PRIMITIVE PERMUTATION GROUPS WITH A DOUBLY TRANSITIVE SUBCONSTITUENT

CHERYL E. PRAEGER

(Received 5 June 1986)

Communicated by H. Lausch
Dedicated to Robert Edwards in recognition of
25 years' distinguished contribution to mathematics in Australia, on the occasion of his retirement

Abstract

Let G be a primitive permutation group on a finite set Ω. We investigate the subconstitutents of G, that is the permutation groups induced by a point stabilizer on its orbits in Ω, in the cases where G has a diagonal action or a product action on Ω. In particular we show in these cases that no subconstituent is doubly transitive. Thus if G has a doubly transitive subconstituent we show that G has a unique minimal normal subgroup N and either N is a nonabelian simple group or N acts regularly on Ω : we investigate further the case where N is regular on Ω.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 B 15, 05 C 25.

Finite primitive permutation groups with a doubly transitive subconstituent were first studied by W. A. Manning (see [12, 17.7]). His results were generalized by P. J. Cameron ([2] and see also [4, 8, 9]). The analogues of these groups in the area of symmetric graphs, namely, 2 -arc transitive graphs, have also received a great deal of attention in the literature. In this paper we show that these groups have a unique minimal normal subgroup which either is a nonabelian simple group or is regular. We begin by studying the nature of the subconstituents of a primitive group G with a diagonal or a product action: we show in particular

[^0](C) 1988 Australian Mathematical Society 0263-6115/88 \$A2.00 +0.00
that no subconstituent is doubly transitive for these groups. Using the O'Nan Scott Theorem (see [1, 7, or 11]) we can then deduce immediately

THEOREM A. Let G be a primitive permutation group on a finite set Ω such that the stabilizer of $\alpha \in \Omega$ is doubly transitive on one of its orbits in $\Omega \backslash\{\alpha\}$. Then either
(a) $T \leq G \leq$ Aut T for a nonabelian simple group T, or
(b) G has a unique minimal normal subgroup which is regular on Ω.

We continue the investigation of those groups with a regular normal subgroup.

1. Primitive groups with a simple diagonal action

Here we assume that $G \leq X=N\left(\right.$ Aut $\left.T \times S_{k}\right)$ is a primitive permutation group on Ω where we assume the following.
(i) The group N is the socle of G and $N=T_{1} \times \cdots \times T_{k}$ is a direct product of $k \geq 2$ groups T_{i}, each isomorphic to a fixed nonabelian simple group T.
(ii) The group Aut T acts naturally on each factor T_{i} of N and each inner automorphism $\sigma_{t}: x \rightarrow x^{t}$, for $x, t \in T$, is identified with a diagonal element (t, t, \ldots, t) of N, that is Aut $T \cap N=D=\{(t, t, \ldots, t) \mid t \in T\}$.
(iii) The group S_{k} permutes the set $\left\{T_{1}, \ldots, T_{k}\right\}$ naturally and the subgroup P of S_{k} induced by G is either primitive of degree k, or $k=2$ and $P=1$.
(iv) We may assume that for some $\alpha \in \Omega, X_{\alpha}=$ Aut $T \times S_{k}$ with the group of inner automorphisms of T identified with the $\operatorname{subgroup} D$ of N; then $D \leq$ $G_{\alpha} \leq A(T) \times P$ where $A(T)$ is the projection of G_{α} to Aut T and $D \leq A(T)$. The points of Ω can be identified with the set of right cosets of D in N so that

$$
\alpha=D(1,1, \ldots, 1)
$$

and for $\beta=D\left(t_{1}, \ldots, t_{k}\right) \in \Omega, \mathbf{s}=\left(s_{1}, \ldots, s_{k}\right) \in N, \sigma \in$ Aut T and $\tau \in S_{k}$ we have

$$
\begin{aligned}
& \beta^{\boldsymbol{s}}=D\left(t_{1} s_{1}, \ldots, t_{k} s_{k}\right) \\
& \beta^{\sigma}=D\left(t_{1}^{\sigma}, \ldots, t_{k}^{\sigma}\right) \\
& \beta^{\tau}=D\left(t_{1 \tau^{-1}}, \ldots, t_{k \tau^{-1}}\right) .
\end{aligned}
$$

Here we are taking τ to act on the set $\{1,2, \ldots, k\}$ in the natural way. We note that $|\Omega|=|T|^{k-1}$, and that each coset of D has a unique member with k th entry equal to 1 . Let Π_{A}, Π_{P} denote the projections of G_{α} onto $A(T)$ and P respectively. We shall investigate G_{α}-orbits Δ which are quasiprimitive (that is all normal subgroups of G_{α} either fix Δ pointwise or are transitive on Δ). We begin by showing that the only fixed point of D in Ω is α.

LEMMA 1.1. The diagonal subgroup D fixes only the point $\alpha=D(1, \ldots, 1)$.
Proof. Suppose that D fixes $\delta=D\left(t_{1}, \ldots, t_{k-1}, 1\right) \neq \alpha$. Since $\delta \neq \alpha$ at least one entry say t_{i} is not the identity element of T. Now for $t=(t, \ldots, t) \in D$ we have $\delta=\delta^{t}=D\left(t^{t}, t^{t}, \ldots, t_{k-1}^{t}, 1\right)$ and as each D-coset contains a unique element with k th entry 1 we have $t_{i}=t_{i}^{t}$: since this is true for all $t \in T$ it follows that t_{i} is in the centre of T. This contradiction completes the proof.

Thus if G_{α} is quasiprimitive on one of its orbits Δ then D is transitive on Δ :
Lemma 1.2. Suppose that D is transitive on a G_{α}-orbit $\Delta \neq\{\alpha\}$, and that $\delta=D\left(t_{1}, t_{2}, \ldots, t_{k}\right) \in \Delta$. Then $t_{1}, t_{2}, \ldots, t_{k}$ are distinct elements of T.

Proof. This is true if $k=2$ so suppose that $k \geq 3$: then P is primitive on $\left\{T_{1}, \ldots, T_{k}\right\}$. Suppose that exactly x entries t_{i} in $\left(t_{1}, t_{2}, \ldots, t_{k}\right)$ are equal to t_{k}; then $1 \leq x<k$ since $\delta \neq \alpha$. Let i be an index for which $t_{i} \neq t_{k}$. Then for some $\tau \in P$ we have $i^{\tau}=k$, and for some $\sigma \in A(T)$ we have $\sigma \tau \in G_{\alpha}$: thus Δ contains $\delta^{\sigma \tau}=D\left(t_{1 \tau^{-1}}^{\sigma}, \ldots, t_{k \tau^{-1}}^{\sigma}\right)$ with k th entry $t_{k \tau^{-1}}^{\sigma}=t_{i}^{\sigma}$. However as D is transitive on $\Delta, \delta^{\sigma \tau}=\delta^{\mathbf{t}}$ for some $\mathbf{t}=(t, \ldots, t) \in D$. It follows that exactly x entries in $\left(t_{1 \tau^{-1}}^{\sigma}, \ldots, t_{k \tau^{-1}}^{\sigma}\right)$ are equal to $t_{k \tau^{-1}}^{\sigma}=t_{i}^{\sigma}$ and hence that exactly x entries in $\left(t_{1}, \ldots, t_{k}\right)$ are equal to t_{i}. Thus the partition of $\{1,2, \ldots, k\}$ determined by equality of the elements $t_{1}, t_{2}, \ldots, t_{k}$ has k / x blocks of size x. Further this partition is independent of the coset representative (t_{1}, \ldots, t_{k}) chosen for δ, and as D is transitive on Δ this partition is independent of the point δ chosen from Δ. Thus this partition must be preserved by P. Since P is primitive and $x<k$ we must have $x=1$.

Next we investigate the case where G_{α} is unfaithful on Δ.
LEMMA 1.3. Suppose that $\Delta \neq\{\alpha\}$ is a G_{α}-orbit such that D^{Δ} is transitive and the kernel K of G_{α} on Δ is nontrivial. The following hold.
(a) The group $K \leq G_{\alpha} \cap P$ and K is regular on $\tau=\left\{T_{1}, \ldots, T_{k}\right\}$. Moreover if $\delta=D\left(t_{1}, t_{2}, \ldots, t_{k}\right) \in \Delta$ with $t_{k}=1$ then $S=\left\{t_{1}, t_{2}, \ldots, t_{k}=1\right\}$ is a subgroup of T isomorphic to K : the map $\varphi: K \rightarrow S$ defined $b y \varphi(\tau)=t_{k^{-1}}$ for $\tau \in K$ is an isomorphism.
(b) If $K=G_{\alpha} \cap P$ then $K \simeq S$ is elementary abelian, and P is soluble. Further if G_{α}^{Δ} is primitive then $G_{\alpha \delta}=G_{\alpha} \cap\left(N_{A(T)}(S) \times P\right)$ and $N(S) \cap\left(G_{\alpha} \cap A(T)\right)=$ $C(S) \cap\left(G_{\alpha} \cap A(T)\right)$: in particular S is not a Sylow subgroup of $G_{\alpha} \cap A(T)$. The orbit Δ is self-paired if and only if some element of T inverts (each element of) S, and if Δ is self-paired and primitive then S is an elementary abelian 2-group.
(c) If $G_{\alpha} \cap P$ is transitive on Δ then G_{α}^{Δ} is primitive with two regular normal subgroups $\left(G_{\alpha} \cap P\right)^{\Delta}$ and $\left(G_{\alpha} \cap A(T)\right)^{\Delta}$ each isomorphic to T (so $G_{\alpha} \cap A(T)=$ $D)$. Moreover $S=T \simeq K$ and $G_{\alpha} \cap P \simeq T \times T$ so that $k=|T|$. (We can
change the subscripts $1,2, \ldots, k$ of the T_{i} to elements of T and choose a coset representative for δ with x-entry t_{x} and $t_{1}=1$ so that K identified with T acts on the subscripts by left multiplication. Then for some $\sigma=\sigma(\delta) \in \operatorname{Aut} T, t_{x}=x^{\sigma}$ for all $x \in T$: and the stabilizer of δ in $\left(D \times\left(G_{\alpha} \cap P\right)\right)^{\Delta}$ is $\left\{\left(\mathbf{x}, \sigma x \sigma^{-1}\right) \mid x \in\right.$ $T\} \simeq T$, where $\mathbf{x}=(x, x, \ldots, x)$.

REMARKS 1.4. (a) In part (a), K is a regular normal subgroup of a primitive group P and hence is elementary abelian or a direct power of a nonabelian simple group. We show in (b) that K is elementary abelian when $G_{\alpha} \cap P=K$.
(b) If G_{α}^{Δ} is quasiprimitive then $\left(G_{\alpha} \cap P\right)^{\Delta}$ is transitive or trivial: the latter case corresponds to K being elementary abelian. In the former case we show in (c) that $K \simeq T$ and G_{α}^{Δ} is in fact primitive with two regular normal subgroups isomorphic to T.
(c) If G_{α}^{Δ} were 2 -transitive then G_{α}^{Δ} would have a unique minimal normal subgroup, namely D^{Δ}, so case (c) could not hold. Further in none of the almost simple 2-transitive groups does D_{δ}^{Δ} have a nontrivial centre, and hence case (b) does not hold either. Thus in Lemma 1.3, G_{α}^{Δ} is not 2-transitive.

Proof. (a) Since D is faithful on $\Delta, K \cap A(T)=K \cap D=1$ and it follows that K centralizes D. Hence $\Pi_{A}(K)$ centralizes D, and as D has trivial centralizer in $A(T)$ we conclude that $\Pi_{A}(K)=1$, that is $K \subseteq P$. Thus we have $K \leq G_{\alpha} \cap P$, (so $P \neq 1$).

Now K is normal in $\Pi_{P}\left(G_{\alpha}\right)=P$ and as P is primitive on $\tau=\left\{T_{1}, \ldots, T_{k}\right\}$ it follows that K is transitive on T. If $\tau \in K$ fixes k then since $\delta=\delta^{\tau}=$ $D\left(t_{1 \tau^{-1}}, \ldots, t_{k \tau-1}\right)$ with $t_{k \tau^{-1}}=t_{k}=1$ we must have $t_{i \tau-1}=t_{i}$ for all i : since all the t_{i} are distinct it follows that $\tau=1$. Thus K is regular on τ.

Now for each $i \in\{1, \ldots, k\}$ there is a unique $\tau=\tau_{i} \in K$ such that $i^{\tau}=k$: then $\delta^{\tau}=\delta$ yields $t_{j \tau^{-1}}=t_{i} t_{j}$ for each $j \in\{1, \ldots, k\}$. Thus $S=\left\{t_{1}, t_{2},, \ldots, t_{k}=1\right\}$ is closed under multiplication and hence is a subgroup of T. Further $\tau=\tau_{i}$ induces a permutation of S by $t_{j}^{\tau}=t_{j \tau^{-1}}$ and we have seen that this permutation is simply left multiplication by t_{i}. Moreover by definition of τ_{i} we have $\tau_{i} \tau_{j}=\tau_{x}$ where $x=j \tau_{i}^{-1}$ and we also have $t_{i} t_{j}=t_{j \tau_{i}^{-1}}=t_{x}$. It follows that the map $\varphi\left(\tau_{i}\right)=t_{i}$, is an isomorphism.
(b) Assume next that $G_{\alpha} \cap P=K$. Then $A(T)=\Pi_{A}\left(G_{\alpha}\right) \simeq G_{\alpha} /\left(G_{\alpha} \cap P\right)=$ $G_{\alpha} / K, P / K=\Pi_{P}\left(G_{\alpha}\right) / \Pi_{P}(K) \simeq G_{\alpha} / K\left(G_{\alpha} \cap A(T)\right)$ and $K\left(G_{\alpha} \cap A(T)\right) / K \simeq$ $\left(G_{\alpha} \cap A(T)\right) /\left(K \cap\left(G_{\alpha} \cap A(T)\right)\right) \simeq G_{\alpha} \cap A(T)$. It follows that P / K is isomorphic to a section of Out T and hence P / K is soluble. From [1] the only primitive groups P with a regular normal subgroup K such that P / K is soluble are those of affine type, that is those with K elementary abelian.

Now Δ is self-paired if and only if Δ contains $\delta^{-1}=D\left(t_{1}^{-1}, t_{2}^{-1}, \ldots, t_{k}^{-1}\right)$, and as D is transitive on Δ, this is true if and only if some $t \in T$ inverts each of the t_{i}.

For $\gamma=D\left(s_{1}, s_{2}, \ldots, s_{k}\right) \in \Delta$, with $s_{k}=1$, let $S(\gamma)=\left\{s_{1}, s_{2}, \ldots, s_{k}=1\right\}$. Then as D^{Δ} is transitive $S(\gamma)$ is a subgroup of T conjugate to S. The subset $\Delta_{S}=\{\gamma \in \Delta \mid S(\gamma)=S\}$ is clearly a block of imprimitivity for G_{α} in Δ, and Δ_{S} contains δ^{-1} if Δ is self-paired. If G_{α}^{Δ} is primitive then $\Delta_{S}=\{\delta\}$ (so that $\delta=\delta^{-1}$, that is S is a 2-group, whenever Δ is self-paired). Now an element $\sigma \tau \in G_{\alpha}$, where $\sigma \in A(T), \tau \in P$, fixes Δ_{S} setwise if and only if $\sigma \in N_{A(T)}(S)$, that is the setwise stabilizer of Δ_{S} in G_{α} is $G_{\alpha} \cap\left(N_{A(T)}(S) \times P\right)$. Thus if G_{α}^{Δ} is primitive then $G_{\alpha \delta}$ is $G_{\alpha} \cap\left(N_{A(T)}(S) \times P\right)$; moreover $\sigma \in G_{\alpha} \cap N_{A(T)}(S)$ fixes δ if and only if σ centralizes S, so $G_{\alpha} \cap N_{A(T)}(S)=G_{\alpha} \cap C_{A(T)}(S)$: by [6, 7.4.3] S is not a Sylow subgroup of $G_{\alpha} \cap A(T)$.
(c) Finally assume that $G_{\alpha} \cap P$ is transitive on Δ. Then $G_{\alpha}^{\Delta}=G_{\alpha} / K$ has normal subgroups $\left(G_{\alpha} \cap A(T)\right)^{\Delta}=\left(\left(G_{\alpha} \cap A(T)\right) \times K\right) / K$ and $\left(G_{\alpha} \cap P\right)^{\Delta}=$ $\left(G_{\alpha} \cap P\right) / K$ with trivial intersection. Thus $\left(G_{\alpha} \cap A(T)\right)^{\Delta}$ centralizes $\left(G_{\alpha} \cap P\right)^{\Delta}$ and as both are transitive it follows that both are regular and are isomorphic to each other: thus as D^{Δ} is transitive we have $G_{\alpha} \cap A(T)=D \simeq\left(G_{\alpha} \cap P\right) / K$. Now the stabilizer of δ in $D^{\Delta} \times\left(G_{\alpha} \cap P\right)^{\Delta}$ is a diagonal subgroup and hence for each $\mathbf{t}=(t, t, \ldots, t) \in D$ there is a $\tau \in G_{\alpha} \cap P$ such that $\delta^{\mathbf{t} \tau}=\delta$. If we define $S(\gamma)$ as above for $\gamma \in \Delta$, we have $S\left(\delta^{t \tau}\right)=S^{t}$ and hence t normalizes S. Since this holds for all $t \in T$ we must have $S=T$. It follows that $G_{\alpha} \cap P=K \times L$ where $L \simeq\left(G_{\alpha} \cap P\right)^{\Delta} \simeq T$. Since K is regular on T we may replace the set of labels $\{1,2, \ldots, k\}$ by the set T so that K identified with T acts by left multiplication: we choose a coset representative for δ with x-entry t_{x} and $t_{1}=1$. Then we have, for each $y \in K=T, \delta=\delta^{y}$ and hence for each $x \in T, t_{x}=t_{y}^{-1} t_{y x}$ that is $t_{y} t_{x}=t_{y x}$. Thus there is an isomorphism $\sigma \in$ Aut T such that $t_{x}=x^{\sigma}$. Now L must act on the labels by right multiplication and we find that for $y \in L$, with L identified with T, and for $\mathrm{x}=(x, \ldots, x) \in D, \mathrm{x} y$ fixes δ if and only if $\left(y z y^{-1}\right)^{\sigma x}=z^{\sigma}$ for all $z \in T$, and this holds if and only if $\sigma=y^{-1} \sigma x$, that is $y=\sigma x \sigma^{-1}$. Thus $\left(D \times\left(G_{\alpha} \cap P\right)\right)_{\delta}^{\Delta}=\left\{\left(\mathbf{x}, \sigma x \sigma^{-1}\right) \mid x \in T\right\}$.

Finally we consider the case where G_{α} is faithful and quasiprimitive on Δ.

Lemma 1.5. Suppose that $\Delta \neq\{\alpha\}$ is a faithful G_{α}-orbit such that D^{Δ} is transitive.
(a) If $G_{\alpha} \cap P=1$ then $G_{\alpha} \simeq A(T)$ and $P \simeq G_{\alpha} /\left(G_{\alpha} \cap A(T)\right)$ which is isomorphic to a section of Out T and hence is soluble.
(b) If $\left(G_{\alpha} \cap P\right)^{\Delta}$ is transitive then $G_{\alpha} \cap A(T)=D \simeq G_{\alpha} \cap P$; both D and $G_{\alpha} \cap P$ are regular on Δ. In this case G_{α}^{Δ} is primitive. (If we identify $G_{\alpha} \cap P$ with T then with $\delta=D\left(t_{1}, \ldots, t_{k}\right) \in \Delta$ and $t_{k}=1$, there is an automorphism σ
of T such that $\left(D \times\left(G_{\alpha} \cap P\right)\right)_{\delta}=\left\{\left(\mathbf{x}^{\sigma}, x\right) \mid x \in T\right\}$ where $\mathbf{x}^{\sigma}=\left(x^{\sigma}, x^{\sigma}, \ldots, x^{\sigma}\right)$ and for all $1 \leq i \leq k$ we have $x^{-\sigma} t_{i} x^{\sigma}=t_{k x^{-1}}^{-1} t_{i x^{-1}}$.)

REMARKS 1.6. (a) In part (a) the stabilizer of δ in D is $\left\{t \mid t \in \bigcap_{1 \leq i \leq k} C_{T}\left(t_{i}\right)\right\}$ and as in Remark 1.4(c) we see that G_{α}^{Δ} cannot be 2-transitive. In part (b), G_{α}^{Δ} has two minimal normal subgroups and again cannot be 2-transitive. Thus we can conclude

COROLLARY 1.7. If G has a simple diagonal action on Ω then G has no 2-transitive subconstituents.
(b) In case (a) if we identify D with T then $D_{\delta}=\bigcap_{1 \leq i \leq k} C_{T}\left(t_{i}\right)$ that is D_{δ} is the centralizer in T of the set $S(\delta)=\left\{t_{1}, t_{2}, \ldots, t_{k}=1\right\}$. Since $G_{\alpha}=D G_{\alpha \delta}$ we have $P=\Pi_{P}\left(G_{\alpha \delta}\right)$ and so for each $\tau \in P$ there is a $\sigma \in A(T)$ such that $\sigma \tau \in G_{\alpha \delta}$: moreover $\sigma \tau \in G_{\alpha \delta}$ if and only if $t_{i}=\left(t_{k \tau^{-1}}^{-1} t_{i \tau^{-1}}\right)^{\sigma}$ for all $1 \leq i \leq k$. Now $\sigma \tau \in G_{\alpha}$ induces a map from $S(\delta)$ to $S\left(\delta^{\sigma \tau}\right)$ and $G_{\alpha \delta}$ fixes $S(\delta)$ setwise. If G_{α}^{Δ} is primitive then $G_{\alpha \delta}$ must be the full setwise stabilizer of $S(\delta)$ in G_{α} (since the other possibility that $S(\delta)=S(\gamma)$ for all $\gamma \in \Delta$ is not allowed: for $S(\delta)$ would contain the conjugacy class in D of each t_{i} and hence $D_{\delta}=\bigcap C_{T}\left(t_{i}\right)=1$. This is not possible for an almost simple primitive group).
(c) In case (b) since D is regular on δ we have

$$
\bigcap_{1 \leq i \leq k} C_{T}\left(t_{i}\right)=1
$$

Also since $G_{\alpha} \cap P$ is transitive on Δ, each $\gamma=D\left(x_{1}, \ldots, x_{k}\right) \in \Delta$ with $x_{k}=1$ has its entries x_{i} of the form $t_{j}^{-1} t_{l}$ for some j, l. It follows that the set S of entries in points of Δ on the one hand is the union of the T-conjugacy classes of the t_{i} (since D^{Δ} is transitive) and on the other hand is $\left\{t_{j}^{-1} t_{l} \mid j, l \in[1, k]\right\}$: that is S is a normal set with a kind of closure property. We make also the following observations.
(i) If $t \in G_{\alpha} \cap P=T$ fixes positions k and i, for some $1 \leq i<k$ then t^{σ} centralizes t_{i}.
(ii) If Δ is self-paired then $\delta^{-1}=D\left(t_{1}^{-1}, t_{2}^{-1}, \ldots, t_{k-1}^{-1}, 1\right) \in \Delta$ so, for some $\mathbf{t}=(t, \ldots, t) \in D, \delta^{\mathbf{t}}=\delta^{-1}$, that is t inverts each t_{i}. Thus for any two such elements $t=x$ and $t=y$ say the product $x y^{-1}$ centralizes all the t_{i} and we deduce $x y^{-1}=1$; so t is unique and has order at most 2 .

Proof of Lemma 1.5. (a) If $G_{\alpha} \cap P=1$ then $A(T)=\Pi_{A}\left(G_{\alpha}\right) \simeq G_{\alpha}$ and $P=\Pi_{P}\left(G_{\alpha}\right) \simeq G_{\alpha} /\left(G_{\alpha} \cap A(T)\right)$ which is isomorphic to a quotient of $A(T) / D:$ thus (a) holds.
(b) Suppose that $\left(G_{\alpha} \cap P\right)^{\Delta}$ is transitive. As in the proof of Lemma 1.3(c), $\left(G_{\alpha} \cap A(T)\right)^{\Delta}$ and $\left(G_{\alpha} \cap P\right)^{\Delta}$ centralise each other, so each is regular on Δ and
$G_{\alpha} \cap A(T)=D \simeq G_{\alpha} \cap P$. Thus $G_{\alpha \delta} \cap\left(D \times\left(G_{\alpha} \cap P\right)\right)=\left\{\left(\mathbf{x}^{\sigma}, x\right) \mid x \in T\right\}$ for some $\sigma \in \operatorname{Aut} T$ where $\mathbf{x}^{\sigma}=\left(x^{\sigma}, x^{\sigma}, \ldots, x^{\sigma}\right)$ and so $x^{-\sigma} t_{i} x^{\sigma}=t_{k x^{-1}} t_{i x^{-1}}$ for all i.

2. Primitive groups with a product action

Here we assume that $G \leq X=H \mathrm{wr} S_{x}$ acts primitively on $\Omega=\Gamma^{x}=$ $\Gamma_{1} \times \cdots \times \Gamma_{x}$ for some $x \geq 2$ where the following hold.
(i) The group H is a primitive permutation group on Γ and $T \leq H \leq \operatorname{Aut} T$ for a nonabelian simple group T, or H has a simple diagonal action on Γ as described in the previous section, say H has socle T^{y} with T a nonabelian simple group and $y \geq 2$.
(ii) The group induced by G on Γ_{i} is H_{i}, a copy of H : the base group of X is $H^{x}=H_{1} \times \cdots \times H_{x}$, and G and X have the same socle $N=T^{x y}=T_{1} \times \cdots \times T_{x y}$ (where $y=1$ if H is almost simple and the socle of H_{i} is

$$
\text { soc } \left.H_{i}=T_{(i-1) y+1} \times \cdots \times T_{i y}\right)
$$

(iii) The top group S_{x} of X permutes the sets $\mathcal{G}=\left\{\Gamma_{1}, \ldots, \Gamma_{x}\right\}$ and $\nVdash=$ $\left\{H_{1}, \ldots, H_{x}\right\}$ naturally, and G induces a transitive subgroup P of S_{x}.
(iv) For $\alpha=(\gamma, \gamma, \ldots, \gamma) \in \Omega=\Gamma^{x}$ the stabilizer $G_{\alpha}=G \cap\left(H_{\gamma} \mathrm{wr} S_{x}\right), G_{\alpha}$ contains $N_{\alpha}=(\operatorname{soc} H)_{\gamma}^{x}$, and as $G=N G_{\alpha}, G_{\alpha}$ induces P on \mathcal{G} and \mathcal{H}.

Theorem 2.1. Suppose that G is a primitive permutation group on Ω with the product action as described above, and suppose that Δ is a G_{α}-orbit in $\Omega \backslash\{\alpha\}$.
(a) If G_{α} is quasiprimitive on Δ then $\Delta=\Delta(\gamma)^{x}$ where $\Delta(\gamma)$ is an orbit of H_{γ} in Γ.
(b) If $(H \mathrm{wr} P)_{\alpha}$ is quasiprimitive on Δ then H_{γ} is quasiprimitive on $\Delta(\gamma)$.
(c) Also $(H \mathrm{wr} P)_{\alpha}$ is primitive on Δ if and only if H_{γ} is primitive on $\Delta(\gamma)$. Thus if G_{α} is primitive on Δ then H_{γ} is primitive on $\Delta(\gamma)$.
(d) The orbit Δ is self-paired for G_{α} if and only if $\Delta(\gamma)$ is a self-paired oribt of H_{γ}.

REmarks 2.2. (a) We have not quite shown that the action of H_{γ} on $\Delta(\gamma)$ must be quasiprimitive; the problem is that some $M \triangleleft H_{\gamma}$ with $M^{\Delta(\gamma)} \neq 1$ may be such that $\left(M^{x} \cap G_{\alpha}\right)^{\Delta}=1$, so that the quasiprimitivity of G_{α}^{Δ} yields no information about the action of M on $\Delta(\gamma)$. Can this situation really occur? (Note that $\left(M^{x} \cap G_{\alpha}\right)^{\Delta}=1$ implies that $\left(M \cap(\operatorname{soc} H)_{\gamma}\right)^{\Delta(\gamma)}=1$.)
(b) If $\gamma^{\prime} \in \Delta(\gamma) \backslash\{\gamma\}$ then $\delta^{\prime}=\left(\gamma^{\prime}, \gamma^{\prime}, \gamma^{\prime}, \ldots, \gamma^{\prime}\right) \in \Delta$ and $\delta^{\prime \prime}=\left(\gamma^{\prime}, \gamma, \ldots, \gamma\right) \in$ Δ and it is not possible for an element of $G_{\alpha \delta}$ to map δ^{\prime} to $\delta^{\prime \prime}$. Thus

COROLLARY 2.3. A primitive group with product action has no 2-transitive subconstitutents.

In fact similar considerations show that G_{α} must have rank at least $x+1$ on Δ and that if G_{α}^{Δ} has rank $x+1$ then $P \supseteq A_{x}$ and $H_{\gamma}^{\Delta(\gamma)}$ is 2 -transitive.

Proof of Theorem 2.1. Let $\Delta_{0}(\gamma)=\{\gamma\}, \Delta_{1}(\gamma), \ldots, \Delta_{r}(\gamma)$ be the orbits of H_{γ} in Γ where $r \geq 1$. Let $S=\left\{j=\left(j_{1}, \ldots, j_{x}\right) \mid 0 \leq j_{i} \leq r\right.$ for each $i=1, \ldots, x\}$. Then P acts on S by permuting coordinates in the same way as it acts on the set $\mathcal{G}=\left\{\Gamma_{1}, \ldots, \Gamma_{x}\right\}$. Moreover the orbits of H_{γ} wr P in Ω are in one-to-one correspondence with the orbits of P in S, namely the orbit $\Delta_{J}(\alpha)$ of $(H \text { wr } P)_{\alpha}$ in Ω corresponding to the orbit J of P in S is the union of $\Delta_{j}(\alpha)=\Delta_{j_{1}}(\gamma) \times \cdots \times \Delta_{j_{z}}(\gamma)$ over all $\mathbf{j} \in J$. Thus $\Delta \subseteq \Delta_{J}(\alpha)$ for some orbit $J \neq\{(0,0, \ldots, 0)\}$ of P in S. By [10, Lemma 2.3] $(\operatorname{soc} H)_{\gamma}$ acts nontrivially on $\Delta_{j}(\gamma)$ for all $j \neq 0$ and it follows that $(\operatorname{soc} H)_{\gamma}^{x}\left(\triangleleft G_{\alpha} \cap H^{x}\right)$ is nontrivial and $\frac{1}{2}$-transitive on $\Delta_{\mathrm{J}}(\alpha)$ for each $\mathbf{j} \in J$. Now G_{α} and P induce the same action on \mathcal{G} and hence on S and hence $\Delta \cap \Delta_{\mathrm{j}}(\alpha) \neq \varnothing$ for each $\mathbf{j} \in J$. Thus ($\operatorname{soc} H)_{\gamma}^{x}$ is nontrivial on Δ, is normal in G_{α}, and as G_{α} is quasiprimitive on Δ it follows that $(\operatorname{soc} H)_{\gamma}^{x}$ is transitive on Δ. Then as $(\operatorname{soc} H)_{\gamma}^{x}$ fixes $\Delta \cap \Delta_{\mathrm{f}}(\alpha)$ setwise for each $\mathbf{j} \in J$ it follows that $J=\{\mathbf{j}=(j, j, \ldots, j)\}$ for some $j>0$, and so $\Delta_{J}(\alpha)=\Delta_{j}(\gamma)^{x}$.

Now ($\operatorname{soc} H)_{\gamma}^{x}$ is transitive on Δ and hence $\Delta=A_{1} \times \cdots \times A_{x}$ where each A_{i} is an orbit of $(\operatorname{soc} H)_{\gamma}$ in $\Delta_{j}(\gamma)$. However by [10, Lemma 2.2(b)] the setwise stabilizer of Γ_{i} in G_{α} induces H_{γ} of Γ_{i} and hence $A_{i}=\Delta_{j}(\gamma)$ for each i, that is, $\Delta=\Delta_{j}(\gamma)^{x}$. If $(H \mathrm{wr} P)_{\alpha}^{\Delta}$ is quasiprimitive then clearly $H_{\gamma}^{\Delta_{j}(\gamma)}$ is quasiprimitive, and if $(H \mathrm{wr} P)_{\alpha}^{\Delta}$ is primitive then also $H_{\gamma}^{\Delta_{j}(\gamma)}$ is primitive. Conversely if H_{γ} is primitive on $\Delta_{j}(\gamma)$ then $(H \text { wr } P)_{\alpha}^{\Delta}$ is primitive by [3]. Finally Δ is clearly self paired if and only if $\Delta_{j}(\gamma)$ is self paired.

3. Primitive groups with a doubly transitive subconstituent

Suppose that G is a primitive permutation group on Ω and that for $\alpha \in \Omega$, G_{α} is 2 -transitive on one of its orbits $\Gamma(\alpha) \subseteq \Omega \backslash\{\alpha\}$. By Corollaries 1.7 and 2.3 G has neither a simple diagonal action nor a product action on Ω. It follows from the O'Nan Scott Theorem [1] that Theorem A is true. In this section we shall discuss the case where G has a unique minimal normal subgroup N which is regular on Ω. We consider first the case where N is abelian.

PROPOSITION 3.1. Suppose that G is a simply transitive primitive permutation group on Ω with an elementary abelian regular normal subgroup N, and suppose that $G_{\alpha}, \alpha \in \Omega$, is doubly transitive on one of its orbits $\Gamma(\alpha) \subseteq \Omega \backslash\{\alpha\}$. We identify Ω with N in such a way that α is identified with the zero of N (written additively).
(a) Then the orbit $\Gamma^{*}(\alpha)$ paired with $\Gamma(\alpha)$ is $-\Gamma(\alpha)=\{-\beta \mid \beta \in \Gamma(\alpha)\}$.
(b) The orbit $\Gamma(\alpha)$ is self-paired if and only if N is a 2-group.
(c) The orbit $\Gamma \circ \Gamma^{*}(\alpha)=\{\gamma \mid$ there is a β such that $\beta \in \Gamma(\alpha) \cap \Gamma(\gamma)$, and $\gamma \neq \alpha\}$ is self-paired.

Proof. Identifying Ω with N such that $\alpha=0$, for each $\beta \in \Gamma(\alpha)$ we can translate by $-\beta \in N$ to obtain $-\beta \in \Gamma^{*}(\alpha)$. Hence $\Gamma^{*}(\alpha)=-\Gamma(\alpha)=\{-\beta \mid \beta \in$ $\Gamma(\alpha)\}$. Thus if N is a 2-group then $\beta=-\beta$ and so $\Gamma(\alpha)$ is self-paired. Conversely if $\Gamma(\alpha)$ is self-paired then $\{\beta,-\beta\}$ is a block of imprimitivity in $\Gamma(\alpha)$ for G_{α} and so $\beta=-\beta$, that is N is a 2-group.

Finally if β and γ are distinct points of $\Gamma(\alpha)$ then translating $(\alpha,-\beta)$ and $(\alpha,-\gamma)$ by $\gamma \in N$ and $\beta \in N$ respectively we find that $\gamma-\beta \in \Gamma^{*}(\gamma) \backslash\{\alpha\} \subseteq$ $\Gamma \circ \Gamma^{*}(\alpha)$ and $\beta-\gamma \in \Gamma^{*}(\beta) \backslash\{\alpha\} \subseteq \Gamma \circ \Gamma^{*}(\alpha)$. It follows as above that $\Gamma \circ \Gamma^{*}(\alpha)$ is self-paired. ($\Gamma \circ \Gamma^{*}(\alpha)$ was shown to be a G_{α}-orbit in [2].)

REMARKS 3.2. (a) A similar argument shows that for $\beta \in \Gamma(\alpha)$ we have $i \beta$ in $\Gamma(\alpha)$ where $i \in \mathbf{Z}$, if and only if $i \beta=\beta$ (since the set of $i \beta$ in $\Gamma(\alpha)$, $i \in \mathbf{Z}$, is a block of imprimitivity for G_{α} in $\Gamma(\alpha)$). In particular if $N=\mathbf{Z}_{p}^{d}$ and we regard G_{α} as a subgroup of $G L(d, p)$ then G_{α} contains no nontrivial scalar transformations. Similarly if in fact $G_{\alpha} \leq \Gamma L\left(d / a, p^{a}\right)$ then G_{α} contains no nontrivial $G F\left(p^{a}\right)$-scalar transformations.
(b) The stabilizer G_{α} regarded as a subgroup of $G L(d, p)$ is irreducible since G is primitive, and so we could choose a basis so that $\Gamma(\alpha)$ contains all the standard basis vectors $e_{i}=\left(o^{i-1} 10^{d-i}\right), 1 \leq i \leq d$. Suppose that $|\Gamma(\alpha)|=d$: then G_{α} permutes the standard basis vectors amongst themselves and so fixes the point $e_{1}+e_{2}+\cdots+e_{d} \neq \alpha$. This contradicts the fact that G is primitive, so always $|\Gamma(\alpha)|>d$.

Now we consider the case where G has a unique minimal normal subgroup N which is nonabelian and regular on Ω. Here (see [1] and [7]) $N=T_{1} \times \cdots \times T_{k}$ where each T_{i} is isomorphic to a fixed nonabelian simple group T and $k \geq 2$: the group G is a twisted wreath product $T \operatorname{twr}_{\varphi} P$, where P is a transitive subgroup of S_{k} permuting the T_{i} naturally, and the twisting homomorphism $\varphi: P_{1} \rightarrow$ Aut T is such that $\varphi\left(P_{1}\right)$ contains the group of inner automorphisms of T. We can identify Ω with N so that α is identified with the identity $(1,1, \ldots, 1)$ of N, and then $G_{\alpha}=P$.

PROPOSITION 3.3. Suppose that $G=T \operatorname{twr}_{\varphi} P$ is primitive on Ω with regular normal subgroup $N=T^{k}$ as described above. Suppose that G_{α} is doubly transitive on an orbit $\Gamma(\alpha) \subseteq \Omega \backslash\{\alpha\}$, where Ω is identified with N and $\alpha=(1,1, \ldots, 1)$. Then G_{α} has an orbit $\hat{\Gamma}(\alpha)$ in $\Omega \backslash\{\alpha\}$, possibly equal to $\Gamma(\alpha)$, such that the actions of G_{α} on $\Gamma(\alpha)$ and $\Gamma(\alpha)$ are permutationally equivalent, and for $\beta=$ $\left(\beta_{1}, \ldots, \beta_{k}\right) \in \hat{\Gamma}(\alpha)$ all the nontrivial β_{i} lie in a single $\varphi\left(P_{1}\right)$-conjugacy class \mathcal{C} and $G_{\alpha \beta}(\leq P)$ is transitive on the support $\Delta(\beta)=\left\{i \mid \beta_{i} \neq 1\right\}$ of β.

If $\Gamma(\alpha)$ is self-paired then $\hat{\Gamma}(\alpha)$ is also self-paired and β has order 2 as an element of N.

Proof. Choose a transversal $\left\{\rho_{1}=1, \rho_{2}, \ldots, \rho_{k}\right\}$ for P_{1} in P such that $1 \rho_{i}=i$ for all i. Then each $\sigma \in G_{\alpha}=P$ is such that the j th entry of β^{σ} is

$$
\beta_{i}^{\rho_{i} \sigma \rho_{j}^{-1}}
$$

where $i=j \sigma^{-1}$ and we write t^{τ} for the image of $t \in T$ under $\tau \in P$. Let $\Delta_{1}, \ldots, \Delta_{r}$ be the $G_{\alpha \beta}$-orbits in $k=\{1,2, \ldots, k\}$; we note that all β-entries in a fixed Δ_{i} are conjugate under $\varphi\left(P_{1}\right)$. Call Δ_{i} nontrivial if the entries in Δ_{i}-positions in β are not the identity. As $\beta \neq \alpha$, there is at least one nontrivial orbit, say Δ. Define $\beta(\Delta) \in N$ to have entries equal to β-entries at positions in Δ, and entries equal to 1 otherwise. Then $G_{\alpha \beta}$ fixes $\beta(\Delta)$, and as $G_{\alpha \beta}$ is a maximal subgroup of G_{α} and G_{α} does not fix the point $\beta(\Delta) \neq \alpha$, it follows that $G_{\alpha \beta}=G_{\alpha \beta(\Delta)}$. If $\hat{\Gamma}(\alpha)$ is the G_{α}-orbit containing $\beta(\Delta)$ then the G_{α} actions on $\Gamma(\alpha)$ and $\hat{\Gamma}(\alpha)$ are equivalent and $G_{\alpha \beta(\Delta)}$ is transitive on Δ. Finally $\beta^{-1} \in \Gamma^{*}(\alpha)$ and arguing as in Proposition 3.1 we see that $\Gamma(\alpha)$ is self-paired if and only if $\beta=\beta^{-1}$ that is if and only if β has order 2 in N. In this case $\beta(\Delta)$ also has order 2 so that $\hat{\Gamma}(\alpha)$ is also self-paired.
3.4. Further discussion of the twisted wreath product case. Let us assume that $\beta=\beta(\Delta)$ (that is replace $\Gamma(\alpha)$ by $\hat{\Gamma}(\alpha)), G_{\alpha \beta}$ is transitive on $\Delta(\beta)$, and all β entries in $\Delta(\beta)$-positions lie in the $\varphi\left(P_{1}\right)$-conjugacy class C. We define a design D as follows: the set of points is $\Gamma(\alpha)$, the set of blocks is $k=\{1,2, \ldots, k\}$ with β incident with i whenever $i \in \Delta(\beta)$, that is $\beta_{i} \neq 1$. Then G_{α} acts faithfully (since N is regular) as an automorphism group of this design; G_{α} is 2-transitive on points, transitive on blocks, and the stabilizer of a point is transitive on the blocks incident with the point. A counting argument shows that each pair of points is incident with

$$
\lambda=l(v l-k) / k(v-1)
$$

blocks where $l=|\Delta(\beta)|$. Of course D is a degenerate design when $l=k$ but if $l<k$ then $k \geq v$. We note that the parameter λ is $|\Delta(\beta) \cap \Delta(\gamma)|$ for distinct β, γ in $\Gamma(\alpha)$.

Further if β, γ are distinct points of $\Gamma(\alpha)$ then the points $\beta^{-1} \gamma$ and $\gamma^{-1} \beta$ lie in $\Gamma \circ \Gamma^{*}(\alpha)$. Thus points of $\Gamma \circ \Gamma^{*}(\alpha)$ have $l_{2}=k-2 l+\lambda+L$ entries equal to 1 since there are $k=2 l+\lambda$ entries i with $\beta_{i}=\gamma_{i}=1$ and $L \geq 0$ entries i with $\beta_{i}=\gamma_{i} \neq 1$. The parameters L, l_{2} can be determined in terms of v, l, k and $|D|$ as follows:
(i) Given $i \in \mathbf{k}$ and $t \in \mathcal{C}$ the number $n(t, i)$ of $\beta \in \Gamma(\alpha)$ with $\beta_{i}=t$ is independent of i and t.

Proof. The subset of P consisting of those elements which map i to 1 is $\rho_{i}^{-1} P_{1}$; for each $\sigma \in \rho_{i}^{-1} P_{1}$ and each $\beta \in \Gamma(\alpha)$ with $\beta_{i}=t$ we have

$$
\left(\beta^{\sigma}\right)_{1}=\beta_{i}^{\rho_{i} \sigma}=t^{\rho_{i} \sigma}
$$

Thus $n(t, i)=n\left(t^{\rho_{i} \sigma}, 1\right)$ for all $\rho_{i} \sigma \in P_{1}$, that is $n(t, i)=n\left(t^{\prime}, 1\right)$ for all $t^{\prime} \in C$.
(ii) Counting the nonidentity entries in points of $\Gamma(\alpha)$ we obtain $v l=k n|\mathcal{C}|$, where $n=n(t, i)$ above.
(iii) Counting triples (β, γ, i), where β, γ are in $\Gamma(\alpha)$ and the entry i is such that $\beta_{i}=\gamma_{i} \neq 1$ we obtain $v(v-1) L=k|C| n(n-1)$, and subsituting for n

$$
L=(v l-k|C|) l / k|C|(v-1)
$$

One final remark about the self-paired case (where $\beta^{2}=1$): by a theorem of Baer and Suzuki, (see $[6,3.8 .2]$), there is some entry in $\beta \gamma$ whose order as an element of T is not a power of 2. In particular $\beta \gamma \neq \gamma \beta$, that is no pair of distinct elements of $\Gamma(\alpha)$ commutes. Further if $\beta \gamma$ had odd order then the elements of C would be isolated in any Sylow 2 -subgroup of T which would give a contradiction by Glauberman's Z^{*}-theorem [5]. Thus the order of $\beta \gamma$ is an even integer, not a power of 2.

Now $\beta \gamma \beta$ has order 2 (as it is conjugate in N to γ) and is joined to $\gamma \beta$ so it lies in $\Gamma(\alpha) \cup \Gamma_{3}(\alpha)$ where $\Gamma_{3}(\alpha)=\Gamma \circ \Gamma \circ \Gamma(\alpha) \backslash \Gamma(\alpha)$. If $\beta \gamma \beta \in \Gamma(\alpha)$, then as it is joined to $(\gamma \beta)^{2}$, and $(\gamma \beta)^{2}$ does not have order 2 we would have $(\gamma \beta)^{2} \in \Gamma_{2}(\alpha)$. Then $\gamma \beta$ and $(\gamma \beta)^{2}$ would have the same order, and hence would have odd order, a contradiction. Thus $\beta \gamma \beta \in \Gamma_{3}(\alpha)$. If G_{α} were transitive on $\Gamma_{3}(\alpha)$ also, then all entries in points of $\Gamma_{3}(\alpha)$ would lie in $\mathcal{C} \cup\{1\}$. It follows that $T=\{1\} \cup \mathcal{C} \cup \mathcal{C}^{2}$. This seems to be a strong restriction on the group T, and hence on Γ.
3.5. Final remarks. Suppose that G is primitive on Ω and that G_{α} is 2-transitive and unfaithful on an orbit $\Gamma(\alpha) \subseteq \Omega \backslash\{\alpha\}$. Then it follows from Theorem A that $T \leq G \leq$ Aut T for some nonabelian simple group T. Can such groups be classified?

References

[1] M Aschbacher and L. L. Scott, 'Maximal subgroups of finite groups', J. Algebra 92 (1985), 44-80.
[2] P. J. Cameron, 'Permutation groups with multiply transitive suborbits I', Proc. London Math. Soc. (3) 25 (1972), 427-440; II Bull. London Math. Soc. 6 (1974), 1-5.
[3] P. J. Cameron, 'Finite permutation groups and finite simple groups', Bull. London Math. Soc. 13 (1981), 1-22.
[4] P. J. Cameron and C. E. Praeger, 'Graphs and permutation groups with projective subconstitutents', J. London Math. Soc. (2) 25 (1982), 62-74.
[5] G. Glauberman, 'Central elements in core-free groups', J. Algebra 4 (1966), 403-420.
[6] D. Gorenstein, Finite groups (Harper and Row, New York, Evanston and London, 1968).
[7] L. G. Kovacs, 'Maximal subgroups in composite groups', J. Algebra, 99 (1986), 114-131.
[8] C. E. Praeger, 'On primitive permutation groups with a doubly transitive suborbit', J. London Math. Soc. (2) 17 (1978), 67-73.
[9] C. E. Praeger, 'Primitive permutation groups and a characterization of the odd graphs', J. Combin. Theory Ser. B 31 (1981), 117-142.
[10] C. E. Praeger, J. Saxl, and K. Yokoyama, 'Distance transitive graphs and finite simple groups', Proc. London Math. Soc. (3) 55 (1987), 1-21.
[11] L. L. Scott, 'Representations in characteristic p', Proc. Sympos. Pure Math. 37 (1980), 319-331.
[12] H. Wielandt, Finite permutation groups (Academic Press, New York, 1964).

Department of Mathematics
The University of Western Australia
Nedlands, Western Australia 6009
Australia

[^0]: The work for this paper was supported by a special CTEC grant at the University of Western Australia.

