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Abstract

Let G be a primitive permutation group on a finite set fi. We investigate the subconstitutents
of G, that is the permutation groups induced by a point stabilizer on its orbits in 0, in the cases
where G has a diagonal action or a product action on fl. In particular we show in these cases
that no subconstituent is doubly transitive. Thus if G has a doubly transitive subconstituent
we show that G has a unique minimal normal subgroup TV and either TV is a nonabelian simple
group or N acts regularly on Q: we investigate further the case where N is regular on fl.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 B 15, 05 C 25.

Finite primitive permutation groups with a doubly transitive subconstituent were
first studied by W. A. Manning (see [12, 17.7]). His results were generalized by
P. J. Cameron ([2] and see also [4, 8, 9]). The analogues of these groups in the
area of symmetric graphs, namely, 2-arc transitive graphs, have also received a
great deal of attention in the literature. In this paper we show that these groups
have a unique minimal normal subgroup which either is a nonabelian simple
group or is regular. We begin by studying the nature of the subconstituents of
a primitive group G with a diagonal or a product action: we show in particular
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[2] Primitive permutation groups 67

tha t no subconst i tuent is doubly transi t ive for these groups. Using the O 'Nan
Scott Theorem (see [1, 7, or 11]) we can then deduce immediately

THEOREM A. Let G be a primitive permutation group on a finite set fi such
that the stabilizer of a € fi is doubly transitive on one of its orbits in Q\{a}.
Then either

(a) T < G < Aut T for a nonabelian simple group T, or
(b) G has a unique minimal normal subgroup which is regular on fi.

We continue the investigation of those groups with a regular normal subgroup.

1. Primitive groups with a simple diagonal action

Here we assume that G < X = JV(AutT x Sk) is a primitive permutation
group on fi where we assume the following.

(i) The group TV is the socle of G and N = T\ x • • • x T/t is a direct product
of k > 2 groups Ti, each isomorphic to a fixed nonabelian simple group T.

(ii) The group Aut T acts naturally on each factor Tj of N and each inner
automorphism at: x —> xl, for x, t € T, is identified with a diagonal element
(t,t,..., t) of N, t ha t is AutT n N = D = {(t,t,... ,t)\t e T}.

(iii) The group Sk permutes the set {Ti,. . . , 7*} naturally and the subgroup
P of Sk induced by G is either primitive of degree k, or k = 2 and P = 1.

(iv) We may assume that for some a € fi, Xa — AutT x Sk with the group
of inner automorphisms of T identified with the subgroup D of N; then D <
Ga < A(T) x P where A(T) is the projection of Ga to AutT and D < A(T).
The points of fi can be identified with the set of right cosets of D in N so that

and for 0 = D(ti,...,tk) E fi, s = (si,...,sk) EN, a € A u t T and r € Sk we
have

0B=D{t1s1,...,tk8k),

Here we are taking r to act on the set {1,2,.. . , k) in the natural way. We note
that |fi| = ITI*"1, and that each coset of D has a unique member with fcth
entry equal to 1. Let T1A,IIP denote the projections of Ga onto A(T) and P
respectively. We shall investigate Ga-orbits A which are quasiprimitive (that is
all normal subgroups of Ga either fix A pointwise or are transitive on A). We
begin by showing that the only fixed point of D in fi is a.
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68 Cheryl E. Praeger [3]

LEMMA 1.1. The diagonal subgroup D fixes only the point a = D(l,..., 1).

PROOF. Suppose that D fixes 8 = D(ti,...,tk-i,l) ^ a- Since 8 ^ a at
least one entry say U is not the identity element of T. Now for t = (t,..., t) e D
we have 8 = 8l = Dft1,?,... ,tt

le_1,1) and as each £>-coset contains a unique
element with fcth entry 1 we have U = t*: since this is true for alH € T it follows
that U is in the centre of T. This contradiction completes the proof.

Thus if Ga is quasiprimitive on one of its orbits A then D is transitive on A:

LEMMA 1.2. Suppose that D is transitive on a Ga-orbit A ^ {a}, and that
8 — D(ti, <2, • • •) tk) € A. Then ti, ti,..., tk are distinct elements of T.

PROOF. This is true if k = 2 so suppose that k > 3: then P is primitive on
{T i , . . . , Tk}. Suppose that exactly x entries ti in (*i, ta, — , tk) are equal to tk\
then 1 < x < k since 8 ^ a. Let i be an index for which U ̂ tk- Then for some
r € P we have iT = it, and for some a £ A(T) we have or € GQ: thus A contains
£<"• = £>(tfT_i,. . . , *JT_i) with fcth entry ££r_i = tf. However as D is transitive
on A, £<TT = 5* for some t = (t,..., t) G D. It follows that exactly i entries
in (^ T _! , . . . , t J T _ i ) are equal to <£T-i = £f and hence that exactly x entries
in (ti,...,tk) are equal to U. Thus the partition of {1 ,2 , . . . , k} determined
by equality of the elements t i , t s , . . . , t* has k/x blocks of size x. Further this
partition is independent of the coset representative {t\,..., tk) chosen for 8, and
as D is transitive on A this partition is independent of the point 6 chosen from
A. Thus this partition must be preserved by P. Since P is primitive and x < k
we must have x = 1.

Next we investigate the case where Ga is unfaithful on A.

LEMMA 1.3. Suppose that A ^ {a} is a Ga-orbit such that DA is transitive
and the kernel K of Ga on A is nontrivial. The following hold.

(a) The group K < Ga HP and K is regular on T = {T i , . . . , Tk}. Moreover if
8 = D(ti,t2, •••,tk) € A with tk = 1 then S = {ti,t?,... ,tk = 1} is a subgroup
ofT isomorphic to K: the map <p: K —• S defined by <p(r) = ffcr-i for T e K is
an isomorphism.

(b) IfK = GanP then K ~ S is elementary abelian, and P is soluble. Further
ifG% is primitive then GaS = Gan (NA(T)(S) x P) and N(S) n (Ga nA(T)) =
C{S)n(GanA(T)): in particular S is not a Sylow subgroup ofGanA(T). The
orbit A is self-paired if and only if some element ofT inverts (each element of)
S, and if A is self-paired and primitive then S is an elementary abelian 2-group.

(c) IfGaf)P is transitive on A then G% is primitive with two regular normal
subgroups (GanP)A and (GanA(T))A each isomorphic to T (so Ga(lA(T) =
D). Moreover S = T ^ K and Ga n P =s T x T so that k = \T\. (We can
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[4] Primitive permutation groups 69

change the subscripts 1 , 2 , . . . , / : of the Ti to elements ofT and choose a coset
representative for 6 with x-entry tx and t\ = \ so that K identified with T acts on
the subscripts by left multiplication. Then for some a = a(6) € A u t T , tx = x"
for all x e T: and the stabilizer of 6 in (D x (Ga (1 P))A is {(X.,OX<J-1)\X e

T} ~ T, where x = (x, x,..., x).)

REMARKS 1.4. (a) In part (a), K is a regular normal subgroup of a primitive
group P and hence is elementary abelian or a direct power of a nonabelian simple
group. We show in (b) that K is elementary abelian when Ga D P = K.

(b) If GA is quasiprimitive then (Ga n P)A is transitive or trivial: the latter
case corresponds to K being elementary abelian. In the former case we show in
(c) that K ~T and GA is in fact primitive with two regular normal subgroups
isomorphic to T.

(c) If GA were 2-transitive then GA would have a unique minimal normal
subgroup, namely DA, so case (c) could not hold. Further in none of the almost
simple 2-transitive groups does DA have a nontrivial centre, and hence case (b)
does not hold either. Thus in Lemma 1.3, GA is not 2-transitive.

PROOF, (a) Since D is faithful on A, KnA{T) = KC\D = 1 and it follows that
K centralizes D. Hence TLA(K) centralizes D, and as D has trivial centralizer in
A(T) we conclude that UA{K) = 1, that is K C P. Thus we have K < Ga D P,
(so P ^ 1).

Now K is normal in Ylp{Ga) = P and as P is primitive on T = {7\ , . . . , Tk}
it follows that/f is transitive on T. If r € K fixes k then since 6 — 6T =
D(tiT-i,... ,tfcT-i) with £fcT-i = tk = 1 we must have Ur-\ = U for all i: since
all the ti are distinct it follows that r = 1. Thus K is regular on T.

Now for each i 6 { 1 , . . . , k} there is a unique T = TV € K such that iT = k: then
ST = S yields tJT-i = Utj for each j € { 1 , . . . , k}. Thus 5 = {ti, t2,,..., tk = 1}
is closed under multiplication and hence is a subgroup of T. Further T = Ti
induces a permutation of 5 by fj = tjT-i and we have seen that this permutation
is simply left multiplication by U. Moreover by definition of Ti we have T̂ r, = TX

where x = jr~l and we also have titj = t T-i = tx. It follows that the map
ip(ri) = U, is an isomorphism.

(b) Assume next that GQnP = K. Then A(T) = UA(Ga) ^ Ga/{GanP) =
GJK, P/K = UP{Ga)/nP{K) ~ Ga/K(GanA{T)) and K(Gan A(T))/K ~
{GaC\A{T))/{Kn{GanA(T))) cz GaC\A{T). It follows that P/K is isomorphic
to a section of Out T and hence P/K is soluble. From [1] the only primitive
groups P with a regular normal subgroup K such that P/K is soluble are those
of affine type, that is those with K elementary abelian.
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Now A is self-paired if and only if A contains 6'1 = D(t[1, t%*,..., <* x) , and
as D is transitive on A, this is true if and only if some t € T inverts each of the
U.

For 7 = D(si,s2,...,sk) e A, with sk = 1, let 5(7) = {«i,s2,- •• ,«* = 1}-
Then as DA is transitive 5(7) is a subgroup of T conjugate to 5 . The subset
As = {7 e A I 5(7) = 5} is clearly a block of imprimitivity for Ga in A, and
Ag contains 6~x if A is self-paired. If GA is primitive then As = {S} (so that
5 — <5-1, that is 5 is a 2-group, whenever A is self-paired). Now an element
OT € Ga, where a € A(T), T € P, fixes As setwise if and only if a € NA^(S),
that is the setwise stabilizer of As in Ga is Ga D (NA(T) {&) x P)- Thus if GA is
primitive then Gae is Ga n (NA(T)(S) x P); moreover < r € G a n NA(T)(S) fixes
6 if and only if a centralizes S, so GaflNA(T)(S) - G Q n C A ( r ) ( 5 ) : by [6, 7.4.3]
S is not a Sylow subgroup of Ga (~l A(T).

(c) Finally assume that Ga n P is transitive on A. Then G% = Ga/K has
normal subgroups (Ga d A(T))A = {{Ga n A(T)) x K)/K and [Ga n P ) A =
(GaC\P)/K with trivial intersection. Thus (GanA(T))A centralizes {GanP)A

and as both are transitive it follows that both are regular and are isomorphic to
each other: thus as DA is transitive we have Gar\A(T) = D ~ (GaC\P)/K. Now
the stabilizer of 6 in DA x ( G a n P ) A is a diagonal subgroup and hence for each
t = (t,t,...,t)eD there is a r G Ga D P such that 6tT = 6. If we define 5(7)
as above for 7 6 A, we have 5(6t T) = 5* and hence t normalizes 5 . Since this
holds for all t 6 T we must have S = T. It follows that GanP = K x L where
L ~ (Ga C\P)A ~T. Since K is regular on T we may replace the set of labels
{1 ,2 , . . . , k} by the set T so that K identified with T acts by left multiplication:
we choose a coset representative for 6 with i-entry tx and <i = 1. Then we have,
for each y 6 K = T, 6 = 6y and hence for each x G T, tx = t~1tyx that is
tytx = tyx. Thus there is an isomorphism a € Au tT such that tx = x". Now
L must act on the labels by right multiplication and we find that for y € L,
with L identified with T, and for x = (x,...,x) 6 D, xj/ fixes 6 if and only if
{yzy~1)'TX = z" for all z € T, and this holds if and only if a — y~lox, that is
y = axa~x. Thus (D x ( G a f l P ) ) ^ = {(x.CTZfr-1)^ € T}.

Finally we consider the case where Ga is faithful and quasiprimitive on A.

LEMMA 1.5. Suppose that A ^ {a} is a faithful Ga-orbit such that DA is
transitive.

(a) / / Ga D P = 1 tfien GQ ~ A(T) and P ~ Ga/{Ga n J4 (T) ) W/MC/I M

isomorphic to a section of Out T and hence is soluble.
(b) / / (Ga n P)A is transitive then Ga D A(T) = D ~ G a n P ; both D and

Ga n P are regular on A. In this case GA is primitive. (If we identify GaC\P
with T then with 6 = D(t\, . . . , ( n ) g A and tk = 1, there is an automorphism a
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of T such that (D x (Ga n P))s = {(x"7, x ) |x € T } wfeere x"7 = (a;*7, x* 7 , . . . , x*7)
and for all 1 <i <k we have x~atiXa = t^-itix-i.)

REMARKS 1.6. (a) In part (a) the stabilizer of 6 in D is {t\t e rii<t<fc CT{U)}

and as in Remark 1.4(c) we see that GA cannot be 2-transitive. In part (b), GA

has two minimal normal subgroups and again cannot be 2-transitive. Thus we
can conclude

COROLLARY 1.7. If G has a simple diagonal action on fi then G has no
2-transitive subconstituents.

(b) In case (a) if we identify D with T then Dg = Pli<»<A: Cr(*t) that is Dg
is the centralizer in T of the set S(6) = {ti, t^,..., tk = I} . Since Ga = DGas
we have P = Up(Gag) and so for each r € P there is a a € A(T) such that
or € Gag: moreover or 6 Gas if and only if U = {t^-itiT-i)" for all 1 < t < k.
Now or e Ga induces a map from S(6) to 5(^<7T) and Gag fixes S{6) setwise. If
GA is primitive then Gas must be the full setwise stabilizer of S(6) in GQ (since
the other possibility that S(6) = 5(7) for all 7 € A is not allowed: for S(6)
would contain the conjugacy class in D of each U and hence Dg — f\ CT(U) = 1.
This is not possible for an almost simple primitive group).

(c) In case (b) since D is regular on 6 we have

n
Also since Ga C\P is transitive on A, each 7 = D(xi,..., Xk) € A with x/t = 1

has its entries Xj of the form t~1ti for some j,l. It follows that the set S of
entries in points of A on the one hand is the union of the T-conjugacy classes of
the U (since DA is transitive) and on the other hand is {^ t i l j , / £ [l>fc]}: that
is 5 is a normal set with a kind of closure property. We make also the following
observations.

(i) If t € Ga D P = T fixes positions k and i, for some 1 < * < A; then t°
centralizes t{.

(ii) If A is self-paired then 6-1 = Dfc1,^1,- • •, f j^x , 1) € A so, for some
t = (t,... ,t) € D, 6l = 6'1, that is t inverts each U. Thus for any two such
elements t = x and t = y say the product xy~x centralizes all the U and we
deduce xy~l = 1; so (is unique and has order at most 2.

PROOF OF LEMMA 1.5. (a) If Ga n P = 1 then A(T) = UA(Ga) ^ Ga and
P = UP(Ga) ~ Ga/{Ga D A(T)) which is isomorphic to a quotient of A(T)/D:
thus (a) holds.

(b) Suppose that (Ga C\P)A is transitive. As in the proof of Lemma 1.3(c),
(Ga n A(T))A and (Ga C\P)A centralise each other, so each is regular on A and
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Ga n A{T) = D ~ Ga D P. Thus GaS n (D x (GQ n P)) = {(x*, I ) | I € T} for
some CT € A u t T where xf = (x°', x°, . . . , a;17) and so x~"tiXa = tkx-\tix-i
for all i.

2. Primitive groups with a product action

Here we assume that G < X = Hv/rSx acts primitively on 0 = Tx =
Ti x • • • x Tx for some x > 2 where the following hold.

(i) The group H is a primitive permutation group on F and T < H < Aut T for
a nonabelian simple group T, or H has a simple diagonal action on F as described
in the previous section, say H has socle Ty with T a nonabelian simple group
and y > 2.

(ii) The group induced by G on I \ is Hi, a copy of H: the base group of X is
Hx = Hi x • • • x Hx, and G and X have the same socle N = Txy = Tx x • • • x Txy

(where y = 1 if H is almost simple and the socle of Hi is

s o c H i = T{i_1)y+1 x - x T i y ) .

(iii) The top group S^ of X permutes the sets Q = {Ti,...,Tx} and M =
{Hi,...,Hx} naturally, and G induces a transitive subgroup P of Sx.

(iv) For a = ( 7 , 7 , . . . , 7 ) G Q = Tx the stabilizer Ga=Gn (H^ wrSx) , Ga

contains Na = (socH)x, and as G = iVGa, CQ induces P on £ and M.

THEOREM 2 . 1 . Suppose that G is a primitive permutation group on fl with
the product action as described above, and suppose that A is o Ga-orbit in n \ { a } .

(a) IfGa is quasiprimitive on A then A = A(7)x where A(i) is an orbit of
H^ in F.

(b) / / (HvrrP)a is quasiprimitive on A then H^ is quasiprimitive on A (7).

(c) Also (H-wrP)a is primitive on A if and only if H^ is primitive on A(i).
Thus if Ga is primitive on A then H^ is primitive on A (7).

(d) The orbit A is self-paired for Ga if and only if A (7) is a self-paired oribt
ofHn.

REMARKS 2 .2 . (a) We have not quite shown that the action of H-, on A(7)
must be quasiprimitive; the problem is that some M < H^ with M A ^ ^ 1
may be such that (Mx n Ga)

A = 1, so that the quasiprimitivity of G% yields
no information about the action of M on A (7). Can this situation really occur?
(Note that {Mx n Ga)

A = 1 implies that (M n (soc H)JA™ = 1.)
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A and it is not possible for an element of Gas to map 6' to 6". Thus

COROLLARY 2 . 3 . A primitive group with product action has no 2-transitive
subconstitutents.

In fact similar considerations show that Ga must have rank at least i + 1 on
A and that if G% has rank x + 1 then P ^ Ax and H^ ™ is 2-transitive.

PROOF OF THEOREM 2 .1 . Let A0(7) = {7}, Ai(7),. . . ,Ar(7) be the
orbits of H-, in T where r > 1. Let S = {j = ( j i , . . . , j ^ O < ji < r for each
i = 1,. . . , 1}. Then P acts on S by permuting coordinates in the same way
as it acts on the set § = { r i , . . . , r x } . Moreover the orbits of H^WTP in ft
are in one-to-one correspondence with the orbits of P in S, namely the orbit
Aj(a) of (HvfrP)a in ft corresponding to the orbit J of P in S is the union of
Aj(a) = Ajj^) x • • • x Ajzii) over all j € J. Thus A C Aj(a) for some orbit
J ^ {(0,0,...,0)} of P in S. By [10, Lemma 2.3] (socif^ acts nontrivially
on Aj("y) for all j ^ 0 and it follows that (sociJ)*(< Ga n / P ) is nontrivial
and ^-transitive on Aj (a) for each j e J. Now Ga and P induce the same
action on Q and hence on S and hence A f~l Aj(a) ^ 0 for each j € J. Thus
(socif)* is nontrivial on A, is normal in Ga, and as Ga is quasiprimitive on A
it follows that (socH)* is transitive on A. Then as (socH)* fixes A !~l Aj(a)
setwise for each j e J it follows that J = {j = (j, j , . . . , j)} for some j > 0, and
so Aj(o) = A,-(7)*.

Now (soc # )^ is transitive on A and hence A = A\ x • • • x Ax where each
A{ is an orbit of (socif)^ in Aj(7). However by [10, Lemma 2.2(b)] the setwise
stabilizer of I\ in Ga induces H~, of Fj and hence Ai = Aj (7) for each i, that is,
A = Aj(i)x. If (HVITP)^ is quasiprimitive then clearly H-,' is quasiprimi-
tive, and if (H wr P)£ is primitive then also Hn ' is primitive. Conversely if
Hn is primitive on Aj(7) then (HwrP)£ is primitive by [3]. Finally A is clearly
self paired if and only if Aj (7) is self paired.

3. Primitive groups with a doubly transitive subconstituent

Suppose that G is a primitive permutation group on ft and that for a G ft,
Ga is 2-transitive on one of its orbits T(a) C ft\{a}. By Corollaries 1.7 and 2.3
G has neither a simple diagonal action nor a product action on Q. It follows
from the O'Nan Scott Theorem [1] that Theorem A is true. In this section we
shall discuss the case where G has a unique minimal normal subgroup N which
is regular on ft. We consider first the case where N is abelian.
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PROPOSITION 3.1. Suppose that G is a simply transitive primitive permu-
tation group on Q with an elementary abelian regular normal subgroup N, and
suppose that Ga, a e d , is doubly transitive on one of its orbits F(a) C fi\{a}.
We identify Q with N in such a way that a is identified with the zero of N
(written additively).

(a) Then the orbit F*(a) paired with T(a) is -F(a) = {-0\0 € F(a)}.
(b) The orbit F(a) is self-paired if and only if N is a 2-group.
(c) The orbit F o F*(a) = {7I there is a 0 such that 0 € F(a) D T(^), and

7 ^ a} is self-paired.

PROOF. Identifying fi with N such that a = 0, for each 0 e F(a) we can
translate by -0 € N to obtain -0 € F*(a). Hence T*{a) = -T(a) = {-0\0 €
F(a)}. Thus if N is a 2-group then 0 = —0 and so F(a) is self-paired. Conversely
if F(a) is self-paired then {0, — 0} is a block of imprimitivity in T(a) for Ga and
so /3 = —/?, that is N is a 2-group.

Finally if 0 and 7 are distinct points of T(a) then translating (a, —0) and
(a, -7) by 7 e N and 0 € N respectively we find that 7 - 0 e T*(7)\{a} C
roT*(a) and 0-7 e T*(/?)\{a} C T o P ( a ) . It follows as above that ToT*(a)
is self-paired. (F o F*(a) was shown to be a Ga-orbit in [2].)

REMARKS 3.2. (a) A similar argument shows that for 0 € F(a) we have
i0 in T(a) where i € Z, if and only if i0 = 0 (since the set of i0 in F(a),
t e Z, is a block of imprimitivity for Ga in F(a)). In particular if N = Zp and
we regard Ga as a subgroup of GL(d,p) then Ga contains no nontrivial scalar
transformations. Similarly if in fact Ga < TL(d/a,pa) then Ga contains no
nontrivial G/1(p°)-scalar transformations.

(b) The stabilizer Ga regarded as a subgroup of GL(d,p) is irreducible since
G is primitive, and so we could choose a basis so that F(a) contains all the
standard basis vectors e* = ((/^lO"*"'), 1 < i < d. Suppose that |F(a)| = d:
then Ga permutes the standard basis vectors amongst themselves and so fixes
the point e\ + ei + • • • + e<j ̂  a. This contradicts the fact that G is primitive,
so always |F(a)| > d.

Now we consider the case where G has a unique minimal normal subgroup N
which is nonabelian and regular on Q. Here (see [1] and [7]) N = 7\ x • • • x Tk
where each Tl is isomorphic to a fixed nonabelian simple group T and k > 2: the
group G is a twisted wreath product T twr^P, where P is a transitive subgroup of
Sk permuting the 7\ naturally, and the twisting homomorphism <p: P\ —* Aut T
is such that <p{P{) contains the group of inner automorphisms of T. We can
identify fi with JV so that a is identified with the identity (1 ,1 , . . . , 1) of N, and
then Ga = P.
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PROPOSITION 3.3. Suppose that G = T twr^P is primitive on Q with regular
normal subgroup N = Tk as described above. Suppose that Ga is doubly transitive
on an orbit T(a) C f2\{a}, where fi is identified with N and a = (1 ,1 , . . . , 1).
Then Ga has an orbit f (a) in Q\{a}, possibly equal to F(a), such that the
actions of Ga on F(a) and F(a) are permutationally equivalent, and for /3 =
(ft, ...,/?*)€ f (a) all the nontrivial fa lie in a single ip(Pi)-conjugacy class C
and Gap(< P) is transitive on the support A(/?) = {i\0i / 1} of 0.

If F(a) is self-paired then f (a) is also self-paired and 0 has order 2 as an
element of N.

PROOF. Choose a transversal {pi = l,p2,.-,Pk} for Pi in P such that
lpi — i for all i. Then each a e Ga = P is such that the jth entry of {¥* is

where i = ja 1 and we write tT for the image of t e T under r € P. Let
Ai , . . . ,A r be the GQ0-orbits in k = {1,2,...,fc}; we note that all /3-entries
in a fixed A* are conjugate under p{P\). Call A* nontrivial if the entries in
Aj-positions in j3 are not the identity. As /? / a, there is at least one nontrivial
orbit, say A. Define /3(A) e N to have entries equal to /^-entries at positions
in A, and entries equal to 1 otherwise. Then Gap fixes /3(A), and as Gap is a
maximal subgroup of Ga and Ga does not fix the point /3(A) ^ a, it follows
that Gap = GQ/9(A)- If f (a) is the Ga-orbit containing /?(A) then the Go-
actions on T(a) and t(a) are equivalent and GQ/9(A) is transitive on A. Finally
yj-i e r*(a) and arguing as in Proposition 3.1 we see that F(a) is self-paired if
and only if /? = /?~x that is if and only if /? has order 2 in N. In this case /?(A)
also has order 2 so that f (a) is also self-paired.

3.4. Further discussion of the twisted wreath product case. Let us assume that
/? = /?(A) (that is replace F(a) by f (a)), Ga0 is transitive on A(/?), and all /?-
entries in A(/?)-positions lie in the ^(Pi)-conjugacy class C. We define a design
D as follows: the set of points is F(a), the set of blocks is k = {1,2,..., A:} with
/? incident with i whenever i € A(/3), that is $ ^ 1. Then GQ acts faithfully
(since iV is regular) as an automorphism group of this design; Ga is 2-transitive
on points, transitive on blocks, and the stabilizer of a point is transitive on the
blocks incident with the point. A counting argument shows that each pair of
points is incident with

A = l{vl - k)/k{v - 1)

blocks where / = |A(/?)|. Of course D is a degenerate design when I = k but if
I < k then k > v. We note that the parameter A is |A(/?) n A(7)! for distinct
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Further if 0, 7 are distinct points of F(a) then the points /3~17 and 7"1/? lie
in ToT*(a). Thus points of F oT*(a) have h = k-2l + \ + L entries equal to
1 since there are k = 21 + X entries i with 0i = 7i = 1 and L > 0 entries i with
0i = H ^ !• The parameters L, /2 can be determined in terms of v, I, k and |P|
as follows:

(i) Given i € k and ( 6 C the number n(t, i) of 0 € F(a) with $ = £ is
independent of i and £.

PROOF. The subset of P consisting of those elements which map t to 1 is
p~1Pi; for each a € p~lP\ and each 0 E T(a) with # = < we have

(/ni=/?r=*"*.

Thus n{t,i) = n ( ^ " , 1) for all p<cr e Pi, that is n(t,i) = n{t', 1) for all t' € C.

(ii) Counting the nonidentity entries in points of T(a) we obtain vl = kn\C\,
where n = n(t, i) above.

(iii) Counting triples (0,7, i), where /?, 7 are in T(a) and the entry i is such
that 0i = 7i 7̂  1 we obtain u(t> — 1)L = fc|C|n(n — 1), and subsituting for n

L = (vl - k\C\)l/k\C\{v - 1).

One final remark about the self-paired case (where 01 — 1): by a theorem
of Baer and Suzuki, (see [6, 3.8.2]), there is some entry in ^7 whose order as
an element of T is not a power of 2. In particular /?7 ^ 7/?, that is no pair
of distinct elements of T(a) commutes. Further if #7 had odd order then the
elements of C would be isolated in any Sylow 2-subgroup of T which would give
a contradiction by Glauberman's Z*-theorem [5]. Thus the order of /?7 is an
even integer, not a power of 2.

Now 010 has order 2 (as it is conjugate in N to 7) and is joined to 7/? so it
lies in F(a)UF3(a) where F3(a) = FoFor(a) \ r (a) . If 0^0 € F(a), then as it is
joined to (7/?)2, and (7/?)2 does not have order 2 we would have (i0)2 € Ti(a).
Then 7/? and (7/3)2 would have the same order, and hence would have odd order,
a contradiction. Thus 0^0 € F3(a). If Ga were transitive on Tz(a) also, then all
entries in points of F3(a) would lie in C U {1}. It follows that T = {1} U C U C2.
This seems to be a strong restriction on the group T, and hence on F.

3.5. FINAL REMARKS. Suppose that G is primitive on Q and that Ga

is 2-transitive and unfaithful on an orbit F(a) C fi\{a}. Then it follows from
Theorem A that T <G < Aut T for some nonabelian simple group T. Can such
groups be classified?
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