A note on centralizers of involutions involving simple groups

Donald Wright

If a finite group G has a 'central' involution t whose centralizer in G is $\langle t \rangle \times H$ then, under certain conditions on H, G cannot be simple.

The purpose of this note is to observe the following generalization of the theorem of [1]. Let $i(X)$ denote the number of conjugacy classes of involutions of a group X.

THEOREM. Let G be a finite group possessing a 'central' involution t such that $C_G(t) = \langle t \rangle \times H$ where H is a non-abelian simple group such that

(i) the centre of a Sylow 2-subgroup S of H is cyclic, and

(ii) the involution τ of $Z(S)$ is a square in H.

Then

(a) if $i(H) = 1$ then $G = O(G).C_G(t)$;

(b) if $i(H) = 2$ then G has a subgroup of index 2.

Proof. Let χ denote the permutation character of the representation of G on the left cosets of $C_G(t)$. Suppose $i(H) = 1$. Since t is a non-square in G, (ii) implies that $t \nmid \tau$ in G. If $G \neq O(G).C_G(t)$ then $t \sim \tau t$ from [2]. By inducing the identity character of $C_G(t)$ to G one sees that $\chi(t) \equiv 0 \pmod{2}$. Therefore

Received 26 February 1976.

425
\[[G : C_G(t)] = \chi(1) \equiv 0 \pmod{2}, \]

contradicting the fact that \(t \) is 'central' in \(G \).

Suppose \(i(H) = 2 \) and let \(\tau \in H \) be an involution not conjugate to \(\tau \) in \(H \). Again \(t \perp \tau \) in \(G \). If \(t \sim t\tau \) in \(G \) then, since \(Z(S) \) has a unique involution, one again obtains \(\chi(t) \equiv 0 \pmod{2} \) and \(\chi(1) \equiv 0 \pmod{2} \), a contradiction. Therefore \(t \perp t\tau \) in \(G \). Suppose \(G \) has no subgroup of index 2. Then by a well-known transfer lemma (see, for example, [3], p. 265) \(S \) must contain a representative of each conjugacy class of involutions of \(G \). Therefore \(i(G) = 2 \). Since \(t \) is conjugate in \(G \) to neither of \(\tau, t\tau \), one must have \(\tau \sim t\tau \) in \(G \). Since \(Z(S) \) has a unique involution one sees that \(\chi(\tau) \equiv 0 \pmod{2} \). Therefore \([G : C_G(t)] = \chi(1) \equiv 0 \pmod{2} \), contradicting the fact that \(t \) is 'central' in \(G \). The theorem is proved.

REMARK. Most of the sporadic simple groups, including the Mathieu groups, satisfy the conditions imposed on \(H \).

References

Department of Mathematics,
Monash University,
Clayton,
Victoria.