that (a,z,a,y) € V and
(a,y,b,y) € V. It remains to note that VoV C U, and hence (a,z,b,y) € U. This
proves the inclusion Up C U. 0
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