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Abstract
The unprecedented success of deep learning (DL) makes it unchallenged when it comes to classification problems.
However, it is well established that the current DL methodology produces universally unstable neural networks
(NNs). The instability problem has caused a substantial research effort – with a vast literature on so-called adver-
sarial attacks – yet there has been no solution to the problem. Our paper addresses why there has been no solution to
the problem, as we prove the following: any training procedure based on training rectified linear unit (ReLU) neural
networks for classification problems with a fixed architecture will yield neural networks that are either inaccurate or
unstable (if accurate) – despite the provable existence of both accurate and stable neural networks for the same classi-
fication problems. The key is that the stable and accurate neural networks must have variable dimensions depending
on the input, in particular, variable dimensions is a necessary condition for stability. Our result points towards the
paradox that accurate and stable neural networks exist; however, modern algorithms do not compute them. This
yields the question: if the existence of neural networks with desirable properties can be proven, can one also find
algorithms that compute them? There are cases in mathematics where provable existence implies computability,
but will this be the case for neural networks? The contrary is true, as we demonstrate how neural networks can
provably exist as approximate minimisers to standard optimisation problems with standard cost functions; however,
no randomised algorithm can compute them with probability better than 1/2.

1. Introduction

Neural networks (NNs) [29, 48, 67] and deep learning (DL) [52] have seen incredible success, in partic-
ular in classification problems [58]. However, neural networks become universally unstable (non-robust)
when trained to solve such problems in virtually any application [2–4, 10, 20–22, 36, 47, 49, 74], mak-
ing the non-robustness issue one of the fundamental problems in artificial intelligence (AI). The vast
literature on this issue – often referring to the instability phenomenon as vulnerability to adversarial
attacks – has not been able to solve the problem. Thus, we are left with the key question:

Why does deep learning yield universally unstable methods for classification?

In this paper, we provide mathematical answers to this question in connection with Smale’s 18th
problem on the limits of AI.

The above problem has become particularly relevant as the instability phenomenon yields non-
human-like behaviour of AI with misclassifications by DL methods being caused by small perturbations
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that are so tiny that human sensor systems such as eyes and ears cannot detect the tiny change. The
non-robustness issue has thus caused serious concerns among scientists [2, 36, 47], in particular in
applications where trustworthiness of AI is a key feature. Moreover, the instability phenomenon has
become a grave matter for policy-makers for regulating AI in safety critical areas where trustworthiness
is a must, as suggested by the European Commission’s outline for a legal framework for AI:

‘In the light of the recent advances in artificial intelligence (AI), the serious negative conse-
quences of its use for EU citizens and organisations have led to multiple initiatives from the
European Commission to set up the principles of a trustworthy and secure AI. Among the iden-
tified requirements, the concepts of robustness and explainability of AI systems have emerged as
key elements for a future regulation of this technology’.

– Europ. Comm. JCR Tech. Rep. (January 2020) [42].

‘On AI, trust is a must, not a nice to have. [. . .] The new AI regulation will make sure that
Europeans can trust what AI has to offer. [. . .] High-risk AI systems will be subject to strict
obligations before they can be put on the market: [requiring] High level of robustness, security
and accuracy’.

– Europ. Comm. outline for legal AI (April 2021) [27].

The concern is also shared on the American continent, especially regarding security and military
applications. Indeed, the US Department of Defence has spent millions of dollars through DARPA on
project calls to cure the instability problem. The strong regulatory emphasis on trustworthiness, stability
(robustness), security and accuracy leads to potential serious consequences given that modern AI tech-
niques are universally non-robust. Current state-of-the-art AI techniques may be illegal in certain key
sectors given their fundamental lack of robustness. The lack of a cure for the instability phenomenon in
modern AI suggests a methodological barrier applicable to current AI techniques and hence should be
viewed in connection with Smale’s 18th problem on the limits of AI.

1.1. Main theorems – methodological barriers, Smale’s 18th problem and the limits of AI

Smale’s 18th problem, from the list of mathematical problems for the 21st century [71], echoes Turing’s
paper from 1950 [76] on the question of existence of AI. Turing asks if a computer can think and suggests
the imitation game (Turing test) as a test for his question about AI. Smale takes the question even further
and asks in his 18th problem: what are the limits of AI? The question is followed by a discussion on
the problem that ends as follows. ‘Learning is a part of human intelligent activity. The corresponding
mathematics is suggested by the theory of repeated games, neural nets and genetic algorithms’.

Our contribution to the program on Smale’s 18th problem are the following limitations and method-
ological barriers on modern AI highlighted in (I) and (II). These results provide mathematical answers
to the question on why there has been no solution to the instability problem.

(I) Theorem 2.2: There are basic methodological barriers in state-of-the-art DL based on ReLU NNs.
Indeed, any training procedure based on training ReLU NNs for many simple classification prob-
lems with a fixed architecture will yield neural networks that are either inaccurate or unstable (if
accurate) – despite the provable existence of both accurate and stable neural networks for the same
classification problems. Moreover, variable dimensions on NNs is necessary for stability for ReLU
NNs.

Theorem 2.2 points towards the paradox that accurate and stable neural networks exist; however,
modern algorithms do not compute them. This yields the question:

If the existence of neural networks can be proven, can one also find algorithms that compute them?
In particular, there are cases in mathematics where provable existence implies computability, but
will this be the case for neural networks?
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We address this question even for provable existence of NNs in standard training scenarios.

(II) Theorem 3.5: There are NNs that provably exist as approximate minimisers to standard optimisa-
tion problems with standard cost functions; however, no randomised algorithm can compute them
with probability better than 1/2.

A detailed account of the results and the consequences can be found in Sections 2 and 3.

1.2. Phase transitions and generalised hardness of approximation (GHA)

Theorem 3.5 can be understood within the framework of generalised hardness of approximation (GHA)
[2, 6, 7, 9, 25, 33, 37, 45, 81], which describes a specific phase transition phenomenon. In many cases,
it is straightforward to compute an ε-approximation to a solution of a computational problem for ε >
ε1 > 0. However, when ε < ε1 (the approximation threshold), a phase transition occurs, wherein it is
suddenly difficult, or even infeasible, to obtain an ε-approximation. This difficulty could manifest as
non-computability or intractability (e.g., non-polynomial time complexity). GHA extends the concept
of hardness of approximation [5] from discrete computations to more general computational problems.

In particular, Theorem 3.5 establishes lower bounds on the approximation threshold ε1 > 0 for com-
puting NNs in classification tasks. This theorem builds upon the initial work on GHA introduced in [9]
for convex optimisation (see also Problem 5 (J. Lagarias) in [33]) and further developed in [25, 37] for
NNs in AI and inverse problems. The theory of GHA is part of the larger framework of the Solvability
Complexity Index (SCI) hierarchy [11–13, 23–26, 43, 44].

2. Main results I – trained NNs become unstable despite the existence of stable and accurate NNs

In this section, we will explain our contributions to understanding the instability phenomenon. We
consider the simplest DL problem of approximating a given classification function:

f :[0, 1]d → {0, 1}, (2.1)

by constructing a neural network from training data. Let NN N,L with N := (NL = 1, NL−1, . . . , N1,
N0 = d) denote the set of all L-layer neural networks (with L ≥ 2) under the ReLU non-linearity with N�

neurons in the �-th layer (see Section 5.1 for definitions and explanations of these concepts). We assume
that the cost function R is an element of

CF r = {R : Rr ×R
r →R+ ∪ {∞} |R(v, w) = 0 iff v = w}. (2.2)

Remark 2.1 (Choice of cost functions). Note that the choice of class of cost functions defined in (2.2)
will be used in Theorem 2.2 is to demonstrate how one can achieve great generalisability properties of
the trained network. It is worth mentioning however that we show that expanding this class to include,
for example, regularised cost functions will not cure the instability phenomenon (see Section 2.1 (II) for
more detail).

As we will discuss the stability of neural networks, we introduce the idea of well-separated and stable
sets to exclude pathological examples whereby the training and validation sets have elements that are
arbitrarily close to each other in a way that could make the classification function jump subject to a
small perturbation. Specifically, given a classification function f :[0, 1]d → {0, 1}, we define the family
of well-separated and stable sets S f

δ with separation at least 2δ according to

S f
δ =

{
{x1, . . . , xm} ⊂ [0, 1]d | m ∈N,

min
xi 	=x j

‖xi − x j‖∞ ≥ 2δ, f (x j + y) = f (x j) for ‖y‖∞ < δ satisfying x j + y ∈ [0, 1]d
}

.
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We also set r ∨ s to be the maximum of r and s and r ∧ s to be the minimum of r and s. Finally, we use
the notation B∞

ε
to refer to the open ball of radius ε in the �∞ norm. With this notation established, we

are now ready to state our first main result.

Theorem 2.2 (Instability of trained NNs despite existence of a stable NN). There is an uncountable
collection C1 of classification functions f as in (2.1) – with fixed d ≥ 2 – and a constant C> 0 such
that the following holds. For every f ∈ C1, any norm ‖ · ‖ and every ε > 0, there is an uncountable
family C2 of probability distributions on [0, 1]d so that for any D ∈ C2, any neural network dimensions
N = (NL = 1, NL−1, . . . , N1, N0 = d) with L ≥ 2, any p ∈ (0, 1), any positive integers q, r, s with

r + s ≥ C max
{

p−3, q3/2
[
(N1 + 1) · · · (NL−1 + 1)

]3/2}
, (2.3)

any training data T = {x1, . . . , xr} and validation data V = {y1, . . . , ys}, where the x j and yj are drawn
independently at random from D, the following happens with probability exceeding 1 − p.

(i) (Success – great generalisability). We have T , V ∈ S f
ε((r∨s)/p), where ε(n) = (Cn)−4, and, for every

R ∈ CF r, there exists a φ such that

φ ∈ arg min
ϕ∈NNN,L

R
({ϕ(xj)}r

j=1, {f (xj)}r
j=1

)
(2.4)

and

φ(x) = f (x) ∀x ∈ T ∪ V . (2.5)

(ii) (Any successful NN in NN N,L – regardless of architecture – becomes universally unstable). Yet,
for any φ̂ ∈NN N,L (and thus, in particular, for φ̂ = φ) and any monotonic g:R→R, there is a
subset T̃ ⊂ T ∪ V of the combined training and validation set of size |T̃ | ≥ q, such that there exist
uncountably many universal adversarial perturbations η ∈R

d so that for each x ∈ T̃ we have

|g ◦ φ̂(x + η) − f (x + η)| ≥ 1/2, ‖η‖< ε, |supp(η)| ≤ 2. (2.6)

(iii) (Other stable and accurate NNs exist). However, there exists a stable and accurate neural network
ψ that satisfies ψ(x) = f (x) for all x ∈B∞

ε
(T ∪ V), when ε ≤ ε((r ∨ s)/p).

We remark in passing that the training and validation data T and V in Theorem 2.2 are technically
not sets, but randomised multisets, as some of the samples x j or yj may be repeated.

Remark 2.3 (The role of g in (ii) in Theorem 2.2). The purpose of the monotone function g:R→R

in (ii) in Theorem 2.2 is to make the theorem as general as possible. In particular, a popular way of
creating an approximation to f is to have a network combined with a thresholding function g. This
would potentially increase the approximation power compared to only having a neural network; however,
Theorem 2.2 shows that adding such a function does not cure the instability problem.

2.1. Interpreting Theorem 2.2

In this section, we discuss in detail the implications of Theorem 2.2 with regard to Smale’s 18th problem.
First, note that Theorem 2.2 demonstrates a methodological barrier applicable to current DL approaches.
This does not imply that the instability problem in classification cannot be resolved, but it does imply
that in order to overcome these instability issues one will have to change the methodology. Second,
Theorem 2.2 provides guidance on which methodologies will not solve the instability issues. In order
to make the exposition easy to read, we will now summarise in non-technical terms what Theorem 2.2
says.

(I) Performance comes at a cost – Accurate DL methods inevitably become unstable. Theorem 2.2
shows that there are basic classification functions and distributions where standard DL method-
ology yields trained NNs with great success in terms of generalisability and performance – note
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Figure 1 (Training with fixed architecture yields instability – variable dimensions on NNs is nec-
essary for stability for ReLu NNs). A visual interpretation of Theorem 2.2. A fixed dimension training
procedure can lead to excellent performance and yet be highly susceptible to adversarial attacks, even
if there exists a NN which has both great performance and excellent stability properties. However, such
a stable and accurate ReLu network must have variable dimensions depending on the input.

that the size of the validation set V in Theorem 2.2 can become arbitrary large. However, (2.3)
demonstrates how greater success (better generalisability) implies more instabilities. Indeed, the
NNs – regardless of architecture and training procedure – become either successful and unstable,
or unsuccessful.

(II) There is no remedy within the standard DL framework. Note that (ii) in Theorem 2.2 demon-
strates that there is no remedy within the standard DL framework to cure the instability issue
described in Theorem 2.2. The reason why is that standard DL methods will fix the architecture
(i.e., the class N of NNs that one minimises over) of the neural networks. Indeed, the misclassi-
fication in (2.6) happens for any neural network φ̂ ∈NN N,L. This means that, for example, zero
loss training [66], or any attempt using adversarial training [39, 56] – that is, computing

min
φ∈N

Ex∼D max
z∈U

L(φ(x + z), f (x)),

where N ⊂NN N,L is any collection of NNs described by a specific architecture, U ⊂R
d and L is

any real-valued cost function – will not solve the problem. In fact, (ii) in Theorem 2.2 immediately
implies that adversarial training will reduce the performance if it increases the stability.

(III) There are accurate and stable NNs, but DL methods do not find them. Note that (iii) in Theorem
2.2 demonstrates that there are stable and accurate NNs for many classification problems where
DL methods produce unstable NNs. Thus, the problem is not that stable and accurate NNs do not
exist; instead, the problem is that DL methods do not find them. The reason is that the dimen-
sions and architectures of the stable and accurate networks will change depending on the size and
properties of the data set.

(IV) Why instability? – Unstable correlating features are picked up by the trained NN . In addition to
the statement of Theorem 2.2, the proof techniques illustrate the root causes of the problem. The
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reason why one achieves the great success described by (i) in Theorem 2.2 is that the successful
NN picks up a feature in the training set that correlates well with the classification function but is
itself unstable. This phenomenon is empirically investigated in [50].

(V) No training model where the dimensions of the NNs are fixed can cure instability. Note that (ii)
in Theorem 2.2 describes the reason for the failure of the DL methodology to produce a sta-
ble and accurate NN. Indeed, as pointed out above, the dimensions of the stable and accurate NN
will necessary change with the amount of data in the training and validation set.

(VI) Adding more training data cannot cure the general instability problem. Note that (2.3) in
Theorem 2.2 shows that adding more training data will not help. In fact, it can make the problem
worse. Indeed, (2.3) allows s – the number of elements in the test set – to be set so that s = 1,
and r – the number of training data – can be arbitrary large. Hence, if r becomes large and s is
small, then the trained NN – if successful – will (because of (ii)) start getting instabilities on the
training data. In particular, the network has seen the data, but will misclassify elements arbitrary
close to seen data.

(VII) Comparison with the No-Free-Lunch Theorem. The celebrated No-Free-Lunch Theorem has
many forms. However, the classical impossibility result we refer to (Theorem 5.1 in [70]) states
that for any learning algorithm for classification problems there exists a classification function f
and a distribution D that makes the algorithm fail. Our Theorem 2.2 is very different in the way
that it is about instability. Moreover, it is an impossibility result specific for DL. Thus, the state-
ments are much stronger. Indeed – in contrast to the single classification function f and distribution
D making a fixed algorithm fail in the No-Free-Lunch Theorem – Theorem 2.2 shows the exis-
tence of uncountably many classification functions f and distributions D such that for any fixed
architecture DL will either yield unstable and successful NNs or unsuccessful NNs. This hap-
pens despite the existence of stable and accurate NNs for exactly the same problem. Moreover,
Theorem 2.2 shows how NNs can generalise well given relatively few training data compared to
the test data, but at the cost of non-robustness (note that this is in contrast to the No-Free-Lunch
theorem wherein few training samples leads to a lack of generalisation). See also [40] for other
‘No-Free-Lunch’ theorems.

3. Main results II – NNs may provably exist, but no algorithm can compute them

The much celebrated Universal Approximation Theorem is widely used as an explanation for the wide
success of NNs in the sciences and in AI, as it guarantees the existence of neural networks that can
approximate arbitrary continuous functions. In essence, any task that can be handled by a continuous
function can also be handled by a neural network.

Theorem 3.1 (Universal Approximation Theorem [67]). Suppose that σ ∈ C(R), where C(R) denotes
the set of continuous functions on R. Then the set of neural networks with non-linearity σ is dense in
C(Rd) in the topology of uniform convergence on compact sets, if and only if σ is not a polynomial.

Theorem 2.2 illustrates basic methodological barriers in DL and suggests the following fundamental
question:

If we can prove that a stable and well generalisable neural network exists, why do algorithms fail
to compute them?

This question is not only relevant because of Theorem 2.2 but also the Universal Approximation
Theorem that demonstrates – in theory – that there are very few limitations on what NNs can do. Yet,
there is clearly a barrier that the desirable NNs that one can prove exist – as shown in Theorem 2.2
and in many cases follow from the Universal Approximation Theorem – are not captured by standard
algorithms.
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3.1. The weakness of the Universal Approximation Theorem – When will existence imply
computability?

The connection between the provable existence of a mathematical object and its computability (that
there is an algorithm that can compute it) touches on the foundations of mathematics [72]. Indeed, there
are cases in mathematics – with the ZFC1 axioms – where the fact that one can prove mathematically a
statement about the existence of the object will imply that one can find an algorithm that will compute
the object when it exists. Consider the following example:

Example 3.2 (When provable existence implies computability). Consider the following basic com-
putational problem concerning Diophantine equations:

Let � be a collection of polynomials in Z[x1, x2, . . . , xn] with integer coefficients, where n ∈N

can be arbitrary. Given a polynomial p ∈�, does there exist an integer vector a ∈Z
n such that

p(a) = 0, and if so, compute such an a.

Note that in this case we have that ‘being able to prove ⇒ being able to compute’ as the following
implication holds for the ZFC model [68]:

For any polynomial p ∈ Θ, one can prove – given the ZFC axioms – that there exists
an integer vector a ∈ Z

n such that p(a) = 0, or a negation of this statement.

There exists an algorithm Γ taking any polynomial p ∈ Θ such that Γ(p) = ‘no’ if
there is no a ∈ Z

n such that p(a) = 0, otherwise Γ(p) = a where a ∈ Z
n such that

p(a) = 0.

(3.1)

The above implication is true, subject to ZFC being consistent and that theorems in ZFC about integers
are true [68]. In particular, being able to prove existence or not of integer-valued zeroes of polynomials
in � implies the existence of an algorithm that can compute integer-valued zeroes of polynomials in �
and determine if no integer-valued zero exists.

There is a substantial weakness with the Universal Approximation Theorem and the vast literature on
approximation properties of NNs, in that they provide little insight into how NNs should be computed,
or indeed if they can be computed. As Example 3.2 suggests, there are cases where provable existence
implies computability. Hence, we are left with the following basic problem:

If neural networks can be proven to exist, will there exist algorithms that can compute them? If
this is not the case in general, what about neural networks that can be proven to be approximate
minimisers of basic cost functions?

As we see in the next sections, the answer to the above question is rather delicate.

Remark 3.3. Although the Universal Approximation Theorem does not directly apply to non-constant
classification functions in the class (2.1), if we consider a classification function restricted to a finite
set (e.g., training and validation sets), it will have a continuous extension and hence the Universal
Approximation Theorem will apply. Furthermore, recent results discuss existence theorems in the
general setting of (2.1) [53].

1Zermelo-Fraenkel axiomatic system with the axiom of choice, which is the standard axiomatic system for modern mathematics.
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3.2. Inexactness and floating point arithmetic

The standard model for computation in most modern software is floating point arithmetic. This means
that even a rational number like 1/3 will be approximated by a base-2 approximation. Moreover, the
floating point operations yield errors, that – in certain cases – can be analysed through backward error
analysis, which typically show how the computed solution in floating point arithmetic is equivalent to
a correct computation with an approximated input. Hence, in order to provide a realistic analysis, we
use the model of computation with inexact input as emphasised by S. Smale in his list of mathematical
problems for the 21st century:

‘But real number computations and algorithms which work only in exact arithmetic can offer only
limited understanding. Models which process approximate inputs and which permit round-off
computations are called for’.

– S. Smale (from the list of mathematical problems for the 21st century [71])

To model this situation, we shall assume that an algorithm designed to compute a neural network is
allowed to see the training set to an arbitrary accuracy decided at runtime. More precisely, for a given
training set T = {x1, x2, . . . , xr}, we assume that the algorithm (a Turing [75] or Blum-Shub-Smale (BSS)
[18] machine) is equipped with an oracle O that can acquire the true input to any accuracy ε. Specifically,
the algorithm cannot access the vectors x1, x2, . . . , xr but rather, for any k ∈N, it can call the oracle O to
obtain x1,k, x2,k, . . . , xr,k such that

‖xi,k − xi‖∞ ≤ 2−k, for i = 1, 2, . . . , r and ∀k ∈N, (3.2)
see Section 5.4.4 for details.

Another key assumption when discussing the success of the algorithm is that it must be ‘oracle agnos-
tic’, that is, it must work with any choice of the oracle O satisfying (3.2). In the Turing model, the Turing
machine accesses the oracle via an oracle tape and in the BSS model the BSS machine accesses the ora-
cle through an oracle node. This extended computational model of having inexact input is standard and
can be found in many areas of the mathematical literature – we mention only a small subset here: Bishop
[17], Cucker & Smale [28], Fefferman & Klartag [34, 35], Ko [51] and Lovász [54].

3.3. Being able to prove existence may imply being able to compute – but not in DL

We now examine the difference between being able to prove the existence of a neural network and the
ability to compute it, even in the case when the neural network is an approximate minimiser. Recall the
typical training scenario of neural networks in (2.4) where one tries to find

φ ∈ arg min
ϕ∈NNN,L

R
({ϕ(xj)}r

j=1, {f (xj)}r
j=1

)
,

where f is the decision function, R is the cost function and T = {x j}r
j=1 is the training set. However,

one will typically not reach the actual minimiser, but rather an approximation. Hence, we define the
approximate argmin.

Definition 3.4 (The approximate argmin). Given an ε > 0, an arbitrary set X, a totally ordered set Y
and a function g : X → Y , the approximate argminε over some subset S ⊂ X is defined by

argminε
x∈S

g(x) := {x ∈ S | g(x) ≤ g(y) + ε ∀ y ∈ X} (3.3)

To accompany the idea of the approximate argmin, we will also consider cost functions that are
bounded with respect to the �∞ norm:

CF ε,ε̂
r = {R ∈ CF r : R(v, w) ≤ ε =⇒ ‖v − w‖∞ ≤ ε̂}. (3.4)

The computational problem we now consider is to compute a neural network that is an approximate
minimiser and evaluate it on the training set (this is the simplest task that we should be able to compute):
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φ(x j), φ ∈ arg minε
ϕ∈NNN,L

R
({ϕ(xj)}r

j=1, {f (xj)}r
j=1

)
, ε > 0, j = 1, . . . , r. (3.5)

Hence, an algorithm � trying to compute (3.5) takes the training set T as an input (or to be precise, it
calls oracles providing approximations to the x js to any precision, see seeSection 5.4.4 for details) and
outputs a vector in R

r. Hopefully, ‖�(T ) − {φ(x j)}r
j=1‖ is sufficiently small.

The next theorem shows that even if one can prove the existence of neural networks that are approxi-
mate minimisers to optimisation problems with standard cost functions, one may not be able to compute
them.

Theorem 3.5 (NNs may provably exist, but no algorithm can compute them). There is an uncount-
able collection C1 of classification functions f as in (2.1) – with fixed d ≥ 2 – such that the following
holds. For

(1) any neural network dimensions N = (NL = 1, NL−1, . . . , N1, N0 = d) with L ≥ 2,
(2) any r ≥ 3(N1 + 1) · · · (NL−1 + 1),
(3) any ε > 0, ε̂ ∈ (0, 1/2) and cost function R ∈ CF ε,ε̂

r ,
(4) any randomised algorithm �,
(5) any p ∈ [0, 1/2),

there is an uncountable collection C2 of training sets T = {x1, x2, . . . , xr} ∈ S f
ε′(r) such that for each

T ∈ C2 there exists a neural network φ, where

φ ∈ argminε
ϕ∈NNN,L

R
({ϕ(xj)}r

j=1, {f (xj)}r
j=1

)
,

however, the algorithm � applied to the input T will fail to compute any such φ in the following way:

P

(
‖�(T ) − {φ(x j)}r

j=1‖∗ ≥ 1/4 − 3ε̂/4
)
> p,

where ∗ = 1, 2 or ∞.

3.4. A missing theory in AI – Which NNs can be computed?

If provable existence results about NNs were to imply that they could be computed by algorithms, the
research effort to secure stable and accurate AI would – in most cases – be about finding the right algo-
rithms that we know exist, due to the many neural network existence results [29, 67]. In particular, the
key limitation for providing stable and accurate AI via DL – at least in theory – would be the capability
of the research community. However, as Theorem 3.5 reveals, the simplest existence results of NNs as
approximate minimisers do not imply that they can be computed. Therefore, the research effort moving
forward must be about which NNs that can be computed by algorithms and how. Indeed, the limitations
of DL as an instrument in AI will be determined by the limitations of existence of algorithms and their
efficiency for computing NNs.

Remark 3.6 (Theorem 3.5 is independent of the exact computational model). Note that the result
above is independent of whether the underlying computational device is a BSS machine or a Turing
machine. To achieve this, we work with a definition of an algorithm termed a general algorithm. The
corresponding definitions as well as a formal statement of Theorem 3.5 are detailed inSection 5.4 and
Proposition 5.26, respectively.

Remark 3.7 (Irrelevance of local minima). Note that Theorem 3.5 has nothing to do with the potential
issue of the optimisation problem having several local minima. Indeed, the general algorithms used in
Theorem 3.5 are more powerful than any Turing machine or BSS machine as will be discussed further
in Remark 5.13.
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Remark 3.8 (Hilbert’s 10th problem). Finally, we mention in passing that Theorem 3.5 demonstrates –
in contrast to Hilbert’s 10th problem [57] – that non-computability results in DL do not prevent provable
existence results. Indeed, because of the implication in (3.1) and the non-computability of Hilbert’s 10th
problem [57, 68] (when� is the collection of all polynomials with integer coefficients in Example 3.2),
there are infinitely many Diophantine equations for which one cannot prove existence of an integer
solution – or a negation of the statement.

4. Connection to previous work

The literature documenting the instability phenomenon in DL is so vast that we can only cite a tiny
subset here [2–4, 20, 31, 32, 36, 39, 47, 49, 61, 62, 69, 74, 77], see the references in the survey paper [3]
for a more comprehensive collection. Below we will highlight some of the most important connections
to our work:

(i) Universality of instabilities in AI. A key feature of Theorem 2.2 is that it demonstrates how the
perturbations are universal, meaning that one adversarial perturbation works for all the cases where
the instability occurs – as opposed to a specific input-dependent adversarial perturbation. The
DeepFool program [32, 61, 62] – created by S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi and P.
Frossard – was the first to establish empirically that adversarial perturbations can be made univer-
sal, and this phenomenon is also universal across different methods and architectures. For recent
and related developments, see D. Higham and I. Tyukin et al. [77, 78] which describe instabilities
generated by perturbations to the structure of a neural network, [8, 73] wherein instability to ran-
domised perturbations are considered, as well as the results by L. Bungert and G. Trillos et al. [19],
and S. Wang, N. Si, and J. Blanchet [79].

(ii) Approximation theory and numerical analysis. There is a vast literature proving existence results
of ReLU networks for DL, investigating their approximation power, where the recent work of R.
DeVore, B. Hanin and G. Petrova [29] also provides a comprehensive account of the contemporary
developments. The huge approximation literature on existence results and approximation properties
of NNs prior to the year 2000 is well summarised by A. Pinkus in [67]. Our results suggest a
program combining recent approximation theory [29, 41] results with foundations of mathematics
and numerical analysis to characterise the NNs that can be computed by algorithms. This aligns
with the work of B. Adcock and N. Dexter [1] that demonstrates the gap between what algorithms
compute and the theoretical existence of NNs in function approximation with deep NNs. Note that
results on existence of algorithms in learning – with performance and stability guarantees – do
exist (see the work of P. Niyogi, S. Smale and S. Weinberger [63]), but so far not in DL.

(iii) Mathematical explanation of instability and impossibility results. Our paper is very much related
to the work of H. Owhadi, C. Scovel and T. Sullivan [64, 65] who ‘observe that learning and
robustness are antagonistic properties’. The recent work of I. Tyukin, D. Higham and A. Gorban
[77] and A. Shafahi, R. Huang, C. Studer, S. Feizi and T. Goldstein [69] demonstrate how the
instability phenomenon increases with dimension showing universal lower bound on stability as
a function of the dimension of the domain of the classification function. Note, however, that the
results in this paper are independent of dimensions. The work of A. Fawzi, H. Fawzi and O. Fawzi
[31] is also related; however, their results are about adversarial perturbations for any function,
which is somewhat different from the problem that DL is unstable to perturbations that humans
do not perceive. In particular, our results focus on how DL becomes unstable despite the fact that
there is another device (in our case another NN) or a human that can be both accurate and stable.

(iv) Proof techniques – The SCI hierarchy. Initiated in [43], the mathematics behind the SCI hierarchy
provides a variety of techniques to show lower bounds and impossibility results for algorithms – in
a variety of mathematical fields – that provide the foundations for the proof techniques in this paper,
see the works by V. Antun, J. Ben-Artzi, M. Colbrook, A. C. Hansen, M. Marletta, O. Nevanlinna,
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F. Rösler and M. Seidel. [11–13, 25, 43]. This is strongly related to the work of S. Weinberger [80]
on the existence of algorithms for computational problems in topology. The authors of this paper
have also extended the SCI framework [9] in connection with the extended Smale’s 9th problem.

(v) Robust optimisation. Robust optimisation [14–16], pioneered by A. Ben-Tal, L. El Ghaoui and
A. Nemirovski, is an essential part of optimisation theory addressing sensitivity to perturbations
and inexact data in optimisation problems. There are crucial links to our results – indeed, a key
issue is that the instability phenomenon in DL leads to non-robust optimisation problems. In fact,
there is a fundamental relationship between Theorem 2.2, Theorem 3.5 and robust optimisation.
Theorem 3.5 yields impossibility results in optimisation, where non-robustness is a key element.
The big question is whether stable and accurate NNs – with variable dimensions – that exist as a
result of Theorem 2.2 can be shown to be approximate minimisers of robust optimisation problems.
This leads to the final question, would such problems be computable and have efficient algorithms?
The results in this paper can be viewed as an instance of where robust optimisation meets the SCI
hierarchy. This was also the case in the recent results on the extended Smale’s 9th problem [9].

5. Proofs of the main results
5.1. Some well-known definitions and ideas from DL

In this section, we outline some basic well-known definitions and explain the notation that will be useful
for this paper. Many of these definitions can be found in [38]. For a vector x ∈R

N1 , we denote xi by the
ith coordinate. Similarly, for a matrix A ∈R

N1×N2 for some dimensions N1 ∈N and N2 ∈N, we denote Ai,j

by the entry of A contained on the ith row and the jth column.
Recall that for natural numbers n1, n2, an affine map W:Rn1 →R

n2 is a map such that there exists
A ∈R

n2×n1 and b ∈R
n2 so that for all x ∈R

n1 , Wx = Ax + b. Let L, d be natural numbers and let N :=
(NL = 1, NL−1, . . . , N1, N0) be a vector in N

L+1 with N0 = d. An neural network with dimensions (N, L)
is a map φ : Rd →R such that

φ = WLσWL−1σWL−2 . . . σW1

where, for l = 1, 2, . . . , L, the map Wl is an affine map from R
Nl−1 →R

Nl , that is, Wlxl = Alxl + bl where
bl ∈R

Nl and Al ∈R
Nl×Nl−1 . The map σ : R→R is interpreted as a coordinate-wise map and is called the

non-linearity or activation function: typically, σ is chosen to be continuous and non-polynomial [67].
In this paper, we focus on the well-known ReLU non-linearity, which we denote by ρ. More specifi-

cally, for x ∈R , we define ρ(x) by ρ(x) = 0 if x< 0 and ρ(x) = x if x ≥ 0. We denote all neural networks
with dimensions (N, L) and the ReLU non-linearity by NN N,L. This will be the central object for our
arguments.

Remark 5.1. Although we focus on the ReLU non-linearity, it is possible to use the techniques presented
in this paper to prove similar results for other non-linearities like the leaky ReLU [55] ρ leaky and the
parameterised ReLU [46] ρparam

α
where

ρ leaky(x) =
{

0.01 · x if x< 0

x if x ≥ 0
, ρparam

α
(x) =

{
αx if x< 0

x if x ≥ 0

In this paper, the most common norms we use are the �p norms: for a vector x ∈R
d for some nat-

ural number d and some p ∈ [1, ∞), the �p norm of x (which we denote by ‖x‖p) is given by ‖x‖p =
(
∑d

i=1 |xi|p)1/p. We also define the �∞ norm of x (which we denote by ‖x‖∞) by ‖x‖∞ := maxi=1,2,...,d |xi|.
It is easy to see the following inequality: ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1. We will denote the ball of radius ε about
x in the infinity norm by B∞

ε
(x), that is, B∞

ε
(x) = {y ∈R

d | ‖y − x‖∞ ≤ ε}. For a set S, we denote B∞
ε

(S)
by ∪x∈SB∞

ε
(x).

The cost function of a neural network is used in the training procedure: typically, one attempts to
compute solutions to (2.4) where the function R is known as the cost function. In optimisation theory,
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the cost function is sometimes known as the objective function and sometimes the loss function. Some
standard choices for R include the following:

(1) Cross-entropy cost function, where R is defined by

R({vj}r
j=1, {wj}r

j=1) := −1

r

r∑
j=1

(
wj log (vj) + (1 − wj) log (1 − vj)

)

The cross-entropy function is only defined if vj ∈ [0, 1]: it is easy to extend this definition to
R({vj}r

j=1, {wj}r
j=1) := ∞ when vj /∈ [0, 1] for some j.

(2) Mean square error, where R is defined by

R({vj}r
j=1, {wj}r

j=1) := 1

r
‖{wj}r

j=1 − {vj}r
j=1‖2

2

(3) Root mean square error, where R is defined by

R({vj}r
j=1, {wj}r

j=1) := 1

r
‖{wj}r

j=1 − {vj}r
j=1‖2

(4) Mean absolute error, where

R({vj}r
j=1, {wj}r

j=1) := 1

r
‖{wj}r

j=1 − {vj}r
j=1‖1

Note that each of these functions are in CF r where CF r is defined in (2.2).

5.2. Lemmas and definitions common to the proofs of both Theorems 2.2 and 3.5

For both theorems, the proof relies on the points xk,δ ∈R
N0 , defined for k ∈N, δ ≥ 0, κ ∈ [1/4, 3/4] and

a ∈ [1/2, 1] as follows:

xk,δ =
{

(a(k + 1 − κ)−1, 0, . . . , 0), if k is odd
(a(k + 1 − κ)−1, δ, 0, 0, . . . , 0), if k is even

. (5.1)

Both theorems also rely on some classification functions fa for a ∈ [1/2, 1], defined as follows: we set
fa : RN0 → {0, 1}

fa(x) =
{

1 if �a/x1� is an odd integer
0 otherwise (including x = 0)

(5.2)

In particular, note that for any δ ≥ 0, fa(xk,δ) = 1 if k is even and fa(xk,δ) = 0 if k is odd. The following
three lemmas will be useful in both proofs. The first of these lemmas shows that finite collections of xk,δ

are well separated. Precisely, we will prove the following:

Lemma 5.2. Let a ∈ [1/2, 1], κ ∈ [1/4, 3/4] and δ ≥ 0, and consider the points xk,δ as given in (5.1)
and fa given as in (5.2). Then, for every K ∈N, we have {x1,δ, . . . , xK,δ} ∈ S fa

ε′(K), where ε′(n) := [(4n +
3)(4n + 4)]−1.

The purpose of the next lemma is to show that if δ > 0, there is a neural network that matches fa on
the xk,δ:

Lemma 5.3. Let d be a natural number with d ≥ 2, let a ∈ [1/2, 1], κ ∈ [1/4, 3/4] and δ > 0, and
consider the points xk,δ as given in (5.1) and fa given as in (5.2). Fix neural networks dimensions
N = (NL = 1, NL−1, . . . , N1, N0 = d) with L ≥ 2. Then there exists a neural network ϕ̃ ∈NN N,L with
ϕ̃(xk,δ) = fa(xk,δ) for all k ∈N.
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Finally, the next lemma will be used to give examples of sets of vectors W and functions f for which
neural networks with fixed dimensions cannot exactly match f on W . More precisely, we shall show the
following:

Lemma 5.4. Let d, t, m, L, N1, N2, . . . , NL each be natural numbers and let W be a set of vectors with
W = {w1, w2, . . . , wt} ⊂R

d. Suppose that each of the following apply

(1) t ≥ 3m · (N1 + 1)(N2 + 1) · · · (NL + 1).
(2) w1

1 >w2
1 >w3

1 > · · ·>wt
1 and w1

j = w2
j = · · · = wt

j = 0 for j = 2, . . . , d.
(3) f :Rd → {0, 1} is such that f (wi) 	= f (wi+1) for i = 1, 2, . . . , t − 1.

Then for any neural network ϕ ∈NN N,L and any monotonic function g:R→R, there exists a set
U ⊂W such that |U | ≥ m and |g(ϕ(w)) − f (w)| ≥ 1/2 for all w ∈ U .

The remainder of this subsection will be concerned with proving Lemmas 5.2–5.4.

5.2.1. Proof of Lemma 5.2

Proof of Lemma 5.2. We must verify that min1≤i<j≤K ‖xi,δ − xj,δ‖∞ ≥ 2ε′(K) and that for k ≤ K and
vectors y ∈R

N0 with ‖y‖∞ < ε′(r) we have fa(xk,δ + y) = fa(xk,δ).
For the first part, note that for distinct i, j with i, j ≤ K we have

‖xi,δ − xj,δ‖∞ ≥
∣∣∣∣ a

i + 1 − κ
− a

j + 1 − κ

∣∣∣∣= |a(j − i)|
(i + 1 − κ)(j + 1 − κ)

≥ 1

2(K + 1 − κ)(K − κ)
(5.3)

since a|j − i| ≥ a ≥ 1/2 and the condition that i, j ≤ K with at least one bounded by K − 1
implies that (i + 1 − κ)−1(j + 1 − κ)−1 ≥ (K + 1 − κ)−1(K − κ)−1. Since κ ≥ 1/4, we get ‖xi,δ − xj,δ‖∞ ≥[
2(K + 1 − 1/4)(K − 1/4)

]−1 ≥ 2ε′(K).
Next, we let k ≤ K and y ∈R

N0 be such that ‖y‖∞ ≤ ε′(K). We will establish that fa(xk,δ + y) = fa(xk,δ).
Since k ≤ K and κ ∈ [1/4, 3/4], we have

a(1 − κ)

(k + 1 − κ)k
>

1

(4K + 3)(2K + 2)
≥ y1 ≥ −1

(4K + 3)(2K + 2)
≥ −aκ

(k + 1 − κ)(k + 1)
.

We claim that this implies a(xk,δ
1 + y1)−1 ∈ (k, k + 1]. For the upper bound, note that

y1

a
≥ −κ

(k + 1 − κ)(k + 1)
= 1

k + 1
− 1

k + 1 − κ
= 1

k + 1
− xk,δ

1

a
.

Similarly, for the lower bound, we have

y1

a
<

1 − κ

k(k + 1 − κ)
= k−1

(
k + 1 − κ

k + 1 − κ
− k

k + 1 − κ

)
= 1

k
− xk,δ

1

a
.

Therefore, �a/(xk,δ
1 + y1)� = k + 1. Thus, for all ‖y‖∞ < ε′(K), we have fa(xk,δ + y) = fa(xk,δ) = 1 for even

k and fa(xk,δ + y) = fa(xk,δ) = 0 for odd k, therefore establishing{x1,δ , . . . , xK,δ} ∈ S fa
ε′(K).

5.2.2. Proof of Lemma 5.3

Proof of Lemma 5.3. We set

ϕ̃ = WLρWL−1ρWL−2 . . . ρW1
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where W�x = A�x + b� and A� ∈R
N�×N�−1 , b� ∈R

N� are defined as follows: let A1
1,1 = 0, A1

1,2 = δ−1 and
A1

i,j = 0 otherwise, and, for � > 1, A�
1,1 = 1 and A�

i,j = 0 otherwise, and b� = 0 for every �. Clearly

W1xk,δ =
{

e1 ∈R
N1 if k is even

0 ∈R
N1 if k is odd

and it is therefore easy to see that ϕ̃(xk,δ) = 1 if k is even and ϕ̃(xk,δ) = 0 if k is odd. By the definition of
xk,δ , we have fa(xk,δ) = 1 if k is even and fa(xk,δ) = 0 if k is odd, and therefore ϕ̃(xk,δ) = fa(xk,δ) for all k.

5.2.3. Proof of Lemma 5.4
To prove Lemma 5.4, we will state and prove the following:

Lemma 5.5. Fix m, n ∈N, A ∈R
N×N0 , B ∈R

m×N and z ∈R
N . Suppose that

R = {αq, αq+1, αq+2, . . . , αq+r−1} ⊂R
N0

is a set such that |R| ≥ N + 1, the sequence {αk
1}q+r−1

k=q is strictly decreasing and αk
j = 0 for j> 1

and all k. Then there exist a matrix C ∈R
m×N0 , a vector v ∈R

m and a set S ⊆ R of the form S =
{αs, αs+1, . . . , αs+t−1} such that |S| ≥ |R|/(N + 1) and Bρ(Aα + z) = Cα + v, for all α ∈ S .

Proof of Lemma 5.5. Write B = (bj,k)
j=m,k=N
j=1,k=1 , A = (aj,k)

j=N,k=N0
j=1,k=1 . We claim that the set Q defined by

Q= {(sgn(a1,1u1 + w1), sgn(a2,1u1 + w2), . . . , sgn(aN,1u1 + wN)
) | u ∈ R}.

contains at most N + 1 (unique) elements, that is, |Q| ≤ N + 1, where we define sgn(x) = 1 for x ≥ 0 and
sgn(x) = −1 for x< 0. To see this, note that if we allow the value of β to vary over R, then each of the
lines y = a1,1β + z1 , y = a2,1β + z2, . . ., y = aN,1β + zN intersect the line y = 0 at most once. Between
each of these intersections, the vector (sgn(a1,1β + z1), sgn(a2,1β + z2), . . . , sgn(aN,1β + zN)) is constant.
As there are at most N such intersections, we note that if

Q′ := {(sgn(a1,1β + w1), sgn(a2,1β + w2), . . . , sgn(aN,1β + wN)
) | β ∈R}.

then |Q′| ≤ N + 1 follows because partitioning a line by at most N intersections gives at most N + 1
regions between the intersections. As Q⊆Q′, the proof that |Q| ≤ N + 1 is complete.

We can now define S . By the pigeonhole principle and the fact that |Q| ≤ N + 1, there exists a subset
of R with cardinality at least |R|/(N + 1) such that the vector

sgn(a ·,1 α1 + z) = (
sgn(a1,1α1 + z1), sgn(a2,1α1 + z2), . . . , sgn(aN,1α1 + zN)

)
is constant over α in this subset. Let S be a subset of R of maximal cardinality satisfying this constant
sign condition. Then clearly |S| ≥ |R|/(N + 1). To see that S = {αs, αs+1, . . . , αs+t−1}, for some s and t,
suppose by way of contradiction that no such s and t exist. Then there are j1 and k1 such that j1 + 1< k1,
αj1 , αk1 ∈ S and αj1+1 /∈ S . But then, as S is assumed to be of maximal cardinality, there must be an �
for which sgn(a�,1α

j1
1 + z1) = sgn(a�,1α

k1
1 + z1) 	= sgn(a�,1α

j1+1
1 + z1). However, since {αj

1}k1
j=j1 is a strictly

decreasing sequence by assumption, we see that if a�,1 ≥ 0 then a�,1α
j1
1 + z1 ≥ a�,1α

j1+1
1 + z1 ≥ a�,1α

k1
1 + z1

and similarly if a�,1 < 0 then a�,1α
j1
1 + z1 < a�,1α

j1+1
1 + z1 < a�,1α

k1
1 + z1 which is a contradiction. This

establishes that S = {αs, αs+1, . . . , αs+t−1}, for some s and t.
We now show how to construct C and v. Recall that, for all α ∈ S , α2 = α3 = · · · = αN0 = 0, and so the

i-th row of Bρ(Aα + z) is given by
∑N

j=1 bi,jρ(aj,1α1 + zj). Since sgn(aj,1α1 + zj) is constant over α ∈ S ,
we must have that for each j either ρ(aj,1α1 + zj) = 0 or ρ(aj,1α1 + wj) = aj,1α1 + zj, for all α ∈ S . In the
former case, we define di,j = 0 and yi,j = 0 and in the latter case we define di,j = bi,jaj,1 and yi,j = bi,jzj.
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Therefore, by construction, the i-th row of Bρ(Aα + z) is given by
∑N

j=1

(
di,jα1 + yi,j

)
. Thus, defining the

matrix C = (ci,j)
i=m,j=N0
i=1,j=1 and the vector v ∈R

m according to

ci,1 =
N∑

k=1

di,k, ci,j = 0, for j> 1, and vi =
N∑

k=1

yi,k

immediately yields that the i-th row of Bρ(Aα + z) satisfies
∑N

k=1

(
di,kα1 + yi,k

)=∑N
k=1 ci,kαk + vi. As i

and α ∈ S were arbitrary, this implies that Bρ(Aα + z) = Cα + v for all α ∈ S , thereby concluding the
proof of the lemma.

With Lemma 5.5, we can now prove Lemma 5.4.

Proof of Lemma 5.4. We begin by proving the following claim:

Claim: There exists a set

S = {ws, ws+1, ws+2, . . . , ws+n} ⊂ {w1, w2, . . . , wt}
for some s ∈N and n ∈N, a matrix M ∈R

1×N0 and a z ∈R such that, for all w ∈ S , we have ϕ(w) =
Mw + z and so that |S| ≥ 3m.

To see the validity of this claim, we proceed inductively by showing that there are sets S� ⊂
{w1, w2, . . . , wt}, matrices M� ∈R

N�×N0 and vectors z� ∈R
N� for �= 1, . . . , L such that

(i) |S�| ≥ 3m · (N� + 1) · · · (NL−1 + 1),
(ii) S� = {ws� , ws�+1, . . . , ws�+n�} for some s�, n� ∈N.
(iii) ϕ(w) = WLρWL−1ρWL−2 . . .W�+1ρ(M�w + z�) whenever w ∈ S�, where the Wi are affine maps and

ρ is applied coordinatewise.

The induction base is obvious by taking S1 =W , M1 = W1 and z1 = b1. The induction step will follow
with the help of Lemma 5.5. Indeed, assuming the existence of S�, M� and z� for some � < L, we apply
Lemma 5.5 with B = A�+1, A = M�, R = S� and w = z� to obtain some set S�+1, a matrix M�+1 and a vector
v�+1 for which A�+1ρ(M�w + z�) = M�+1w + v�+1 for w ∈ S�+1, and thus W�+1ρ(M�w + z�) = M�+1w +
z�+1, where we set z�+1 = v�+1 + b�+1. With the completed induction in hand, the proof of the claim
follows by setting S = SL, s = sL, n = nL, M = ML and z = zL.

Using the claim, we can now complete the proof of Lemma 5.4. Indeed, define the disjoint sets S>,
S< as follows:

S> = {w ∈ S | g(ϕ(w)) ≥ 1/2}, S< = {w ∈ S | g(ϕ(w))< 1/2}
For any w ∈ S , we have ϕ(w) = Mw + z. Furthermore, any such w has w2 = w3 = · · · = wN = 0.
Therefore, ϕ(w) = M1,1w1 + z. In particular, g ◦ ϕ restricted to S is monotonic in the first coordinate
of vectors in S . This implies that

S> = {wk1 , wk1+1, wk1+2, . . . , wk1+t1−1}, S< = {wk2 , wk2+1, wk2+2, . . .wk2+t2−1}
for some k1 and k2 and t1, t2 with t1 + t2 = |S| ≥ 3m. Furthermore, by 3 and the fact that the range of f
is the set {0, 1}, we must have f (wi) = 1 for all even i and f (wi) = 0 for all odd i or f (wi) = 0 for all even
i and f (wi) = 1 for all odd i. We will consider these two cases separately

Case 1: f(wi) = 1 for all even i and f(wi) = 0 for all odd i. We define the sets

SE,< = {wi | wi ∈ S<, i even}, SO,> = {wi | wi ∈ S>, i odd}
For w ∈ SE,<, we have f (w) = 1 and g(ϕ(w))< 1/2, whence we obtain |g(ϕ(w)) − f (w)| ≥ 1/2. Similarly,
for w ∈ SO,> we have f (w) = 0 and g(ϕ(w)) ≥ 1/2 and we thus obtain |g(ϕ(w)) − f (w)| ≥ 1/2. We set
U = SE,> ∪ SO,< and conclude that for any w ∈ U we have |f (w) − g(ϕ(w))| ≥ 1/2.
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The claim about the cardinality of U follows by noting that |SE,<| ≥ �(t1 − 1)/2� and that |SO,>| ≥
�(t2 − 1)/2�. Therefore, (using the disjointedness of SE,> and SO,<)

|U | = |SE,>| + |SO,<| ≥ �(t1 − 1)/2� + �(t2 − 1)/2�
≥ �(t1 − 1 + t2 − 1)/2� = �(t1 + t2)/2� − 1 ≥ �3m/2� − 1 ≥ m (5.4)

Case 2: f(wi) = 0 for all even i and f(wi) = 1 for all odd i. The proof here is similar to that of Case 1.
This time however, we define the sets

SE,> = {wi | wi ∈ S>, i even}, SO,< = {wi | wi ∈ S>, i odd}
An analogous argument to the above allows us to conclude that |g(ϕ(w)) − f (w)| ≥ 1/2 for all w ∈ U ,
where this time U = SE,> ∪ SO,<. The argument that |U | ≥ m is identical to (5.4) except we replace
references to SE,< with SE,> and references to SO,> with SO,<.

5.3. Proof of Theorem 2.2

We require two further lemmas specific to the proof of Theorem 2.2. These are stated as Lemmas 5.6
and 5.7.

Lemma 5.6. For γ ∈ (1, 2), define the probability distribution P = {pj}∞
j=1 on N by p2j−1 = p2j =

1
2
Cζ (γ )j−γ , for j ∈N, where Cζ (γ ) := (∑∞

j=1 j−γ
)−1 is a normalising factor.

Fix θ ∈N and let X1, X2,. . ., Xθ be i.i.d. random variables in N distributed according to P . Next,
consider the random set whose elements are the values of X1 , X2, . . ., Xθ and enumerate it as S =
{Z1, Z2, . . . , ZN} with Z1 < Z2 < · · ·< ZN (note that N, the number of distinct elements of S, is an integer-
valued random variable such that N ≤ θ ). Then, setting c1 = (1 − e−Cζ (γ ))/2 and c2 = Cζ (γ )/(γ − 1), we
have

(i) P
(
N ≥ c1θ

1/γ
)≥ 1 − c−2

1 θ
−(2/γ−1),

(ii) P(max S ≤ n) ≥ 1 − c2 θ�n/2�1−γ , for all n ∈N, and

(iii) P

(∑N−1
j=1 χ{Zj+1−Zj odd} ≤ n/5

∣∣∣ N = n
)

≤ e−n/100, for all integers n such that 10 ≤ n ≤ θ .

Proof. Throughout this proof, we will use the convention that for a random variable Y :�→ E the
notation {Y =μ} for μ ∈� means the set {τ ∈� | Y(τ ) =μ}.

For item (i), define the random variable Mθ to be the number of different unique values taken by
the random variables �X1/2� ,. . ., �Xθ /2� and note that P (N <β)≤ P(Mr <β), for β ∈R. Now, as the
random variables �Xj/2�, j = 1, . . . , r, are i.i.d. and distributed according to the zeta distribution with
parameter γ , it follows from [82, Lemmas 4, 3] that E[Mθ ]> (1 − e−Cζ (γ ))θ 1/γ and σ 2 := Var[Mθ ] ≤
E[Mθ ] ≤ θ , and hence Chebyshev’s inequality yields

P

(
N <

1 − e−Cζ (γ )

2
θ 1/γ

)
≤ P

(
Mr <

1 − e−Cζ (γ )

2
θ 1/γ

)

≤ P

(
|Mθ −E[Mθ ]|> 1 − e−Cζ (γ )

2σ
θ 1/γ · σ

)
≤
(

1 − e−Cζ (γ )

2σ
θ 1/γ

)−2

≤ 4θ−(2/γ−1)

(1 − e−Cζ (γ ))2
,

which implies item (i).
The proof of item (ii) is simple. Note that {max S ≤ n} =⋂r

j=1{Xj ≤ n} and, for each j,

P(Xj ≤ n) =
n∑

j=1

pj ≥
�n/2�∑
j=1

Cζ (γ )j−γ ≥ 1 − Cζ (γ )
∫ ∞

�n/2�
t−γdt ≥ 1 − Cζ (γ )

γ − 1
�n/2�1−γ ,

https://doi.org/10.1017/S0956792525100193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525100193


European Journal of Mathematics 17

and hence, as the Xj are independent,

P(max S ≤ n) = P(Xj ≤ n)θ ≥
(

1 − Cζ (γ )

γ − 1
�n/2�1−γ

)θ
≥ 1 − Cζ (γ )

γ − 1
θ�n/2�1−γ

where the last inequality follows by Bernoulli’s inequality.
Item (iii) is somewhat more involved. We start by outlining the strategy: the set S may contain pairs

of the form (Zj, Zj+1) = (2i − 1, 2i), that is, an odd natural number followed by the next even one. We
will condition on the set of j where (Zj, Zj+1) is such a pair, as well as the specific value of Zj.

More precisely, for fixed sets I and J with |I| = |J |, enumerated by

I = {i1, i2, . . . , im} and J = {j1, j2, . . . , jm},
letA= {1, . . . , N} \ (J ∪ (J + 1)

)
whereJ + 1 := {j + 1 | j ∈J }. We will condition on the event FI,J

which occurs precisely when N = n, (Zj� , Zj�+1) = (2i� − 1, 2i�) for � ∈ {1, 2, . . . , m}, and, on the indices
in A, the set S contains no odd–even pairs, that is, (Za, Za+1) /∈ {(2i − 1, 2i) | i ∈N} for all a ∈A with
a< n and (Za−1, Za) /∈ {(2i − 1, 2i) | i ∈N} for all a ∈A with a> 1. With varying I and J , these sets
FI,J partition the event {N = n}.

The intuition behind this construction is as follows: conditional on FI,J , whenever j ∈J we have
Zj+1 − Zj = 1 and hence χ{Zj+1−Zj odd} = 1. Thus for sets J with |J | ≥ n/5, we are done. If instead |J |
is small, then |A| will be relatively large. For a ∈A, we will argue that every Za has equal probability
of being an odd number or the even number following it, owing to the assumption that p2i−1 = p2i and
the assumption that if a< n then (Za, Za+1) /∈ {(2i − 1, 2i) | i ∈N} and if a> 1 then (Za−1, Za) /∈ {(2i −
1, 2i) | i ∈N}.

This will allow us to conclude that the indicator random variables χ{Za odd} for a ∈A are independent
symmetric Bernoulli random variables (that is to say, they take the values 1 and 0 each with probability
1/2). The desired bound will follow by an application of Hoeffding’s inequality.

We are now ready to present the formal proof. If θ < 10 there is nothing to prove, so assume that
θ ≥ 10 and fix an n such that 10 ≤ n ≤ θ . Consider arbitrary sets I ⊂N and J ⊂ {1, . . . , n − 1} so that

m := |I| = |J |< n and J ∩ (J + 1) =∅, (5.5)

and define A := {1, . . . , N} \ (J ∪ (J + 1)
)
. Enumerate I = {i1, . . . , im} with i1 < · · ·< im, J =

{j1, . . . , jm} with j1 < · · ·< jm, and A= {a1, . . . , an−2m} with a1 < · · ·< an−2m and define the event

FI,J = {N = n} ∩
m⋂
�=1

{(Zj� , Zj�+1) = (2i� − 1, 2i�)} ∩
⋂

a∈A,a<n
i∈N

{(Za, Za+1) 	= (2i − 1, 2i)}

∩
⋂

a∈A,1<a≤n
i∈N

{(Za−1, Za) 	= (2i − 1, 2i)}.

Note that, for every n ∈N, we have

{N = n} =
⋃

I⊂N,J⊂{1,...,n−1}
satisfying (5.5)

FI,J , (5.6)

that is, the events FI,J for different I and J partition the event {N = n}, and thus our strategy will be
to prove the bound P

(∑N−1
j=1 χ{Zj+1−Zj odd} ≤ n/5

∣∣∣ FI,J

)
≤ e−n/100 for each of these events.

The argument relies on bounding from below the number of indices j such that Zj+1 − Zj is odd. For
j ∈J , this will be easy, as Zj+1 − Zj = 2ij − (2ij − 1) = 1 is always odd, by definition of FI,J . For j ∈A,
we will need the following claim which we prove last.

Claim: For any I, J and A as above, the indicator random variables χ{Za odd}, a ∈A, conditional on
FI,J are independent symmetric Bernoulli variables.
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Armed with the claim, the counting argument is as follows. Note that, on the event FI,J , for
k ∈ {1, . . . , n − 2m − 1} such that ak+1 > ak + 1, we have that {Zak , . . . , Zak+1} = {Zak , 2it − 1, 2it, 2it+1 −
1, 2it+1, . . . , 2it+s−1 − 1, 2it+s−1, Zak+1} for some t ∈ {1, 2, . . . , m} and where s = |J ∩ {ak, . . . , ak+1 − 1}|.
Hence,

ak+1−1∑
�=ak

χ{Z�+1−Z� odd} ≥ χ{2it−1−Zak odd} +
s−1∑
�=0

χ{(2it+�)−(2it+�−1) odd} + χ{Zak+1 −2it+s−1 odd}

= χ{Zak even} + |J ∩ {ak, . . . , ak+1 − 1}| + χ{Zak+1 odd}

≥ |J ∩ {ak, . . . , ak+1 − 1}| + χ{Zak+1 −Zak even}, (5.7)

where we used the simple observation that χ{Zak even} + χ{Zak+1 odd} ≥ χ{Zak+1 −Zak even}. This motivates defining
random variables Eak with k ∈ {1, . . . , n − 2m − 1} conditioned on the event FI,J according to

Eak =
⎧⎨
⎩

1, Zak+1 − Zak is odd

0, Zak+1 − Zak is even
, for k s.t. ak+1 = ak + 1, and

Eak =
{

0, Zak+1 − Zak is odd
1, Zak+1 − Zak is even

, for k s.t. ak+1 > ak + 1,

which, as a consequence of the Claim, are themselves independent symmetric Bernoulli random
variables. Thus, writing U := ∑N−1

k=1 χ{Zk+1−Zk odd}, on the event FI,J we have

U =
∑

�<a1 or �≥an−2m

χ{Z�+1−Z� odd} +
n−2m−1∑

k=1

ak+1−1∑
�=ak

χ{Z�+1−Z� odd}

≥ |J ∩ {1, . . . , a1 − 1}| + |J ∩ {an−2m, . . . , n}|

+
∑

1≤k≤n−2m−1
ak+1=ak+1

χ{Zak+1−Zak odd} +
∑

1≤k≤n−2m−1
ak+1>ak+1

ak+1−1∑
�=ak

χ{Z�+1−Z� odd}

≥ |J ∩ {1, . . . , a1 − 1}| + |J ∩ {an−2m, . . . , n}|
+

∑
1≤k≤n−2m−1

ak+1=ak+1

Eak +
∑

1≤k≤n−2m−1
ak+1>ak+1

(|J ∩ {ak, . . . , ak+1 − 1}| + Eak

)

= |J | +
n−2m−1∑

k=1

Eak = m +
n−2m−1∑

k=1

Eak , (5.8)

where the second inequality is due to (5.7) and the penultimate equality follows from the observation
that |J ∩ {ak, . . . , ak+1 − 1}| = 0 whenever ak+1 = ak + 1.

Now, for sets I ⊂N and J ⊂ {1, . . . , n − 1} satisfying (5.5) as well as m = |I| = |J | ≤ n/5, we have
that (5.8) implies U ≥∑n−2m−1

k=1 Eak , which together with Hoeffding’s inequality yields

P

(
U ≤ n/5

∣∣∣ FI,J

)
≤ P

( n−2m−1∑
k=1

Eak ≤ n/5
∣∣∣ FI,J

)

≤ exp

(
−2

(1

2
− n/5

n − 2m − 1

)2

(n − 2m − 1)

)
≤ exp (−n/100)

where in the last inequality we used n − 2m − 1 ≥ n/2 (recall that n ≥ 10). On the other hand, in the
case when m = |I| = |J |> n/5 we have P

(
U ≤ n/5

∣∣∣ FI,J

)
= 0 directly from (5.8).
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Therefore, we have shown that for any I, J satisfying (5.5), P
(

U ≤ n/5
∣∣∣ FI,J

)
≤ exp (− n/100)

and so using (5.6)

P

(
U ≤ n/5, N = n

)
=

∑
I⊂N,J⊂{1,...,n−1}

satisfying (5.5)

P

(
U ≤ n/5

∣∣∣ FI,J

)
P(FI,J )

≤ exp (−n/100) P

( ⋃
I⊂N,J⊂{1,...,n−1}

satisfying (5.5)

FI,J

)
= exp (−n/100) P(N = n),

which yields the desired bound after dividing both sides by P(N = n).
It remains to prove the Claim. To this end, fix n, I = {i1 < . . . < im}, J = {j1 < . . . < jm} and A=

{a1 < . . . < an−2m} satisfying (5.5). Then, conditional on FI,J we can write Za = 2�Za/2� − χ{Za odd}, for
a ∈A, where theχ{Za odd} are random variables taking values in {0, 1} and the �Za/2� are random variables
taking values inN \ I and moreover �Za1/2�< . . . < �Zan−2m/2�. Now, for a setU = {u1 < . . . < un−2m} ⊂
N \ I denote FU =⋂n−2m

j=1 {�Zaj/2� = uj} so that for any b ∈ {0, 1}n−2m

P

(
{χ{Za1 odd} = b1, . . . , χ{Zan−2m odd} = bn−2m}

∣∣∣ FI,J

)
=

∑
U⊂N\I

P

(
{χ{Za1 odd} = b1, . . . , χ{Zan−2m odd} = bn−2m}

∣∣∣ FI,J ∩ FU

)
P(FU | FI,J )

=
∑

U⊂N\I
P

(
{χ{Za1 odd} = 0, . . . , χ{Zan−2m odd} = 0}

∣∣∣ FI,J ∩ FU

)
P(FU | FI,J ) (5.9)

= P

(
{χ{Za1 odd} = 0, . . . , χ{Zan−2m odd} = 0}

∣∣∣ FI,J

)
,

where in (5.9) we used the fact that p2j−1 = p2j, for all j ∈N. It hence follows that the χ{Zaj odd}, 1 ≤ j ≤
n − 2m, conditional on FI,J are independent symmetric Bernoulli variables, establishing the Claim and
thus completing the proof.

Lemma 5.7. Fix an even K ∈N and let {αj}K
k=1 be such that 0<αk+1 <αk < 1 for all 1 ≤ k ≤ K − 1.

Furthermore, let N0 ∈N. Then there exists a neural network ψ : RN0 →R with the ReLU non-linearity
ρ(t) = max{0, t} such that

ψ(x) =
{

0 whenever x1 ∈ [αk, αk−1] with k ≡ 2 mod 4

1 whenever x1 ∈ [αk, αk−1] with k ≡ 0 mod 4
, for all x ∈R

N0 and k ∈ {2, 3, . . . , K}.
(5.10)

Proof. We may w.l.o.g. assume that K is divisible by 4. Indeed, if K is not divisible by 4, we can extend
the sequence {αk}K

k=1 by adjoining two new elements (say αK/2 and αK/4) at the end of the sequence.
We additionally set αK+1 = 0 for convenience. Now, for � ∈ {1, . . . , K/4}, define the single-layer neural
network

ψ�(x) = (α4�−2 − α4�−1)
−1
(
ρ(α4�−2 − x1) − ρ(α4�−1 − x1)

)
− (α4� − α4�+1)

−1
(
ρ(α4� − x1) − ρ(α4�+1 − x1)

)
, for x ∈R

N0 .

One now easily verifies that ψ�(x) = 1 whenever x1 ∈ [α4�, α4�−1] and ψ�(x) = 0 whenever x1 ∈R \
(α4�+1, α4�−2). Hence, setting ψ(x) =∑K/4

k=1 ψ�(x) yields the desired network.

We are now in a position to prove Theorem 2.2:

Proof of Theorem 2.2. We begin by defining the sets C1 and C2. Let C1 = {fa:Rd → [0, 1] | a ∈ [1/2, 1]},
where fa is defined as in (5.2). Since all norms on finite dimensional vector spaces are equivalent, let
D> 0 be such that ‖ · ‖ ≤ D‖ · ‖1. To define the set of distributions, we first set δ = ε/(2D). For each
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κ ∈ [1/4, 3/4], define the distribution Dκ on [0, 1]N0

X ∼Dκ ⇐⇒ P(X = x) =
{

pk if x = xk,δ

0 otherwise
.

where p2j−1 = p2j = Cζ (3/2)j−3/2 for j ∈N and xk,δ is defined according to (5.1). We set C2 = {Dκ | κ ∈
[1/4, 3/4]}.

Let c1, c2 and Cζ (3/2) be the constants defined in Lemma 5.6 with γ set to 3/2. We choose the
constant C so that each of the following hold:

C ≥ 43c−6
1 , (5.11)

C ≥ 200 log (8)3/2c−3/2
1 , and (5.12)

C ≥ 4 · (8c2)2. (5.13)
Fix a ∈ [1/2, 1] so that fa ∈ C1 and κ ∈ [1/4, 3/4] so that Dκ ∈ C2. Let T = {x1, . . . , xr} and V =

{y1, . . . , ys} be the random multisets drawn from this distribution as in the statement of the theorem.
Then by the definition of the distribution Dκ , we can write (after removing repetitions and reordering)
T ∪ V as S := T ∪ V = {xZ1,δ, xZ2,δ, xZ3,δ, . . . , xZN ,δ} where the random variable N satisfying N ≤ r + s
is the number of unique elements in T ∪ V and where Z1 < Z2 < · · ·< ZN . For shorthand, we also set
zj = xZj ,0 for j = 1, 2, . . . , N.

Since C/2 ≥ 2 · (8c2)2 (by (5.13)) and C(r ∨ s)2/(2p2) ≥ 43c−6
1 /2 ≥ 2 (by (5.11) and the facts that

(r ∨ s)/p ≥ 1 and c−1
1 ≥ 1) we obtain

C(r ∨ s)2

p2
= C(r ∨ s)2

2p2
+ C(r ∨ s)2

2p2
≥ 2 · (8c2)2(r ∨ s)2

p2
+ 2 ≥ 2

⌈(
8c2(r ∨ s)

p

)2

+ 1

⌉
− 2

and thus item (ii) of Lemma 5.6 with γ = 3/2 yields

P

(
max{k ∈N | xk,δ ∈ T ∪ V} ≤

⌈
C(r ∨ s)2

p2

⌉)
= P

(
ZN ≤

⌈
C(r ∨ s)2

p2

⌉)

≥ P

(
ZN ≤ 2

⌈(
8c2(r ∨ s)

p

)2

+ 1

⌉
− 2

)
≥ 1 − c2(r + s)⌊⌈(

8c2(r∨s)
p

)2 + 1

⌉
− 1

⌋

≥ 1 − c2(r + s)

(8c2(r ∨ s)/p)
≥ 1 − p/4. (5.14)

Writing Nprod := (N1 + 1) · · · (NL−1 + 1), by the Assumptions (2.3) and (5.12), we obtain

�c1(r + s)2/3� ≥ �C2/3c1qNprod� ≥ �2002/3 log (8)qNprod� ≥ 30qNprod.

Therefore, we can apply item (iii) of Lemma 5.6 to see that

P

( N−1∑
i=1

χ{fa(zi+1)	=fa(zi)} > 6qNprod

)
= P

( N−1∑
i=1

χ{Zi+1−Zi odd } > 6qNprod

)

≥
r+s∑

n=�c1(r+s)
2
3�

P

( n−1∑
i=1

χ{Zi+1−Zi odd } >
n

5

∣∣∣N = n
)
P(N = n)

≥
r+s∑

n=�c1(r+s)
2
3�

exp
(
− n

100

)
P(N = n)

≥
[

1 − exp

(
−
⌊

c1(r + s)
2
3

100

⌋)]
· P(N ≥ �c1(r + s)2/3�) (5.15)

https://doi.org/10.1017/S0956792525100193 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525100193


European Journal of Mathematics 21

where the application of Lemma 5.6 is justified by the bound �c1(r + s)2/3� ≥ 30qNprod ≥ 10 and the
initial equality in the first line is justified by the fact that fa(zi) depends only on the parity of i, a fact
itself readily seen from the definition of fa and zi.

Now, by differentiating it is easy to see that the function p �→ p log (8/p) is increasing on (0, 1). Hence
for p< 1, we have p−2 log (8)> p−1 log (8)> log (8/p) and so combining this with (2.3) and (5.12) gives

⌊
c1(r + s)2/3

100

⌋
≥
⌊

c1C2/3p−2

100

⌋
≥
⌊

2002/3p−2 log (8)

100

⌋
≥ p−2 log (8) − 1 ≥ log (8/p) − 1. (5.16)

Furthermore, using item (i) of Lemma 5.6 with γ = 3/2, we obtain P
(
N ≥ c1(r + s)2/3

)≥ 1 − c−2
1 (r +

s)−1/3 ≥ 1 − p/4, where the final bound follows because r + s ≥ Cp−3 (which, in turn, is due to the
Assumption (2.3)) and (5.11). Using this result together with (5.16) in (5.15) yields

P

( N−1∑
i=1

χ{fa(zj+1)	=fa(zj)} > 6qNprod

)
> (1 − ep/8) (1 − p/4) > 1 − p/2 (5.17)

Combining (5.14) and (5.17), we see that the probability that both

max{k ∈N | xk,δ ∈ T ∪ V} ≤
⌈

C(r ∨ s)2

p2

⌉
and

N−1∑
i=1

χ{fa(zi+1)	=fa(zi)} > 6qNprod (5.18)

occur is at least 1 − (p/4 + p/2)> 1 − p. We will now proceed to show that each of (i) through (iii)
listed as in the statement of Theorem 2.2 hold assuming that this event occurs.

Proof of (i): Success – great generalisability

To see that T , V ∈ S f
ε((r∨s)/p), note that (5.12) and c−1

1 ≥ 1 yields C2t2 ≥ (4�t� + 3)(4�t� + 4) for all
t ≥ 1. Applying this inequality with t = C((r ∨ s)/p)2 ≥ 1, we deduce that

ε

[
C(r ∨ s)

p

]
= C−2

(
C(r ∨ s)2

p2

)−2

≤
[(

4

⌈
C(r ∨ s)2

p2

⌉
+ 3

)(
4

⌈
C(r ∨ s)2

p2

⌉
+ 4

)]−1

= ε′
(⌈

C(r ∨ s)2

p2

⌉)
, (5.19)

where ε′(n) = [(4n + 3)(4n + 4)]−1. Therefore because we assume that max{k ∈N | xk,δ ∈ T ∪ V} ≤⌈
C(r∨s)2

p2

⌉
, Lemma 5.2 yields T , V ⊂ {x1,δ, . . . , x�C(r∨s)2/p2,δ�} ∈ S fa

ε′(�C(r∨s)2/p2�) ⊂ S fa
ε(C(r∨s)/p).

The construction of φ satisfying (2.5) is immediate: we take φ to be the neural network ϕ̃ defined in
Lemma 5.3. We conclude that φ(x) = fa(x) for all x ∈ T ∪ V (this establishes (2.5)). Because φ(x) = fa(x)
for all x ∈ T and because R ∈ CF r we conclude that R

({φ(xj)}r
j=1, {f (xj)}r

j=1

)= 0. Thus (2.4) holds,
completing the proof of (i).

Proof of (ii): Any successful NN in NN N,L – regardless of architecture – becomes universally
unstable

Our next task will be to show that if φ̂ ∈NN N,L and g:R→R is monotonic, then there is a subset
T̃ ⊂ T ∪ V of the combined training and validation set of size |T̃ | ≥ q, such that there exist uncountably
many universal adversarial perturbations η ∈R

d so that for each x ∈ T̃ Eq. (2.6) applies.
To this end, note that (5.18) implies that there exist natural numbers k1 < k2 < . . . < k6qNprod such that

zki
1 > zki+1

1 and fa(zki ) 	= fa(zki+1 ) for all i ∈ {1, . . . , 6qNprod − 1}. Moreover, by the definition of T , V and S,
there exist mi such that zki

1 = xmi ,δ
1 and such that xmi ,δ ∈ T ∪ V . For such i and any ω ∈ [0, δ ∧ ε((r ∨ s)/p)),

we define the vectors wi,ω = zki +ωe1. We also define the sets Wω := {wi,ω | i ∈ {1, . . . , 6qNprod}}.
Because of the definition of xk,0 given in (5.1) and the definition of zki , we have zki

2 = zki
3 = · · · =

zki
d = 0 and zki = xmi ,0. In particular, {zki | i ∈ {1, . . . , 6qNprod}} = {xmi ,0 | i ∈ {1, . . . , 6qNprod}} ∈ S fa

ε((r∨s)/p)

where we have used Lemma 5.2 and the bound (5.19). Since ‖zki − wi,ω‖∞ =ω< ε((r ∨ s)/p), we
conclude that fa(zki ) = fa(wi,ω) for i ∈ {1, . . . , 6qNprod}. Thus, fa(wi,ω) = fa(zki ) 	= fa(zki+1 ) = fa(wi+1,ω) for
i ∈ {1, . . . , 6qNprod − 1}.
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We can now use Lemma 5.4 to conclude that for each ω ∈ [0, δ ∧ ε((r ∨ s)/p)) there exists a set Iω
and a set Uω ⊂Wω with the following properties:

(1) Iω ⊂ {1, 2, . . . , 6qNprod}
(2) Uω = {wi,ω | i ∈ Iω}
(3) For all w ∈ Uω, |g(φ̂(w)) − fa(w)| ≥ 1/2.
(4) |Uω| ≥ 2q.

By the pigeonhole principle and the finiteness of {1, 2, . . . , 6qNprod}, there exists an uncountable set
�⊂ [0, δ ∧ ε((r ∨ s)/p)) such that for allω ∈�, Iω is independent ofω. Let I denote this common value
and let IE := {i | i ∈ I, mi even} and IO := {i | i ∈ I, mi odd}. Note that |I| ≥ 2q; otherwise, |Uω|< 2q
for some ω. Therefore, at least one of |IE| ≥ q or |IO| ≥ q: we now split into two cases depending on
which of these two sets has cardinality at least q.

Case 1: |IE| ≥ q.
In this case, we choose T̃ = {xmi ,δ | i ∈ IE}. For each ω ∈�, define ηω = (ω, −δ, 0, . . . , 0) ∈R

d and
H= {ηω |ω ∈�}. Then the set H is uncountable, for each i ∈ IE and ω ∈� we have xmi ,δ + ηω =
wi,ω, |g(φ̂(xmi ,δ + ηω)) − fa(xmi ,δ + ηω)| = |g(φ̂(wi,ω)) − fa(wi,ω)| ≥ 1/2 and ‖η‖ ≤ D‖ηω‖1 = D(ω+ δ) ≤
2Dδ ≤ ε. Furthermore, |supp(ηω)| = 2. We conclude that (2.6) holds.

Case 2: |IO| ≥ q
In this case, we choose T̃ = {xmi ,δ | i ∈ IO}. For each ω ∈�, define ηω = (ω, 0, 0, . . . , 0) ∈R

d and
H= {ηω |ω ∈�}. Then the set H is uncountable, for each i ∈ IO and ω ∈� we have xmi ,δ + ηω =
wi,ω, |g(φ̂(xmi ,δ + ηω)) − fa(xmi ,δ + ηω)| = |g(φ̂(wi,ω)) − fa(wi,ω)| ≥ 1/2 and ‖ηω‖ ≤ D‖ηω‖1 = Dω≤ Dδ ≤
ε. Furthermore, |supp(ηω)| = 1. We conclude that (2.6) holds.

Proof of (iii): Other stable and accurate NNs exist

Finally, we must show the existence of ψ , which we do with the help of Lemma 5.7. To this end,
we set K = �C((r ∨ s)/p)2� and define {αj}2K

j=1 by α2k−1 = xk,δ
1 + ε((r ∨ s)/p), α2k = xk,δ

1 − ε((r ∨ s)/p) for
k = 1, . . . , K. We first claim that 0<α2K <α2K−1 < · · ·<α2 <α1 < 1.

Because C ≥ 43, p ≤ 1 and (r ∨ s) ≥ 1 we have

α1 = a

2 − κ
+ p4

C4(r ∨ s)4
≤ 1

(2 − 3/4)
+ 1

C4
< 1

and similarly we obtain 2�C((r ∨ s)/p)2� + 1 − κ ≤ 2(C((r ∨ s)/p)2) + 2 − κ ≤ 4(C((r ∨ s)/p)2).
Therefore,

α2K = a

2�C((r ∨ s)/p)2� + 1 − κ
− p4

C4(r ∨ s)4
≥ a

4C((r ∨ s)/p)2
− p4

C4(r ∨ s)4

≥ p2

8C(r ∨ s)2
− p2

412C(r ∨ s)2
> 0

A simple calculation also shows that for each j = 1, . . . , K − 1

xj,δ
1 − xj+1,δ

1 = a

(j + 2 − κ)(j + 1 − κ)
≥ a

(K + 1 − κ)(K − κ)
≥ [2(K + 1 − κ)(K − κ)]−1.

On the other hand, once again employing the result that C2t2 ≥ (4�t� + 3)(4�t� + 4), for all t ≥ 1, (which
is a consequence of (5.12)) with t = C((r ∨ s)/p)2 we obtain

2ε((r ∨ s)/p) = 2C−2(C((r ∨ s)/p)2)−2 ≤ 2[(4K + 3)(4K + 4)]−1 < [2(K + 1 − κ)(K − κ)]−1.

We therefore conclude that α2j−1 >α2j = xj,δ
1 − ε((r ∨ s)/p)> xj+1,δ

1 + ε((r ∨ s)/p) = α2j+1, and thus the
conditions to apply Lemma 5.7 are met.
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Now, let ψ be the network provided by Lemma 5.7 with this sequence {αj}2K
j=1. Because of the

definition of αj and the conclusion of Lemma 5.7 we have

ψ(x) =
{

0 if x1 ∈ [xk,δ
1 − ε((r ∨ s)/p), xk,δ

1 + ε((r ∨ s)/p)] and k is odd
1 if x1 ∈ [xk,δ

1 − ε((r ∨ s)/p), xk,δ
1 + ε((r ∨ s)/p)] and k is even

Moreover, because of Lemma 5.2, the fact that the value of fa(x) depends only on x1 and the bound (5.19)

fa(x) =
{

0 if x1 ∈ [xk,δ
1 − ε((r ∨ s)/p), xk,δ

1 + ε((r ∨ s)/p)] and k is odd
1 if x1 ∈ [xk,δ

1 − ε((r ∨ s)/p), xk,δ
1 + ε((r ∨ s)/p)] and k is even

In particular, ψ(x) = fa(x) whenever x1 ∈ [xk,δ
1 − ε((r ∨ s)/p), xk,δ

1 + ε((r ∨ s)/p)] for any
k ∈ {1, 2, . . . , K}.

To see that ψ(x) = fa(x) for all x ∈B∞
ε((r∨s)/p)(T ∪ V), note that, for every x ∈B∞

ε((r∨s)/p)(T ∪ V),
there exists an xk,δ ∈ T ∪ V such that ‖xk,δ − x‖∞ ≤ ε((r ∨ s)/p). Then, by the assumption
that max{� ∈N | x�,δ ∈ T ∪ V} ≤ �C((r ∨ s)/p)2� occurs in (5.18), we have k ≤ K, and so
x1 ∈ [xk,δ

1 − ε((r ∨ s)/p), xk,δ
1 + ε((r ∨ s)/p)]. But we have already shown that for such x, ψ(x) = fa(x).

Thus, the proof of the theorem is complete.

5.4. Tools from the SCI hierarchy used for Theorem 3.5

In order to formalise the non-computability result stated in Theorem 3.5, we shall summarise appropriate
definitions and ideas on the ‘SCI hierarchy’ [11–13, 25, 30, 43, 59, 60]. The material in this section very
closely follows the definitions and presentation in [9] with slight adaptations made owing to the different
focus of this paper. Working with the SCI hierarchy and general algorithms allows us to show the non-
computability is independent of both the underlying computational model (e.g., a Turing machine, BSS
machine) and local minima as in Remark 3.7.

It also allows us to easily make non-computability statements applicable to both deterministic and
randomised algorithms. We include the ensuing discussion to ensure that this paper is self-contained.

5.4.1. Computational problems
We start by defining a computational problem [11]:

Definition 5.8 (Computational problem). Let � be some set, which we call the input set, and � be a
set of complex-valued functions on � such that for ι1, ι2 ∈�, then ι1 = ι2 if and only if f (ι1) = f (ι2) for
all f ∈�. We call � an evaluation set. Let (M, dM) be a metric space, and finally let � :�→M be a
function which we call the solution map. We call the collection {�,�, M,�} a computational problem.

The set � is essentially the set of objects that give rise to the various instances of our computational
problem. The solution map� :�→M is what we are interested in computing. Finally, the set� is the
collection of functions that provide us with the information we are allowed to read. As a simple example,
if we were considering matrix inversion then � might be a collection of invertible matrices, � would
be the matrix inversion map taking � to the set of matrices and� would consist of functions that allow
us to access entries of the input matrices.

In the slightly more complicated context of a computational problem, the neural network problem
formulated in Section 3 can be understood as per the following:

Definition 5.9 (Neural network computational problem). Fix d, r ∈N, a classification function
f :Rd → {0, 1}, neural network layers and dimensions L and N = (NL = 1, NL−1, . . . , N1, N0 = d), respec-
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tively, as well as ε, ε̂ and a cost function R ∈ CF ε,ε̂
r . The neural network computational problem

{�NN
f ,r,ε,R,(N,L),�

NN
f ,r,ε,R,(N,L), MNN

f ,r,ε,R,(N,L),�
NN
f ,r,ε,R,(N,L)}

is defined as follows:

(1) The input set �NN
f ,r,ε,R,(N,L) is the collection of all T with T = {x1, . . . , xr} a finite subset of Rd such

that T ∈ S f
ε′(K) with ε′(n) := [(4n + 3)(4n + 4)]−1.

(2) The metric space MNN
f ,r,ε,R,(N,L) is set to R

r with the distance function induced by ‖ · ‖∗ where ∗ =
1, 2 or ∞ as per the statement of Theorem 3.5.

(3) The solution map �NN
f ,r,ε,R,(N,L) is given by the following: for a training set T , we let

Aε

T := argminε
ϕ∈NNN,L

R
({ϕ(xj)}r

j=1, {f (xj)}r
j=1

)
,

and then �NN
f ,r,ε,R,(N,L)(T ) = {φ(xi)}r

i=1 for φ ∈Aε
T . Note that � is potentially multivalued if Aε

T has
more than one element – this will not be a problem for our theory and will be explained further in
Remark 5.15.

(4) The set �NN
f ,r,ε,R,(N,L) is given by

�NN
f ,r,ε,R,(N,L) = {f j,k}j=d,k=r

j=1,k=1, (5.20)

where f j,k(T ) = xk
j gives access to the jth coordinate of the kth vector of the training set.

To reduce the burden on notation, we will abbreviate

{�NN ,�NN , MNN ,�NN } = {�NN
f ,r,ε,R,(N,L),�

NN
f ,r,ε,R,(N,L), MNN

f ,r,ε,R,(N,L),�
NN
f ,r,ε,R,(N,L)}

where there is no ambiguity surrounding the parameters f , r, ε, R, N, L.

Remark 5.10 (Existence of a neural network). It may not be a priori obvious that the set Aε
T is non-

empty and thus�NN
f ,r,ε,R,(N,L)(T ) is well defined. In fact, this is an immediate consequence the fact that the

cost function R is a member of CF ε,ε̂
r defined in (3.4) and the definition of argminε given in (3.3). In

particular, the existence of an approximate minimiser is guaranteed since R is bounded from below.

5.4.2. Algorithms
In this section, we shall describe the algorithms that are designed to approximate the solution map � in
a computational problem {�,�, M,�}. We shall start with deterministic general algorithms:

Definition 5.11 (General Algorithm). Given a computational problem {�,�, M,�}, a general
algorithm is a mapping � :�→M∪ {NH} such that, for every ι ∈�, the following conditions hold:

(i) there exists a non-empty subset of evaluations ��(ι) ⊂�, and, whenever �(ι) 	= NH, we have
|��(ι)|<∞,

(ii) the action of � on ι is uniquely determined by {f (ι)}f ∈�� (ι),
(iii) for every ι′ ∈� such that f (ι′) = f (ι) for all f ∈��(ι), it holds that ��(ι′) =��(ι).

Remark 5.12 (The purpose of a general algorithm: universal impossibility results). The purpose
of a general algorithm is to have a definition that will encompass any model of computation and that
will allow impossibility results to become universal. Given that there are several non-equivalent models
of computation, impossibility results will be shown with this general definition of an algorithm.
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Remark 5.13 (The power of a general algorithm). General algorithms are extremely powerful com-
putational models with every Turing or BSS machine a general algorithm but the converse does not hold.
Thus, a non-computability result proven using general algorithms is strictly stronger than one proven
only for Turing machines or BSS machines.

In particular, general algorithms are more powerful than any Turing machine or BSS machine, or
even such a machine with access to an oracle that provides an approximate minimiser

φ ∈ argminε
φ̃∈NNN,L

R
(
{φ̃(xj)}r

j=1, {f (xj)}r
j=1

)

for every inexact input provided to the algorithm, or an oracle that detects when an algorithm has encoun-
tered local minima. It is for this reason that we stated in Remark 3.7 that local minima were not relevant
to Theorem 3.5.

Remark 5.14 (The non-halting output NH). The non-halting ‘output’ NH of a general algorithm may
seem like an unnecessary distraction given that a general algorithm is just a mapping, which is strictly
more powerful than a Turing or a BSS machine. However, the NH output is needed when the concept
of a general algorithm is extended to a randomised general algorithm (RGA). A technical remark about
NH is also appropriate, namely that ��(ι) is allowed to be infinite in the case when �(ι) = NH. This is
to allow general algorithms to capture the behaviour of a Turing or a BSS machine not halting by virtue
of requiring an infinite amount of input information.

Owing to the presence of the special non-halting ‘output’ NH, we have to extend the metric dM on
M×M to dM:M∪ {NH} ×M∪ {NH} →R≥0 in the following way:

dM(x, y) =

⎧⎪⎨
⎪⎩

dM(x, y) if x, y ∈M
0 if x = y = NH
∞ otherwise.

(5.21)

Definition 5.11 is sufficient for defining a RGA, which is the only tool from the SCI theory needed
in order to prove Theorem 3.5.

Remark 5.15 (Multivalued functions). When dealing with optimisation problems, one needs a frame-
work that can handle multiple solutions. As the set-up above does not allow � to be multivalued, we
need some slight changes. We allow � to be multivalued, even though a general algorithm is assumed
not to be. For ι ∈�, we define distM(�(ι), �(ι)) := infx∈�(ι) dM(x, �(ι)). That is to say, the error that � is
assumed to incur in trying to compute �(ι) is the best (infimum) of all possible errors across all values
of �(ι).

One final definition that is useful is that of the minimum amount of input information, defined if� is
countable. Although this definition has its own uses in other work on the SCI hierarchy, in the context
of this paper it will only be useful to address a technicality in the next section.

Definition 5.16 (Minimum amount of input information). Given the computational problem
{�,�, M,�}, where �= {fk | k ∈N, k ≤ |�|} and a general algorithm �, we define the minimum
amount of input information T�(ι) for � and ι ∈� as

T�(ι) := sup{m ∈N | fm ∈��(ι)}.

Note that, for ι such that �(ι) = NH, the set ��(ι) may be infinite (see Definition 5.11), in which case
T�(ι) = ∞.
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5.4.3. Randomised algorithms
In many contemporary fields of mathematics of information such as DL, the use of randomised algo-
rithms is widespread. We therefore need to extend the concept of a general algorithm to a randomised
random algorithm.

Definition 5.17 (Randomised general algorithm). Given a computational problem {�,�, M,�},
where �= {fk | k ∈N, k ≤ |�|}, a RGA is a collection X of general algorithms � :�→M∪ {NH},
a sigma-algebra F on X, and a family of probability measures {Pι}ι∈� on F such that the following
conditions hold:

(Pi) For each ι ∈�, the mapping �ran
ι

:(X, F) → (M∪ {NH}, B) defined by �ran
ι

(�) = �(ι) is a random
variable, where B is the Borel sigma-algebra on M∪ {NH}.

(Pii) For each n ∈N and ι ∈�, we have {� ∈ X | T�(ι) ≤ n} ∈F .
(Piii) For all ι1, ι2 ∈� and E ∈F so that, for every � ∈ E and every f ∈��(ι1), we have f (ι1) = f (ι2), it

holds that Pι1 (E) = Pι2 (E).

It is not immediately clear whether condition (Pii) for a given RGA (X, F , {Pι}ι∈�) holds independently
of the choice of the enumeration of �. This is indeed the case, but we shall not show this here (see [9]
for further information).

Remark 5.18 (Assumption (Pii)). Note that (Pii) in Definition 5.17 is needed in order to ensure that
the minimum amount of input information (i.e., the amount of input information the algorithm makes
use of) also becomes a valid random variable. More specifically, for each ι ∈�, we define the random
variable

T�ran (ι):X →N∪ {∞} according to � �→ T�(ι).

Assumption (Pii) ensures that this is indeed a random variable.
As the minimum amount of input information is typically related to the complexity of an algorithm,

one would be dealing with a rather exotic probabilistic model if T�ran (ι) were not a random variable.
Indeed, note that the standard models of randomised algorithms (see [5]) can be considered as RGAs
(in particular, they will satisfy (Pii)).

Remark 5.19 (The purpose of a randomised general algorithm: universal lower bounds). As for a
general algorithm, the purpose of a RGA is to have a definition that will encompass every model of com-
putation, which will allow lower bounds and impossibility results to be universal. Indeed, randomised
Turing and BSS machines can be viewed as RGAs.

We will, with a slight abuse of notation, also write RGA for the family of all RGAs for a given a
computational problem and refer to the algorithms in RGA by �ran. With the definitions above, we can
now make probabilistic version of the strong breakdown epsilon as follows.

Definition 5.20 (Probabilistic strong breakdown epsilon). Given a computational problem
{�,�, M,�}, where �= {fk | k ∈N, k ≤ |�|}, we define the probabilistic strong breakdown epsilon
εs
PB:[0, 1) →R according to

εs
PB(p) = sup{ε ≥ 0, | ∀ �ran ∈ RGA ∃ ι ∈� such that Pι(distM(�ran

ι
,�(ι))> ε)> p},

where �ran
ι

is defined in (Pi) in Definition 5.17.

Note that the probabilistic strong breakdown epsilon is not a single number but a function of p.
Specifically, it is the largest ε so that the probability of failure with at least ε-error is greater than p.

5.4.4. Inexact input and perturbations
Suppose we are given a computational problem {�,�, M,�}, and that �= {fj}j∈β , where β is some
index set that can be finite or infinite. Obtaining fj may be a computational task on its own, which is
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exactly the problem in most areas of computational mathematics. In particular, for ι ∈�, fj(ι) could be
the number e

π
j i for example. Hence, we cannot access fj(ι), but rather fj,n(ι) where fj,n(ι) → fj(ι) as n → ∞.

In this paper, we will be interested in the case when this can be done with error control. In particular,
we consider fj,n :�→Dn + iDn, where Dn := {k 2−n | k ∈Z}, such that

‖{fj,n(ι)}j∈β − {fj(ι)}j∈β‖∞ ≤ 2−n, ∀ι ∈�. (5.22)

We will call a collection of such functions�1-information for the computational problem. Formally, we
have the following.

Definition 5.21 (�1-information). Let {�,�, M,�} be a computational problem with �= {fj}j∈β .
Suppose that, for each j ∈ β and n ∈N, there exists an fj,n :�→Dn + iDn such that (5.22) holds. We
then say that the set �̂= {fj,n | j ∈ β, n ∈N} provides �1-information for {�,�, M,�}.

We can now define what we mean by a computational problem with �1-information.

Definition 5.22 (Computational problem with �1-information). Given {�,�, M,�} with �=
{fj}j∈β , the corresponding computational problem with �1-information is defined as:

{�,�, M,�}�1 := {�̃, �̃, M, �̃},
where

�̃=
{
ι̃= {

(fj,1(ι), fj,2(ι), fj,3(ι), . . . )
}

j∈β | ι ∈�, fj,n :�→Dn + iDn satisfy (5.22)
}

, (5.23)

�̃(ι̃) =�(ι), and �̃= {f̃j,n}j,n∈β×N, where f̃j,n(ι̃) = fj,n(ι). Given an ι̃ ∈ �̃, there is a unique ι ∈� for which
ι̃= {

(fj,1(ι), fj,2(ι), fj,3(ι), . . . )
}

j∈β (by Definition 5.8). We say that this ι ∈� corresponds to ι̃ ∈ �̃.

Remark 5.23. Note that the correspondence of a unique ι to each ι̃ in Definition 5.22 ensures that �̃
and the elements of �̃ are well defined.

One may interpret the computational problem {�,�, M,�}�1 = {�̃, �̃, M, �̃} as follows. The col-
lection �̃ is the family of all sequences approximating the inputs in�. For an algorithm to be successful
for {�,�, M,�}�1 , it must work for all ι̃ ∈ �̃, that is, for any sequence approximating ι.

Remark 5.24 (Oracle tape/node providing �1-information). For impossibility results, we use general
algorithms and RGAs (as defined below), and thus, due to their generality, we do not need to specify
how the algorithms read the information.

The next proposition serves as the key building block for Theorem 3.5 and is proven in [[9],
Proposition 9.5]. Note that the proposition is about arbitrary computational problems and is hence also
a tool for demonstrating lower bounds on the breakdown epsilon for general computational problems.

Proposition 5.25. Let {�,�, M,�} be a computational problem with �= {fk | k ∈N, k ≤ |�|} count-
able. Suppose that ι0 ∈� and that {ι1n}∞

n=1 is a sequence in � so that the following conditions
hold:

(Pa) For every k ≤ |�| and for all n ∈N, we have |fk(ιjn) − fk(ι0)| ≤ 1/4n.
(Pb) There is a κ > 0 such that infυ1∈�(ι1n),υ2∈�(ι0) dM(υ1, υ2) ≥ κ .

Then the computational problem {�,�, M,�}�1 satisfies εs
PB(p) ≥ κ/2 for p ∈ [0, 1/2).

5.5. Stating Theorem 3.5 in the SCI language - Proposition 5.26

A slightly stronger formal statement of Theorem 3.5 in the SCI language is now as follows.

Proposition 5.26. There is an uncountable collection C1 of classification functions f as in (2.1) – with
fixed d ≥ 2 – such that for
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(1) any neural network dimensions N = (NL = 1, NL−1, . . . , N1, N0 = d) with L ≥ 2,
(2) any r ≥ 3(N1 + 1) · · · (NL−1 + 1),
(3) and any ε > 0, ε̂ ∈ (0, 1/2) and cost function R ∈ CF ε,ε̂

r .

There is an uncountable collection C3 of disjoint subsets of �NN
f ,r,ε,R,(N,L) so that for each �̂ ∈ C3 the

computational problem

{�NN
f ,r,ε,R,(N,L), �̂, MNN

f ,r,ε,R,(N,L),�
NN
f ,r,ε,R,(N,L)}�1

has breakdown epsilon εs
PB(p) ≥ 1/4 − ε̂/2, for all p ∈ [0, 1/2).

To see that Proposition 5.26 implies Theorem 3.5, assume that Proposition 5.26 holds and sup-
pose that � is a randomised algorithm (in either the BSS or Turing models). The existence of φ
stated in Theorem 3.5 is guaranteed as per the discussion in Remark 5.10. Furthermore, � is also a
RGA and hence we can consider � restricted to �̂ for each �̂ ∈ C3. Since the computational problem
{�NN

f ,r,ε,R,(N,L), �̂, MNN
f ,r,ε,R,(N,L),�

NN
f ,r,ε,R,(N,L)}�1 has εs

PB(p) ≥ 1/4 − ε̂/2> 1/4 − 3ε̂/4, for all p ∈ [0, 1/2)

there must exist a training set T = T (�̂) with T = {x1, x2, . . . , xr} for which

P

(
‖{�T (x j)}r

j=1 − {φ(x j)}r
j=1‖∗ ≥ 1/4 − 3ε̂/4

)
> p,

for any φ ∈ argminε
ϕ∈NNN,L

R
({ϕ(xj)}r

j=1, {f (xj)}r
j=1

)
(this is itself a consequence of Remark 5.15).

We now choose C2 = {T (�̂) | �̂ ∈ C3}. Because C3 is an uncountable collection of disjoint sets, C2 is
uncountable and thus Theorem 3.5 follows.

5.6. Proof of Proposition 5.26 and Theorem 3.5

As demonstrated in the previous section, to prove Theorem 3.5 it suffices to prove Proposition 5.26. We
begin by starting the following useful lemma:

Lemma 5.27. Recall the set-up of Proposition 5.26 and the vectors xk,δ defined in (5.1). For any δ ∈
(0, ε′(r)) and arbitrary

φ ∈ argminε
ϕ∈NNN,L

R
({ϕ(xj,δ)}r

j=1, {fa(x
j,δ)}r

j=1

)
(5.24)

we have |φ(xk,δ) − fa(xk,δ)| ≤ ε̂ for all k ∈ {1, . . . , r}.
Proof. By Lemma 5.3, there exists a neural network ϕ̃ ∈NN N,L with ϕ̃(xk,δ) = fa(xk,δ) for all k. In par-
ticular, R

({ϕ̃(xj,δ)}r
j=1, {f (xj,δ)}r

j=1

)= 0. Thus, by (5.24) and the definition of the approximate argmin as
in (3.3), we must have that

R
({φ(xj,δ)}r

j=1, {f (xj,δ)}r
j=1

)≤ ε
and the conclusion of the claim follows because R ∈ CF ε,ε̂

r as defined in (3.4).

Now that we have proven Lemma 5.27, we are ready to prove Proposition 5.26.

Proof of Proposition 5.26. As in the proof of Theorem 2.2, we begin by defining the sets C1 and C3. Let
C1 = {fa:Rd → [0, 1] | a ∈ [1/2, 1]}, where fa is defined as in (5.2). Fix a ∈ [1/2, 1] and κ ∈ [1/4, 3/4],
define T κ

δ
:= {x1,δ, x2,δ , . . . , xr,δ} where the values xi,δ (each depending on κ and a) are defined in (5.1).

We define �̂κ := {T κ
δ

| δ ∈ [0, ε ′(r)). By Lemma 5.2, we have T κ
δ

∈ S fa
ε′(r) so that �̂κ ⊂�NN . Note also

that noting that the �̂κ are disjoint as an immediate consequence of (5.1). Finally, we set C3 := {�̂κ | κ ∈
[1/4, 3/4]}, .
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Now we have defined C1 and C3, we will show that for any κ ∈ [1/4, 3/4] the computational problem
{�NN , �̂κ , MNN ,�NN }�1

has breakdown epsilon εs
PhB(p) ≥ 1/4 − ε̂/2, for all p ∈ [0, 1/2). This will be done using Proposition

5.25. We will define ι0 := T κ
0 and ι1n := T κ

4−n .
By (5.1), we see that ‖x j,4−n − xj,0‖∞ ≤ 4−n for j = 1, 2, . . . , r. Hence (recalling the definition of

�NN ), property (Pa) from Proposition 5.25 holds.
Fix n ∈N sufficiently large and let φ0 and φn be arbitrary neural networks so that

φ0 ∈ argminε
ϕ∈NNN,L

({ϕ(xj,0)}r
j=1, {fa(x

j,0)}r
j=1

)
φn ∈ argminε

ϕ∈NNN,L

(
{ϕ(xj,4−n

)}r
j=1, {fa(x

j,4−n
)}r

j=1

)
. (5.25)

By Lemma 5.4 and the assumption that |T κ
0 | = r ≥ 3(N1 + 1) · · · (NL−1 + 1), we conclude that

max
j=1,2,...,r

|φ0(x
j,0) − fa(xj,0)| ≥ 1/2.

By contrast, Lemma 5.27 shows that maxj=1,2,...,r |φn(xj,4−n
) − fa(xj,4−n

)| ≤ ε̂. Combining these two results
and the fact that fa(xj,0) = fa(xj,4−n

) for each j = 1, 2, . . . , r yields
max

j=1,2,...,r
|φ0(x

j,0) − φn(x
j,4−n

)| ≥ 1/2 − ε̂.

Therefore, since both the �1 and �2 norms are bounded from below by the �∞ norm and φ0 and φn

were chosen arbitrarily according to (5.25), we have infυ1∈�(ι1n),υ2∈�(ι0) dM(υ1, υ2) ≥ 1/2 − ε̂ where dM is
the �∗ norm with ∗ = 1, 2 or ∞. Hence, property (Pb) from Proposition 5.25 holds with κ = 1/2 − ε̂,
thereby concluding the proof.
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