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Abstract

Let G be a primitive permutation group on a finite set {). We investigate the subconstitutents
of G, that is the permutation groups induced by a point stabilizer on its orbits in {1, in the cases
where G has a diagonal action or a product action on (1. In particular we show in these cases
that no subconstituent is doubly transitive. Thus if G has a doubly transitive subconstituent
we show that G has a unique minimal normal subgroup N and either N is a nonabelian simple
group or N acts regularly on (1: we investigate further the case where N is regular on 2.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 B 15, 05 C 25.

Finite primitive permutation groups with a doubly transitive subconstituent were
first studied by W. A. Manning (see {12, 17.7]). His results were generalized by
P. J. Cameron ([2] and see also [4, 8, 9]). The analogues of these groups in the
area of symmetric graphs, namely, 2-arc transitive graphs, have also received a
great deal of attention in the literature. In this paper we show that these groups
have a unique minimal normal subgroup which either is a nonabelian simple
group or is regular. We begin by studying the nature of the subconstituents of
a primitive group G with a diagonal or a product action: we show in particular
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2] Primitive permutation groups 67

that no subconstituent is doubly transitive for these groups. Using the O’Nan
Scott Theorem (see [1, 7, or 11]) we can thén deduce immediately

THEOREM A. Let G be a primitive permutation group on a finite set () such
that the stabilizer of a € Q i3 doubly transitive on one of its orbits in Q\{a}.
Then etther

(a) T < G < AutT for a nonabelian stmple group T, or

(b) G has a unique minimal normal subgroup which is regular on Q.

We continue the investigation of those groups with a regular normal subgroup.

1. Primitive groups with a simple diagonal action

Here we assume that G < X = N(AutT x Sg) is a primitive permutation
group on )} where we assume the following.

(i) The group N is the socle of G and N =T x --- x T} is a direct product
of k > 2 groups T;, each isomorphic to a fixed nonabelian simple group T'.

(ii) The group AutT acts naturally on each factor T; of N and each inner
automorphism o,: z — z*, for z,t € T, is identified with a diagonal element
(t,t,...,t) of N, that is AwtT NN =D = {(t,¢t,...,t)|t € T}.

(iii) The group Sk permutes the set {T1,..., Tk} naturally and the subgroup
P of S; induced by G is either primitive of degree k, or k =2 and P = 1.

(iv) We may assume that for some a € €1, X, = AutT x S with the group
of inner automorphisms of T identified with the subgroup D of N; then D <
Go < A(T) x P where A(T) is the projection of G, to AutT and D < A(T).
The points of {) can be identified with the set of right cosets of D in N so that

a=D(1,1,...,1)

and for 8 = D(ty,...,tx) € Q, 8 = (81,...,8) € N, 0 € AutT and 7 € Si we
have

B® = D(t181,...,tksk),

B° =D(t,...,t5),

B" =D (ty;-1,... tgr—1).
Here we are taking 7 to act on the set {1,2,...,k} in the natural way. We note
that || = |T|*~!, and that each coset of D has a unique member with kth
entry equal to 1. Let II4,IIp denote the projections of G, onto A(T) and P
respectively. We shall investigate G,-orbits A which are quasiprimitive (that is

all normal subgroups of G, either fix A pointwise or are transitive on A). We
begin by showing that the only fixed point of D in 2 is a.
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LEMMA 1.1. The diagonal subgroup D fizes only the point o = D(1,...,1).

PROOF. Suppose that D fixes § = D(ty,...,tk—1,1) # a. Since § # a at
least one entry say t; is not the identity element of T. Now for t = (¢,...,t) € D
we have § = §* = D(t%,t%,...,¢L_,,1) and as each D-coset contains a unique
element with kth entry 1 we have t; = t: since this is true for all ¢ € T it follows
that ¢; is in the centre of T. This contradiction completes the proof.

Thus if G, is quasiprimitive on one of its orbits A then D is transitive on A:

LEMMA 1.2. Suppose that D is transitive on a G-orbit A # {a}, and that
6 = D(ty,t2,...,tx) € A. Then ty,ta,. .. tx are distinct elements of T.

PROOF. This is true if k = 2 so suppose that k¥ > 3: then P is primitive on
{Ti,...,Tx}. Suppose that exactly z entries ¢; in (¢1,t2,...,tx) are equal to tx;
then 1 < z < k since § # a. Let 7 be an index for which t; # tx. Then for some
7 € P we have i7" = k, and for some o € A(T') we have 07 € G,: thus A contains
8°7 = D(t,-1,...,t],-1) with kth entry ¢ __, = t7. However as D is transitive
on A, §°7 = é* for some t = (¢,...,t) € D. It follows that exactly z entries
in (tJ,-1,...,tf,_,) are equal to tJ,__, = t{ and hence that exactly z entries
in (t;,...,tx) are equal to ¢;. Thus the partition of {1,2,...,k} determined
by equality of the elements ¢,,s,...,%x has k/z blocks of size z. Further this
partition is independent of the coset representative (¢1,...,¢) chosen for §, and
as D is transitive on A this partition is independent of the point é chosen from
A. Thus this partition must be preserved by P. Since P is primitive and z < k
we must have z = 1.

Next we investigate the case where G, is unfaithful on A.

LEMMA 1.3. Suppose that A # {a} is @ Ga-orbit such that D? is transitive
and the kernel K of G, on A is nontrivial. The following hold.

(a) The group K < GoNP and K i3 regular on T = {T1,...,Tx}. Moreover if
8 = D(t1,t2,...,tk) € A withty =1 then S = {t1,ta,...,tk = 1} i3 a subgroup
of T isomorphic to K: the map p: K — S defined by o(1) = ty,-1 fortr€ K 13
an 1somorphism.

(b) If K = GaNP then K ~ S is elementary abelian, and P 1s soluble. Further
if G5 is primitive then Gas = Go N (N (1) (S) X P) and N(S)N (G NA(T)) =
C(S)N(GaNA(T)): in particular S is not a Sylow subgroup of Go NA(T). The
orbit A s self-paired if and only if some element of T inverts (each element of)
S, and if A 1s self-patred and primitive then S i3 an elementary abelian 2-group.

(¢) If Ga N P is transitive on A then G4 is primitive with two regular normal
subgroups (G, N P)2 and (G4 NA(T))? each isomorphic to T (so GoNA(T) =
D). Moreover S =T ~ K and Go NP =~ T x T so that k = |T|. (We can
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change the subscripts 1,2,...,k of the T; to elements of T and choose a coset
representative for § with z-entryt; andty = 1 so that K identified with T acts on
the subscripts by left multiplication. Then for some o0 = 0(6) € AwtT, t; = z°
for all z € T: and the stabilizer of § tn (D X (Go N P))? s {(x,0207 )|z €
T} ~ T, where x = (z,z,...,z).)

REMARKS 1.4. (a) In part (a), K is a regular normal subgroup of a primitive
group P and hence is elementary abelian or a direct power of a nonabelian simple
group. We show in (b) that K is elementary abelian when G, NP = K.

(b) If G2 is quasiprimitive then (G, N P)2 is transitive or trivial: the latter
case corresponds to K being elementary abelian. In the former case we show in
(c) that K ~ T and G% is in fact primitive with two regular normal subgroups
isomorphic to T'.

(c) If G5 were 2-transitive then G4 would have a unique minimal normal
subgroup, namely D2, so case (c) could not hold. Further in none of the almost
simple 2-transitive groups does D6A have a nontrivial centre, and hence case (b)
does not hold either. Thus in Lemma 1.3, G5 is not 2-transitive.

PROOF. (a) Since D is faithful on A, KNA(T') = KND = 1 and it follows that
K centralizes D. Hence I1 4(K) centralizes D, and as D has trivial centralizer in
A(T) we conclude that I14(K) = 1, that is K C P. Thus we have K < G, N P,
(so P#1).

Now K is normal in IIp(G,) = P and as P is primitive on T = {T1,...,Tx}
it follows thatK is transitive on 7. If + € K fixes k then since § = §" =
D(ty;-1,... tkr~1) With tg,-1 = t, = 1 we must have ¢;,-1 = t; for all 4: since
all the ¢; are distinct it follows that 7 = 1. Thus K is regular on T.

Now for each i € {1,...,k} there is a unique 7 = 7; € K such that " = k: then
67 = § yields Lir—1 =Lty for each j € {1,.. .,k}. Thus S = {t;,t2,,...,tx = 1}
is closed under multiplication and hence is a subgroup of T. Further 7 = 7;
induces a permutation of S by 7 = ¢;,-1 and we have seen that this permutation
is simply left multiplication by ¢;. Moreover by definition of 7; we have 7;7; = 7,
where z = jrf1 and we also have t;t; = i1 = tz. It follows that the map
(1) =t,, is an isomorphism. ‘

(b) Assume next that G, NP = K. Then A(T) =4(Gq) ~ Ga/(GaNP) =
Ga/K, P/K =Tp(Ga)/Mp(K) =~ Ga/K(Ga N A(T)) and K(Ga N A(T))/K =
(GaNA(T))/(KN(GaNA(T))) = Go NA(T). It follows that P/K is isomorphic
to a section of Out T and hence P/K is soluble. From [1] the only primitive
groups P with a regular normal subgroup K such that P/K is soluble are those
of affine type, that is those with K elementary abelian.
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Now A is self-paired if and only if A contains 6~ = D(¢7,¢;%,...,t; 1), and
as D is transitive on A, this is true if and only if some ¢t € T inverts each of the
t;.

For v = D(s1,82,...,8k) € A, with s = 1, let S(v) = {81,82,...,8x = 1}.
Then as DA is transitive S(v) is a subgroup of T conjugate to S. The subset
Ag = {y€ A| S(y) = S} is clearly a block of imprimitivity for G, in A, and
Ag contains 6 if A is self-paired. If G4 is primitive then As = {6} (so that
6 = 671, that is S is a 2-group, whenever A is self-paired). Now an element
o1 € G4, where o € A(T), 7 € P, fixes Ag setwise if and only if o € N4y (8),
that is the setwise stabilizer of Ag in G i8 Go N (Na(r)(S) X P). Thus if G2 is
primitive then Gos is Ga N (Na(7)(S) X P); moreover 0 € Go N N4(1)(S) fixes
6 if and only if o centralizes S, s0 Goa NN 4(1)(S) = GaNCx(1)(S): by [6, 7.4.3]
S is not a Sylow subgroup of G, N A(T).

(¢) Finally assume that G, N P is transitive on A. Then G4 = G4/K has
normal subgroups (G, N A(T))? = ((Ga N A(T)) x K)/K and (G, N P)? =
(GaNP)/K with trivial intersection. Thus (G, NA(T))* centralizes (G, N P)2
and as both are transitive it follows that both are regular and are isomorphic to
each other: thus as DA is transitive we have GoNA(T) = D ~ (G4NP)/K. Now
the stabilizer of § in D2 x (G, N P)2 is a diagonal subgroup and hence for each
t = (¢, t,...,t) € D there is a 7 € G, N P such that §*7 = 6. If we define S(v)
as above for v € A, we have S(6*") = S* and hence ¢ normalizes S. Since this
holds for all t € T we must have S = T. It follows that G, N P = K X L where
L~ (Go,NP)A ~T. Since K is regular on T we may replace the set of labels
{1,2,...,k} by the set T so that K identified with T acts by left multiplication:
we choose a coset representative for § with z-entry ¢, and ¢; = 1. Then we have,
for each y € K = T, § = éY and hence for each z € T, t, = t;'ty; that is
tytz = tyz. Thus there is an isomorphism o € AutT such that t; = z°. Now
L must act on the labels by right multiplication and we find that for y € L,
with L identified with T, and for x = (z,...,z) € D, xy fixes § if and only if
(yzy~1)?% = 2° for all z € T, and this holds if and only if 0 = y~loz, that is
y = oz~ Thus (D x (G, N P))8 = {(x,02071)|z € T}.

Finally we consider the case where G,, is faithful and quasiprimitive on A.

LEMMA 1.5. Suppose that A # {a} is a faithful G, -orbit such that D2 is
transitive.

() If GaN P =1 then G4 ~ A(T) and P ~ G,/(Ga N A(T)) which is
1somorphic to a section of Out T and hence 1s soluble.

(b) If (Ga N P)2 is transitive then Go N A(T) = D ~ G, N P; both D and
Go N P are regular on A. In this case G2 is primitive. (If we identify G, N P
with T then with 6 = D(ty,...,tx) € A and ty, = 1, there is an automorphism o
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of T such that (D x (Go N P))s = {(x?,z)|z € T} where x° = (2%,2°,...,2°)
and for all 1 <1 < k we have z7%t;2° = ;;_lt,-z-x.)

REMARKS 1.6. (a) In part (a) the stabilizer of § in D is {t|t € N, <;<x Cr(t:)}
and as in Remark 1.4(c) we see that G4 cannot be 2-transitive. In part (b), G4
has two minimal normal subgroups and again cannot be 2-tramsitive. Thus we
can conclude

COROLLARY 1.7. If G has a stmple diagonal action on ) then G has no
2-transitive subconstituents.

(b) In case (a) if we identify D with T then Ds = [, <;<; Cr(t:) that is D
is the centralizer in T of the set S(6) = {t1,t2,...,tk = 1}. Since Go = DGqs
we have P = IIp(Gys) and so for each r € P there is a ¢ € A(T) such that
o7 € Gas: moreover o7 € Gop if and only if t; = (£ t;,-1)° forall 1 <i < k.
Now o1 € G, induces a map from S(6) to S(6°7) and G, fixes S(6) setwise. If
G2 is primitive then Gs must be the full setwise stabilizer of S(§) in G, (since
the other possibility that S(6) = S(y) for all ¥ € A is not allowed: for S(6)
would contain the conjugacy class in D of each ¢; and hence Ds = [ Cr(t;) = 1.
This is not possible for an almost simple primitive group).

(¢) In case (b) since D is regular on § we have

) Crit:)=1.
1<i<k

Also since G4 N P is transitive on A, each v = D(z;,...,zx) € Awithz, =1
has its entries z; of the form tj'lt; for some j,l. It follows that the set S of
entries in points of A on the one hand is the union of the T-conjugacy classes of
the t; (since D2 is transitive) and on the other hand is {t;lt; |7, € [1,k]}: that
is S is a normal set with a kind of closure property. We make also the following
observations.

(i) If t € Go NP = T fixes positions k and 1, for some 1 < 7 < k then t°
centralizes ;.

(ii) If A is self-paired then 6! = D(t7%,¢3%,...,t;1,,1) € A so, for some
t=(t,...,t) € D, 6* = 6§71, that is t inverts each ¢;. Thus for any two such
elements ¢t = z and t = y say the product zy~! centralizes all the ¢; and we
deduce zy~! = 1; so t is unique and has order at most 2.

PROOF OF LEMMA 1.5. (a) If Go NP =1 then A(T) =I14(Gq) =~ Go and
P =Mp(Ga) =~ Go/(Ga N A(T)) which is isomorphic to a quotient of A(T")/D:
thus (a) holds.

(b) Suppose that (G4 N P)2 is transitive. As in the proof of Lemma 1.3(c),
(GaNA(T))2 and (G4 N P)A centralise each other, so each is regular on A and
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GaNA(T) = D ~ GoNP. Thus Gos N (D x (G N P)) = {(x?,z)|z € T} for
some 0 € AutT where x° = (27,27, ...,2%) and 80 279427 = tgz-1t;z1
for all 5.

2. Primitive groups with a product action

Here we assume that G < X = HwrS; acts primitively on § = I'* =
I'y X --- x T'; for some z > 2 where the following hold.

(i) The group H is a primitive permutation grouponT' and T < H < Aut T for
a nonabelian simple group T, or H has a simple diagonal action on I' as described
in the previous section, say H has socle T¥ with T a nonabelian simple group
and y > 2.

(ii) The group induced by G on I'; is H;, a copy of H: the base group of X is
H* = Hy X-+-X Hg, and G and X have the same socle N =T*¥ =T X--- X Ty,
(where y = 1 if H is almost simple and the socle of H; is

soc H; = T(i_1yy41 X - X Tiy).

(ili) The top group S; of X permutes the sets § = {I'y,...,I';} and ¥ =
{H,, ..., H;} naturally, and G induces a transitive subgroup P of S;.

(iv) For @ = (1,7, ...,7) € @ = I'* the stabilizer G, = GN (H,wrS;), Ga
contains Ny = (soc H)?, and as G = NG, Go induces P on G and X.

THEOREM 2.1. Suppose that G is a primitive permutation group on () with
the product action as described above, and suppose that A is a G,-orbit in Q\{a}.

(a) If Go is quasiprimitive on A then A = A(4)® where A(7) is an orbit of
H, T,

(b) If (H wr P), is quasiprimitive on A then H., is quasiprimitive on A(y).

(c) Also (H wr P), s primitive on A if and only if H, is primitive on A(7).
Thus if G, 18 primitive on A then H., is primitive on A(7).

(d) The orbit A is self-paired for G, if and only if A(~) ts a self-paired oribt
of H,.

REMARKS 2.2. (a) We have not quite shown that the action of H, on A(y)
must be quasiprimitive; the problem is that some M < H, with M AM £ 1
may be such that (M? N G4)® = 1, so that the quasiprimitivity of G2 yields
no information about the action of M on A(y). Can this situation really occur?
(Note that (M? N G4)® = 1 implies that (M N (soc H).,)2(M =1.)
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(b) If v € A(y)\{7} then ¢’ = (/,¥,v,...,¥) € Aand 6" = (+,~,...,7) €
A and it is not possible for an element of Gas to map é' to 6§”. Thus

COROLLARY 2.3. A primitive group with product action has no 2-transitive
subconstitutents.

In fact similar considerations show that G, must have rank at least z + 1 on
A and that if GS has rank z + 1 then P D A; and H$ () ig 2-transitive.

PROOF OF THEOREM 2.1. Let Ao(y) = {7}, A1(7),...,Ar(7) be the
orbits of H, in I' where r > 1. Let S = {j = (1,...,7)|0 < i < r for each
it =1,...,z}. Then P acts on S by permuting coordinates in the same way
as it acts on the set § = {T'y,...,T';}. Moreover the orbits of H,wrP in
are in one-to-one correspondence with the orbits of P in S, namely the orbit
Aj(a) of (H wr P), in Q corresponding to the orbit J of P in S is the union of
Aj(a) = A, (7) x -+ x Aj, () over all j € J. Thus A C A;(a) for some orbit
J # {(0,0,...,0)} of P in S. By [10, Lemma 2.3] (soc H), acts nontrivially
on Aj(v) for all j # 0 and it follows that (soc H)5(< Go N H®) is nontrivial
and %-transitive on Aj(a) for each j € J. Now G, and P induce the same
action on § and hence on S and hence A N Aj(a) # & for each j € J. Thus
(soc H)Z is nontrivial on A, is normal in G4, and as G4 is quasiprimitive on A
it follows that (soc H)? is transitive on A. Then as (soc H)3 fixes A N Ay(a)
setwise for each j € J it follows that J = {j = (4,7,...,7)} for some j > 0, and
so Ay(a) = Aj(7)*.

Now (soc H)Z is transitive on A and hence A = A; X --- X A, where each
Aj is an orbit of (soc H), in Aj;(+y). However by {10, Lemma 2.2(b)] the setwise
stabilizer of I'; in G4 induces H., of T'; and hence A; = A;(y) for each ¢, that is,
A = Aj(y)*. If (Hwr P)3 is quasiprimitive then clearly H.,A i) g quasiprimi-
tive, and if (H wr P)4 is primitive then also H,,A i) 4 primitive. Conversely if
H, is primitive on A;(~y) then (H wr P)2 is primitive by [3]. Finally A is clearly
self paired if and only if A,(7) is self paired.

3. Primitive groups with a doubly transitive subconstituent

Suppose that G is a primitive permutation group on {1 and that for a € {1,
G, is 2-transitive on one of its orbits I'(a) € \{e}. By Corollaries 1.7 and 2.3
G has neither a simple diagonal action nor a product action on 1. It follows
from the O’Nan Scott Theorem [1] that Theorem A is true. In this section we
shall discuss the case where G has a unique minimal normal subgroup N which
is regular on {). We consider first the case where NN is abelian.
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PROPOSITION 3.1. Suppose that G i3 a simply transitive primitive permu-
tation group on (1 with an elementary abelian regular normal subgroup N, and
suppose that G4, a € (1, is doubly transitive on one of its orbits I'(a) C N\ {a}.
We identify Q0 with N in such a way that a is identified with the zero of N
(written additively).

(a) Then the orbit T'*(a) paired with T'(a) is —T'(a) = {—-B|B € ['(a)}.

(b) The orbit T'(a) 1s self-paired if and only if N is a 2-group.

(c) The orbit T oI'*(a) = {n| there is a B such that 8 € T'(a) NT(7), and
~ # a} 13 self-paired.

PROOF. Identifying {2 with N such that o = 0, for each § € I'(a) we can
translate by —38 € N to obtain —3 € I'*(a). Hence I'*(a) = ~I'(a) = {-BI8 €
I'(a)}. Thusif N is a 2-group then # = —/ and so I'(a) is self-paired. Conversely
if I' () is self-paired then {8, —8} is a block of imprimitivity in I'(«) for G4 and
so § = —f, that is N is a 2-group.

Finally if § and ~ are distinct points of I'(a) then translating (a,—4) and
(o, —4) by v € N and B € N respectively we find that vy — 8 € I'*(y)\{a} C
FoI*(a) and B — v €T*(B)\{a} C T oT'*(a). It follows as above that 'oI'*(a)
is self-paired. (I o I'*(a) was shown to be a G,-orbit in [2].)

REMARKS 3.2. (a) A similar argument shows that for § € I'(a) we have
10 in I'(c) where 1+ € Z, if and only if {8 = B (since the set of 78 in I'(a),
t € Z, is a block of imprimitivity for G, in I'(a)). In particular if N = Zg and
we regard G, as a subgroup of GL(d, p) then G, contains no nontrivial scalar
transformations. Similarly if in fact G, < T'L(d/a,p*) then G, contains no
nontrivial GF(p®)-scalar transformations.

(b) The stabilizer G, regarded as a subgroup of GL(d, p) is irreducible since
G is primitive, and so we could choose a basis so that I'(a) contains all the
standard basis vectors ¢; = (0*~110%7%), 1 < 1 < d. Suppose that |T'(a)| = d:
then G, permutes the standard basis vectors amongst themselves and so fixes
the point e; + e2 + - - + ¢4 # a. This contradicts the fact that G is primitive,
so always |I'(a)| > d.

Now we consider the case where G has a unique minimal normal subgroup N
which is nonabelian and regular on 2. Here (see (1] and [7]) N =Ty x --- x T
where each T; is isomorphic to a fixed nonabelian simple group T and k > 2: the
group G is a twisted wreath product T twr, P, where P is a transitive subgroup of
Sk permuting the T; naturally, and the twisting homomorphism ¢: P — AutT
is such that ¢{P;) contains the group of inner automorphisms of T. We can
identify {2 with N so that o is identified with the identity (1,1,...,1) of N, and
then G, = P.
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PROPOSITION 3.3. Suppose that G = T twr, P i3 primitive on ) with regular
normal subgroup N = T* as described above. Suppose that G, is doubly transitive
on an orbit I'(a) C Q\{a}, where Q i3 identified with N and a = (1,1,...,1).
Then Go has an orbit T'(c) in M\{a}, possibly equal to T'(a), such that the
actions of Go on T'(a) and I'(a) are permutationally equivalent, and for B =
(B1,..-,Bx) € I'(a) all the nontrivial B; lie in a single p(P,)-conjugacy class C
and Gop(< P) 1s transitive on the support A(B) = {i|6; # 1} of .

If T(e) s self-paired then I'(a) is also self-paired and B has order 2 as an
element of N.

PROOF. Choose a transversal {p; = 1,p2,...,px} for P; in P such that

1p; =1 for all i. Then each 0 € G, = P is such that the jth entry of 57 is
ﬁp.-op;‘
t

where ¢ = jo~! and we write ¢” for the image of t € T under 7 € P. Let
A,,..., A, be the Gyg-orbits in k = {1,2,...,k}; we note that all S-entries
in a fixed A; are conjugate under p(P;). Call A; nontrivial if the entries in
A;-positions in § are not the identity. As 8 # «, there is at least one nontrivial
orbit, say A. Define B(A) € N to have entries equal to S-entries at positions
in A, and entries equal to 1 otherwise. Then G,g fixes 8(A), and as Gqop is a
maximal subgroup of G, and G, does not fix the point B(A) # a, it follows
that Gag = Gap(a). If I'(a) is the Go-orbit containing S(A) then the G,-
actions on I'(a) and I'(a) are equivalent and Gap(a) is transitive on A. Finally
B~ € T*(a) and arguing as in Proposition 3.1 we see that I'(a) is self-paired if
and only if # = 87! that is if and only if 3 has order 2 in N. In this case B(A)
also has order 2 so that I'(a) is also self-paired.

3.4. Further discussion of the twisted wreath product case. Let us assume that
B = B(A) (that is replace I'(a) by I'(a)), Gap is transitive on A(4), and all -
entries in A{f3)-positions lie in the ¢(P;)-conjugacy class C. We define a design
D as follows: the set of points is I'(e), the set of blocks is k = {1,2,...,k} with
B incident with ¢ whenever ¢ € A(f), that is ; # 1. Then G, acts faithfully
(since N is regular) as an automorphism group of this design; G, is 2-transitive
on points, transitive on blocks, and the stabilizer of a point is transitive on the
blocks incident with the point. A counting argument shows that each pair of
points is incident with

A =1(vl - k)/k(v —1)

blocks where | = |A(B)]. Of course D is a degenerate design when [ = k but if
I < k then k > v. We note that the parameter A is |A(8) N A(q)| for distinct

B,7 in I'(a).
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Further if 3, v are distinct points of I'(a) then the points 8~ and 411 lie
in T oI'*(a). Thus points of I' o I'* () have Iz = k — 2] + A + L entries equal to
1 since there are k = 2! + X entries ¢ with §; = 4; = 1 and L > 0 entries 7 with
Bi = ~; # 1. The parameters L, I3 can be determined in terms of v,[, k and |D|
as follows:

(i) Given ¢ € k and ¢t € C the number n(t,z) of 8 € I'(a) with §; =t is
independent of 1 and t.

PROOF. The subset of P consisting of those elements which map 7 to 1 is
p; 1p,; for each o € Py 1P, and each B € I'(a) with 8; =t we have

(671 = A7 = 19,

Thus n(t,?) = n(t??,1) for all p;o € Py, that is n(t,7) = n(t',1) for all ¢’ € C.
(i) Counting the nonidentity entries in points of I'(a)) we obtain vl = kn|C|,
where n = n(t,?) above.
(i) Counting triples (8,~,¢), where §,~ are in I'(a) and the entry ¢ is such
that B; = 7 # 1 we obtain v(v — 1)L = k|C|n(n — 1), and subsituting for n

L = (vl — k|C)I/RIC|(v — 1).

One final remark about the self-paired case (where 32 = 1): by a theorem
of Baer and Suzuki, (see [6, 3.8.2]), there is some entry in 84 whose order as
an element of T is not a power of 2. In particular 3y # 4@, that is no pair
of distinct elements of I'(ar) commutes. Further if 8y had odd order then the
elements of C would be isolated in any Sylow 2-subgroup of T which would give
a contradiction by Glauberman’s Z*-theorem [5]. Thus the order of 87 is an
even integer, not a power of 2.

Now 3f has order 2 (as it is conjugate in N to ) and is joined to 78 so it
lies in I'(a)UT's(a) where T'3(a) = ToTl'oI'(a)\I'(a). If BB € T'(a), then as it is
joined to (y8)?%, and (v8)? does not have order 2 we would have (78)? € I'2(a).
Then 3 and (78)? would have the same order, and hence would have odd order,
a contradiction. Thus 848 € T's(a). If G, were transitive on I'3(a) also, then all
entries in points of I'3(a) would lie in C U {1}. It follows that T = {1} U C U C2.
This seems to be a strong restriction on the group T, and hence on T'.

3.5. FINAL REMARKS. Suppose that G is primitive on ] and that G,
is 2-transitive and unfaithful on an orbit I'(a) € Q\{a}. Then it follows from
Theorem A that T < G < Aut T for some nonabelian simple group 7. Can such
groups be classified?
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