J. Austral. Math. Soc. (Series A) 45 (1988), 66-77

PRIMITIVE PERMUTATION GROUPS WITH A DOUBLY TRANSITIVE SUBCONSTITUENT

CHERYL E. PRAEGER

(Received 5 June 1986)

Communicated by H. Lausch

Dedicated to Robert Edwards in recognition of 25 years' distinguished contribution to mathematics in Australia, on the occasion of his retirement

Abstract

Let G be a primitive permutation group on a finite set Ω . We investigate the subconstitutents of G, that is the permutation groups induced by a point stabilizer on its orbits in Ω , in the cases where G has a diagonal action or a product action on Ω . In particular we show in these cases that no subconstituent is doubly transitive. Thus if G has a doubly transitive subconstituent we show that G has a unique minimal normal subgroup N and either N is a nonabelian simple group or N acts regularly on Ω : we investigate further the case where N is regular on Ω .

1980 Mathematics subject classification (Amer. Math. Soc.): 20 B 15, 05 C 25.

Finite primitive permutation groups with a doubly transitive subconstituent were first studied by W. A. Manning (see [12, 17.7]). His results were generalized by P. J. Cameron ([2] and see also [4, 8, 9]). The analogues of these groups in the area of symmetric graphs, namely, 2-arc transitive graphs, have also received a great deal of attention in the literature. In this paper we show that these groups have a unique minimal normal subgroup which either is a nonabelian simple group or is regular. We begin by studying the nature of the subconstituents of a primitive group G with a diagonal or a product action: we show in particular

The work for this paper was supported by a special CTEC grant at the University of Western Australia.

^{© 1988} Australian Mathematical Society 0263-6115/88 \$A2.00 + 0.00

that no subconstituent is doubly transitive for these groups. Using the O'Nan Scott Theorem (see [1, 7, or 11]) we can then deduce immediately

THEOREM A. Let G be a primitive permutation group on a finite set Ω such that the stabilizer of $\alpha \in \Omega$ is doubly transitive on one of its orbits in $\Omega \setminus \{\alpha\}$. Then either

(a) $T \leq G \leq \operatorname{Aut} T$ for a nonabelian simple group T, or

(b) G has a unique minimal normal subgroup which is regular on Ω .

We continue the investigation of those groups with a regular normal subgroup.

1. Primitive groups with a simple diagonal action

Here we assume that $G \leq X = N(\operatorname{Aut} T \times S_k)$ is a primitive permutation group on Ω where we assume the following.

(i) The group N is the socle of G and $N = T_1 \times \cdots \times T_k$ is a direct product of $k \ge 2$ groups T_i , each isomorphic to a fixed nonabelian simple group T.

(ii) The group Aut T acts naturally on each factor T_i of N and each inner automorphism $\sigma_t \colon x \to x^t$, for $x, t \in T$, is identified with a diagonal element (t, t, \ldots, t) of N, that is Aut $T \cap N = D = \{(t, t, \ldots, t) | t \in T\}$.

(iii) The group S_k permutes the set $\{T_1, \ldots, T_k\}$ naturally and the subgroup P of S_k induced by G is either primitive of degree k, or k = 2 and P = 1.

(iv) We may assume that for some $\alpha \in \Omega$, $X_{\alpha} = \operatorname{Aut} T \times S_k$ with the group of inner automorphisms of T identified with the subgroup D of N; then $D \leq G_{\alpha} \leq A(T) \times P$ where A(T) is the projection of G_{α} to $\operatorname{Aut} T$ and $D \leq A(T)$. The points of Ω can be identified with the set of right cosets of D in N so that

 $\alpha = D(1, 1, \ldots, 1)$

and for $\beta = D(t_1, \ldots, t_k) \in \Omega$, $\mathbf{s} = (s_1, \ldots, s_k) \in N$, $\sigma \in \operatorname{Aut} T$ and $\tau \in S_k$ we have

$$\beta^{\mathbf{s}} = D(t_1 s_1, \dots, t_k s_k),$$

$$\beta^{\sigma} = D(t_1^{\sigma}, \dots, t_k^{\sigma}),$$

$$\beta^{\tau} = D(t_{1\tau^{-1}}, \dots, t_{k\tau^{-1}})$$

Here we are taking τ to act on the set $\{1, 2, \ldots, k\}$ in the natural way. We note that $|\Omega| = |T|^{k-1}$, and that each coset of D has a unique member with kth entry equal to 1. Let Π_A, Π_P denote the projections of G_α onto A(T) and P respectively. We shall investigate G_α -orbits Δ which are quasiprimitive (that is all normal subgroups of G_α either fix Δ pointwise or are transitive on Δ). We begin by showing that the only fixed point of D in Ω is α .

LEMMA 1.1. The diagonal subgroup D fixes only the point $\alpha = D(1, ..., 1)$.

PROOF. Suppose that D fixes $\delta = D(t_1, \ldots, t_{k-1}, 1) \neq \alpha$. Since $\delta \neq \alpha$ at least one entry say t_i is not the identity element of T. Now for $\mathbf{t} = (t, \ldots, t) \in D$ we have $\delta = \delta^{\mathbf{t}} = D(t^t, t^t, \ldots, t^t_{k-1}, 1)$ and as each D-coset contains a unique element with kth entry 1 we have $t_i = t_i^t$: since this is true for all $t \in T$ it follows that t_i is in the centre of T. This contradiction completes the proof.

Thus if G_{α} is quasiprimitive on one of its orbits Δ then D is transitive on Δ :

LEMMA 1.2. Suppose that D is transitive on a G_{α} -orbit $\Delta \neq \{\alpha\}$, and that $\delta = D(t_1, t_2, \ldots, t_k) \in \Delta$. Then t_1, t_2, \ldots, t_k are distinct elements of T.

PROOF. This is true if k = 2 so suppose that $k \ge 3$: then P is primitive on $\{T_1, \ldots, T_k\}$. Suppose that exactly x entries t_i in (t_1, t_2, \ldots, t_k) are equal to t_k ; then $1 \le x < k$ since $\delta \ne \alpha$. Let i be an index for which $t_i \ne t_k$. Then for some $\tau \in P$ we have $i^{\tau} = k$, and for some $\sigma \in A(T)$ we have $\sigma \tau \in G_{\alpha}$: thus Δ contains $\delta^{\sigma\tau} = D(t_{1\tau-1}^{\sigma}, \ldots, t_{k\tau-1}^{\sigma})$ with kth entry $t_{k\tau-1}^{\sigma} = t_i^{\sigma}$. However as D is transitive on Δ , $\delta^{\sigma\tau} = \delta^{t}$ for some $\mathbf{t} = (t, \ldots, t) \in D$. It follows that exactly x entries in $(t_{1\tau-1}^{\sigma}, \ldots, t_{k\tau-1}^{\sigma})$ are equal to $t_{k\tau-1}^{\sigma} = t_i^{\sigma}$ and hence that exactly x entries in $(t_{1\tau-1}, \ldots, t_{k\tau-1}^{\sigma})$ are equal to $t_{k\tau-1}^{\sigma} = t_i^{\sigma}$ and hence that exactly x entries in $(t_{1\tau}, \ldots, t_k)$ are equal to t_i . Thus the partition of $\{1, 2, \ldots, k\}$ determined by equality of the elements t_1, t_2, \ldots, t_k has k/x blocks of size x. Further this partition is independent of the coset representative (t_1, \ldots, t_k) chosen for δ , and as D is transitive on Δ this partition is independent of the point δ chosen from Δ . Thus this partition must be preserved by P. Since P is primitive and x < k we must have x = 1.

Next we investigate the case where G_{α} is unfaithful on Δ .

LEMMA 1.3. Suppose that $\Delta \neq \{\alpha\}$ is a G_{α} -orbit such that D^{Δ} is transitive and the kernel K of G_{α} on Δ is nontrivial. The following hold.

(a) The group $K \leq G_{\alpha} \cap P$ and K is regular on $\mathcal{T} = \{T_1, \ldots, T_k\}$. Moreover if $\delta = D(t_1, t_2, \ldots, t_k) \in \Delta$ with $t_k = 1$ then $S = \{t_1, t_2, \ldots, t_k = 1\}$ is a subgroup of T isomorphic to K: the map $\varphi \colon K \to S$ defined by $\varphi(\tau) = t_{k\tau^{-1}}$ for $\tau \in K$ is an isomorphism.

(b) If $K = G_{\alpha} \cap P$ then $K \simeq S$ is elementary abelian, and P is soluble. Further if G_{α}^{Δ} is primitive then $G_{\alpha\delta} = G_{\alpha} \cap (N_{A(T)}(S) \times P)$ and $N(S) \cap (G_{\alpha} \cap A(T)) = C(S) \cap (G_{\alpha} \cap A(T))$: in particular S is not a Sylow subgroup of $G_{\alpha} \cap A(T)$. The orbit Δ is self-paired if and only if some element of T inverts (each element of) S, and if Δ is self-paired and primitive then S is an elementary abelian 2-group.

(c) If $G_{\alpha} \cap P$ is transitive on Δ then G_{α}^{Δ} is primitive with two regular normal subgroups $(G_{\alpha} \cap P)^{\Delta}$ and $(G_{\alpha} \cap A(T))^{\Delta}$ each isomorphic to T (so $G_{\alpha} \cap A(T) = D$). Moreover $S = T \simeq K$ and $G_{\alpha} \cap P \simeq T \times T$ so that k = |T|. (We can

change the subscripts 1, 2, ..., k of the T_i to elements of T and choose a coset representative for δ with x-entry t_x and $t_1 = 1$ so that K identified with T acts on the subscripts by left multiplication. Then for some $\sigma = \sigma(\delta) \in \operatorname{Aut} T$, $t_x = x^{\sigma}$ for all $x \in T$: and the stabilizer of δ in $(D \times (G_{\alpha} \cap P))^{\Delta}$ is $\{(\mathbf{x}, \sigma x \sigma^{-1}) | x \in T\} \simeq T$, where $\mathbf{x} = (x, x, \ldots, x)$.)

REMARKS 1.4. (a) In part (a), K is a regular normal subgroup of a primitive group P and hence is elementary abelian or a direct power of a nonabelian simple group. We show in (b) that K is elementary abelian when $G_{\alpha} \cap P = K$.

(b) If G^{Δ}_{α} is quasiprimitive then $(G_{\alpha} \cap P)^{\Delta}$ is transitive or trivial: the latter case corresponds to K being elementary abelian. In the former case we show in (c) that $K \simeq T$ and G^{Δ}_{α} is in fact primitive with two regular normal subgroups isomorphic to T.

(c) If G^{Δ}_{α} were 2-transitive then G^{Δ}_{α} would have a unique minimal normal subgroup, namely D^{Δ} , so case (c) could not hold. Further in none of the almost simple 2-transitive groups does D^{Δ}_{δ} have a nontrivial centre, and hence case (b) does not hold either. Thus in Lemma 1.3, G^{Δ}_{α} is not 2-transitive.

PROOF. (a) Since D is faithful on Δ , $K \cap A(T) = K \cap D = 1$ and it follows that K centralizes D. Hence $\Pi_A(K)$ centralizes D, and as D has trivial centralizer in A(T) we conclude that $\Pi_A(K) = 1$, that is $K \subseteq P$. Thus we have $K \leq G_{\alpha} \cap P$, (so $P \neq 1$).

Now K is normal in $\Pi_P(G_{\alpha}) = P$ and as P is primitive on $\mathcal{T} = \{T_1, \ldots, T_k\}$ it follows that K is transitive on \mathcal{T} . If $\tau \in K$ fixes k then since $\delta = \delta^{\tau} = D(t_{1\tau^{-1}}, \ldots, t_{k\tau^{-1}})$ with $t_{k\tau^{-1}} = t_k = 1$ we must have $t_{i\tau^{-1}} = t_i$ for all i: since all the t_i are distinct it follows that $\tau = 1$. Thus K is regular on \mathcal{T} .

Now for each $i \in \{1, \ldots, k\}$ there is a unique $\tau = \tau_i \in K$ such that $i^{\tau} = k$: then $\delta^{\tau} = \delta$ yields $t_{j\tau^{-1}} = t_i t_j$ for each $j \in \{1, \ldots, k\}$. Thus $S = \{t_1, t_2, \ldots, t_k = 1\}$ is closed under multiplication and hence is a subgroup of T. Further $\tau = \tau_i$ induces a permutation of S by $t_j^{\tau} = t_{j\tau^{-1}}$ and we have seen that this permutation is simply left multiplication by t_i . Moreover by definition of τ_i we have $\tau_i \tau_j = \tau_x$ where $x = j\tau_i^{-1}$ and we also have $t_i t_j = t_{j\tau_i^{-1}} = t_x$. It follows that the map $\varphi(\tau_i) = t_i$, is an isomorphism.

(b) Assume next that $G_{\alpha} \cap P = K$. Then $A(T) = \prod_{A}(G_{\alpha}) \simeq G_{\alpha}/(G_{\alpha} \cap P) = G_{\alpha}/K$, $P/K = \prod_{P}(G_{\alpha})/\prod_{P}(K) \simeq G_{\alpha}/K(G_{\alpha} \cap A(T))$ and $K(G_{\alpha} \cap A(T))/K \simeq (G_{\alpha} \cap A(T))/(K \cap (G_{\alpha} \cap A(T))) \simeq G_{\alpha} \cap A(T)$. It follows that P/K is isomorphic to a section of Out T and hence P/K is soluble. From [1] the only primitive groups P with a regular normal subgroup K such that P/K is soluble are those of affine type, that is those with K elementary abelian.

70

Now Δ is self-paired if and only if Δ contains $\delta^{-1} = D(t_1^{-1}, t_2^{-1}, \dots, t_k^{-1})$, and as D is transitive on Δ , this is true if and only if some $t \in T$ inverts each of the t_i .

For $\gamma = D(s_1, s_2, \dots, s_k) \in \Delta$, with $s_k = 1$, let $S(\gamma) = \{s_1, s_2, \dots, s_k = 1\}$. Then as D^{Δ} is transitive $S(\gamma)$ is a subgroup of T conjugate to S. The subset $\Delta_S = \{\gamma \in \Delta \mid S(\gamma) = S\}$ is clearly a block of imprimitivity for G_{α} in Δ , and Δ_S contains δ^{-1} if Δ is self-paired. If G^{Δ}_{α} is primitive then $\Delta_S = \{\delta\}$ (so that $\delta = \delta^{-1}$, that is S is a 2-group, whenever Δ is self-paired). Now an element $\sigma \tau \in G_{\alpha}$, where $\sigma \in A(T), \tau \in P$, fixes Δ_S setwise if and only if $\sigma \in N_{A(T)}(S)$, that is the setwise stabilizer of Δ_S in G_{α} is $G_{\alpha} \cap (N_{A(T)}(S) \times P)$. Thus if G_{α}^{Δ} is primitive then $G_{\alpha\delta}$ is $G_{\alpha} \cap (N_{A(T)}(S) \times P)$; moreover $\sigma \in G_{\alpha} \cap N_{A(T)}(S)$ fixes δ if and only if σ centralizes S, so $G_{\alpha} \cap N_{A(T)}(S) = G_{\alpha} \cap C_{A(T)}(S)$: by [6, 7.4.3] S is not a Sylow subgroup of $G_{\alpha} \cap A(T)$.

(c) Finally assume that $G_{\alpha} \cap P$ is transitive on Δ . Then $G_{\alpha}^{\Delta} = G_{\alpha}/K$ has normal subgroups $(G_{\alpha} \cap A(T))^{\Delta} = ((G_{\alpha} \cap A(T)) \times K)/K$ and $(G_{\alpha} \cap P)^{\Delta} =$ $(G_{\alpha} \cap P)/K$ with trivial intersection. Thus $(G_{\alpha} \cap A(T))^{\Delta}$ centralizes $(G_{\alpha} \cap P)^{\Delta}$ and as both are transitive it follows that both are regular and are isomorphic to each other: thus as D^{Δ} is transitive we have $G_{\alpha} \cap A(T) = D \simeq (G_{\alpha} \cap P)/K$. Now the stabilizer of δ in $D^{\Delta} \times (G_{\alpha} \cap P)^{\Delta}$ is a diagonal subgroup and hence for each $\mathbf{t} = (t, t, \dots, t) \in D$ there is a $\tau \in G_{\alpha} \cap P$ such that $\delta^{t\tau} = \delta$. If we define $S(\gamma)$ as above for $\gamma \in \Delta$, we have $S(\delta^{t\tau}) = S^t$ and hence t normalizes S. Since this holds for all $t \in T$ we must have S = T. It follows that $G_{\alpha} \cap P = K \times L$ where $L \simeq (G_{\alpha} \cap P)^{\Delta} \simeq T$. Since K is regular on \mathcal{T} we may replace the set of labels $\{1, 2, \ldots, k\}$ by the set T so that K identified with T acts by left multiplication: we choose a coset representative for δ with x-entry t_x and $t_1 = 1$. Then we have, for each $y \in K = T$, $\delta = \delta^y$ and hence for each $x \in T$, $t_x = t_y^{-1} t_{yx}$ that is $t_y t_x = t_{yx}$. Thus there is an isomorphism $\sigma \in \operatorname{Aut} T$ such that $t_x = x^{\sigma}$. Now L must act on the labels by right multiplication and we find that for $y \in L$, with L identified with T, and for $\mathbf{x} = (x, \dots, x) \in D$, $\mathbf{x}y$ fixes δ if and only if $(yzy^{-1})^{\sigma x} = z^{\sigma}$ for all $z \in T$, and this holds if and only if $\sigma = y^{-1}\sigma x$, that is $y = \sigma x \sigma^{-1}$. Thus $(D \times (G_{\alpha} \cap P))^{\Delta}_{\delta} = \{(\mathbf{x}, \sigma x \sigma^{-1}) | x \in T\}.$

Finally we consider the case where G_{α} is faithful and quasiprimitive on Δ .

LEMMA 1.5. Suppose that $\Delta \neq \{\alpha\}$ is a faithful G_{α} -orbit such that D^{Δ} is transitive.

(a) If $G_{\alpha} \cap P = 1$ then $G_{\alpha} \simeq A(T)$ and $P \simeq G_{\alpha}/(G_{\alpha} \cap A(T))$ which is isomorphic to a section of Out T and hence is soluble.

(b) If $(G_{\alpha} \cap P)^{\Delta}$ is transitive then $G_{\alpha} \cap A(T) = D \simeq G_{\alpha} \cap P$; both D and $G_{\alpha} \cap P$ are regular on Δ . In this case G_{α}^{Δ} is primitive. (If we identify $G_{\alpha} \cap P$ with T then with $\delta = D(t_1, \ldots, t_k) \in \Delta$ and $t_k = 1$, there is an automorphism σ

of T such that $(D \times (G_{\alpha} \cap P))_{\delta} = \{(\mathbf{x}^{\sigma}, x) | x \in T\}$ where $\mathbf{x}^{\sigma} = (x^{\sigma}, x^{\sigma}, \dots, x^{\sigma})$ and for all $1 \leq i \leq k$ we have $x^{-\sigma}t_i x^{\sigma} = t_{kx^{-1}}^{-1}t_{ix^{-1}}$.)

REMARKS 1.6. (a) In part (a) the stabilizer of δ in D is $\{\mathbf{t}|\mathbf{t} \in \bigcap_{1 \leq i \leq k} C_T(t_i)\}$ and as in Remark 1.4(c) we see that G^{Δ}_{α} cannot be 2-transitive. In part (b), G^{Δ}_{α} has two minimal normal subgroups and again cannot be 2-transitive. Thus we can conclude

COROLLARY 1.7. If G has a simple diagonal action on Ω then G has no 2-transitive subconstituents.

(b) In case (a) if we identify D with T then $D_{\delta} = \bigcap_{1 \leq i \leq k} C_T(t_i)$ that is D_{δ} is the centralizer in T of the set $S(\delta) = \{t_1, t_2, \ldots, t_k = 1\}$. Since $G_{\alpha} = DG_{\alpha\delta}$ we have $P = \prod_P(G_{\alpha\delta})$ and so for each $\tau \in P$ there is a $\sigma \in A(T)$ such that $\sigma\tau \in G_{\alpha\delta}$: moreover $\sigma\tau \in G_{\alpha\delta}$ if and only if $t_i = (t_{\kappa\tau^{-1}}^{-1}t_{i\tau^{-1}})^{\sigma}$ for all $1 \leq i \leq k$. Now $\sigma\tau \in G_{\alpha}$ induces a map from $S(\delta)$ to $S(\delta^{\sigma\tau})$ and $G_{\alpha\delta}$ fixes $S(\delta)$ setwise. If G_{α}^{Δ} is primitive then $G_{\alpha\delta}$ must be the full setwise stabilizer of $S(\delta)$ in G_{α} (since the other possibility that $S(\delta) = S(\gamma)$ for all $\gamma \in \Delta$ is not allowed: for $S(\delta)$ would contain the conjugacy class in D of each t_i and hence $D_{\delta} = \bigcap C_T(t_i) = 1$. This is not possible for an almost simple primitive group).

(c) In case (b) since D is regular on δ we have

$$\bigcap_{1\leq i\leq k} C_T(t_i)=1.$$

Also since $G_{\alpha} \cap P$ is transitive on Δ , each $\gamma = D(x_1, \ldots, x_k) \in \Delta$ with $x_k = 1$ has its entries x_i of the form $t_j^{-1}t_l$ for some j, l. It follows that the set S of entries in points of Δ on the one hand is the union of the *T*-conjugacy classes of the t_i (since D^{Δ} is transitive) and on the other hand is $\{t_j^{-1}t_l|j, l \in [1, k]\}$: that is S is a normal set with a kind of closure property. We make also the following observations.

(i) If $t \in G_{\alpha} \cap P = T$ fixes positions k and i, for some $1 \leq i < k$ then t^{σ} centralizes t_i .

(ii) If Δ is self-paired then $\delta^{-1} = D(t_1^{-1}, t_2^{-1}, \dots, t_{k-1}^{-1}, 1) \in \Delta$ so, for some $\mathbf{t} = (t, \dots, t) \in D$, $\delta^{\mathbf{t}} = \delta^{-1}$, that is t inverts each t_i . Thus for any two such elements t = x and t = y say the product xy^{-1} centralizes all the t_i and we deduce $xy^{-1} = 1$; so t is unique and has order at most 2.

PROOF OF LEMMA 1.5. (a) If $G_{\alpha} \cap P = 1$ then $A(T) = \prod_{A} (G_{\alpha}) \simeq G_{\alpha}$ and $P = \prod_{P} (G_{\alpha}) \simeq G_{\alpha} / (G_{\alpha} \cap A(T))$ which is isomorphic to a quotient of A(T)/D: thus (a) holds.

(b) Suppose that $(G_{\alpha} \cap P)^{\Delta}$ is transitive. As in the proof of Lemma 1.3(c), $(G_{\alpha} \cap A(T))^{\Delta}$ and $(G_{\alpha} \cap P)^{\Delta}$ centralise each other, so each is regular on Δ and

 $G_{\alpha} \cap A(T) = D \simeq G_{\alpha} \cap P$. Thus $G_{\alpha\delta} \cap (D \times (G_{\alpha} \cap P)) = \{(\mathbf{x}^{\sigma}, x) | x \in T\}$ for some $\sigma \in \operatorname{Aut} T$ where $\mathbf{x}^{\sigma} = (x^{\sigma}, x^{\sigma}, \dots, x^{\sigma})$ and so $x^{-\sigma}t_i x^{\sigma} = t_{kx^{-1}}t_{ix^{-1}}$ for all *i*.

2. Primitive groups with a product action

Here we assume that $G \leq X = H \operatorname{wr} S_x$ acts primitively on $\Omega = \Gamma^x = \Gamma_1 \times \cdots \times \Gamma_x$ for some $x \geq 2$ where the following hold.

(i) The group H is a primitive permutation group on Γ and $T \leq H \leq \operatorname{Aut} T$ for a nonabelian simple group T, or H has a simple diagonal action on Γ as described in the previous section, say H has socle T^y with T a nonabelian simple group and $y \geq 2$.

(ii) The group induced by G on Γ_i is H_i , a copy of H: the base group of X is $H^x = H_1 \times \cdots \times H_x$, and G and X have the same socle $N = T^{xy} = T_1 \times \cdots \times T_{xy}$ (where y = 1 if H is almost simple and the socle of H_i is

$$\operatorname{soc} H_i = T_{(i-1)y+1} \times \cdots \times T_{iy}).$$

(iii) The top group S_x of X permutes the sets $\mathcal{G} = \{\Gamma_1, \ldots, \Gamma_x\}$ and $\mathcal{H} = \{H_1, \ldots, H_x\}$ naturally, and G induces a transitive subgroup P of S_x .

(iv) For $\alpha = (\gamma, \gamma, \dots, \gamma) \in \Omega = \Gamma^x$ the stabilizer $G_\alpha = G \cap (H_\gamma \operatorname{wr} S_x), G_\alpha$ contains $N_\alpha = (\operatorname{soc} H)_\gamma^x$, and as $G = NG_\alpha, G_\alpha$ induces P on \mathcal{G} and \mathcal{X} .

THEOREM 2.1. Suppose that G is a primitive permutation group on Ω with the product action as described above, and suppose that Δ is a G_{α} -orbit in $\Omega \setminus \{\alpha\}$.

(a) If G_{α} is quasiprimitive on Δ then $\Delta = \Delta(\gamma)^x$ where $\Delta(\gamma)$ is an orbit of H_{γ} in Γ .

(b) If $(H \text{ wr } P)_{\alpha}$ is quasiprimitive on Δ then H_{γ} is quasiprimitive on $\Delta(\gamma)$.

(c) Also $(H \text{ wr } P)_{\alpha}$ is primitive on Δ if and only if H_{γ} is primitive on $\Delta(\gamma)$. Thus if G_{α} is primitive on Δ then H_{γ} is primitive on $\Delta(\gamma)$.

(d) The orbit Δ is self-paired for G_{α} if and only if $\Delta(\gamma)$ is a self-paired oribt of H_{γ} .

REMARKS 2.2. (a) We have not quite shown that the action of H_{γ} on $\Delta(\gamma)$ must be quasiprimitive; the problem is that some $M \triangleleft H_{\gamma}$ with $M^{\Delta(\gamma)} \neq 1$ may be such that $(M^x \cap G_{\alpha})^{\Delta} = 1$, so that the quasiprimitivity of G_{α}^{Δ} yields no information about the action of M on $\Delta(\gamma)$. Can this situation really occur? (Note that $(M^x \cap G_{\alpha})^{\Delta} = 1$ implies that $(M \cap (\operatorname{soc} H)_{\gamma})^{\Delta(\gamma)} = 1$.)

(b) If $\gamma' \in \Delta(\gamma) \setminus \{\gamma\}$ then $\delta' = (\gamma', \gamma', \gamma', \dots, \gamma') \in \Delta$ and $\delta'' = (\gamma', \gamma, \dots, \gamma) \in \Delta$ and it is not possible for an element of $G_{\alpha\delta}$ to map δ' to δ'' . Thus

COROLLARY 2.3. A primitive group with product action has no 2-transitive subconstitutents.

In fact similar considerations show that G_{α} must have rank at least x + 1 on Δ and that if G_{α}^{Δ} has rank x + 1 then $P \supseteq A_x$ and $H_{\gamma}^{\Delta(\gamma)}$ is 2-transitive.

PROOF OF THEOREM 2.1. Let $\Delta_0(\gamma) = \{\gamma\}, \Delta_1(\gamma), \ldots, \Delta_r(\gamma)$ be the orbits of H_{γ} in Γ where $r \geq 1$. Let $S = \{\mathbf{j} = (j_1, \ldots, j_x) | 0 \leq j_i \leq r$ for each $i = 1, \ldots, x\}$. Then P acts on S by permuting coordinates in the same way as it acts on the set $\mathcal{G} = \{\Gamma_1, \ldots, \Gamma_x\}$. Moreover the orbits of H_{γ} wr P in Ω are in one-to-one correspondence with the orbits of P in S, namely the orbit $\Delta_J(\alpha)$ of $(H \text{ wr } P)_{\alpha}$ in Ω corresponding to the orbit J of P in S is the union of $\Delta_{\mathbf{j}}(\alpha) = \Delta_{j_1}(\gamma) \times \cdots \times \Delta_{j_x}(\gamma)$ over all $\mathbf{j} \in J$. Thus $\Delta \subseteq \Delta_J(\alpha)$ for some orbit $J \neq \{(0,0,\ldots,0)\}$ of P in S. By [10, Lemma 2.3] (soc $H)_{\gamma}$ acts nontrivially on $\Delta_j(\gamma)$ for all $\mathbf{j} \neq 0$ and it follows that $(\operatorname{soc} H)^x_{\gamma}(\triangleleft G_{\alpha} \cap H^x)$ is nontrivial and $\frac{1}{2}$ -transitive on $\Delta_{\mathbf{j}}(\alpha)$ for each $\mathbf{j} \in J$. Now G_{α} and P induce the same action on \mathcal{G} and hence on S and hence $\Delta \cap \Delta_{\mathbf{j}}(\alpha) \neq \emptyset$ for each $\mathbf{j} \in J$. Thus $(\operatorname{soc} H)^x_{\gamma}$ is nontrivial on Δ , is normal in G_{α} , and as G_{α} is quasiprimitive on Δ it follows that $(\operatorname{soc} H)^x_{\gamma}$ is transitive on Δ . Then as $(\operatorname{soc} H)^x_{\gamma}$ fixes $\Delta \cap \Delta_{\mathbf{j}}(\alpha)$ setwise for each $\mathbf{j} \in J$ it follows that $J = \{\mathbf{j} = (j, j, \ldots, j)\}$ for some j > 0, and so $\Delta_J(\alpha) = \Delta_J(\gamma)^x$.

Now $(\operatorname{soc} H)_{\gamma}^{x}$ is transitive on Δ and hence $\Delta = A_{1} \times \cdots \times A_{x}$ where each A_{i} is an orbit of $(\operatorname{soc} H)_{\gamma}$ in $\Delta_{j}(\gamma)$. However by [10, Lemma 2.2(b)] the setwise stabilizer of Γ_{i} in G_{α} induces H_{γ} of Γ_{i} and hence $A_{i} = \Delta_{j}(\gamma)$ for each i, that is, $\Delta = \Delta_{j}(\gamma)^{x}$. If $(H \operatorname{wr} P)_{\alpha}^{\Delta}$ is quasiprimitive then clearly $H_{\gamma}^{\Delta_{j}(\gamma)}$ is quasiprimitive, and if $(H \operatorname{wr} P)_{\alpha}^{\Delta}$ is primitive then also $H_{\gamma}^{\Delta_{j}(\gamma)}$ is primitive. Conversely if H_{γ} is primitive on $\Delta_{j}(\gamma)$ then $(H \operatorname{wr} P)_{\alpha}^{\Delta}$ is primitive by [3]. Finally Δ is clearly self paired if and only if $\Delta_{j}(\gamma)$ is self paired.

3. Primitive groups with a doubly transitive subconstituent

Suppose that G is a primitive permutation group on Ω and that for $\alpha \in \Omega$, G_{α} is 2-transitive on one of its orbits $\Gamma(\alpha) \subseteq \Omega \setminus \{\alpha\}$. By Corollaries 1.7 and 2.3 G has neither a simple diagonal action nor a product action on Ω . It follows from the O'Nan Scott Theorem [1] that Theorem A is true. In this section we shall discuss the case where G has a unique minimal normal subgroup N which is regular on Ω . We consider first the case where N is abelian.

PROPOSITION 3.1. Suppose that G is a simply transitive primitive permutation group on Ω with an elementary abelian regular normal subgroup N, and suppose that $G_{\alpha}, \alpha \in \Omega$, is doubly transitive on one of its orbits $\Gamma(\alpha) \subseteq \Omega \setminus \{\alpha\}$. We identify Ω with N in such a way that α is identified with the zero of N (written additively).

(a) Then the orbit $\Gamma^*(\alpha)$ paired with $\Gamma(\alpha)$ is $-\Gamma(\alpha) = \{-\beta | \beta \in \Gamma(\alpha)\}$.

(b) The orbit $\Gamma(\alpha)$ is self-paired if and only if N is a 2-group.

(c) The orbit $\Gamma \circ \Gamma^*(\alpha) = \{\gamma | \text{ there is a } \beta \text{ such that } \beta \in \Gamma(\alpha) \cap \Gamma(\gamma), \text{ and } \gamma \neq \alpha \}$ is self-paired.

PROOF. Identifying Ω with N such that $\alpha = 0$, for each $\beta \in \Gamma(\alpha)$ we can translate by $-\beta \in N$ to obtain $-\beta \in \Gamma^*(\alpha)$. Hence $\Gamma^*(\alpha) = -\Gamma(\alpha) = \{-\beta | \beta \in \Gamma(\alpha)\}$. Thus if N is a 2-group then $\beta = -\beta$ and so $\Gamma(\alpha)$ is self-paired. Conversely if $\Gamma(\alpha)$ is self-paired then $\{\beta, -\beta\}$ is a block of imprimitivity in $\Gamma(\alpha)$ for G_{α} and so $\beta = -\beta$, that is N is a 2-group.

Finally if β and γ are distinct points of $\Gamma(\alpha)$ then translating $(\alpha, -\beta)$ and $(\alpha, -\gamma)$ by $\gamma \in N$ and $\beta \in N$ respectively we find that $\gamma - \beta \in \Gamma^*(\gamma) \setminus \{\alpha\} \subseteq \Gamma \circ \Gamma^*(\alpha)$ and $\beta - \gamma \in \Gamma^*(\beta) \setminus \{\alpha\} \subseteq \Gamma \circ \Gamma^*(\alpha)$. It follows as above that $\Gamma \circ \Gamma^*(\alpha)$ is self-paired. ($\Gamma \circ \Gamma^*(\alpha)$ was shown to be a G_{α} -orbit in [2].)

REMARKS 3.2. (a) A similar argument shows that for $\beta \in \Gamma(\alpha)$ we have $i\beta$ in $\Gamma(\alpha)$ where $i \in \mathbb{Z}$, if and only if $i\beta = \beta$ (since the set of $i\beta$ in $\Gamma(\alpha)$, $i \in \mathbb{Z}$, is a block of imprimitivity for G_{α} in $\Gamma(\alpha)$). In particular if $N = \mathbb{Z}_p^d$ and we regard G_{α} as a subgroup of GL(d,p) then G_{α} contains no nontrivial scalar transformations. Similarly if in fact $G_{\alpha} \leq \Gamma L(d/a, p^a)$ then G_{α} contains no nontrivial $GF(p^a)$ -scalar transformations.

(b) The stabilizer G_{α} regarded as a subgroup of GL(d, p) is irreducible since G is primitive, and so we could choose a basis so that $\Gamma(\alpha)$ contains all the standard basis vectors $e_i = (o^{i-1}10^{d-i}), 1 \leq i \leq d$. Suppose that $|\Gamma(\alpha)| = d$: then G_{α} permutes the standard basis vectors amongst themselves and so fixes the point $e_1 + e_2 + \cdots + e_d \neq \alpha$. This contradicts the fact that G is primitive, so always $|\Gamma(\alpha)| > d$.

Now we consider the case where G has a unique minimal normal subgroup N which is nonabelian and regular on Ω . Here (see [1] and [7]) $N = T_1 \times \cdots \times T_k$ where each T_i is isomorphic to a fixed nonabelian simple group T and $k \geq 2$: the group G is a twisted wreath product $T \operatorname{twr}_{\varphi} P$, where P is a transitive subgroup of S_k permuting the T_i naturally, and the twisting homomorphism $\varphi: P_1 \to \operatorname{Aut} T$ is such that $\varphi(P_1)$ contains the group of inner automorphisms of T. We can identify Ω with N so that α is identified with the identity $(1, 1, \ldots, 1)$ of N, and then $G_{\alpha} = P$. PROPOSITION 3.3. Suppose that $G = T \operatorname{twr}_{\varphi} P$ is primitive on Ω with regular normal subgroup $N = T^k$ as described above. Suppose that G_{α} is doubly transitive on an orbit $\Gamma(\alpha) \subseteq \Omega \setminus \{\alpha\}$, where Ω is identified with N and $\alpha = (1, 1, \ldots, 1)$. Then G_{α} has an orbit $\hat{\Gamma}(\alpha)$ in $\Omega \setminus \{\alpha\}$, possibly equal to $\Gamma(\alpha)$, such that the actions of G_{α} on $\Gamma(\alpha)$ and $\hat{\Gamma}(\alpha)$ are permutationally equivalent, and for $\beta =$ $(\beta_1, \ldots, \beta_k) \in \hat{\Gamma}(\alpha)$ all the nontrivial β_i lie in a single $\varphi(P_1)$ -conjugacy class Cand $G_{\alpha\beta}(\leq P)$ is transitive on the support $\Delta(\beta) = \{i|\beta_i \neq 1\}$ of β .

If $\Gamma(\alpha)$ is self-paired then $\hat{\Gamma}(\alpha)$ is also self-paired and β has order 2 as an element of N.

PROOF. Choose a transversal $\{\rho_1 = 1, \rho_2, \ldots, \rho_k\}$ for P_1 in P such that $1\rho_i = i$ for all i. Then each $\sigma \in G_{\alpha} = P$ is such that the *j*th entry of β^{σ} is

$$\beta_i^{\rho_i \sigma \rho_j^{-1}}$$

where $i = j\sigma^{-1}$ and we write t^{τ} for the image of $t \in T$ under $\tau \in P$. Let $\Delta_1, \ldots, \Delta_r$ be the $G_{\alpha\beta}$ -orbits in $\mathbf{k} = \{1, 2, \ldots, k\}$; we note that all β -entries in a fixed Δ_i are conjugate under $\varphi(P_1)$. Call Δ_i nontrivial if the entries in Δ_i -positions in β are not the identity. As $\beta \neq \alpha$, there is at least one nontrivial orbit, say Δ . Define $\beta(\Delta) \in N$ to have entries equal to β -entries at positions in Δ , and entries equal to 1 otherwise. Then $G_{\alpha\beta}$ fixes $\beta(\Delta)$, and as $G_{\alpha\beta}$ is a maximal subgroup of G_{α} and G_{α} does not fix the point $\beta(\Delta) \neq \alpha$, it follows that $G_{\alpha\beta} = G_{\alpha\beta(\Delta)}$. If $\hat{\Gamma}(\alpha)$ is the G_{α} -orbit containing $\beta(\Delta)$ then the G_{α} -actions on $\Gamma(\alpha)$ and $\hat{\Gamma}(\alpha)$ are equivalent and $G_{\alpha\beta(\Delta)}$ is transitive on Δ . Finally $\beta^{-1} \in \Gamma^*(\alpha)$ and arguing as in Proposition 3.1 we see that $\Gamma(\alpha)$ is self-paired if and only if $\beta = \beta^{-1}$ that is if and only if β has order 2 in N. In this case $\beta(\Delta)$ also has order 2 so that $\hat{\Gamma}(\alpha)$ is also self-paired.

3.4. Further discussion of the twisted wreath product case. Let us assume that $\beta = \beta(\Delta)$ (that is replace $\Gamma(\alpha)$ by $\hat{\Gamma}(\alpha)$), $G_{\alpha\beta}$ is transitive on $\Delta(\beta)$, and all β entries in $\Delta(\beta)$ -positions lie in the $\varphi(P_1)$ -conjugacy class C. We define a design \mathcal{D} as follows: the set of points is $\Gamma(\alpha)$, the set of blocks is $\mathbf{k} = \{1, 2, \ldots, k\}$ with β incident with i whenever $i \in \Delta(\beta)$, that is $\beta_i \neq 1$. Then G_{α} acts faithfully (since N is regular) as an automorphism group of this design; G_{α} is 2-transitive on points, transitive on blocks, and the stabilizer of a point is transitive on the blocks incident with the point. A counting argument shows that each pair of points is incident with

$$\lambda = l(vl - k)/k(v - 1)$$

blocks where $l = |\Delta(\beta)|$. Of course \mathcal{D} is a degenerate design when l = k but if l < k then $k \ge v$. We note that the parameter λ is $|\Delta(\beta) \cap \Delta(\gamma)|$ for distinct β, γ in $\Gamma(\alpha)$.

Cheryl E. Praeger

Further if β , γ are distinct points of $\Gamma(\alpha)$ then the points $\beta^{-1}\gamma$ and $\gamma^{-1}\beta$ lie in $\Gamma \circ \Gamma^*(\alpha)$. Thus points of $\Gamma \circ \Gamma^*(\alpha)$ have $l_2 = k - 2l + \lambda + L$ entries equal to 1 since there are $k = 2l + \lambda$ entries *i* with $\beta_i = \gamma_i = 1$ and $L \ge 0$ entries *i* with $\beta_i = \gamma_i \ne 1$. The parameters *L*, l_2 can be determined in terms of *v*, *l*, *k* and $|\mathcal{D}|$ as follows:

(i) Given $i \in \mathbf{k}$ and $t \in C$ the number n(t,i) of $\beta \in \Gamma(\alpha)$ with $\beta_i = t$ is independent of i and t.

PROOF. The subset of P consisting of those elements which map *i* to 1 is $\rho_i^{-1}P_1$; for each $\sigma \in \rho_i^{-1}P_1$ and each $\beta \in \Gamma(\alpha)$ with $\beta_i = t$ we have

$$(\beta^{\sigma})_1 = \beta_i^{\rho_i \sigma} = t^{\rho_i \sigma}$$

Thus $n(t,i) = n(t^{\rho_i \sigma}, 1)$ for all $\rho_i \sigma \in P_1$, that is n(t,i) = n(t', 1) for all $t' \in C$.

(ii) Counting the nonidentity entries in points of $\Gamma(\alpha)$ we obtain $vl = kn|\mathcal{C}|$, where n = n(t, i) above.

(iii) Counting triples (β, γ, i) , where β, γ are in $\Gamma(\alpha)$ and the entry *i* is such that $\beta_i = \gamma_i \neq 1$ we obtain v(v-1)L = k|C|n(n-1), and substituting for *n*

$$L = (vl - k|\mathcal{C}|)l/k|\mathcal{C}|(v-1).$$

One final remark about the self-paired case (where $\beta^2 = 1$): by a theorem of Baer and Suzuki, (see [6, 3.8.2]), there is some entry in $\beta\gamma$ whose order as an element of T is not a power of 2. In particular $\beta\gamma \neq \gamma\beta$, that is no pair of distinct elements of $\Gamma(\alpha)$ commutes. Further if $\beta\gamma$ had odd order then the elements of C would be isolated in any Sylow 2-subgroup of T which would give a contradiction by Glauberman's Z^* -theorem [5]. Thus the order of $\beta\gamma$ is an even integer, not a power of 2.

Now $\beta\gamma\beta$ has order 2 (as it is conjugate in N to γ) and is joined to $\gamma\beta$ so it lies in $\Gamma(\alpha) \cup \Gamma_3(\alpha)$ where $\Gamma_3(\alpha) = \Gamma \circ \Gamma \circ \Gamma(\alpha) \setminus \Gamma(\alpha)$. If $\beta\gamma\beta \in \Gamma(\alpha)$, then as it is joined to $(\gamma\beta)^2$, and $(\gamma\beta)^2$ does not have order 2 we would have $(\gamma\beta)^2 \in \Gamma_2(\alpha)$. Then $\gamma\beta$ and $(\gamma\beta)^2$ would have the same order, and hence would have odd order, a contradiction. Thus $\beta\gamma\beta \in \Gamma_3(\alpha)$. If G_α were transitive on $\Gamma_3(\alpha)$ also, then all entries in points of $\Gamma_3(\alpha)$ would lie in $\mathcal{C} \cup \{1\}$. It follows that $T = \{1\} \cup \mathcal{C} \cup \mathcal{C}^2$. This seems to be a strong restriction on the group T, and hence on Γ .

3.5. FINAL REMARKS. Suppose that G is primitive on Ω and that G_{α} is 2-transitive and unfaithful on an orbit $\Gamma(\alpha) \subseteq \Omega \setminus \{\alpha\}$. Then it follows from Theorem A that $T \leq G \leq \operatorname{Aut} T$ for some nonabelian simple group T. Can such groups be classified?

References

- M Aschbacher and L. L. Scott, 'Maximal subgroups of finite groups', J. Algebra 92 (1985), 44-80.
- [2] P. J. Cameron, 'Permutation groups with multiply transitive suborbits I', Proc. London Math. Soc. (3) 25 (1972), 427-440; II Bull. London Math. Soc. 6 (1974), 1-5.
- [3] P. J. Cameron, 'Finite permutation groups and finite simple groups', Bull. London Math. Soc. 13 (1981), 1-22.
- [4] P. J. Cameron and C. E. Praeger, 'Graphs and permutation groups with projective subconstitutents', J. London Math. Soc. (2) 25 (1982), 62-74.
- [5] G. Glauberman, 'Central elements in core-free groups', J. Algebra 4 (1966), 403-420.
- [6] D. Gorenstein, Finite groups (Harper and Row, New York, Evanston and London, 1968).
- [7] L. G. Kovacs, 'Maximal subgroups in composite groups', J. Algebra, 99 (1986), 114-131.
- [8] C. E. Praeger, 'On primitive permutation groups with a doubly transitive suborbit', J. London Math. Soc. (2) 17 (1978), 67-73.
- [9] C. E. Praeger, 'Primitive permutation groups and a characterization of the odd graphs', J. Combin. Theory Ser. B 31 (1981), 117-142.
- [10] C. E. Praeger, J. Saxl, and K. Yokoyama, 'Distance transitive graphs and finite simple groups', Proc. London Math. Soc. (3) 55 (1987), 1-21.
- [11] L. L. Scott, 'Representations in characteristic p', Proc. Sympos. Pure Math. 37 (1980), 319-331.
- [12] H. Wielandt, Finite permutation groups (Academic Press, New York, 1964).

Department of Mathematics The University of Western Australia Nedlands, Western Australia 6009 Australia