INDECOMPOSABLE POSITIVE MAPS IN MATRIX ALGEBRAS

BY
KÔTARÔ TANAHASHI AND JUN TOMIYAMA

Abstract

We prove that Choi's map in M_{3} cannot be written as the sum of a 2 -positive map and a 2 -copositive map. We also provide other examples of positive maps in M_{n} which cannot be written as the sum of an n-positive map and a 2 -copositive map.

1. Introduction.

Let M_{n} be the matrix algebra of order n and $\mathscr{P}\left(M_{n}\right)$ be the set of all positive linear maps in M_{n}. One of the basic problems about the structure of $\mathscr{P}\left(M_{n}\right)$ is whether there exists some small number of simpler convex cones in $\mathscr{P}\left(M_{n}\right)$ with which every positive map can be written as a sum. Two convex cones were proposed as candidates, the cone of completely positive maps and the cone of completely copositive maps. With these cones the program was successful at least for the algebra M_{2} ([9], [14]). That this is not the case for higher dimensional algebras was shown by Choi [3] by an example of an indecomposable positive map in M_{3}. Woronowicz [14] also showed the existence of such indecomposable maps.

In this paper we provide examples of positive maps in M_{n} which may be considered as proper extensions of Choi's map, and we prove even stronger indecomposability of such maps (Theorems 1 and 4). On the other hand, we believe that from the above strategy towards the structure theory of the set $\mathscr{P}\left(M_{n}\right)$ what is important is not merely the existence of extremal positive maps but the existence and behavior of those positive maps which are neither 2-positive nor 2-copositive. An example of such an "atomic" positive map in M_{4} has been recently observed by Robertson [8]. We shall show that Choi's map in M_{3} is also atomic. Athough this map is known to be extremal by [5], it is not easy to show the property and thus our direct proof of the atomic property (Theorem 5) would be of own interest.

We are deeply indebted to T. Ando for many valuable comments during the preparation of this paper. Thanks are also due to H . Matsuzaki for the estimation of the inequality used below.

[^0]
2. Examples of positive maps in M_{n}.

Throughout this paper we denote by $\left\{e_{i j}\right\}_{1}^{n}$ the canonical matrix units in the algebra M_{n} for which we always assume that $n \geqq 3$. The algebra $M_{k}\left(M_{n}\right)$ means the block matrix algebra of order k over M_{n}. Let τ be a linear map in M_{n}. The map τ is said to be k-positive (resp. k-copositive) if the k-multiplicity map $\tau(k)$ (resp. k-comultiplicity map $\tau^{c}(k)$),

$$
\begin{gathered}
\tau(k):\left[a_{i j}\right]_{1}^{k} \in M_{k}\left(M_{n}\right) \rightarrow\left[\tau\left(a_{i j}\right)\right]_{1}^{k} \\
\left(\operatorname{resp.} \tau^{c}(k):\left[a_{i j}\right]_{1}^{k} \in M_{k}\left(M_{n}\right) \rightarrow\left[\tau\left(a_{j i}\right)\right]_{1}^{k}\right)
\end{gathered}
$$

is positive. If $\tau(k)$ is positive for every k, then τ is said to be completely positive. It is, however, known that in M_{n} positivity of the maps saturates at the order n, that is, every n-positive map is completely positive. Completely copositive maps are defined in a similar way and the saturation of copositivity in M_{n} also occurs.

Let ϵ be the projection of norm one of M_{n} to the diagonal part and let s be the shift unitary in M_{n} such that

$$
s=\left[\delta_{i, i+1}\right]
$$

where indices are understood to be $\bmod n$.
A prototype of Choi's map is then written as

$$
\Phi(x)=2 \epsilon(x)+\epsilon\left(s x s^{*}\right)-x, x \in M_{3}
$$

The map Φ cannot be written as a sum of a completely positive (i.e. 3-positive) map and a completely copositive (i.e. 3-copositive) map. The following map may be regarded as an extension of Φ to general matrix algebras.

Theorem 1. Define the map τ_{1} in M_{n} by

$$
\tau_{1}(x)=(n-1) \epsilon(x)+\epsilon\left(s x s^{*}\right)-x .
$$

Then, τ_{1} is a positive map.
For the proof we need two lemmas.
Lemma 2. Let a be a positive invertible operator on a Hilbert space and let ξ_{0} be the unit vector associated with a one dimensional projection p. Then $a \geqq p$ if and only if $\left(a^{-1} \xi_{0}, \xi_{0}\right) \leqq 1$.

The result is rather a standard one, and hence we only mention the equality,

$$
\sup \{(p \xi, \xi) /(a \xi, \xi) \mid\|\xi\|=1\}=\left(a^{-1} \xi_{0}, \xi_{0}\right)
$$

The next lemma plays a key role in our discussions.

Lemma 3. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be positive numbers. Then

$$
\sum_{i=1}^{n} \frac{\lambda_{i}}{(n-1) \lambda_{i}+\lambda_{i-1}} \leqq 1
$$

where we put $\lambda_{0}=\lambda_{n}$.
Proof. Put $a_{i}=\lambda_{i-1} / \lambda_{i}$. Then the inequality changes into the form

$$
\sum_{i=1}^{n} \frac{1}{n-1+a_{i}} \leqq 1
$$

where $\left\{a_{i}\right\}$ are positive numbers with $a_{1} a_{2} \ldots a_{n}=1$. Thus it suffices to show that

$$
\begin{aligned}
T= & \begin{array}{cccccc}
\left(n-1+a_{1}\right) & \left(n-1+a_{2}\right) & \left(n-1+a_{3}\right) & \ldots & \left(n-1+a_{n}\right) \\
& - & 1 & \left(n-1+a_{2}\right) & \left(n-1+a_{3}\right) & \ldots \\
\left(n-1+a_{n}\right) \\
& -\left(n-1+a_{1}\right) & 1 & \left(n-1+a_{3}\right) & \ldots & \left(n-1+a_{n}\right) \\
& & & \left(n-1+a_{1}\right) & \left(n-1+a_{2}\right) & \left(n-1+a_{3}\right) \\
& \ldots & 1
\end{array} r .
\end{aligned}
$$

is non-negative. Let $T_{k}(1 \leqq k \leqq n-1)$ be the sum of those terms of the form $\lambda\left(i_{1}, i_{2}, \ldots, i_{k}\right) a_{i_{1}} a_{i_{2}} \ldots a_{i_{k}}$ where $\lambda\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ is the coefficient of $a_{i_{1}} a_{i_{2}} \ldots a_{i_{k}}$. Notice that here the coefficient $\lambda\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ does not depend on the choice of $\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}\right\}$. It follows that

$$
T_{k}=\mu_{k} \sum_{i_{1}<i_{2}<\ldots<i_{k}} a_{i_{1}} a_{i_{2}} \ldots a_{i_{k}}
$$

where

$$
\begin{aligned}
\mu_{k} & =\text { coefficient of } a_{1} a_{2} \ldots a_{k} \\
& =(n-1)^{n-k}-(n-k)(n-1)^{n-k-1} \\
& =(k-1)(n-1)^{n-k-1} \geqq 0
\end{aligned}
$$

On the other hand, since $a_{1} a_{2} \ldots a_{n}=1$, we have

$$
\sum_{i_{1}<i_{2}<\ldots<i_{k}} a_{i_{1}} a_{i_{2}} \ldots a_{i_{k}} \geqq\binom{ n}{k} .
$$

Here we note that $\binom{n}{k}$ is the value of the left member when

$$
a_{1}=a_{2}=\ldots=a_{n}=1
$$

Since the other terms are constant with respect to the a_{i} 's, the minimum of T for valuable a_{i} 's is obtained in the above case. Therefore,

$$
T \geqq n^{n}-n \cdot n^{n-1}=0,
$$

and the proof is completed.
Proof of Theorem 1. It suffices to show that $\tau_{1}(p) \geqq 0$ for every one dimensional projection p, that is,

$$
(n-1) \epsilon(p)+\epsilon\left(s p s^{*}\right) \geqq p
$$

Let $\xi_{0}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ be the unit vector associated with p. Without loss of generality we may assume that $\alpha_{i} \neq 0$ for every i. Then the matrix
$a=\left[\begin{array}{cccc}(n-1)\left|\alpha_{1}\right|^{2}+\left|\alpha_{n}\right|^{2} & 0 & \cdots & 0 \\ 0 & (n-1)\left|\alpha_{2}\right|^{2}+\left|\alpha_{1}\right|^{2} & \cdots & 0 \\ 0 & 0 & \cdots & \\ 0 & & \cdots(n-1)\left|\alpha_{n}\right|^{2}+\left|\alpha_{n-1}\right|^{2}\end{array}\right]$
is clearly positive and invertible. It follows by Lemma 2 that the above inequality reduces to the form

$$
\sum_{i=1}^{n} \frac{\left|\alpha_{i}\right|^{2}}{(n-1)\left|\alpha_{i}\right|^{2}+\left|\alpha_{i-1}\right|^{2}}=\left(a^{-1} \xi_{0}, \xi_{0}\right) \leqq 1
$$

but this inequality holds by Lemma 3. Thus the map τ_{1} is positive.
There is also an example of a positive map τ_{n-2} due to Ando [1] which may be considered as another extension of Φ to M_{n} :

$$
\tau_{n-2}(x)=2 \epsilon(x)+\sum_{i=1}^{n-2} \epsilon\left(s^{i} x s^{* i}\right)-x
$$

Following an observation due to Y. Nakamura, we suspect that there would be a series of positive maps connecting τ_{1} and τ_{n-2}, namely,

$$
\tau_{k}(x)=(n-k) \epsilon(x)+\sum_{i=1}^{k} \epsilon\left(s^{i} x s^{* i}\right)-x .
$$

However, we have not been able to establish the positivity of these maps, or the indecomposability of τ_{n-2}. Finally, we remark that the map τ_{n-1} defined as

$$
\tau_{n-1}(x)=\epsilon(x)+\sum_{i=1}^{n-1} \epsilon\left(s^{i} x s^{* i}\right)-x
$$

is completely copositive. In fact, as in the case of completely positive maps, completely copositivity of τ_{n-1} is equivalent to positivity of the matrix

$$
\left[\tau_{n-1}\left(e_{j i}\right)\right]_{1}^{n}=1-\left[e_{j i l}\right]_{1}^{n}
$$

and as $\left[e_{j i} l_{1}^{n}\right.$ is a selfadjoint unitary element, this matrix is positive.

3. Indecomposable positive maps in M_{n}.

In this section we study the problem of decomposability of a positive map in M_{n}, not only as the sum of an n-positive map and an n-copositive map, but also as a sum of maps in any two categories with higher order of positivity than the original one. With this point of view in mind, we call a positive map in M_{n} an atom if it cannot be written as the sum of a 2-positive map and a 2-copositive map. We shall show that there always exists such an atomic positive map in M_{n} if $n \geqq 3$. The mutual independence of atomic maps in an appropriate sense and the number of independent atomic maps would be an interesting next problem for the structure of $\mathscr{P}\left(M_{n}\right)$, which will be discussed elsewhere.

Theorem 4. Let k be the integer such that

$$
k=\frac{n-1}{2}
$$

if n is odd and

$$
k=\frac{n}{2}-1
$$

if n is even. Then the positive map

$$
\tau(x)=(n-1) \epsilon(x)+\sum_{i=1}^{k} \epsilon\left(s^{i} x s^{* i}\right)-x
$$

is not decomposable into the sum of an n-positive map and a 2-copositive map.
Proof. Suppose that $\tau=\rho_{1}+\rho_{2}$ for a n-positive map ρ_{1} and a 2-copositive map ρ_{2}. Since the matrix $\left[e_{i j}\right]_{1}^{n}$ is positive, the matrix

$$
\left[\rho_{1}\left(e_{i j}\right)\right]_{1}^{n}=\left[a_{i j}\right]_{1}^{n}
$$

is positive whereas for the matrix

$$
\left[\rho_{2}\left(e_{i j}\right)\right]_{1}^{n}=\left[b_{i j}\right]_{1}^{n}
$$

every 2×2 submatrix is the transpose of a positive matrix. Now since $\tau\left(e_{i i}\right)$ is orthogonal to any projection e_{11} for $1=i+k+1, i+k+2, \ldots, i+n-1$ (where indices are understood to be $\bmod n$), we have, considering the positivity of $a_{i i}$ and $b_{i i}$,

$$
e_{11} b_{i i}=b_{i i} e_{11}=0
$$

for $i=1,2, \ldots, n$ and $1=i+k+1, i+k+2, \ldots, i+n-1$. It follows that

$$
e_{11} b_{j i}=b_{i j} e_{11}=0
$$

for every projection e_{11} for $j=1,2, \ldots, n$ because

$$
\left[\begin{array}{ll}
b_{i i} & b_{j i} \\
b_{i j} & b_{j j}
\end{array}\right] \geqq 0,
$$

and we may assume (cf. [6]) that the above matrix is a sum of matrices of the form

$$
\left[\begin{array}{ll}
b_{i}^{*} b_{i} & b_{i}^{*} b_{j} \\
b_{j}^{*} b_{i} & b_{j}^{*} b_{j}
\end{array}\right]
$$

Write

$$
\begin{aligned}
& {\left[\tau\left(e_{i j}\right)\right]_{1}^{n}=(n-1)\left[\begin{array}{cccc}
e_{11} & 0 & \ldots & 0 \\
0 & e_{22} & \ldots & 0 \\
& & \ldots & \\
0 & 0 & \ldots & e_{n n}
\end{array}\right]-\left[e_{i j}\right]_{1}^{n}} \\
& +\left[\begin{array}{ccccc}
e_{22}+e_{33}+\ldots+e_{k+1 k+1} & 0 & \ldots & 0 \\
0 & e_{33}+e_{44}+\ldots+e_{k+2 k+2} & \ldots & 0 \\
0 & & \ldots & \ldots & e_{11}+e_{22}+\ldots+e_{k k}
\end{array}\right]
\end{aligned}
$$

and note that $\left[e_{i j}\right]_{1}^{n}=n p_{0}$ for a one dimensional projection p_{0} which is majorized by the projection q in the first term and is orthogonal to the third projection. Therefore,

$$
q\left[\tau\left(e_{i j}\right)\right] q=(n-1) q-n p_{0}=(n-1)\left(q-p_{0}\right)-p_{0}
$$

which is clearly not positive. On the other hand, we assert that the matrix $q\left[b_{i j}\right] q$ is of diagonal form, so that the right member of $q\left[\tau\left(e_{i j}\right)\right] q, q\left(\left[b_{i j}\right]\right) q$ becomes positive, a contradiction. In fact, as $q\left[b_{i j}\right] q=\left[e_{i i} b_{i j} e_{j j}\right], e_{i i} b_{i j} e_{j j}=0$ for $i=$ $1,2, \ldots, n$ and $j=i+k+1, i+k+2, \ldots, i+n-1$ (where indices are understood to be $\bmod n$), we have $e_{i i} b_{i j} e_{j j}=0$ for $i \neq j$ because $b_{i j}=b_{j i}^{*}$. This completes the proof.

As an immediate consequence we see that the map τ_{1} has the same degree of indecomposability. Furthermore, the trivial embedding of Choi's map Φ into $\mathscr{P}\left(M_{n}\right)$ shows that there exists at least one positive map in $M_{n}(n \geqq 3)$ which is not written as the sum of a 3-positive map and a 2-copositive map. However, as mentioned above, we can prove a stronger result, namely the existence of an atomic positive map in $M_{n}(n \geqq 3)$.

In [14], Woronowicz has proved that there exists an indecomposable positive map $\tau_{w}: M_{2} \rightarrow M_{4}$. Let $\sigma: M_{4} \rightarrow M_{2}$ be the norm 1 projection

$$
\sigma\left(\left[a_{i j}\right]_{1}^{4}\right)=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] .
$$

Then $\tau_{w} \circ \sigma: M_{4} \rightarrow M_{4}$ is a positive map which cannot be decomposed into the sum of a 2-positive map and 2-copositive map. Therefore this embedding procedure shows the existence of an atomic map in M_{n} for $n \geqq 4$. But unfortunately his proof is not constructive and rather complicated. On the other hand, as mentioned before there is a constructive example of an atomic map in M_{4} by [8].

Theorem 5. Choi's map Φ is not decomposable into the sum of a 2-positive map and a 2-copositive map.

If we make use of the extremal property of Φ by [5] all that we have to show are Lemma 6 and the fact that Φ is not 2-copositive. But the following direct proof would be of own interest.

Lemma 6. Φ is not 2-positive.
Proof. If Φ were 2-positive, it would satisfy the Schwartz inequality,

$$
\Phi(x)^{*} \Phi(x) \leqq 2 \Phi\left(x^{*} x\right), x \in M_{3} .
$$

But if we take the matrix

$$
x=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

a straightforward calculation yields that

$$
2 \Phi\left(x^{*} x\right)-\Phi(x)^{*} \Phi(x)=\left[\begin{array}{rrr}
2 & -4 & 1 \\
-4 & 6 & 1 \\
1 & 1 & 3
\end{array}\right]
$$

and it is easily seen that this matrix is not positive. This shows that the Schwartz inequality for Φ does not hold.

Proof of Theorem 5. Suppose that $\Phi=\rho_{1}+\rho_{2}$ where ρ_{1} is 2-positive and ρ_{2} is 2 -copositive. It is enough to prove that $\rho_{2}=0$, thus contradicting Lemma 6. We shall use the same notations as in the proof of Theorem 4 for the map Φ, such as

$$
\left[\rho_{1}\left(e_{i j}\right)\right]_{1}^{3}=\left[a_{i j}\right]_{1}^{3}, q=\left[\begin{array}{ccc}
e_{11} & 0 & 0 \\
0 & e_{22} & 0 \\
0 & 0 & e_{33}
\end{array}\right] \text {, }
$$

etc. Then the same argument as there shows that

$$
e_{33} b_{11}=b_{11} e_{33}=e_{11} b_{22}=b_{22} e_{11}=e_{22} b_{33}=b_{33} e_{22}=0
$$

and

$$
\begin{aligned}
q\left[\Phi\left(e_{i j}\right)\right]_{1}^{3} q & =2 q-\left[e_{i j}\right]_{1}^{3} \\
& =q\left[a_{i j}\right]_{1}^{3} q+\left[\begin{array}{ccc}
e_{11} b_{11} e_{11} & 0 & 0 \\
0 & e_{22} b_{22} e_{22} & 0 \\
0 & 0 & e_{33} b_{33} e_{33}
\end{array}\right] .
\end{aligned}
$$

Multiply by the matrix

$$
2 p^{\prime}=\left[\begin{array}{ccc}
e_{11} & e_{12} & 0 \\
e_{21} & e_{22} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

from both sides. Then, since the projection p is majorized also by q, the left hand side vanishes, whence

$$
p^{\prime}\left[a_{i j}\right]_{1}^{3} p^{\prime}+p^{\prime}\left[\begin{array}{ccc}
e_{11} b_{11} e_{11} & 0 & 0 \\
0 & e_{22} b_{22} e_{22} & 0 \\
0 & 0 & e_{33} b_{33} e_{33}
\end{array}\right] p^{\prime}=0
$$

By the 2-positivity of ρ_{1}, the first term is positive, and hence it must be zero together with the second term. This implies that

$$
e_{11} b_{11} e_{11}+e_{12} b_{22} e_{21}=0
$$

and, as the $b_{i i}$'s are positive,

$$
e_{11} b_{11}=b_{11} e_{11}=e_{22} b_{22}=b_{22} e_{22}=0
$$

Similarly, we have that

$$
e_{33} b_{33}=b_{33} e_{33}=0
$$

Therefore,

$$
b_{i i}=e_{i+1 i+1} b_{i i} e_{i+1 i+1}=\lambda_{i+1} e_{i+1 i+1}
$$

where the index i is understood to be $\bmod 3$, and $0 \leqq \lambda_{i} \leqq 1$ because

$$
e_{i+1 i+1}=e_{i+1 i+1} a_{i i} e_{i+1 i+1}+b_{i i} \geqq b_{i i} \geqq 0 .
$$

It follows that

$$
\left[a_{i j}\right]_{1}^{3}=\left[\begin{array}{ccc}
e_{11}+\left(1-\lambda_{2}\right) e_{22} & -e_{12} & -e_{13} \\
-e_{21} & e_{22}+\left(1-\lambda_{3}\right) e_{33} & -e_{23} \\
-e_{31} & -e_{32} & e_{33}+\left(1-\lambda_{1}\right) e_{11}
\end{array}\right]
$$

and ρ_{1} may be written as

$$
\rho_{1}=2 \epsilon(x)+\tau^{\prime}(x)-x
$$

where τ^{\prime} is a 3-positive map, defined by the matrix

$$
\left[\tau^{\prime}\left(e_{i j}\right)\right]_{1}^{3}=\left[\begin{array}{ccc}
\left(1-\lambda_{2}\right) e_{22} & 0 & 0 \\
0 & \left(1-\lambda_{3}\right) e_{33} & 0 \\
0 & 0 & \left(1-\lambda_{1}\right) e_{11}
\end{array}\right]
$$

We now assert that the map ρ_{1} can not be positive unless the λ_{i} 's are all zero. In fact, as in the proof of Theorem 1 , the positivity of ρ_{1} is equivalent to the assertion that $2 \epsilon(p)+\tau^{\prime}(p) \geqq p$ for every one dimensional projection $p=\left(\bar{\alpha}_{i} \alpha_{j}\right)$, and this is further converted into the equality

$$
\sum_{i=1}^{3} \frac{1}{2+\mu_{i} a_{i}} \leqq 1
$$

by putting

$$
a_{i}=\frac{\left|\alpha_{i-1}\right|^{2}}{\left|\alpha_{i}\right|^{2}}
$$

and $\mu_{i}=1-\lambda_{i}$. This is equivalent to saying that

$$
\begin{aligned}
T & =\left(2+\mu_{1} a_{1}\right)\left(2+\mu_{2} a_{2}\right)\left(2+\mu_{3} a_{3}\right) \\
& -\left(2+\mu_{2} a_{2}\right)\left(2+\mu_{3} a_{3}\right)-\left(2+\mu_{1} a_{1}\right)\left(2+\mu_{3} a_{3}\right) \\
& -\left(2+\mu_{1} a_{1}\right)\left(2+\mu_{2} a_{2}\right) \\
& =-4+\mu_{1} \mu_{2} a_{1} a_{2}+\mu_{2} \mu_{3} a_{2} a_{3}+\mu_{3} \mu_{1} a_{3} a_{1}+\mu_{1} \mu_{2} \mu_{3} \geqq 0 .
\end{aligned}
$$

However, if one of the λ_{i} 's is not zero, the corresponding μ_{i} is strictly less than 1 and the value of T cannot be positive when

$$
a_{1}=a_{2}=a_{3}=1
$$

As this implies that ρ_{1} is not positive, we conclude that all the λ_{i} 's are zero. This shows that $\rho_{2}=0$, as desired.
4. Concluding Remarks. We have to mention that the situation surrounding the decomposability of positive maps is not so simple. In [12] the second author has analyzed those positive maps sitting on the lines connecting the identity map σ, the transpose map θ, and the completely positive map

$$
\tau(x)=\frac{1}{n} \operatorname{Tr}(x) 1_{n}
$$

from the point of view of the rank of positivity of those maps. Here, σ is clearly completely positive and θ is known to be plain positive but completely copositive by definition. The analysis of these maps from the point of view of copositivity, however, shows that there exists a completely positive map on the segment between θ and τ, which is therefore also the sum of a completely positive map and a (nonzero) positive scalar multiple of θ. Similarly, on the ray through the identity map and τ, we can find a segment on which there appears the highest class of positive maps which are both completely positive and completely copositive. Here we emphasize that the ranges of those maps are not commutative, because there are certainly trivial examples of such maps defined by positive functionals on M_{n} (cf. [13]). We also point out the fact (cf. [12]) that a completely positive map as well as a completely copositive map may be decomposable into the sum of positive maps with lower positivity and copositivity.

References

1. T. Ando, Positivity of certain maps, seminar note 1985.
2. M. D. Choi, Positive linear maps on C^{*}-algebras, Canad. J. Math. 24 (1972), pp. 520-529.
3. - , Positive semidefinite biquadratic forms, Linear Algebra and Appl. 12 (1975), pp. 95-100.
4. -, Some assorted inequalities for positive linear maps on C^{*}-algebras, J. Operator Theory 4 (1980), pp. 271-285.
5. M. D. Choi and T. Y. Lam, Extremal positive semidefinite forms, Math. Ann. 231 (1977), pp. 1-18.
6. E. C. Lance, On nuclear C^{*}-algebras, J. Funct. Analysis 12 (1973), pp. 157-176.
7. A. G. Robertson, Schwartz inequalities and decomposition of positive maps on C^{*}-algebras, Math. Proc. Camb. Phil. Soc. 94 (1983), pp. 291-296.
8. ——, Positive projections on C^{*}-algebras and an extremal positive map, J. London Math. Soc. 32 (1985), pp. 133-140.
9. E. Størmer, Positive linear maps of operator algebras, Acta Math. 110 (1963), pp. 233-278.
10. —, Decomposable positive maps on C^{*}-algebras, Proc. Amer. Math. Soc. 86 (1982), pp. 402-404.
11. J. Tomiyama, On the transpose map of matrix algebras, Proc. Amer. Math. Soc. 88 (1983), pp. 635-638.
12. -, On the geometry of positive maps in matrix algebras II, Linear Algebra and Appl. 69 (1985), pp. 169-177.
13. -_ On the geometry of positive maps in matrix algebras, Operator Algebras and Mathematical Physics, Contemp. Math. 62 (1985), pp. 357-364.
14. S. L. Woronowicz, Positive maps of low dimensional matrix algebras, Rep. Math. Phys. 10 (1976), pp. 165-183.

Department of Mathematics
Tohoku College of Pharmacy
Komatsushima, Sendai, 983, Japan
Department of Mathematics
Tokyo Metropolitan University
Fukasawa, Setagaya-ku, Tokyo, 158 Japan

[^0]: Received by the editors October 22, 1986, and, in revised form, June 22, 1987.
 AMS Subject Classification (1980): 16A42; Secondary 15A30.
 (c) Canadian Mathematical Society 1987.

