One health surveillance strategy for coronaviruses in Italian wildlife

Stefania Leopardi*1,2, Rosanna Desiato3, Matteo Mazzucato1, Riccardo Orusa3,4, Federica Obber1, Daniela Averaimo5, Shadia Berjaoui5, Sabrina Canziani6, Maria Teresa Capuccio7, Raffaella Conti8, Santina di Bella9, Francesca Festa1, Luisa Garofalo6, Davide Lelli6,10, Maria Paola Madraru11, Maria Lucia Mandola9, Ana Maria Moreno Martin6, Simone Peletto3, Silvia Pirani12, Serena Robetto1, Claudia Torresi12, Maria Varotto1, Carlo Citterio1 and Calogero Terregino*1

1 Istituto Zooprofilattico Sperimentale delle Venezie, Italy
2 Department of Veterinary Medicine, Università Aldo Moro di Bari, 70121 Valenzano, Italy
3 Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Italy
4 National Reference Center Wildlife Diseases, Aosta Valley, Quart, Italy
5 Istituto Zooprofilattico Sperimentale di Abruzzo e Molise, Italy
6 Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Italy
7 Department of Veterinary Sciences, Centro Animali Non Convenzionali (C.A.N.C), University of Turin, Turin, Italy.
8 Istituto Zooprofilattico Sperimentale di Lazio e Toscana, Italy
9 Istituto Zooprofilattico Sperimentale della Sicilia, Italy
10 Molecular Medicine PhD Program, Department of Medicine and Surgery, University of Parma, via Gramsci 14, Parma, Italy.
11 Istituto Zooprofilattico Sperimentale della Sardegna, Italy
12 Istituto Zooprofilattico Sperimentale di Umbria e Marche, Italy

*Corresponding authors: Stefania Leopardi: email sleopardi@izsvenezie.it, address Viale dell’Università 10, 35020 Legnaro (PD), Italy; Calogero Terregino: email cterregino@izsvenezie.it, address Viale dell’Università 10, 35020 Legnaro (PD), Italy

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.

https://doi.org/10.1017/S095026882300081X Published online by Cambridge University Press
Summary

The recent reinforcement of CoV surveillance in animals fuelled by the COVID-19 pandemic has provided increasing evidence that mammals other than bats might hide further diversity and play critical roles in human infectious diseases. This work describes the results of a 2 years survey carried out in Italy with the double objective of uncovering CoV diversity associated with wildlife and of excluding the establishment of a reservoir for SARS-CoV-2 in particularly susceptible or exposed species. The survey targeted hosts belonging to five different orders and was harmonized across the country in terms of sample-size, target tissues and molecular test. Results showed the circulation of eight CoV species in 13 hosts out of 42 screened. Coronaviruses were either typical of the host species/genus or normally associated with their domestic counterpart. Two novel viruses likely belonging to a novel CoV genus were found in mustelids. All samples were negative for SARS-CoV-2, with minimum detectable prevalence ranging between 0.49% and 4.78% in the 13 species reaching our threshold sample size of 59 individuals. Considering that within species transmission in white-tailed deer resulted in prevalence raising from 5% to 81% in few months, this result would exclude a sustained cycle after spillback in the tested species.
Introduction

Zoonoses have been affecting humans since ancient times, involving the transmission of pathogens from domesticated animals and wildlife. Some of these, such as HIV/AIDS and COVID-19, adapted to people and are no longer transmitted from animals, leaving evidence of previous spillover events. While the burden of these human diseases is currently unrelated to their original source, it points out the challenge of managing pandemics once host transfer has occurred and should encourage integrated research, surveillance and capacity buildings within the framework of “One Health”. This approach is critical to improve our understanding on the ecology of pathogens within their natural hosts and the factors increasing risks for human health[1].

Coronaviruses (CoVs) are under the spotlight as important agents of human novel Emerging Infectious Diseases (nEID), which pose a great threat due to the lack of knowledge about their characteristics and control strategies and to their increased pandemic potential caused by the fact that populations are often immunologically naïve[1]. Indeed, SARS-CoV, MERS-CoV and SARS-CoV-2 have been responsible of severe epidemics after shifting from animal sources, peaking in the current pandemic of COVID-19. Strong evidence supports that also HCoV-HKU1, HCoV-OC43, HCoV-229E and HCoV-NL63 originated from animals before adapting as human viruses causing mild flu-like symptoms[2,3].

Among seven human CoVs, five share their evolutionary history with bat viruses, supporting the critical role of these animals for human nEID. Indeed, bats are by far associated with the highest diversity among known CoVs. Whether related to a particular relationship between bats and coronaviruses or more simply to the high biodiversity within the order Chiroptera, such a diversity strongly increases the likelihood that also future nEID might emerge from these animals. However, the evidence for direct transmission from bats to humans is still lacking, while the role of other domestic and wild mammals as bridge or amplifying hosts is widely supported in all cases[3]. In addition, OC43 and HKU1 do not share any ancestry with bat viruses but are rather related respectively with variants found in livestock and rodents[2,4]. This scenario highlights the need to revisit current surveillance activities for CoVs that, up to now, have largely been focused on bats. Monitoring should include the screening of other mammals, not only as a reaction to specific epidemics but
also to gain a better knowledge on the diversity and distribution of CoVs. This approach would help unravelling evolutionary pathways and dynamics that might lead to the emergence of novel threats for humans[5–7].

In the aftermath of COVID-19, veterinary surveillance would also be critical to monitor SARS-CoV-2 as a zooanthroponosis, defined as an infection maintained by humans and naturally transmissible to animals[1]. During the pandemic, this virus infected a wide range of domestic, companion, wild and laboratory mammals, caused outbreaks in European farmed minks (*Neovison vison*)[8] and, more recently, established a sustained infection cycle in white-tailed deer (*Odocoileus virginianus*) of North America[9]. Extensive genetics and phylogenetic studies showed that animal sequences are associated with multiple lineages that circulated in humans and that no crucial mutations were fixed during amplification events. This finding supports the assumption that SARS-CoV-2 was and still is readily able to infect animals, despite its significant adaptation to humans[10]. The infection of animals with SARS-CoV-2 may impact on both public and animal health, depending on its ability to cause disease or to transmit, amplify and evolve in the new host[11]. Even if the current epidemiology of COVID-19 implies that people will be far more likely to acquire infections from other individuals, the establishment of an animal reservoir would increase challenges related to the control of the pandemic in the future and could sustain the emergence of novel variants showing increased pathogenicity, transmissibility or resistance to prophylactic and therapeutic agents[12].

The present study reports the results from the surveillance program for CoVs circulating in wildlife implemented in Italy between 2020 and 2022. Within this framework regional veterinary laboratories exploited existing programs of passive surveillance to collect and screen carcasses of different wild mammals with a harmonized approach, including the selection of target species and tissue and the molecular method used. The study highlighted the importance of strengthening and harmonizing surveillance programs for pathogens along the human-wildlife interface, provided novel insights into the ecology of CoVs circulating in European wildlife and excluded high circulation of SARS-CoV-2 within tested populations.
Methods

Screening. This survey was implemented and harmonized across Italy by eight laboratories belonging to the network of the Istituti Zooprofilattici Sperimentali, in collaboration with the University of Turin for sample collection. In order to maximize sample size and obtain robust data, we targeted specific host, including species that were known reservoir of CoVs (i.e., bats), potential reservoirs of CoVs associated with the domestic counterpart (i.e., wild canids), considered particularly susceptible to SARS-CoV-2 (i.e., cervids) or particularly exposed to spillback events due to their urban and synanthropic habits (i.e., foxes) (Table 1). For all species, we aimed to test at least 59 individuals in order to secure minimum detectable prevalence of 5% or lower with a 95% confidence. However, we also screened few individuals or rarer species, whose results were analysed together with hosts from the same family/order. We obtained carcasses exploiting passive surveillance for animal diseases and in collaboration with wildlife rescue centres (WRC). During necropsies we determined the sex, age and physiological status of all animals and collected samples of lungs and intestine.

Depending on the laboratory, samples were homogenized in sterile PBS using the TissueLyser (Qiagen, Hilden, Germany) or the Omni Bead Ruptor (Omni International, Bedford, USA); nucleic acids were extracted using MagMAX Viral/Pathogen-II/Gen on KingFisher Magnetic Particle Processors (Thermo Fisher Scientific, Waltham, USA), DSP Virus/Pathogen Mini Kit on QIAasympohy (Qiagen), Maxwell RSC viral total nucleic acid purification kit on Maxwell® RSC48 (Promega, Madison, USA), or QIAAMP Viral RNA Mini Kit (Qiagen). Molecular screening was performed using a pan-coronavirus nested RT-PCR[6]. All amplicons were sequenced using Sanger and considered positive when providing clear sequences showing highest match with CoVs using BLAST.

Phylogenetic analyses. We aligned original sequences using the online tool Mafft with the G-INS-I setting[13] with reference CoVs, CoVs showing highest BLAST identity and CoVs associated with target hosts, sampled in Italy and abroad. We then inferred a maximum likelihood (ML) phylogenetic tree using phyML (version 3.0) implemented in Seaview (Lyon, France), employing the LG+G4 substitution model, a heuristic SPR branch-swapping algorithm, and SH-like branch supports[14] and edited it using iTol[15]. We used MEGA.7 to
determine pairwise, within and between clusters genetic distances for taxonomic attribution. We classified viruses within existing subgenera based on their nucleotide identity with reference strains, using 77.6% and 71.7% as threshold for alpha- and beta-CoVs respectively, as suggested elsewhere[16]. In addition, we considered sequences sharing more than 90% amino acid identity as probable members of the same species[17].

Data recording, spatial and statistical analyses. A dedicated webGIS application allowed partners to record samples as georeferenced terms using different base-maps and to associate sampling date, host species, age, sex and laboratory results. We implemented the server-side of the application in JAVA running on Tomcat application Server and the client-side in HTML5, combining different JavaScript framework to manage user interface and spatial engine. Layers were generated using standards Web Services published by GeoServer. At the end of the survey, we downloaded WebGIS data as excel files for downstream statistics and to generate maps showing the distribution of samples using qGIS.

In case of CoV detection, we calculated the observed prevalence within orders, families and for the species with sample size of 59 individuals or higher. For these species, we also determined the minimum detectable prevalence, allowing us to define that the circulation of CoVs was below a certain level upon the negativity of all samples. This data was calculated regardless the detection of CoVs within the sample. Indeed, seen our pan-coronavirus screening, a certain host species could be still considered negative for the detection of other CoV species, with special interest for SARS-CoV-2. Observed and minimum detectable prevalence were calculated assuming a large population, a test sensitivity of 100% and a confidence of 95% and 97.5% respectively, using Stata statistical software v17.0 (Stata Corp., College Station, TX, USA) and Epitools Epidemiological Calculators (Ausvet).

For Merbecovirus Hedgehog coronavirus 1 (EriCoV) and Alphacoronavirus 1 (αCoV-1), which were most frequently found in our sample, we evaluated the association between prevalence and the qualitative variables sex, age and tissue, using Chi-square test implemented in the online tool WinEpi.
Results

Samples included in this survey were collected from nine partners covering 1 to 3 Italian regions each, resulting in a good geographical coverage (Figure 1a). Although the number and type of species analysed differed among laboratories, animals of the orders Artiodactyla, Carnivora and Chiroptera were sampled by 8 out of 9 partners, while the European hedgehog (*Erinaceus europaeus*), order Eulipotyphla, was targeted by six. Four partners provided partial data also for rodents and lagomorph. Thirteen of the target species reached the threshold of 59 individuals, with the red fox (*Vulpes vulpes*) obtaining the highest geographical coverage (Table 1). In total, 87 out of 3311 screened individuals tested positive for CoVs in the lung (n:22), the intestine (n:62) or in both organs (n:9) across the territory (Figure 1b). Positive hosts belonged to 13 out of 42 tested animal species.

Hedgehogs accounted for almost half of positive individuals (43/87) and showed the highest prevalence (11.53%) if compared to Chiroptera (3.1%), Carnivora (1.53%), Rodentia (0.65%) and Artiodactyla (0.6%) (Table 1). We obtained negative results across members of the Lagomorpha. By considering the sample size of 55, the prevalence of any CoV in this order can be considered lower than the minimum detectable prevalence of 5.3% (LC 95%). Focusing on the species level, we determined CoV prevalence in seven hosts other than hedgehogs, including the grey wolf (*Canis lupus*) (3.52%), the Savi’s pipistrelle (*Hypsugo savii*) (3.42%), the Kuhl’s pipistrelle (*Pipistrellus kuhlii*) (1.57%), the crested porcupine (*Hystrix cristata*) (1.64%), the roe deer (*Capreolus capreolus*) (1.41%), the red fox (1.35%) and the Eurasian badger (*Meles meles*) (1.14%). In addition, we detected CoVs regardless of the small sample size in the pine marten (*Martes martes*) (1/27), the brown bear (*Ursus arctos*) (1/5), the cryptic myotis (*Myotis crypticus*) (1/2), the brown long-eared bat (*Plecotus auritus*) (1/2), and the common pipistrelle (*Pipistrellus pipistrellus*) (3/4).

Accurate classification of CoVs through whole genome sequencing (WGS) was beyond the objectives of this study. However, we were able to classify most strains within four subgenera (*Tegacovirus, Nyctacovirus, Embecovirus* and *Merbecovirus*) based on the nucleotide identity in 440 base pairs of the RNA-dependent RNA-polymerase (*RdRp*). Our sequences fell within six supported clusters with amino-acid identity higher than 90% with known CoVs, suggesting their grouping within correspondent CoV species (Table 2, Figure 2a).
We found two additional clusters in mustelids unrelated to any CoV, suggesting they belong to novel species hereafter referred to as meles coronavirus (melesCoV) and martes coronavirus (martesCoV). While most positive samples derived from the intestine, 7 out of 9 viruses were found in both the gastroenteric and respiratory tract (Figure 3).

Most positive hosts were associated with CoVs that had already been described in the same species. Viruses of hedgehogs showed amino-acid identity of 96.5% with EriCoV, which is broadly described in the country (Table 2). The virus was predominantly found in the intestine (p-value:0.006; prevalence ratio:2.27) (Figure 3), but not associated with either sex (p-value:0.71) or age (p-value:0.89). Phylogenetic analyses showed different clusters of eriCoV but no evidence for geographical differentiation (Figure 2a). Similarly, bat CoVs found in the study were genetically related to alpha and betacoronaviruses found in the same genera elsewhere, confirming their host-specificity. The virus from *Myotis crypticus* was most closely related with strains found in *M. bechsteinii* from Germany and *M. nattereri* from Italy, while viruses from Kuhl’s and common pipistrelles were associated with Italian sequences from the same species (Figure 2a). Interestingly, viruses from myotis and pipistrelle bats formed two sister clades sharing 97.6% amino-acid identity, which suggests they belong to the same putative species, hereafter referred to as non-classified bat alpha-CoV (Nc bat-αCoV). Nc bat-αCoVs shared 77% nucleotide identity with either *Nyctalus velutinus* alphacoronavirus SC2013 or Alphacoronavirus HKU33, allowing their putative classification within the subgenus Nyctacovirus. Two additional viruses from the common pipistrelle fell within another cluster sharing 86% amino-acid identity with Nc bat-αCoV and 83% nucleotide identity with the *Italian Pipistrellus kuhlii coronavirus 3398*, suggesting it likely defines a separate species within the subgenus Nyctacovirus, hereafter referred to as non-classified pipistrelle alphacov (Nc pip-αCoV). Phylogenetic and genetic analyses showed that all other bat sequences belong to the species *MERS-related coronavirus*, subgenus *Merbecovirus* (85% and 97% mean nucleotide and amino-acid identity). As for Nc bat-αCoV, bat MERS-like CoVs clustered upon the host, with one group including sequences from a brown long-eared bat, sampled here for the first time, and the other one shared between viruses from the genera *Hypsugo* and *Pipistrellus*. Both clusters were related to but distinct from MERS-CoV (Figure 2a).
As expected, we confirmed that wild mammals may be infected with viruses associated with their domestic counterpart. Among these, we found *Bovine coronavirus* (BoCoV) (species *Betacoronavirus 1*, subgenus *Embecovirus*) in the roe deer (99.1% mean amino-acid identity) and αCoV-1 (subgenus *Tegacovirus*) in wild canids, the brown bear, the badger and the crested porcupine (97.1% mean amino-acid identity) (Table 2). αCoV-1 showed gastroenteric tropism in wildlife as in pets (p-value:0.016; prevalence ratio:3.53), but it was also detected from lungs of foxes and wolves (Figure 3). Despite sequencing of the whole genome would be necessary for a correct taxonomic placement, partial sequences from this study fell in two phylogenetic groups related with *Feline coronavirus* (FeCoV) or *Canine coronavirus* (CaCoV) but showed no clustering upon the host species (Figure 2b). On the other hand, all sequences of BoCoV found in the roe deer clustered together in a separate clade compared to strains associated with cows in Italy and other ungulates sequenced elsewhere, with the main genetic distance of 2% at the nucleotide and 1% at the amino-acid level (Figure 2c).

Finally, we succeeded in the discovery of novel CoVs in mustelids. Among these, melesCoV have been characterized through next generation sequencing as belonging to a new putative *Epsiloncoronavirus* genus within the family *Coronaviridae* (Zamperin et al., 2023, under review). The virus was found in the intestine and lung of two individuals, with amino-acid identity of 92.4% supporting their placement under the same species. On the other hand, no further sequencing was possible for martesCoV, found in the lung of a pine marten, due to the low quality of the sample. Based on partial RdRp, the sequence clustered with melesCoV within the new genus, but low amino-acid identity of 63.2% supports its classification as a distinct species in a different subgenus.

As a major result, all samples were negative for SARS-CoV-2. Depending on the sample size reached among the consortium, the minimum detectable prevalence ranged between 0.49% and 4.78% (mean:1.99%), thus excluding the presence of the virus at higher levels in the tested species (Table 1).

Discussion
This study presents results of passive surveillance for CoVs implemented in Italian wildlife during the pandemic of COVID-19, similarly to other countries[18–22]. By standardizing the sampling approach to orders particularly susceptible or exposed to CoVs, the survey aimed at enhancing our knowledge on the host range of these viruses that, up to now, has been biased by different surveillance efforts in different animal groups. Indeed, wide spectrum molecular approaches for the identification of novel CoVs have been historically implemented in bats, while domestic mammals and other wildlife were mostly screened in response to specific emergencies targeting specific CoV species[5,6].

Due to the opportunistic nature of passive surveillance, we were not always able to reach the aimed sample size, but succeeded in screening at least 59 individuals for 13 species from five orders. Our data confirmed that, even in the absence of sampling biases, bats retain the highest number of CoVs across orders, likely due to their ancient evolutionary time and consequent diversification, providing various receptors for viruses and ways of exposure through different diets and ecological niches[7,23]. Bats showed the highest CoV diversity also at the genus/species level, with Pipistrellus kuhlii and Hypsugo savii being infected with two putative CoV species described in these same animals across Europe, including Italy[24–26]. This finding suggests that the diversification of bat CoVs might also be driven by more frequent recombination events favoured by multiple infections[27].

Interestingly, also the Eurasian badger was infected with two CoVs, namely the novel melesCov and αCoV-1. Despite this latter finding supports previous serological data[28], the two sequences of αCoV-1 from Italian badgers sampled in the same area were not related to each other, while they clustered with CaCoV and FeCoV from domestic and wild animals, suggesting they might result from cross-species transmissions. In addition, we cannot exclude the finding as related with the infection of preys contaminating the intestinal tract of the tested animal. Regardless of the role of badgers in the ecology of αCoV-1, our results point out that mustelids are another group that deserves particular attention. The affinity with diverse coronaviruses has already been supported by their susceptibility to viruses from three different genera, including the Gammacoronavirus found in Chinese ferret-badgers (Melogale moschata)[29], three Alphacoronavirus of the subgenus Minacovirus and the Betacoronavirus SARS-CoV-2, that are pathogenic for domestic ferrets.
(Mustela putorius furo) and minks (Neovison vison)[8,28,30]. Our discovery of two novel CoVs within the family adds up perfectly to these evidences and suggests they might still hide a wide viral diversity.

We detected no infections in rodents, besides the occasional finding of αCoV-1 in porcupines. This result is in contrast with recent evidence obtained worldwide that supports such a high frequency and diversity of CoVs in this vast animal group that could mirror what has been uncovered in bats in the past twenty years[4]. However, rodents have been screened only marginally in this survey and the threshold sample size was only achieved for porcupines (61 tested individuals, minimum detectable prevalence:4.78%). Because our results support that the observed prevalence of CoVs in wild animals screened through passive surveillance ranges between 1% and 3%, we suggest that opportunistic testing might not be effective for CoV detection. In this context, our negative findings in rodents and other species investigated with low coverage might be related to the small sample size other than the absence of infection. In line with what has been suggested by Anthony and colleagues, we suggest that a sample size of around 300 individuals per species would be more effective to exclude the association of animals with CoVs, by detecting a prevalence as low as 1%[17].

Compared to our average data, hedgehogs sustained the extraordinary prevalence of 11.53%, within the range between 10% and 50% previously described in Europe and Asia[31,32]. However, considering that our sample included several individuals that had died in WRCs, our data might partially be confounded by amplification of the infection during captivity, as suggested elsewhere[33]. In bats, whose samples are also frequently submitted to laboratories by WRCs, we found 3.1% percentage of positivity, with prevalence ranging between species from 0 to 3.42%. This data is consistent with previous reports analysing carcasses[33] and suggests a lower amplification of bat CoVs during captivity, which could be associated with more frequent individual housing, lower animal density within group cages, or shorter survival after admission that prevent extensive transmission events. While supporting their critical role in the evolution of coronaviruses, our data showed low prevalence in mustelids across (0.88%) and within species (0.57% for melesCoV in the badger), in line with the positivity rate of 1.1% recorded for the Gammacoronavirus of Chinese ferret-badgers[29]. This evidence is likely associated with the solitary habits of mustelids and could explain the low detection rate in surveillance programs and the low implication in spillover events[8].
Other than uncovering the diversity of CoVs associated with wild animals, we described their circulation at the wild-domestic interface. Our finding of CaCoV, FeCoV and BoCoV in several species confirmed their broad host range, previously suggested[34–37]. Prevalence data of αCoV-1 in foxes and wolves mirrored average results from other species, suggesting either maintenance of the virus or high frequency of spillovers from pets. If on one hand the fact that our CaCoV and FeCoV sequences were interleaved with pet strains would not support the existence of a feral cycle, on the other we cannot exclude limited transmission within single species or in a multi-species system, as suggested for the Serengeti ecosystem[35]. While a more targeted surveillance plan paired with WGS could clarify the ecology of Alphacoronavirus 1, the susceptibility of several carnivores poses a conservation concern in case of clinical disease, that would be most likely related with the highly pathogenic feline infectious peritonitis virus[34]. Fortunately, positive individuals from this study were not associated with relevant clinical signs or lesions, similarly to what described for pets and in other wildlife surveys[35]. On the other hand, all BoCoVs sequenced from the roe deer formed a sister clade to viruses associated with local bovines, suggesting these animals might maintain their own viral strain. In this context, WGS could clarify whether these viruses underwent a process of host adaptation, as determined for giraffe’s BoCoVs[37,38].

The molecular method used in this study has a high sensitivity towards the pandemic SARS-CoV-2, so that the lack of detection excludes its high circulation in tested animals, among which mustelids, cervids and synanthropic species should be considered at highest risk of becoming a wildlife reservoir. Up to date, relevant within-species transmission have followed spillback of SARS-CoV-2 from humans to wild animals only in the case of the white-tailed deer, with the first bell rung by serological studies in 2020[19]. Subsequent molecular investigations confirmed the infection with multiple human lineages, and within-species amplification was supported by phylogenetic evidence and by the sharp increase in prevalence from 5.1% of September to 81.3% of December 2020[39]. As noted, the sensitivity of our screening varied depending on the sample size obtained for each species, with the minimum detectable prevalence as low as 0.84% in the badger, which is widespread in Europe and characterized by higher sociability compared to other mustelids,
0.83% in the roe deer, the European species more closely related to the white-tailed deer, and 0.49% in the synanthropic red fox.

Conclusion

Beside the specific results obtained, our survey identified several parameters that could be used in building, strengthening or harmonizing veterinary capacities in the framework of “One Health”, particularly to enhance our knowledge on coronaviruses infecting wildlife that could be transmitted to humans in the future, and to manage the risks related to the possible spillback of SARS-CoV-2 from people to wildlife.

Our study underlines that, in order to fulfil these objectives, surveillance should target selected species to be sampled with sufficient coverage. While the epidemiology of SARS-CoV-2 may vary in different hosts depending on their susceptibility, population density and social behaviour, we determined in 59 individuals the minimum sample size for detection of animal outbreaks, excluding 5% prevalence that characterized the initial amplification of SARS-CoV-2 in white-tailed deer. While the detection of all spillback cases would be ineffective, our data suggest that increasing sample size to 300 samples would exclude 1% circulation of CoVs, allowing more accurate studies of the ecology and epidemiology of CoVs and early detection of SARS-CoV-2.

Target species should be determined based on updated knowledge on CoVs, including animals’ susceptibility to SARS-CoV-2. Currently, we suggest rodents and mustelids as a priority target to further unveil the diversity of the family *Coronaviridae*, and hedgehogs as hosts for *Merbecoviruses* whose zoonotic potential is yet to be determined. In addition, bats are still a relevant target due to their association with a wide variety of CoVs and their frequent implication as source for human nEID. However, to provide novel insights, bat surveillance should be focused on single species sampled with a good sample size and correct identification. Cervids, mustelids and bats of the genus *Rhinolophus* are still considered at highest risk for the spillback of SARS-CoV-2. In addition, synanthropic rodents, carnivores and artiodactyls have the highest likelihood of exposure and should not be overlooked. Because spillbacks bare also risks for conservation and animal health, syndromic surveillance should be implemented to exclude SARS-CoV-2 from mortality events in any wild species.
While we corroborated previous evidence that animal CoVs are mostly found in the intestinal tract, we have succeeded in detecting most viruses also in the lungs, the main target of SARS-CoV-2. Thus, we suggest testing of both tissue as the most effective approach. Finally, the depth of molecular data generated from surveillance should depend on specific objectives of each plan. While WGS should be the preferred approach whenever possible, partial sequences of *RdRp* generated in this study provided sufficient information for preliminary assessment on diversity, prevalence, and distribution data.

Overall, we believe that the unbiased pan-coronavirus surveillance implemented in Italy reached a good balance between costs and expected outcomes, which allowed us to detect known and unknown CoVs in target animals and to exclude the amplification of SARS-CoV-2 in the tested populations.

Availability of data

WebGIS data generated from this study are stored with the PostGIS extension on a PostGreSQL database. Partial *RdRp* sequences have been deposited in Genbank under accession numbers ON834692, OP595355, OP902541, OP902543, OQ134956-OQ134964, OQ134966-OQ134970, OQ134972, OQ134973, OQ249684-OQ249692.

Acknowledgements

The present study has been undertaken by authors in collaborations with the Italian group for CoV surveillance in wildlife*. The consortium would like to acknowledge the work of all technicians, veterinarians, biotechnologists and biologists involved in the collection, sorting, and analysis of samples, including the personnel of headquarters and territorial offices of all partners.

We also would like to thank the association of hunters for the collaboration in the collection of cervids tissue used in the study and Francesca Ellero for her revision of English across the manuscript.

* Formal members of the Italian group for CoV surveillance in wildlife are (in alphabetical order): Pier Luigi Acutis³, Antonino Barone⁸, Giuseppina Brocherel⁸, Giampaolo Bruni⁸, Emanuele Carella³, Azzurra Carnio⁸, Franco Corria⁸, Paola De Benedictis¹, Alessandro Dondo³, Valentina Ferranti⁸, Monica Giammarioli¹², Marco
Gobbi, Francesca Gucciardi, Annalisa Guercio, Antonio Lastra, Alessio Lorusso, Mitzy Mauthe Von Degerfeld, Isabella Monne, Roberto Nardini, Annalisa Oggiano, Silvia Ormelli, Giulia Pacchiarotti, Paola Papa, Antonio Petrini, Graziella Puggioni, Caterina Raso, Daniele Sagrafoli, Marcello Sala, Maria Teresa Scicluna, Oriana Sparasci, Silvia Toce, Giuliana Terraciano, Silvia Tofani, Tiziana Trogu. Affiliations are the same as for main authors.

Financial support
The study was supported by the Italian Ministry of Health through the Strategic Project "Ricerca Corrente IZSVE 01/20 RCS".

Conflict of interest
Authors have no conflicts of interest to declare

References

19. **Chandler JC, et al.** SARS-CoV-2 exposure in wild white-tailed deer (Odocoileus virginianus).

32. **Li D, et al.** MERS-related CoVs in hedgehogs from Hubei Province, China. *One Health* Elsevier B.V., 2021; **13**: 100332.

33. **Monchatre-Leroy E, et al.** Identification of alpha and beta coronavirus in wildlife species in france:

<table>
<thead>
<tr>
<th>Order</th>
<th>Family</th>
<th>Species</th>
<th>N of testing partners</th>
<th>positive/ sampled individuals</th>
<th>Observed prevalence (IC 95%)(^1)</th>
<th>Minimum detectable prevalence (IC 97.5 %)(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artiodactyla</td>
<td>Bovidae (Capra ibex, Ovis musimon, Rupicapra)</td>
<td>rupicapra, Cervidae (C. capreolus, C. elaphus, D. dama), Suidae (S. scrofa)</td>
<td>8</td>
<td>5/839</td>
<td>0.6 (0.19-1.39)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bovidae</td>
<td>3</td>
<td>0/55</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cervidae</td>
<td>7</td>
<td>5/525</td>
<td>0.95 (0.31 – 2.21)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capreolus capreolus</td>
<td>6</td>
<td>5/354</td>
<td>1.14 (0.46 -3.27)</td>
<td>0.83 (0 -1.04)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cervus elaphus</td>
<td>3</td>
<td>0/103</td>
<td>-</td>
<td>2.85 (0 – 3.52)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dama dama</td>
<td>4</td>
<td>0/68</td>
<td>-</td>
<td>4.3 (0 – 5.28)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suidae</td>
<td>7</td>
<td>0/259</td>
<td>-</td>
<td>1.14 (0 – 1.41)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canidae (C. lupus, V. vulpes), Felidae (Felis silvestris), Mustelidae (Lutra lutra, M. foina, Martes martes -1 positive/27 tested, Mustela nivalis), Procyonidae (Procyon lotor), Ursidae (Ursus arctos -1 positive/5 tested)</td>
<td>Carnivora</td>
<td>8</td>
<td>21/1374</td>
<td>1.53 (0.95-2.33)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canidae</td>
<td>8</td>
<td>15/791</td>
<td>1.9 (1.07 – 3.11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Canis lupus</td>
<td>4</td>
<td>7/199</td>
<td>3.52 (1.43 – 7.11)</td>
<td>1.48 (0 - 1.84)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vulpes vulpes</td>
<td>8</td>
<td>8/592</td>
<td>1.35 (0.59 – 2.65)</td>
<td>0.49 (0 - 0.62)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mustelidae</td>
<td>6</td>
<td>5/566</td>
<td>0.88 (0.29 – 2.05)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Martes foina</td>
<td>6</td>
<td>0/182</td>
<td>-</td>
<td>1.62 (0 - 2.00)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meles meles</td>
<td>6</td>
<td>4/350</td>
<td>1.14 (0.31 – 2.9)</td>
<td>0.84 (0 – 1.05) meleCoV / αCoV1 0.57 (0.07-2.4)</td>
<td></td>
</tr>
<tr>
<td>Miniopteridae (Miniopterus schreibersii); Chiroptera</td>
<td>8</td>
<td>16/516</td>
<td>3.10 (1.78-4.99)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Molossidae (T. teniotis); Rhinolophidae (Rhinolophus hipposideros); Vespertilionidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Confidence interval
\(^2\) Confidence interval
(Eptesicus serotinus, H. savii, Myotis crypticus - 1 positive/2 tested-, Myotis daubentonii;
Myotis mystacinus, Nyctalus leisleri,
Pipistrellus sp., P. kuhlii, Pipistrellus pipistrellus -3 positive /4 tested- Pipistrellus pygmaeus;
Plecotus auritus -1 positive/2 tested-,
Vespertilio murinus); non identified bats -3 positive/56 tested-

<table>
<thead>
<tr>
<th>Family</th>
<th>Species</th>
<th>Counties</th>
<th>Individuals Tested</th>
<th>Prevalence (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molossidae</td>
<td>Tadarida teniotis</td>
<td>2</td>
<td>0/93</td>
<td>3.16 (0 – 3.89)</td>
</tr>
<tr>
<td>Vespertilionidae</td>
<td></td>
<td>7</td>
<td>16/422</td>
<td>3.79 (2.18 – 6.08)</td>
</tr>
<tr>
<td></td>
<td>Hypsugo savii</td>
<td>5</td>
<td>5/146</td>
<td>3.42 (1.12 – 7.81)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.02 (0 – 2.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.57 (0.33 – 4.52)</td>
</tr>
<tr>
<td></td>
<td>Pipistrellus kuhlii</td>
<td>4</td>
<td>3/191</td>
<td>1.05 (0.13-3.73)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MERS-like CoV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.52 (0.01 – 2.88)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.54 (0 – 1.91)</td>
</tr>
<tr>
<td>Eulipotypha</td>
<td>Erinaceidae</td>
<td>6</td>
<td>43/373</td>
<td>11.53 (8.47 – 15.21)</td>
</tr>
<tr>
<td></td>
<td>Erinaceus europaeus</td>
<td></td>
<td></td>
<td>0.79 (0 – 0.98)</td>
</tr>
<tr>
<td>Lagomorpha</td>
<td>Leporidae (Lepus europaeus; Sylvilagus</td>
<td>4</td>
<td>0/55</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>floridanus)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hystricidae (H. cristata); Myocastoridae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Myocastor coypus); Muridae (Mus sp., Mus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rodentia</td>
<td>musculus; Rattus sp., Rattus rattus, Rattus</td>
<td>1</td>
<td>1/154</td>
<td>0.65 (0.02 – 3.56)</td>
</tr>
<tr>
<td></td>
<td>norvegicus; Siliuridae (Marmota marmota,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scirius vulgaris); Ghiridae (Glis glis);</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hystricidae</td>
<td>4</td>
<td>1/61</td>
<td>1.64 (0.04 – 8.8)</td>
</tr>
<tr>
<td></td>
<td>Hystrix cristata</td>
<td></td>
<td></td>
<td>4.78 (0 – 8.7)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>9</td>
<td>87/3311</td>
<td></td>
</tr>
</tbody>
</table>

1 The observed prevalence has been calculated only in case of viral detection within the order, the family and for species tested at minimum sample size of 59 individuals.

2 The minimum detectable prevalence has been calculated for all the species reaching the minimum samples size of 59 individuals regardless the detection of CoVs, and is intended as exclusion of any CoV species circulating at higher prevalence values upon all negative samples. In particular, this value has been used to estimate the level of circulation for the pandemic virus SARS-CoV-2.
Table 2. Host association of coronaviruses identified in the study.

<table>
<thead>
<tr>
<th>Genus</th>
<th>Alphacoronavirus</th>
<th>Betacoronavirus</th>
<th>Novel Epsiloncoronavirus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subgenus</td>
<td>Tegacovirus</td>
<td>Nyctacovirus</td>
<td>Merbecovirus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Embecovirus</td>
</tr>
<tr>
<td>Putative species</td>
<td>αCoV 1</td>
<td>Nc pip αCoV</td>
<td>Nc bat αCoV</td>
</tr>
<tr>
<td>C. capreolus</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C. lupus</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V. vulpes</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>U. arctos</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H. cristata</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E. europaeus</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H. savii</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P. kuhlii</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>P. pipistrellus</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>P. auritus</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>M. crypticus</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>M. martes</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>M. meles</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total individuals</td>
<td>19</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Scientific names of species and viruses have been abbreviated for graphical purposes. Please refer to the text for disclosure.

https://doi.org/10.1017/S095026882300081X Published online by Cambridge University Press

Accepted Manuscript
Figure legends

Figure 1. Geographical distribution of samples. a. georeferenced identification of all samples included in the study colored by the Order of hosts. b. Positive samples, colored by the family of hosts. We used grey for Cervidae within Artiodactyla, red for Canidae (Bordeaux) and Mustelidae (standard red) within Carnivora, blue for Vespertilionidae within Chiroptera, green for Erinacidae within Eulipotyphla and orange for Histrionicidae within Rodentia, as shown within figures.
Figure 2. ML phylogenetic trees of coronaviruses found in the study. Original sequences from this survey are colored based on the host family: we used the same colors of figure 1, namely grey for Cervidae, bordeaux for Canidae, red for Mustelidae, blue for Vespertilionidae, green for Erinaceidae and orange for Histrionicidae, as shown within the figure. a. whole tree, b. Pruned tree focused on Alphacoronavirus 1; c. Pruned tree focused on Betacoronavirus 1
Figure 3. Positive results for lung and intestine.

Tissue tropism

- novel meles coronavirus
- novel martes coronavirus
- Betacoronavirus 1
- Hedgehog coronavirus 1
- MERS-related coronavirus
- non classified pipistrelle alphacoronavirus
- non classified bat alphacoronavirus
- Alphacoronavirus 1

N of positive samples

Lung
Intestine

https://doi.org/10.1017/S095026882300081X
Published online by Cambridge University Press