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Abstract

We introduce a novel amortised resource analysis couched in a type-and-effect system. Our analysis is
formulated in terms of the physicist’s method of amortised analysis and is potentialbased. The type system
makes use of logarithmic potential functions and is the first such system to exhibit logarithmic amor-
tised complexity.With our approach, we target the automated analysis of self-adjusting data structures, like
splay trees, which so far have only manually been analysed in the literature. In particular, we have imple-
mented a semi-automated prototype, which successfully analyses the zig-zig case of splaying, once the type
annotations are fixed.

Keywords: Analysis of algorithms; amortised resource analysis; functional programming; self-adjusting data structures;
automation

In Memoriam: Martin Hofmann

1. Introduction

Amortised analysis as pioneered by Sleator and Tarjan (1985); Tarjan (1985) is a method for the
worst-case cost analysis of data structures. The innovation of amortised analysis lies in considering
the cost of a single data structure operation as part of a sequence of data structure operations.
The methodology of amortised analysis allows one to assign a low (e.g. constant or logarithmic)
amortised cost to a data structure operation even though the worst-case cost of a single operation
might be high (e.g. polynomial or worse). The setup of amortised analysis guarantees that for a
sequence of data structure operations the worst-case cost is indeed the number of data structure
operations times the amortised cost. In this way, amortised analysis provides a methodology for
worst-case cost analysis.

Starting with the initial proposal, one of the objectives of amortised analysis has been to con-
duct a worst-case cost analysis for self-adjusting binary search trees, such as splay trees (Sleator
and Tarjan, 1985; Tarjan, 1985). These data structures have the behaviour that a single data struc-
ture operation might be expensive (i.e. linear in the size of the tree) but the cost is guaranteed to
‘average out’ in a sequence of data structure operations (i.e. logarithmic in the size of the tree).
Amortised analysis has been designed to provide a framework for this kind of reasoning on the
cost of data structure operations.

The automated cost analysis of imperative, functional, logic and object-oriented programs
as well as of more abstract programming paradigms such as term rewriting systems is an active
research topic (Albert et al., 2008, 2011; Alias et al., 2010; Alonso-Blas and Genaim, 2012;
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Avanzini et al,, 2011, 2015, 2016; Blanc et al., 2010; Flores-Montoya, 2017; Giesl et al., 2017;
Gulwani and Zuleger, 2010; Hermenegildo et al., 2012; Hofmann and Moser, 2014, 2015; Moser
and Schneckenreither, 2020). Most research has focused on the inference of polynomial bounds
on the worst-case cost of the program under analysis. A few papers also target the inference of
exponential and logarithmic bounds (Albert et al., 2008; Avanzini et al., 2011; Chatterjee et al.,
2017; Kahn and Hoffmann, 2020; Wang et al., 2017; Winkler and Moser, 2020). Some of the
cited approaches are able to conduct an automated amortised analysis in the sense of Sleator
and Tarjan: The work on type-based cost analysis by Martin Hofmann and his collaborators
(Hoffmann, 2011; Hoffmann et al., 2012a, 2017; Hofmann and Jost, 2003; Hofmann and Moser,
2014, 2015; Hoffmann and Shao, 2015a,b; Jost et al., 2009, 2010, 2017), which we discuss in
more detail below, directly employs potential functions as proposed in Sleator and Tarjan (1985);
Tarjan (1985). For imperative programs, a line of work infers cost bounds from lexicographic
ranking functions using arguments that implicitly achieve an amortised analysis, see Sinn et al.
(2014, 2015, 2017); Fiedor et al. (2018) and, for details, refer to Sinn et al. (2017)). The connection
between ranking functions and amortised analysis has also been discussed in the context of
term rewrite systems (Hofmann and Moser, 2014). Proposals that incorporate amortised analysis
within the recurrence relations approach to cost analysis have been discussed in Alonso- Blas
and Genaim (2012); Flores-Montoya (2017). Still, to the best of our knowledge, none of the cited
approaches is able to conduct a worst-case cost analysis for self-adjusting binary search trees
such as splay trees. One notable exception is Nipkow (2015) where the correct amortised analysis
of splay trees and other data structures is certified in Isabelle/HOL with some tactic support.
However, it is not clear at all if the approach can be further automated.

In this article, we take the first step towards the automated analysis of logarithmic amortised
cost. We extend the line of work by Martin Hofmann and his collaborators on amortised analy-
sis, where the search for suitable potential functions is encoded as a type-and-effect system. This
line of work has led to several successful tools for deriving accurate bounds on the resource usage
of functional (Avanzini et al., 2015; Avanzini and Moser, 2016; Hoffmann et al., 2012a; Jost et
al., 2009), imperative programs (Hofmann and Rodriguez, 2013; Hoffmann and Sho, 2014), as
well as term rewriting systems (Avanzini et al., 2016; Hofmann and Moser, 2014, 2015; Moser
and Schneckenreither, 2020). The cited approaches employ a variety of potential functions: While
initially confined to inferring linear cost (Hofmann and Jost, 2003), the methods were subse-
quently extended to cover polynomial (Hoffmann and Hofmann, 2010b), multivariate polynomial
(Hoffmann et al.,, 2012a) and also exponential cost (Hofmann and Rodriguez, 2013). We for
the first time propose a type system that supports logarithmic potential functions, significantly
extending and correcting an earlier note towards this goal (Hofmann and Moser, 2018).

Our analysis is couched in a simple core functional language just sufficiently rich to provide
a full definition of our motivating example: splaying. We employ a big-step semantics, following
similar approaches in the literature. Further, our type system is geared towards runtime as com-
putation cost (i.e. we assign a unit cost to each function call and zero cost to every other program
statement). It is straightforward to generalise this type system to other monotone cost models.
With respect to non-monotone costs, for example, heap usage, we expect the type system can also
be readily adapted, but this is outside the scope of the article.

The type system has been designed with the goal of automation. As in previous work on type-
based amortised analysis, the type system infers constraints on unknown coefficients of template
potential functions in a syntax-directed way from the program under analysis. Suitable coefficients
can then be found automatically by solving the collected constraints with a suitable constraint
solver (i.e. an SMT solver that supports the theory of linear arithmetic). The derivation of con-
straints is straightforward for all syntactic constructs of our programming language. However, our
automated analysis also requires sharing and weakening rules. The latter supports the compari-
son of different potential functions. As our potential functions are logarithmic, we cannot directly
encode the comparison between logarithmic expressions within the theory of linear arithmetic.
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Here, we propose several ideas for linearising the required comparison of logarithmic expres-
sions. The obtained linear constraints can then be added to the constraint system. Our proposed
linearisation makes use of (i) mathematical facts about the logarithm, referred to as expert knowl-
edge, (ii) Farkas’ Lemma for turning the universally quantified premise of the weakening rule into
an existentially quantified statement that can be added to the constraint system and (iii) finally a
subtle modification of Schoenmakers potential.

We report on preliminary results for the automated amortised analysis of the splay function.
Our implementation semi-automatically verifies the correctness of a type annotation with loga-
rithmic amortised cost for the splay function (more specifically for the zig-zig case of the splay
function) using the constraints generated by the type system. We believe that the ideas presented
in this article can be extended beyond the case of splay trees to support the analysis of similar self-
adjusting data structures such as the ones used in the evaluation of Nipkow (2015). Summarising,
we make the following contributions:

« We propose a new class of template potential functions suitable for logarithmic amortised
analysis; these potential functions in particular include a variant of Schoenmakers’ potential
(a key building block for the analysis of the splay function) and logarithmic expressions.

« We present a type-and-effect system for potential-based resource analysis capable of express-
ing logarithmic amortised costs and prove its soundness.

» We report on a preliminary implementation for the logarithmic amortised analysis of the
splay function. With respect to the zig-zig case of the splay function, our prototype is able to
automatically check that the amortised cost is bounded by 3 log (t) + 1. All former results to
this respect required a manual analysis.

Outline. The rest of this article is organised as follows. In Section 2, we review the key concepts
underlying type-based amortised analysis and present our ideas for their extension. In Section
3, we introduce a simple core language underlying our reasoning and provide a full definition of
splaying, our running example. The employed class of potential functions is provided in Section 4,
while the type-and-effect system is presented in Section 5. In Section 7, we report on our ideas for
implementing the weakening rule. Concretely, we see these ideas at work in Section 6, where we
employ the established type-and-effect system on the motivating example of splaying. In Section
8, we present our implementation and design choices in automation. In Section 9, we present
related work and finally, we conclude in Section 10.

2. Setting the Stage

Our analysis is formulated in terms of the physicist’s method of amortised analysis in the style of
Sleator and Tarjan (1985) and Tarjan (1985). This method assigns a potential to data structures
of interest and defines the amortised cost of an operation as the sum of the actual cost plus the
change of the potential through execution of the operation, that is, the central idea of an amortised
analysis as formulated by Sleator and Tarjan is to choose a potential function ¢ such that

W) +ar(v) =cr(v) +o(f(v),

holds for all inputs v to a function f, where ar, cf denote the amortised and total cost, respectively,
of executing f. Hofmann and Jost (2003); Hoffmann et al. (2011, 2012b,a); Hofmann and Moser
(2014, 2015) provide a generalisation of this idea to a set of potential functions ¢, ¥, such that

o) Z (V) + ¥ (f(V),
holds for all inputs v. This allows one to read off an upper bound on the amortised cost of f, that

is, we have as(v) < ¢(v) — ¥(v). We add that the above inequality indeed generalises the original
formulation, which can be seen by setting ¢(v) := ar(v) + ¢ (v).

https://doi.org/10.1017/5S0960129521000232 Published online by Cambridge University Press


https://doi.org/10.1017/S0960129521000232

Mathematical Structures in Computer Science 797

In this article, we present a type-based resource analysis based on the idea of potential functions
that can infer logarithmic amortised cost. Following previous work by Hofmann et al., we tackle
two key problems to achieve a semi-automated logarithmic amortised analysis: (1) Automation is
achieved by a type-and-effect system that uses template potential functions, that is, functions of a
fixed shape with indeterminate coefficients. Here, the key challenge is to identify templates that are
suitable for logarithmic analysis and that are closed under the basic operations of the considered
programming language. (2) In addition to the actual amortised analysis with costs, we employ
cost-free analysis as a subroutine, setting the amortised ay and actual costs ¢; of all functions f to
zero. This enables a size analysis of sorts, because the inequality ¢(v) > ¥ (f(v)) bounds the size
of the potential y( f(v)) in terms of the potential ¢(v). The size analysis we conduct allows lifting
the analysis of a subprogram to a larger context, which is crucial for achieving a compositional
analysis. We overview these two aspects in the sequel of the section.

2.1 Type-and-effect system

To set the scene, we briefly review amortised analysis formulated as a type-and-effect system up to
and including the multivariate polynomial analysis, cf. Jost et al. (2010); Hoffmann and Hofmann
(2010b,a); Hoffmann et al. (2011, 2012a); Hofmann and Moser (2014, 2015); Hoffmann et al.
(2017); Jost et al. (2017).

Polynomial Amortised Analysis. Suppose that we have types «, 8, v, ... representing sets of
values. We write [« ] for the set of values represented by type «. Types may be constructed from
base types such as Booleans and integers, denoted by Base, and by type formers such as list, tree,
product and sum. For each type «, we define a (possibly infinite) set of basic potential functions
Ba): o] — Ra’. Thus, if p € () and v € [«]], then p(v) € R:{. An annotated type is a pair of
a type « and a function Q: B(a) — R providing a coefficient for each basic potential function.
The function Q must be zero on all but finitely many basic potential functions. For each annotated
type |Q, the potential function ¢q : [a] — R{ is then given by

PV = Y Qp)-p(v).

peB(a)

By introducing product types, one can regard functions with several arguments as unary func-
tions, which allows for technically smooth formalisations, cf. Hoffmann and Hofmann (2010b,a);
Hoffmann (2011); the analyses in the cited papers are called univariate as the set of basic potential
functions A(«) of a product type « is given directly. In the later multivariate versions of auto-
mated amortised analysis (Hoffmann et al.,, 2011, 2012a; Hofmann and Moser, 2015) one takes a
more fine-grained approach to products. Namely, one then sets (for arbitrary »)

Blog X ...xay):=RB(a) X ...x Blay,)
(1> - > )15 ) =] [ pilwi) -
i=1

Thus, the basic potential function for a product type is obtained as the multiplication of the basic
potential functions of its constituents.!

Automation. The idea behind this setup is that the basic potential functions #(«) are suit-
ably chosen and fixed by the analysis designer; the coefficients Q(p) for p € Z(«), however, are
left indeterminate and will (automatically) be fixed during the analysis. For this, constraints over

Suppose that for each type « there exists a distinguished element u € %(a) with u(a) = 1 for all a € [«].. Then, the multi-
variate product types contain all (linear combinations) of the basic potential functions, extending earlier univariate definitions
of product types.
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the unknown coefficients are collected in a syntax-directed way from the function under anal-
ysis and then solved by a suitable constraint solver. The type-and-effect system formalises this
collection of constraints as typing rules, where for each construct of the considered program-
ming language a typing rule is given that corresponds to constraints over the coefficients of the
annotated types. Expressing the quest for suitable type annotations as a type-and-effect system
allows one to compose typing judgements in a syntax-oriented way without the need for fixing
additional intermediate results, which is often required by competing approaches. This syntax-
directed approach to amortised analysis has been demonstrated to work well for data types like
lists or trees whose basic potential functions are polynomials over the length of a list resp. the
number of nodes of a tree. One of the reasons why this works well is, for example, that functional
programming languages typically include dedicated syntax for list construction and that polyno-
mials are closed under addition by one (i.e. if p(n) is a polynomial, so is p(n + 1)), supporting the
formulation of a suitable typing rule for list construction, cf. Hoffmann and Hofmann (2010b,a);
Hoffmann (2011); Hoffmann et al. (2011, 2012a). The syntax-directed approach has been shown
to generalise from lists and trees to general inductive data types, cf. Hofmann and Moser (2014,
2015); Moser and Schneckenreither (2018).

Logarithmic Amortised Analysis. We now motivate the design choices of our type-and-effect
system. The main objective of our approach is the automated analysis of data structures such
as splay trees, which have logarithmic amortised cost. The amortised analysis of splay trees is
tricky and requires choosing an adequate potential function: our work makes use of a variant
of Schoenmakers’ potential, rk(¢) for a tree t, cf. Schoenmakers (1993); Nipkow (2015), defined
inductively by

rk( ):=1,
rk((l,d,r)) = rk(l) +1og (|I]) +log (|r]) + rk(r),

where [, r are the left resp. right child of the tree (I,d,r), |t| denotes the number of leaves of a
tree t, and d is some data element that is ignored by the potential function. Besides Schoenmakers’
potential we need to add further basic potential functions to our analysis. This is motivated as
follows: Similar to the polynomial amortised analysis discussed above, we want that the basic
potential functions can express the construction of a tree, for example, let us consider the
function

fx,d,y) = (x,d,y),

which constructs the tree (x,d,y) from some trees x, y and some data element d, and let us
assume a constant cost c¢(x, y) = 1 for the function f. A type annotation for f is given by

rk(x) + log (|x[) + rk(y) +log (Iy) + 1 = ¢f(x, y) + rk(f(x, d, y)) »
—
#(xy) Y (f(xy)

that is, the potential ¢(x, y) suffices to pay for the cost ¢ of executing f and the potential of the
result ¥ ( f(x, y)) (the correctness of this annotation can be established directly from the definition
of Schoenmakers’ potential). As mentioned above, the logarithmic expressions in ¢(x, ), that is,
log (|x]) + log (|y]) + 1, specify the amortised costs of the operation.

We see that to express the potential ¢(x, y) we also need the basic potential functions log (|¢|)
for a tree t. In fact, we will choose the slightly richer set of basic potential functions

Pap)(t) =log(a-[t|+Db),

where a,b € N and ¢t is a tree. We note that by setting a =0 and b =2 this choice allows us to
represent the constant function u with u(t) =1 for all trees t. We further note that this choice of
potential functions is sufficiently rich to express that p(,p)(t) = p(a,p+a)(s) for trees s, t with [t| =
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|s| + 1, which is needed for precisely expressing the change of potential when a tree is extended by
one node. Further, we define basic potential functions for products of trees by setting

Parsan)b) (15 s t)) =log (ay - [t1| + ... +ap - [ty] + D)

where (a1,...,a,),beNand (f1,...,1,) is a tuple of trees. This is sufficiently rich to state the
equality Py (ar,...an)b) (X1 (X15 - -5 Xn)) = Plag+(ar,....an)b) (X15 - - - » X4)), which supports the for-
mulation of a sharing rule, which in turn is needed for supporting the let-construct in functional
programming; cf. Hoffmann et al. (2011, 2012a); Hofmann and Moser (2015) for a more detailed
exposition on the sharing rule and the let-construct.

2.2 Cost-free semantics

Polynomial Amortised Analysis. We begin by reviewing the cost-free semantics underlying pre-
vious work (Hoffmann, 2011; Hoffmann et al., 2011, 2012a; Hoffmann and Hofmann, 2010a)
on polynomial amortised analysis. Assume that we want to analyse the composed function call
g(f(%), %) using already established analysis results for f(x) and g(y, z). Suppose we have already
established that for all X, y, Z we have:

Po(x) = ¢r(X) + B(f(X)) (1
$i(X) > ¢i(f(%) foralli (0<i<n) )
BO) +r@+ Y606 @) = (10 2) + ¥ (g1 2) (3)

i=1
where as in the multivariate case above, 7 is arbitrary and equations (1) and (3) assume cost, while
equation (2) is cost-free. Then, we can conclude for all X, Z that

Po(X) +y @) + Y i F) = ¢ (X) + g (f®), ) + v (g(f(2), 7)),

i=1

#(E2)

guaranteeing that the potential ¢ (%, 2) suffices to pay for the cost ¢f(X) of computing f(X), the
cost ¢g( f(x), z) of computing g( f(x), z) and the potential v (g( f(X), 2)) of the result g( f(X), z). We
note that the correctness of this inference hinges on the fact that we can multiply equation (2) with
¢"(z) fori=1...n, using the monotonicity of the multiplication operation (note that potential
functions are non-negative). We highlight that the multiplication argument works well with cost-
free semantics and enables lifting the resource analysis of f(x) and g(y, Z) to the composed function
call g(f(%),2).

Remark. We point out that the above exposition of cost-free semantics in the context of
polynomial amortised analysis differs from the motivation given in the literature (Hoffmann,
2011; Hoffmann et al., 2011, 2012a; Hoffmann and Hofmann, 2010a), where cost-free seman-
tics are motivated by the quest for resource polymorphism, which is the problem of computing
(a representation of) all polynomial potential functions (up to a fixed maximal degree) for the
program under analysis; this problem has been deemed of importance for the handling of non-
tail-recursive programs. We add that for the amortised cost analysis of inductively generated data
types, the cost-free semantics proved necessary even for handling basic data structure manipula-
tions (Hofmann and Moser, 2014, 2015; Moser and Schneckenreither, 2020). In our view, cost-free
semantics incorporate a size analysis of sorts. We observe that equation (2) states that the poten-
tial of the result of the evaluation of f(x) is bounded by the potential of the function arguments X,
without accounting for the costs of this evaluation. Thus, for suitably chosen potential functions
¢i, ¢'i can act as norms and capture the size of the result of the evaluation f(x) in relation to the
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size of the argument. As stated above, a separated cost and size analysis enables a compositional
analysis, an insight that we also exploit for logarithmic amortised analysis.

Logarithmic Amortised Analysis. Similar to the polynomial case, we want to analyse the com-
posed function call g(f(X),z) using already established analysis results for f(X) and g(y,Z2).
However, now we extend the class of potential functions to sublinear functions. Assume that we
have already established that

$o(®) = ¢ (%) + B(f(%) (4)
log (¢i(%)) >log (¢/(f(%))) ~ foralli(0<i<n)  (5)
BO) +y @+ log(8'i(n) + ¢/ () > (1. 2) + ¥ (g(1,2)), (6)

i=1
where equations (4) and (6) assume cost, while equation (5) is cost-free. Equations (4) and (5)
represent the result of an analysis of f(x) (note that these equations do not contain the parameters
z, which will however be needed for the analysis of g( f(X), z)), and equation (6) the result of an
analysis of g(y, z). Then, we can conclude for all X, y, Z that

n
Po(X) +y (@) + Y _log ($i(®) + ¢ @) = ¢ (¥) + co(f(X),2) + Y (g(f(%), 2)) »
i=1

P(%2)
guaranteeing that the potential ¢ (X, Z) suffices to pay for the cost cf (X) of computing f(x), the cost
cg(f(X), Z) of computing g( f(X), Z) and the potential v (g( f(X), 2)) of the result g( f(X), 2). Here, we
crucially use monotonicity of the logarithm function, as formalised in Lemma 13. This reasoning
allows us to lift isolated analyses of the functions f(x) and g(y, z) to the composed function call
g(f(%), 2); this is what is required for a compositional analysis!

Example. We now illustrate the compositional reasoning on an example. We reconsider the

function f(x, d, y) := (x,d,y), which takes two trees x, y and some data element d and returns
the tree (x,d,y). Assume that we already have established that

V(%) + () + 12 cr(x,p) + rk(f(x, d, ) 7)

log (x| + [yl) = log (|f (x, d, y)1) » (8)

where (1) = rk(u) +log (Jul), ¢f(x, y) = 1, and d is an arbitrary data element, which is not rel-
evant for the cost analysis of f. We now want to analyse the composed function h(x, a, y, b, z) :==
f(f(x,a,y),b,z). We will use the above reasoning, instantiating equations (4) and (5) with equa-
tions (7) and (8) for the inner function call f(x, a, y), and equation (6) with the sum of equations
(7) and (8) for the outer function call f(u, b, z). As argued above, we can then conclude for all x, y,
z that

Y (x) + ¥ () + ¥ (2) +log (Ix] + Iy]) +log (x| + [y + |z) +2 >
> Cf(x’ a))/) + Cf(f(x:- a,)’), b)Z) + I/f(f(f(%)’)az)) >

is a valid type annotation for h(x, a, ¥, b, z) :== f(f(x, a, ¥), b, z); we have used equation (8) twice
in this derivation, once as log (|x| + [y]) = log (|f(x, a, ¥)|) and once lifted as log (|x| + |y| + |z]) >
log (|f (%, a, y)| + |z|). Kindly note that the above example appears in similar form as part of the
analysis of the splay function described in Section 6.

3. Motivating Example

In this section, we introduce the syntax of a suitably defined core (first-order) programming lan-
guage to be used in the following. Furthermore, we recall the definition of splaying, following the
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presentation in Nipkow (2015). Splaying constitutes the motivating example for the type-based
logarithmic amortised resource analysis presented in this article.

To make the presentation more succinct, we assume only the following types: Booleans
Bool = { , }, an abstract base type Base (abbrev. B), product types and binary trees Tree
(abbrev. T), whose internal nodes are labelled with elements b: Base. We use lower-case Greek let-
ters for the denotation of types. Elements ¢: Tree are defined by the following grammar which fixes
notation.

ti= | (t1,b,tr

The size of a tree is the number of leaves: | [:=1,|Ct,a,uw) | :=|t| + |ul.

Expressions are defined as follows and given in let normal form to simplify the presentation
of the semantics and typing rules. To ease the readability, we make use of some mild syntactic
sugaring in the presentation of actual code.

Definition 1.

on=<|>|=

es=fx1 ... x,
| | |e1oep | if x thene; else e,
| (x1,%x2,x3) | | match x with | =>e1 | (x1,x%2,x3) —>ep
| let x =e; inep | x

We skip the standard definition of integer constants n € Z as well as variable declarations, cf.
Pierce (2002). Furthermore, we omit binary operators and only define essential comparisons. For
our analysis, these are unimportant, as long as we assume that no actual costs are emitted.

A typing context is a mapping from variables ¥ to types. Type contexts are denoted by upper-
case Greek letters. A program P consists of a signature .% together with a set of function definitions

ofthe form f x; ... x, = e, where the x; are variables and e an expression. A substitution or (envi-
ronment) o is a mapping from variables to values that respects types. Substitutions are denoted as
sets of assignments: 0 = {x; > t1,...,x, > t,}. We write dom(co') (rg(o)) to denote the domain

(range) of 0. Let o, T be substitutions such that dom(c’) N dom(z) = @. Then we denote the (dis-
joint) union of o and t as o0 W t. We employ a simple cost-sensitive big-step semantics based on

. L . ¢
eager evaluation, whose rules are given in Figure 1. The judgement o I— e =>v means that under
environment o, expression e is evaluated to value v in exactly ¢ steps. Here only rule applications

emit (unit) costs. If we do not take costs into account, we simply write o I— e=v.

Splay Trees have been introduced in Sleator and Tarjan (1985); Tarjan (1985) as self-adjusting
binary search trees with strictly increasing in-order traversal. There is no explicit balancing con-
dition. All operations rely on a tree rotating operation dubbed splaying; splay a t is performed
by rotating element a to the root of tree ¢ while keeping in-order traversal intact. If a is not con-
tained in t, then the last element found before is rotated to the tree. The complete definition
is given in Figure 2. Based on splaying, searching is performed by splaying with the sought ele-
ment and comparing to the root of the result. Similarly, the definition of insertion and deletion
depends on splaying. As an example, the definition of insert and delete is given in Figures 3
and 4, respectively. See also Nipkow (2015) for full algorithmic, formally verified, descriptions.

All basic operations can be performed in O(log 1) amortised runtime. The logarithmic amor-
tised complexity is crucially achieved by local rotations of subtrees in the definition of splay.
Amortised cost analysis of splaying has been provided, for example, in Sleator and Tarjan (1985);
Schoenmakers (1993); Nipkow (2015); Okasaki (1999), among others. Below, we follow Nipkow’s
approach, where the actual cost of splaying is measured by counting the number of calls to
splay: BxT—T.
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0 0 0
o }*false —> false (e }*true = true (o2 }* leaf = leaf
X10=t xp0=b x30=u X0 =1V b is value of x;0 0 xp0
0 0 0
O'F(xl,xQ,X3):>(t,b,u) GFx:M/ G}*X10XQ=>b
/ 4 4 /,2
fyl ...y =ecP ckeﬁv e =w Olx—=wi—e=v
(41 L1+4o
0'}7fx1...xk:v G}iletx=el in e =V
l 4
X0 = leaf G}*€1:>V XO = false erzév
4 ) [
G}*match X with | leaf -> €] =V O'}*lf X then €] else €3 =V

I (X0,X1,X2) —> €2

14 14
X0 = (t,a,u) G’Feg:ﬂ) X0 = true erlév

4 4
O'}*match X with| leaf -> €] =V O'}*if X then €] else €3 =V
| (X0,X1,X2) -> €2

Here o[x — w] denotes the update of the environment ¢ such that 6[x — w](x) = w and the value
of all other variables remains unchanged. Furthermore, in the second match rule, we set 6’ := o &
{x0 —t,x; — a,x, — u} and for function application we set {y| — x;0, ...,y — x;0}.

Figure 1. Big-step semantics.

4. Resource Functions

In this section, we detail the basic potential functions employed and clarify the definition of
potentials used.

Only trees are assigned non-zero potential. This is not a severe restriction as potentials for
basic data types would only become essential if the construction of such types would emit actual
costs. This is not the case in our context. Moreover, note that lists can be conceived as trees of
particular shape. The potential ®(t) of a tree ¢ is given as a non-negative linear combination of
basic functions, which essentially amount to ‘sums of logs’, cf. Schoenmakers (1993). It suffices to
specify the basic functions for the type of trees T. As already mentioned in Section 2, the rank rk(t)
of a tree is defined as follows:

rk( ):i=1
rk((t,a,u)) :=rk(t) +log’(|t]) +log’(lu]) + rk(u) .
We set log’(n) :=log, ( max{n, 1}), that is, the (binary) logarithm function is defined for all num-
bers. This is merely a technicality, introduced to ease the presentation as it simplifies the statement
of subsequent definitions. In the following, we will denote the modified logarithmic function,
simply as log. Furthermore, recall that || denotes the number of leaves in tree ¢. The definition of

‘rank’ is inspired by the definition of potential in Schoenmakers (1993); Nipkow (2015), but subtly
changed to suit it to our context.

Definition 2. The basic potential functions of Tree, denoted %, are

o At.rk(t), and
* Pap) :=At.log (a- |t| + b), where a, b are natural numbers.
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splay a t = match t with
| leaf -> leaf
| (el, ¢, cr) -> if a == c
then (cl, ¢, cr)
else if a < c
then match cl with
| leaf -> (leaf, c
| (bl, b, br) -> if a ==
then (bl, a, (br, c, cr
else if a < b
then match bl with
| leaf -> (leaf, b, (br, c, cr))
| bl -> match splay a bl with
| leaf -> leaf
| (al, a1, ar) -> (al, al, (ar, b, (br, c, cr)))
else match br with
| leaf -> (bl, b, (leaf, c, cr))
| br -> match splay a br with
| leaf -> leaf
| (al, a1, ar) -> ((bl, b, al), al, (ar, c, cr))
else match cr with
| leaf -> (cl, c, leaf)
| (bl, b, br) -> if a == b
then ((cl, c, bl), a, br)
else if a < b
then match bl with
| leaf -> ((cl, c, leaf), b, br)
| bl -> match splay a bl with
| leaf -> leaf
| (al, a1, ar) -> ((cl, c, al), al, (ar, b, br))
else match br with
| leaf -> ((cl, c, bl), b, leaf)
| br -> match splay a br with
| leaf -> leaf
| (al, a1, ar) -> (((c¢l, ¢, bl), b, al), al, ar)

, cr)
b
))

Figure 2. Function splay
insert a t = match t with
| leaf -> (leaf, a, leaf)
|t -> match splay a t with
| leaf -> leaf
| (1, b, r) -> if a == b
then (1, a, r)
else if a < b
then (1, a, (leaf, b, r))
else ((1, b, leaf), a, r)

Figure 3. Function insert.

Note that the constant function 1 is representable: 1 = At.log (0 - |t| + 2) = p(0,2).

803

Following the recipe of the high-level description in Section 2, potentials or more generally

resource functions become definable as linear combinations of basic potential functions.

Definition 3. A resource function r: [T] — Ry is a non-negative linear combination of basic

potential functions, that is,
r(t):=Y g pit),
i€l

where q; € Rg, pi € B and1:={x} U (N x N). The set of resource functions is denoted %.
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delete a t = match splay a t with
| leaf -> leaf
| (1, b, r) -> if a ==
then match 1 with
| leaf -> r
I 1 -> match splay_max 1 with
| leaf -> leaf
| (11, m, _) -> (11, m, r)
else (1, b, r)

splay_max t = match t with

| leaf -> leaf
| (1, b, r) -> match r with
| leaf -> (1, b, leaf)

| (rl, ¢, rr) -> match rr with
| leaf -> ((1, b, rl), c, leaf)
| rr -> match splay_max rr with
| leaf -> leaf
| (rrl1, x, xa) -> (((1, b, rl), c, rrll), x, xa)

Figure 4. Functions delete and splay_max.

A resource annotation over T, or simply annotation, is a sequence Q = [gx] U [(q(a,p))a,pen] With
Gx> Q) € Qg with all but finitely many of the coefficients g, q(4,5) equal to 0. It represents a
(finite) linear combination of basic potential functions, that is, a resource function. The empty
annotation, that is, the annotation where all coefficients are set to zero, is denoted as &.

Remark 4. We use the convention that the sequence elements of resource annotations are
denoted by the lower-case letter of the annotation, potentially with corresponding sub- or
superscripts.

Definition 5. The potential of a tree t with respect to an annotation Q = [q+] U [(q(ap))apen], is
defined as follows:

D(HQ) :=gu - k(D + Y dap) - Pla)(®)
a,beN

Recall that p(, ) =1log (a - [t| 4 b) and that rK is the rank function, defined above.

Example 1. Let t be a tree, then its potential could be defined as follows: rk(t) + 3 -log (|t|) + L.
With respect to the above definition, this potential becomes representable by setting q, :=1, q(1,0) :=
3,402) := 1. Thus, ®(t|Q) = rk(t) 4+ 3 - log (|t]) + 1. O

We emphasise that the linear combination defined above is not independent. Consider, for
example,log (2|t| +2) =log (J¢t| + 1) + 1.

Analysis of Products of Trees. We now lift the basic potential functions p(, ;) of a single tree to
products of trees. As discussed in Section 2, we define the potential functions p((;,.. 4, for a
sequence of m trees (t1, . . ., tm), by setting:

p((al,...,am),b)((tla cootm)) = 10g (a1-1til+...+am- [tml +b)

where (a1, . .., an), b € N. Equipped with this definition, we generalise annotations to sequences
of trees. An annotation for a sequence of length m is a sequence Q=I[qi,...,qgm]U
((4((ap,...an),b))a;,pen]s again vanishing almost everywhere. Note that an annotation of length 1
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is simply an annotation as defined above, where the coefficient g is set equal to the coefficient g.
Based on this, the potential of a sequence of trees (t1, . . ., t,) is defined as follows:

Definition 6. Let (t1,...,ty,) be trees and let Q=1[(q1, ..., qm)] U [(q(ay,...an).b))asbeN] be an
annotation of length m as above. We define

m
q)((tl’ L] tm)|Q) = Z Qi : rk(tl) + Z q((a1 ..... am),h) 'p((al,,..,am),b)((tla LRI tm)) >
i=1

(a15...,am),beN

where p((a,....an).b) (s - - s tm)) i=log (ay - [ti| + ... 4 ap - [tm| + b) as defined above. We use | Q)
to denote the length of Q.

Note that for an empty sequence of trees, we have ®(¢|Q) := Y, gs log (b). Note that the
rank function rk(t) amounts to the sum of the logarithms of the size of subtrees of t. In partic-
ular, if the tree t simplifies to a list of length n, then rk(t) = (n+ 1) + > log (i). Moreover,
as y i, log (i) € ©(nlog n), the above-defined potential functions are sufficiently rich to express
linear combinations of sub- and super-linear functions.

Let o denote a substitution, let I' denote a typing context and let x; : T,...,x,, : T denote
all tree types in I'. A resource annotation for I' or simply annotation is an annotation for the
sequence of trees X0, . . . , x,,0. We define the potential of I" : Q with respect to o as ®(o;I'|Q) :=
D(x10,...,%x,0]Q)).

Definition 7. An annotated signature .F is a mapping from functions f to sets of pairs consisting of
the annotation type for the arguments of f, «|_1 X ... X a,|Q and the annotation type 8|Q’ for the
result:

T(F) — /. ftakes n arguments of which m are trees, |Q| = m, |Q'| =
Z(f): {a|_—>1|x...xan|QﬁQ.1 }

Note that m < n by definition.

We confuse the signature and the annotated signature and denote the latter simply as .%.
Instead of a|_— 1|X ... x o,|QBQ € .Z(f), we typically write f:o|X ... x a,|QBQ. As our
analysis makes use of a cost-free semantics any function symbol is possibly equipped with a cost-free
signature, independent of .. The cost-free signature is denoted as .7,

Example 2. Consider the function splay: B x T — T. The induced annotated signature is given as
B x T|Q— T|Q, where Q:= [q+] U [(q(a,p))apen] and Q :=[q'«] U [(q (a,p))apen]. The logarith-
mic amortised cost of splaying is then expressible through the following setting: q. :=1, q(1,0) =3,
qg0,2) = 1, '« := 1. All other coefficients are zero.

This amounts to a potential of the arguments rk(t) + 3 log (|t]) + 1, while for the result we con-
sider only its rank, that is, the annotation expresses 3 log (|t|) + 1 as the logarithmic cost of splaying.
The correctness of the induced logarithmic amortised costs for the zig-zig case of splaying is verified
in Section 6 and is also automatically verified by our prototype.

Suppose ((t1, . . ., ty), U1, 2| Q) denotes an annotated sequence of length n + 2. Suppose fur-
ther u; = uy =t u and we want to share the value u, that is, the corresponding function argument
appears multiple times in the body of the function definition. Then we make use of the operator
Y(Q) that adapts the potential suitably. The operator is also called sharing operator (in analogy to
Hoffmann et al.,, 2012a, Lemma 6.6).

Lemma 8. Let (f1,...,t,), U1, uy denote a sequence of trees of length n+2 with annota-
tion Q. Then there exists a resource annotation Y(Q) such that ®((t1,...,t,), U1, u2|Q) =
D((t1, .. > tn), ulV(Q)), ifur =uy = u.
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Proof. Wlog. we assume n = 0. Thus, let Q = [q1, 421 U [(q(4,,4,b))ay,a,.beN]- By definition

D (u1, 12]Q) = q1 - k() + @2 - 1KW2) + Y Glayanh) - Plar,an) (1, 42) »

Gll,az,bGN

where pg, a,,b) (41, u2) =log (ay - |u1| + az - luz| + b). By assumption u=u; =u,. Thus, we

obtain
O, ulQ) = q1 - k() + @2 - Tk + Y Gay.anh) - Plar,an) (th )
al,az,hEN
= (q1 + q2)rk(u) + Z Aar+azb) * Plar+arb) (1)
a)+ay,beN

=ouYQ),
for suitable defined annotation Y(Q), whose definition can be directly read off from the above
constraints. u

We emphasise that the definability of the sharing annotation Y(Q) is based on the fact that the
basic potential functions p((,, ... 4,).5) have been carefully chosen so that

p(ao,ul,az,...,am,b)(xb (X1 .o o5 Xm)) = P(ag+a1,az,....am,b) (X1, %25 .« o> Xm) »

holds, cf. Section 2.

Remark 9. We observe that the proof-theoretic analogue of the sharing operation constitutes in
a contraction rule, if the type system is conceived as a proof system.

Let Q=[q«] U [(q(a,b))apen] be an annotation and let K € Q(‘)". Then we define Q' :=Q+K
as follows: Q' = [g«] U [(q (a,p))apen]> where q'(0.2) := q(0,2) + K and for all (a, b) # (0, 2) q(ap) :=
q(a,)- By definition, the annotation coefficient g(q ») is the coefficient of the basic potential function
P0,2)(t) =log (0]t| +2) =1, so the annotation Q + K, adds cost K to the potential induced by
Q. Further, we define the multiplication of an annotation Q by a constant K, denoted as K - Q
pointwise. Moreover, let P = [p4] U [(p(4,5))a,ben] be another annotation. Then the addition P + Q
of annotations P, Q is similarly defined pointwise.

5. Logarithmic Amortised Resource Analysis

In this section, we present the central contribution of this work. We delineate a novel type-and-
effect system incorporating a potential-based amortised resource analysis capable of expressing
logarithmic amortised costs. Soundness of the approach is established in Theorem 5.

Our potential-based amortised resource analysis is couched in a type system, given in Figure 5.
If the type judgement I'|Q - e: «|Q’ is derivable, then the worst-case cost of evaluating the expres-
sion e is bounded from above by the difference between the potential ®(o;I'|Q) before the
execution and the potential ®(v|Q’) of the value v obtained through the evaluation of the expres-
sion e. The typing system makes use of a cost-free semantics, which does not attribute any costs
to the calculation. The cost-free typing judgement is denoted as I'|Q H' e: @|Q’ and based on a
cost-free variant of the application rule, denoted as (app : cf). The rule (app : cf) is defined as the
rule (app), however, no costs are accounted for. Wrt. the cost-free semantics, the empty signature,
denoted as o) X ... X a,|@ — B, is always admissible. We note that the cost-free signatures
form a cone, as stated in the following remark:

Remark 10. If o|_— 1|x ... X ay|P— B|P and a|_— 1|x ... X a,|QBQ are both cost-free
signatures for a function f, then any linear combination is admissible as cost-free signature of f,
that is, we can assume a1 X ... x ay|K-P+L-Q— BIK-P+L-Q eFCf(f),whereK,LeQ(T.
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Ve224q(c) = Larb=c dp) K=4. (lea) roFe:alQ K>0
210+ KF 1eat:T|Q e N0 +KFealQ +K

(shift)
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[LA|QF 1et x = 1 in e3:B|Q (let:T)
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[Pte:alo A x:o|RFer:B|Q oa#T
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I',A|QF et x = e; in e2:B|Q
[Pre:alP OI|P)<P(|Q) DTIP)=>P(IQ) W) X a variable (var)
IQFe:alQ x:a|QFx:a|Q
XX P = BIP EF(f) ar x--x 0|0 — BIQ € FUf) KeQf (2pp)
a
N0 % Ol P K QF f(r,- ) PI(P K- Q) — 1 i
To ease notation, we setd :=ay, . . . , Gp, b= by, ..., by for vectors of indices a;, bj € N. Further,
ie{l,...,m},je{l,... ,k}and a,b,c,d, e € N. Sequence elements of annotations, which are

not constrained are set to zero.

Figure 5. Type system for logarithmic amortised resource analysis

Remark 11. Principally the type system can be parameterised in the resource metric (see, e.g.,
Hoffmann et al. 2012a). In this article, we focus on amortised and worst-case runtime complexity,
symbolically measured through the number of function applications. It is straightforward to gen-
eralise this type system to other monotone cost models. Wrt. non-monotone costs, for example,
heap usage, we expect the type system can also be readily adapted, but this is outside the scope of
the article.

We consider the typing rules in turn; recall the convention that sequence elements of annota-
tions are denoted by the lower-case letter of the annotation. Further, note that sequence elements
which do not occur in any constraint are set to zero. The variable rule (var) types a variable of
unspecified type «. As no actual costs are required, the annotation is unchanged. Similarly, no
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resources are lost through the use of control operators. Hence, the definition of the rules (cmp)
and (ite) is straightforward.

As exemplary constructor rules, we have rule (leaf) for the empty tree and rule (node) for the
node constructor. Both rules define suitable constraints on the resource annotations to guarantee
that the potential of the values is correctly represented.

The application rule (app) represents the application of a function given in P. Each application
emits actual cost 1, which is indicated in the subtraction of 1. In its simplest form, that is, for the
factor K = 0, the rule allows to directly read off the required annotation from the set of signatures
. For arbitrary K € Qar , the rule allows to combine some signature with cost with a cost-free
signature. We note that Remark 10 would in fact allow us to add any positive linear combination
of cost-free signatures; however, for performance reasons we refrain from doing so.

In the pattern matching rule (match) the potential freed through the destruction of the tree
construction is added to the annotation R, which is used in the right premise of the rule. Note that
|R| = m + 2, where m equals the number of tree types in the type context I'.

The constraints expressed in the typing rules (let : T) and (let : gen) guarantee that the potential
provided through annotation Q is distributed among the call to e; and e;, that is, this rule takes
care of function composition. The numbers m, k, respectively, denote the number of tree types in
I, A. Due to the sharing rule—discussed in a moment—we can assume wlog. that each variable
in e; and e, occurs at most once.

First, consider the rule (let: gen), that is, the expression e; evaluates to a value w of arbi-
trary type o # T. In this case, the resulting value w cannot carry any potential. This is indicated
through the empty annotation & in the typing judgement I'|P - e; : «|@. Similarly, in the judge-
ment A, x:«|RF ey : B|Q’ for the expression e, all available potential prior to the execution of e,
stems from the potential embodied in the type context A wrt. annotation Q. This is enforced by

the corresponding constraints. Suppose for a # 0and b # 0, Aaho would be non-zero. Then the

corresponding shared potential between the contexts I' and A wrt. Q is discarded by the rule, as
there is no possibility this potential is attached to the result type o.
Second, consider the more involved rule (let : T). To explain this rule, we momentarily assume

that in Q no potential is shared, that is, AGho =0 whenever G # 0, b + 0. In this sub-case, the rule
can be simplified as follows:
pi=qi i = qm+;j
PG =9G0,0 Thoo = 905.0) (E #* 6) Ter1 =p'x
TIPEe:TIP Ax:TIREe:BIQ 7o =P

let: T
[LA|QF1let x = e; in e:8|Q ( )

Again the potential in I, A (wrt. annotation Q) is distributed for the typing of the expressions ej,
ez, respectively, which is governed by the constraints on the annotations. The simplified rule is
obtained, as the assumption that no shared potential exists makes almost all constraints vacuous.

In particular, the cost-free derivation I'|P(&:%0) |-<f ¢, - T| P’ (0:ke) 5 not required.

Finally, consider the most involved sub-case, where shared potentials are possible. Contrary
to the simplified rules discussed above, such shared potential cannot be split between the type
contexts I and A, respectively. Thus, the full rule necessarily employs the cost-free semantics.

(bd,e) jcf P/(l;,d,e)

Consequently, the premise I'| P e expresses that for all non-zero vectors b and

arbitrary indices d, e, the potentials o (I'|PB49)) suffice to cover the potential ®(x|P’ (b’d’e)), if
no extra costs are emitted (compare Section 2). Intuitively, this represents that the values do not
increase during the evaluation of e; to value w.

At last, the type system makes use of structural rules, like the sharing rule (share) and the weak-
ening rules (w : var) and (w). The sharing rule employs the sharing operator, defined in Lemma 8.
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Note that the variables x, y introduced in the assumption of the typing rule are fresh variables that
do not occur in I'. Similarly, the rule (shift) allows to shift the potential before and after evaluation
of the expression e by a constant K.

Note that the weakening rules embody changes in the potential of the type context of expres-
sions considered. This amounts to the comparison on logarithmic expressions, principally a
non-trivial task that cannot be directly represented as constraints in the type system. Instead, the
rule (w) employs a symbolic potential expressions for these comparisons, replacing actual values

for tree by variables. Let I denote a type context containing the type declarations x; : T,.. ., xp: T
and let Q be an annotation of length m. Then the symbolic potential, denoted as ®(I"|Q), is defined
as follows:

i=1 (a1 ..... am),bEN

where p((a,....amb) (X1, . s xm)) =log (ar - [x1| + ...+ am - |xm| +b). To actually solve these
constraints over symbolic potentials, we have to linearise the underlying comparisons of loga-
rithmic expressions. This is taken up again in Section 7.

Definition 12. A program P is called well-typed if for any rule f((x1,...,xx)) =e € P and any
annotated signature o X ... x ax|Q— B|Q € F(f), we have x1:01,...,x:;|QFe: B|Q. A
program P is called cost-free well-typed, if the cost-free typing relation is employed.

Before we state and prove the soundness of the presented type-and-effect system, we establish
the following auxiliary result, employed in the correct assessment of the transfer of potential in the
case of function composition, see Figure 5. See also the high-level description provided in Section
2.

Lemma 13. Assume ) _,; g;iloga; > qlogb for some rational numbers a;, b > 0 and q; > q. Then,
> iqilog(ai+¢) > qlog (b+c) forall c > 1.

Proof. Wlog. we can assume g =1 and ¢; > 1, as otherwise we simply divide the assumed
inequality by q. Further, observe that the assumption ) _, g; log a; > qlog b is equivalent to

[[af>0. )

First, we prove that
x4+ =2x"+y r>1 xy>0. (10)

This is proved as follows. Fix some x > 0 and consider (x + y)" and x" + y" as functions in y. It is
then sufficient to observe that (x + y)" > x” + y" for y =0 and that diy(x +y) > %(x’ + ") (the

derivatives with regard to y) for all y > 0. Indeed, we have diy(x + ) =r(x+y)"!and %(x’ +

y") =ry"~L. Because of r > 1 and x > 0, we can thus deduce that %}(x +y) > %(x’ +y") for all
y=0.
Now we consider some ¢ > 1. Combining (9) and (10), we get

[T@+ot =@+ =]]al +]]#>b+c,
i i i '

where we have used that i > 1, and that ¢; > 1 and ¢ > 1 imply [ [; ¢% > c. By taking the logarithm
on both sides of the inequality, we obtain the claim.
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Finally, we obtain the following soundness result, which roughly states that if a program P
terminates, then the difference in potential has paid its execution costs.?

Theorem (Soundness Theorem) Let P be well-typed and let o be a substitution. Suppose I'|Q
e:a|Q and ole=>v. Then ®(o;I'|Q) — ®(v|Q) > L. Further, if T|Q Y e:|Q/, then ®(o;I'|Q) >
P(v|Q).

Proof. The proof embodies the high-level description given in Section 2. It proceeds by
main induction on I1: ofe = v and by side induction on E: I'|QF e:«a|Q’, where the latter is
employed in the context of the weakening rules. We consider only a few cases of interest. For
example, for a case not covered: the variable rule (var) types a variable of unspecified type «. As
no actual costs are required, the annotation is unchanged and the theorem follows trivially.

Case. T1 derives o l2 = . Then E consists of a single application of the rule (leaf):

Ve>290) = gip=c 9 @)K =
FQ+ K+ TIQ

/
1 *(leaf).

By assumption, Q = [(g(¢))cen] is an annotation for the empty sequence of trees. On the other
hand, Q" = [(q (4,5))a,pen] is an annotation of length 1. Note that rk( ) = 1 by definition. Thus,
we obtain

D(e|Q+K)=K+ ) q( -log (c)

=K+ Z q(c - log (¢)

c>2

=q«+ Z q (ap) - log (a+b)
a+b>2

=q+ Z q (ab) - l0g (a +b)
a,b

=q«k(1eat) + Y q @pPay(leat) = d(1eaf|Q).
ab

Case. Suppose IT has the following from:

xj0=t x0=b x30=u

0
ol— X1,X2,%3) = (t,b,u

Wilog. E consists of a single application of the rule (node):

N=0=q% 91,00 =49010=9% Gaab) =9 (ab) (

- node)
x1:T,x2:B,x3:T|Q|— X1,X2,X3 T|Q

By definition, we have Q = [q1, 92] U [(q(a;.a5,b))a;ben] and Q = [q'+] U [(q’(a/,b/))a/’h/eN]. We set
I:=x1:T,x:B,x3:Taswellas xj0 = u, x,0 = b, and x30 = v. Thus, ®(o;I"|Q) = ®(u, v|Q) and

2A stated, soundness assumes termination of P, but our analysis is not restricted to terminating programs. To avoid the
assumption the soundness theorem would have to be formulated wrt. to a partial big-step or a small step semantics, cf.
Hoffmann and Hofmann (2010a); Moser and Schneckenreither (2020). We consider this outside the scope of this work.
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we obtain

O, VQ) =41 - k() + 42 k() + Y dayarp) -log (@ - |ul +az - [v] +b)

ai,an,b
>q's - rk(u) + ' - tk(v) + q(1,0,0) - log (Jul) + q(0,1,0) - log (Iv]) +
+ ) Qaab log(a- |ul +a-[v|+b)
a,b
=q « - (rk(u) + rk(v) + log (Jul) + log (|v|)) +
+ > q (0t - log (a- (|ul + |v]) + b)
a,b

=q/*'rk( u,b,v )+Zq/(a,b)’P(a,b)( u,b,v ):CI)( u,b,v |Q/)
a,b

Case. Suppose o fe = v and let the last rule in E be of the following form:
'QkFe:ua|Q
NQ+KkFe:a|Q +K’
where K > 0. By SIH, we have that ®(o;I'|Q) — ®(v|Q’) > ¢, from which we immediately obtain:

O(0;NQK — ¢(v|Q) —K=0(03I'|Q) — d(v|Q) > L.
Case. Consider the first (match) rule, where IT ends as follows:

X0 = alieliv

7 .
ol—match X with| leaf -> ejl (Xp,X1,X2) => e =V

Wlog. we may assume that & ends with the related application of the (match) rule:

"(@,a,a,b) = 9(a,a,b) 'm+1 = 'm+2 = qm+1

P@,o = Za+b=c A@,ab)  76,1,0,0) = 1©0,0,1,0) — dm+1
TP+ gmiiber:a|Q T,x1:T,x:Bx3:TRFe:a|Q qi=ri=p;

I, x:T|QF match x with | -> el (x1,x2,x3) -> ex:a|Q

Let Q be an annotation of length m + 1 while Q’ is of length 1. Thus, annotations P, R have lengths
m, m + 2, respectively. We write  :=t1, . . ., t,, for the substitution instances of the variablesin I".

Further xo = , where the latter equality follows from the assumption on I1. By definition and
the constraints given in the rule, we obtain
O(oiT, x:TIQ) = 3 qirk(t) + qma1tk(1ea) + 3 gaae log @lf] + alLeat| + o)
i 4,0,
=Y qirtk(t) + qmy1 (tk(1e2) + Y aae log @i +a+0)
i a,a,¢

= ®(o;3T'|P)gm+1 -

Thus, ®(o;I7, x: T|Q) = ®(0;T'|P + gm+1) and the theorem follows by an application of MIH.
Now, consider the second (match) rule, that is, I'T ends as follows:

xo = (t,a,u)c'ley =v

ofmatch X with| leaf -> e;l (Xp,X1,X3) -> €e2=>V
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As above, we may assume that E ends with the related application of the (match) rule. In this
sub-case, the assumption on IT yields ¢ := xo = (u, b, v). By definition and the constraints given
in the rule, we obtain

O(o;0,x:TIQ) = qurk(t,)—i—qmﬂrk( u,b,v +Zq(mc)log(a|t|+a| u,b,v)|+c¢)
i aac
= 3 irk(t) + it (rk(w) + log (jul) + log (V1) + rk(v)) +
i
+ ) dao log @l + allul + [v]) + o)
a,a,c

=®(o3, %1 : T, x2:B, x3: TIR),

where we write d|f| as shorthand to denote componentwise multiplication.

Thus, ®(o;T, x: T|Q) = ®(0;T, x1 : T, x2: B, x3: T|R) and the theorem follows by an application
of MIH.

Case. Consider the (let) rule, that is, IT ends in the following rule:

¢ ¢
O’I_161:>W olx— w]|—232:>v

L1+Ls i
o let X = €] in e =V

where ¢ = £, + £,. First, we consider the sub-case, where the type of e; is an arbitrary type « but
not of type T, that is, we assume that E ends in the following application of the (let : gen)-rule

Pi=4qi P = q(aOc) q(Obc)_r(bc) (b;éO) 1j = Gm-+j
TPt e :a|o A,x:a|lREe:plQ a#T
F,A|Q|—1et X = €1 in 622[3|Q/

[(let: gen)].

Recall that a=ay,...,a,, b=0by,..., by, i€{l,...,m},je{l,...,k} and ai, bj,a, b, c,d, e are
natural numbers. Further, the annotations Q, P, R are of length m + k, m and k, respectively, while
the corresponding resulting annotations Q’, P’ and R’ are of length 1.

By definition and due to the constraints expressed in the typing rule, we have

O(o;0, AIQ) = Z qirk(t;) + Z qm+jrk(u;) + Z i log (a|t| + b|u| +¢)

ahc

®(o;I'|P) = Zq,rk(tl)+2q o log @[t + ¢)

d(w|@)=0
O30, x:|R) =) dmagth(u) + risirk(w) + D 455, log (bl + ),
j b,a,c
where we set f:=t,...,tm and #:=uy,..., ug, denoting the substitution instances of the

variables in I", A, respectively. Thus, we obtain
O(o;0, A|Q) = ®(0;I'|P) + P(o;3A, x:a|R) .
By main induction hypothesis, we conclude that ®(o;I'|P) — ®(w|D) > €, and ®(0;A, x: «|R) —

®(v|Q’) > £,, from which the sub-case follows.
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Second, we consider the more involved sub-case, where e; is of type T. Thus, wlog. E ends in
the following application of the (let: T)-rule.

Pi=4qi PG =A@se T=4dmti Tkl =p'x T0,d.e) =7 (de)
Vb #0 (r(iz,o,o) = q(ﬁ,l?,o)) i
Vb0, 40V e#0 (455, =L PESZ?SE))

Vb £0,d#0Ve#0 (r@,d’e) =p’EZ”Z;e) AV(d,e)#(d,e) (p/g/def; = 0) A
Aol 2ol avartvero (o080 pis <pls?))
TIPFe :TIPVb£0,d#£0Ve#0 (F|P(Z”d’e) e, : T|P’(E’d’e)) A x:TIRFey: |Q
[,A|QF1et x = e; in e:B|Q

(let:T),

where the annotations Q, P, R, Q’, P and the sequences 4, bare as above. Further, for each sequence
b #0, Pb:wY) and P/ (2:4) denote annotations of length m. By definition and due to the constraints
expressed in the typing rule, we have for all b # 0:
D050, AIQ =) qitk(t) + Y_qirk(w) + Y 4 log @il + bl + c)
i j G£0Vh£OV A0
(5T IP)= > qirk(t)+ Y G log (@lE + o)
i

G40V A0
OWIP) =11 tk(W) + Y TG0 log (alw] +c)
a7#=0Vc#0
o(o;T P4 = 3 pl8910g @ff) +0)

G0V c£0
¢(W|P’(b’d’e)) =p’EZ”Z)’E) log (d|w| + e)
<I>(o*;A,x:T|R):qurk(uj)+rk+1rk(w)+ Z TGde) log (blu| + d|w| +e),
j 4£0vd#£0Ves£0

where we set f:=11,...,tyn and U:=uy,..., ug, denoting the substitution instances of the
variables in I, A, respectively.

By main induction hypothesis, we conclude that ®(o;I"|P) — ®(w|P’) > ¢;. Further, for all b +
6, d#0V e#0, we have, due to the cost-free typing constraints ®(o;I" |P(b’d’e)) > d>(w|P’(h’d’e)).
The latter yields more succinctly (for all b + 0,d #0V e #0) that

Y P b log lf] + ¢) > p/ (57 log (d|wl +e). (11)
a,c

A third application of MIH vyields that ®(o;A,x:T|R) — ®(¥|Q) > £,. Due to the

. (bd.e) (bd.e) (bde) _ >
conditions Z(a’c)p(a,c) Zp/(d,e) , for all (d,¢)#(d,e), p’(d,’e,)—O and for all a, ¢

(pgg’f)’e) #0—p EZZ;) < pgg’f)’e)) we can apply Lemma 13 to Equation (11) and obtain

bd, AT bd, i
Y prb? log lE] + bl + ¢) > p'(y 57 log (bliil + dw| +¢) .
G40V c£0
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Due to the condition (q(azc) =2 (o pgg’g’e)) for all b0, %0V c#0, we can sum those
equations for all d # 0 Vv e # 0 and obtain (for all b + 0,d # 0V e #0) that

Z Qe 108 @[f| + bli| + ¢) = Z " Gude) 108 (bla| +d\w| +e).
440V c£0 d#£0Ves£0
We can combine the above fact to conclude the case.

Case. Finally, we consider the application rules (app) and (app: cf). As the cost-free vari-
ant only differs in so far that costs are not counted by (app: cf), it suffices to consider the

rule (app). Let f((x1, . . ., x¢)) = e € P and let IT derives o Izif((xl, ...» X)) = v. We consider
the costed typing x;:aq,. .., xg ox|(P+K-Q)+ 1 I—Cff((xl, coox):a|lP —1+ K- Q, where
K e Qg. SetIM:=x1:01,. .., Xk 0. As P is well-typed, we have

TIPFe:BlP  and  TJQFTe:plQ.

We can apply MIH wrt. the evaluation IT" of o Iie = v to conclude ®(o;T'|P) — ®(v|P') > £ as
well as ®(o;I'|Q) = ®(v|Q'). By monotonicity of addition and multiplication:
D(oTP+K-Q)=®(0;'|P)+ K- (0;NQ)
> (@) +0)+ K- 9(1Q) = S|P + K- Q) + L.

Thus,
QTP+ K-Q — QP —1+K-Q)=
=(®(o;TIP+K-Q —dWP+K-Q)+1>0+1.
From this, the case follows, which completes the proof of the soundness theorem. O

Remark 14. We note that the basic resource functions can be generalised to additionally represent
linear functions in the size of the arguments. The above soundness theorem is not affected by this
generalisation.

In the next section, we exemplify the use of the proposed type-and-effect system, cf. Figure 5,
on the motivating example.

6. Analysis

As promised, we apply in this section the proposed type-and-effect system to obtain an optimal
analysis of the amortised costs of the zig-zig case of splaying, once the type annotations are fixed.
As a preparatory step and also to emphasise the need for the cost-free semantics, we make precise
the informal account of compositional reasoning given in Section 2.

6.1 Let-normal form

We consider the expression (al,a, (ar,b, (br,c,cr =:¢, which becomes the following
expression e in let-normal form:

1 |let t?’” = (br, c, cr) in (
2 let t’’ = (ar, b, t’’’) in ((al, a, t’’))
3)

The expression e is typable with the following derivation, where the expression e’ abbreviates
let t’’ (ar, b, t’’’) in ((al, a, t’’)).(We have ignored expressions of base type to
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increase readability.)

3_3_ /3
T =9 =49
3 _ 3 _ 3
49(1,0,0) N 90,100 = 1 =
/
”1?1,1,0)=‘1 (1,0)

177 11/ /
br:T,cr:T|Qq F (br,c,cr): T|Q ar:Tt TIQst(arbt ):TIQ 3
> |Q1 ( %) ) |Q 1 ar:T,al:T,t///:T|Q2)—e/:T|Q/ (*)

br:T,cr:T,ar:T,al:T|QF e:T|Q

Here, we employ the derivability of the following type judgement (12) by a single application of
(node), wrt. the annotation Q4, Q" given below.

al: T,t":T|QaF (al,a, t'):T|Q . (12)

It is not difficult to check that the above derivation indeed proves well-typedness of the
expression e wrt. the below given type annotations.
Q: q1=q=q3=94=1;91,1,1,0,0) = 1:9(1,1,0,00) = 139(0,0,002) = 1,
4(1,0,0,0,0) = 9(0,1,0,0,0) = 4(0,0,1,0,0) = 9(0,0,0,1,0) = 1,
Q:qdx=1402=1,
Qi: g1 =q1=1g> =2 = Iiq(g0,) = 900002 =1,
q(1.1.0) = 40,1,00059(1,0,0) = 901000.0) = 1id(o.1 0) = 40,1000 =1,
Q: q’i = 1“1/%1,0) = 13‘1/%0,2) =1,
p(1,0,1,0) . PE}Z?Z(IJ)O) =100 =1,

(10,1,0) . /(1,0,1,0) _
P oy =1

Qiqi=g =L =qu=La=q,=1L,

‘1%1,0,0,0) =4(0,0,1,0,0) = 1§‘1€0,1,o,0) =4(0,00,1,0) =15,

q%0,0,I,O) = q/(ll,O) = 1;4%0,0,0,2) = q’(lo,z) = 1;51%1,0,1,0) ZP/E}ZS’)LO) =1,
Qs: 61? = ‘I% = 1;‘1; = 61% = 1;‘1?0,0,2) = ‘1%0,0,0,2) =1

‘1?1,0,0) = ‘12(1,0,0,0) = 1;‘1?0,1,0) = ‘12(0,0,1,0) = 1;‘1(31,1,0) = ‘12(1,0,1,0) =1,

3 3 3
Q' g =1, ‘1/(1,0) =1 q/(o,Z) =1

Qq: ‘1411 = ‘1% = 1;‘1?0,0,2) = ‘1/?0,2) = 1§‘1?1,0,0) = ‘1(20,1,0,0) = 1¥‘1?0,1,0) = ‘1/?1,0) =1
In the inference marked with ( * ), we employ the (almost trivial) correctness of the following
cost-free typing derivation for br:T, cr: T|PLOLO) <t (br, ¢ cr): T|P! (LO.LO) *(Eor instantiation of
the rule (let: T) note b= (1,0).)

(1L0.1,0) _ ,/(10,1,0)
pParey =P

. 13
br:T, cr: TIPLOLO) (=<f (pr, ¢, ¢r): T|P/LOLO) 1)

For all l;;é (0), Z?;é (1) and arbitrary d, e, we set plbde) — pr(b:do) . _ o Oyr prototype fully
automatically checks correctness of the above given annotations.
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We emphasise that the involved (let)-rule, employed in step ( * ) cannot be avoided. In partic-
ular, the additional cost-free derivation (13) is essential. Observe the annotation marked in red in
the calculation above. Eventually, these amount to a shared potential employed in step (x). The
cost-free semantics allows us to exploit this shared potential, which otherwise would have to be
discarded.

To wit, assume momentarily the rule (let) would not make use of cost-free reasoning, similar to
the simplified (let)-rule, that we have used in the explanations on page 14. Then the shared poten-
tial represented by the coefficient g(1,1,1,0,0) € Q is discarded by the rule. However, this potential is
then missing, if we attempt to type the judgement

ar:T,al: T, :TIRF€:T|Q',

where R is defined as Q), except that r(j,1,0)=0. Thus, this attempt fails. (Note that the
corresponding coefficient of Q,, marked in red, is non-zero.)

Remark 15. To some extent, this is in contrast to the use of cost-free semantics in the litera-
ture (Hoffmann, 2011; Hoffmann et al., 2012a; Hofmann and Moser 2015; Hoffmann et al., 2017;
Moser and Schneckenreither, 2020). While cost-free semantics appear as an add-on in these works,
essential only if we want to capture non-tail-recursive programs, cost-free semantics is essential
in our context—it is already required for the representation of simple values.

6.2 Splay trees

In this subsection, we exemplify the use of the type system presented in the last section on the
function splay, cf. Figure 2. Our amortised analysis of splaying yields that the amortised cost
of splay a t is bound by 3 log (|t|) + 1, where the actual cost counts the number of recursive
calls to splay, cf. Sleator and Tarjan (1985); Schoenmakers (1993); Nipkow (2015). To verify this
amortised cost, we derive

a:Base, t:T|QFe:T|Q, (14)

where the expression e is the definition of splay given in Figure 2 and the annotations Q and Q’
are as follows:

Q:q1=1400=34q02=1,

Q:q«=1.
Remark that the amortised cost of splaying is represented by the coefficients g(; 0y and
q(,2)> expressing in sum 3log(|t|) + 1. Note, further that the coefficient g, q's, represent
Schoenmakers’ potential, that is, rk(¢) and rk(splay a t), respectively.

We restrict to the zig-zig case: t= ((bl,b,br,c,cr)) together with the recursive call
splay a bl= (al,a’,ar) and a < b < c. Thus, splay a tyields (al, a’, (an b, (br,c,cr))) =:t.
Recall that a need not occur in t; in this case, the last element a’ before a leaf was found is rotated
to the root. Our prototype checks correctness of these annotations automatically.

Let e; denote the subexpression of the definition of splaying, starting in program line 4. On the
other hand, let e; denote the subexpression defined from lines 5-15 and let e3 denote the program
code within e; starting in line 8. Finally, the expression in lines 11 and 12 expand to the following,
if we remove part of the syntactic sugar:

eqs:=let x=splay a blinmatchxwith | -> | cal,d’ ,ar) ->t.

Below, we show a simplified derivation of (14), where we have focused only on a particular path
in the derivation tree, suited to the considered zig-zig case of the definition of splaying. Omission
of premises or rules is indicated by double lines in the inference step. Again we make crucial use
of the cost-free semantics in this derivation. The corresponding inference step is marked with (x)
and the employed shared potentials are marked in red.
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splay:T|Q — T|Q Ajer:T,br:T,al:T,d :B,ar:T|Qs 1 :T|Q'
a:B,bl:T|QF splay a b1:T|Q'— 1 A, cr:T,br:T,x:T|Q4F match x with | (al,d’ ,ar) >t :T|Q/
Foer:T,bl:T,br:T|QsFes:T|Q
Foer:T,bl:T,br:T|QsFe3:T|Q
Foer:T,bl:T,br:T|Q2Fe3:T|Q W)
a:B,b:B,cl:T,cr:T|Qy Fmatch ¢l with |1eat -> (cl,c,cr) | (bl,b,br) -> e3:T|Q'
a:B,cl:T,c:B,cr:T|Q1 it a=c then (cl,c,cr) else er: T|Q

(%)

a:B,1:T|QF natch f with|leaf -> leat|(cl,c,cr) -> e :T|Q

We abbreviate I :=a:B,b:B,c:B, A:=0b:B,c:B. In addition to the original signature of
splaying, B x T|Q — T|Q’, we use the following annotations, induced by constraints in the type
system, cf. Figure 5. As in Section 6.1, we mark annotations that require cost-free derivations in
the (let: T) rule in red.

2 2 2 1 2 1
=45= 1400002 = 1 490,1,1,0 = 9(1,1,0) = 3 9(0,1,1.0) = 9(1,00) = 1>
2 1 2 2 !
41000 = 01,00 = L 01,00 = dl00,00 =01 =1
. 3_3_ 3 3
QG =p=¢5=1 90,00,2) = 2,

3 3 3 3 3
900,1,0,0) = 3> 9(1,0,0,0) = 9(0,0,1,0) = 9(1,0,1,0) = 9(1,1,1,0) = L -

In the step marked with the rule (w) in the derivation above, a weakening step is applied, which
amounts to the following inequality:

O, cr:T,bl:T,br:T|Qy) = ®(T,cr:T,bl: T, br:T|Q3) .

We emphasise that this step can neither be avoided nor easily moved to the axioms of the deriva-
tion. We verify the correctness of weakening through a direct comparison. Let o be a substitution.
Then, we have

D(oser: T, bl:T,br:T|Qz) = 1+ rk(cer) 4 rk(bl) + rk(br) + 3 log (|cr| + |bl| + |br]) +
+ log (|bl] + |br]) 4 log (|cr|) + log (|bl]) + log (|br])

=1+ rk(cr) + rk(bl) + rk(br) + 2 log (|t]) + log (|¢]) +
+ log (|bl| + |br|) 4 log (|cr|) + log (|bl|) + log (|br])

> 1+ rk(cr) + rk(bl) + rk(br) 4 log (|bl]) + log (|br| + [cr]) + 2 +
+log (|bl] + |br| + |cr]) +
+log (|bl] + |br|) + log (|cr|) + log (|bl]) + log (|br]) +

> rk(bl) + 1+ 31og (|bl]) + rk(cr) + rk(br) + log (|br|) +
+log (|cr]) 4+ log (|br| + |cr]) +
+ log (|bl| + |br| + |cr]) + 1= ®(oscr:T, bl: T, br:T|Q3) .

Note that we have used Lemma 16 in the third line to conclude
2log (|t]) > log (|bl]) + log (|br| + [cr]) 42,
as we have [t{=]|((bl, b, br), ¢, cr)|=|bl| + |br| + |cr|. Furthermore, we have only used

monotonicity of log and formal simplifications.
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Further, we verify the use of the (let: T)-rule, marked with () in the proof. Consider the
following annotation Qq:

L4 3.4 3. 4 4 4 _ 3 4 _ 3 .

Qs4: q1 =q139, = 93393 = ‘1/*>‘1(1,o,0,0) = 4(1,0,0,00°4(0,1,0,0) = 4(0,0,1,0)
4 3 ! _ (1,1,1,0) _

9(1,1,0,0) = 4(1,0,1,0)°4(1,1,1,0) —P/(I,O) -

1,1,1,0). (LLLO) _ 3 _
P( )- p(1,o) - q(l,l,l,o) =1

/(1,1,1,0) . _/(1,1,1,0) __
P P =1
To see that Qy is consistent with the constraints on resource annotations in the (let: T)-rule, we
first note that

) 3 3 . _ 3
Q+1l:iq=q=14900= 9(0,1,0,0) = 334(0,2) = 9(0,0,0,2) -

Hence, the constraints on the annotations for the left typing tree in the (let: T)-rule amount to
the following:

a=p=1 quo= Q?o,l,o,m =3 402 =490002=2 qx=4q5=1,
which are fulfilled. Further, the right typing tree yields the constraints:

4 3 _ 4_ 3 _ 4 _ 3 _ 4 _ 3 _
h=q=1 =5G3=1 494000 =4901000=1 901,00 =90,01,0 =1
4 _ 3 _
91,100 = D100 = 1>
which are also fulfilled. Hence, it remains to check the correctness of the constraints for the actual
cost-free derivation. First, note that for the vector b= (1, 1), the cost-free derivation needs to

be checked wrt. the annotation pair pLLLO) — [pg’(l)’)l’o)] and pP/OLL0 — [p’g’(l)’)l’o)]. Second, the

various constraints in the rule (let : T) simplify to the inequality pgi’é’)l’o) >p 8’(1)’)1’0), which holds.
Third, the actual cost-free type derivation reads as follows:

a:B,bl: TIPOLYO L gplay a b1: TP/ ELD) (15)

The typing judgement (15) is derivable if the following cost-free signatures are employed for
splaying:
splay: TIP=>STIP Tio -T2,

where P = [pa,0)], P' = [p'(1,0], with p1,0) = p’(1,0) := 1. Recall that & denotes the empty annota-
tion, where all coefficients are set to zero. By definition, P = PALLLO) gng pr = pr(LLLO), Informally,
this cost-free signature is admissible, as the following equality holds:

®(o;a:B, bl:T|P) =log (|bl]) =log (|(al, a’, ar)|) = ®((al, &, ar) : T|P').

Recall that we have splay a bl = (al,da’,ar) for the recursive call and that |bl| = | (al,d,ar) |.
As depicted below, the type derivation of (15) proceeds similarly to the derivation above in
conjunction with the analysis in Subsection 6.1.

splay: T|@ — T|@ Ajer:T,br:T,al:T,d :Bar:T|PyH1:T|P
a:B,bl:T|@Fsplay a b1:T|G A cr:T,br:T,x:T|Ps b match x with | (al,d ,ar) ->t":T|P
Foer:T,bl:T,br:T|Pbes:T|P
Mer:T,bl:T,br:T|PFe3: TP
a:B,b:B,cl:T,cr:T|P; Fnatch ¢l with |1eat -> (cl,c,cr) | (bl,b,br) -> e3:T|P
a:B,cl:T,c:B,cr:T|Pitif a=c then (cl,c,cr) else ey: T|P

(%)

a:B,t:T|Pt match f with|leat -> leatl(cl,c,cr) -> e: T|P
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As indicated, the cost-free derivation also requires the use of the full version of the rule (let: T),
as marked by (). In particular, the informal argument on the size of the argument and the result
of splaying is built into the type system. We use the following annotations:

P: pg) =1 Pipon=l
Py p(ll,l)o) =puo =1
Py: P(21,1,1,0) :p(ll,l,o) =1
Ps: P(31,1,1,0) =ran=1
by: P?1,1,1,1,0) =p(31,1,1,0) =1

Finally, one further application of the (match)-rule yields the desired derivation for suitable
Qs. See also the previous subsection. Note that one further application of the weakening rule is
required here.

7. Linearisation and Expert Knowledge

In the context of the presented type-and-effect system (see Figure 5), an obvious challenge is the
requirement to compare potentials symbolically (see Section 5) rather than compare annotations
directly. This is in contrast to results on resource analysis for constant amortised costs, see, for
example, Jost et al. (2009, 2010); Hoffmann et al. (2012a, 2017); Jost et al. (2017). Furthermore,
the presence of logarithmic basic functions seems to necessitate the embodiment of nonlinear
arithmetic. In particular, we need to make use of basic laws of the log functions, as the following
one. A variant of the below fact has already been observed by Okasaki, cf. Okasaki (1999).

Lemma 16. Let x,y > 1. Then 2 + log (x) + log (y) < 2log (x + y).
Proof. We observe
(x+y)? —dxy=(x—»*>0.
(x‘zy)z ). B

Hence (x + y)? > 4xy and from the monotonicity of log we conclude log (xy) < log (
elementary laws of log, we obtain:

2 2
log<(x42y) >=log ((%) ):210g(x+y)—2,

from which the lemma follows as log (xy) = log (x) + log (»). O

A refined and efficient approach which targets linear constraints is achievable as follows.
All logarithmic terms, that is, terms of the form log(.) are replaced by new variables, focus-
ing on finitely many. For the latter, we exploit the condition that in resource annotations only
finitely many coefficients are non-zero. Consider the following inequality as prototypical example.
Validity of the constraint ought to incorporate the monotonicity of log.

ar log (|t]) 4+ a2 log (|cr|) = by log ([t]) + by log (|cr]) , (16)

where we assume t = (cl,c,cr) for some value ¢ and thus [t| > |cr|, cf. Section 6.2. Replacing
log (|]), log (|cr|) with new unknowns x, y, respectively, we represent (16) as follows:

Y

Vx,y > 0.a1x + azy = bix + byy, (17)

Here we keep the side-condition x > y and observe that the unknowns x, y can be assumed
to be non-negative, as they represent values of the log function. Thus, properties, for example,
monotonicity of log, as well as properties like Lemma 16 above, can be expressed as inequalities
over the introduced unknowns. For example, the inequality x > y above represents the axiom of
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monotonicity log (|¢]) > log (|cr|). All such obtained inequalities are collected as expert or prior
knowledge. This entails that (17) is equivalent to the following existential constraint satisfaction
problem:

de,d.ar>2by+cAhay>dAby<c+d. (18)

We seek to systematise the derivation of inequalities such as (18) from expert knowledge. For
that, we assume that the gathered prior knowledge is represented by a system of inequalities as

A% < b, % > 0, where A denotes a matrix with as many rows as we have prior knowledge, ba col-
umn vector and X the column vector of unknowns of suitable length; X > 0 because log evaluates
to non-negative values.

Below we discuss a general method for the derivation of inequalities such as (18) based on the
affine form of Farkas’ Lemma. First, we state the variant of Farkas’ Lemma that we use in this
article, cf. Schrijver (1999). Note that 7 and f denote column vectors of suitable length.

-

Lemma 17. (Farkas’ Lemma) Suppose AX < b, X > 0 is solvable. Then for all vectors u and scalars
A, the following assertions are equzvalent.

>0.Ax < <b=ul%
3f>o.a <fTANfTD

(19)

<A
<A (20)

Proof. It is easy to see that from (20), we obtain (19). Assume (20). Assume further that Ax < b
for some column vector x. Then we have

"% <fTAx<fTb <.

Note that for this direction the assumption that Ax < b, X > 0 is solvable is not required.

With respect to the opp031te direction, we assume (19). By assumption, AX < b, % X 2 0 is solv-
able. Hence, maximisation of #7% under the side condition A% < b, % > 0 is feasible. Let w denote
the maximal value. Due to (19), we have w < A. .

Now, consider the dual asymmetric linear program to minimise y’b under side condition
yTA=1u" and y > 0. Due to the Dualisation Theorem, the dual problem is also solvable with the
same solution

Jo=u"%=w.

We deﬁne} :=y, which attains the optimal value w, such thathA =ul and]‘ > 0 such thatj?Tz =
w < A. This yields (20). O

Second, we discuss a method for the derivation of inequalities such as (18) based on Farkas’
Lemma. Our goal is to automatically discharge symbolic constraints such as ®(I'|P) < &(I"'|Q)—
as well as ®(T'|P’) > ®(I'|Q’)—as required by the weakening rule (w) (see Section 5).

According to the above discussion, we can represent the inequality ®(I'|P) < ®(I"|Q) by

PlX+c<g'x+cg,
where X is a finite vector of variables representing the base potential functions, p and g are column

vectors representing the unknown coefficients of the non-constant potential functions, and ¢,
and ¢, are the coefficients of the constant potential functions. We assume the expert knowledge is

given by the constraints AX < b, X > 0. We now want to derive conditions for p, §, ¢, and ¢, such
that we can guarantee

VX > 0. AX < b=>p X+¢ < qx—i—cq (21)
By Farkas’ Lemma, it is sufficient to find coefficients f > 0 such that
BT <FTA+G" AfTb+c,<¢q. (22)
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Hence, we can ensure Equation (21) by Equation (22) using the new unknowns f.

We illustrate Equation (22) on the above example. We have A=(—11), b=0, p = (b; by)T,
q=(a ay)T as well as ¢p = ¢g = 0. Then, the inequality fb + ¢, < ¢4 simplifies to 0 < 0 and can in
the following be omitted. With the new unknown f > 0, we have

(b1 b)) <f(=11)+4 (a1 a2),
which we can rewrite to
h<—f+anb<f+a,

easily seen to be equivalent to Equation (18).

Thus, the validity of constraints incorporating the monotonicity of log becomes expressible
in a systematic way. Further, the symbolic constraints enforced by the weakening rule can be
discharged systematically and become expressible as existential constraint satisfaction problems.
Note that the incorporation of Farkas’ Lemma in the above form subsumes the well-known prac-
tice of coefficient comparison for the synthesis of polynomial interpretations (Contejean et al.,
2005), ranking functions (Podelski and Rybalchenko, 2004) or resource annotations in the context
of constant amortised costs (Hoffmann et al., 2012a).

In the next section, we briefly detail our implementation of the established logarithmic
amortised resource analysis, based on the observations in this section.

8. Implementation

Based on the principal approach, delineated in Section 2, we have provided a prototype imple-
mentation of the logarithmic amortised resource analysis detailed above. The prototype is capable
of type checking a given resource annotation and requires user interaction to specify the structural
inferences sharing and weakening. These can be applied manually to improve efficiency of type
checking. In future work, we will strive for full automation, capable of type inference. In this sec-
tion, we briefly indicate the corresponding design choices and heuristics used. Further, we present
restrictions and future development areas of the prototype developed.

Template Potential Functions. Our potential-based method employs linear combinations of
basic potential functions 4, cf. Definition 2. To fix the cardinality of the set of resource functions
to be considered, we restrict the coefficients of the potential functions p((,,, . 4,).»)- For the non-
constant part, we demand that a; € {0, 1}, while the coefficients b, representing the constant part
are restricted to {0, 1, 2}. This restriction to a relative small set of basic potential functions suitably
controls the number of constraints generated for each inference rule in the type-and-effect system.

Type-and-Effect System. Following ideas of classical Hindley-Milner type inference, we col-
lect for each node in the abstract syntax tree (AST) of the given program the constraints given
by the corresponding inference rules in the type system (see Figure 5). As a pre-requisite, we
restrict ourselves to three type annotations employed for each function symbol. (i) One indeter-
minate type annotation representing a function call with costs; (ii) one indeterminate cost-free
type annotation to represent a zero-cost call; and one fixed cost-free annotation with the empty
annotation that does not carry any potential. (iii) These restrictions were sufficient to handle the
zig-zig case of splaying. A larger, potentially infinite set of type annotations is conceivable, as long
as well-typedness is respected, cf. Definition 12. As noted in the context of the analysis of con-
stant amortised complexity, an enlarged set of type annotations may be even required to handle
non-tail recursive programs, cf. Hoffmann et al. (2012a, 2017). The collected constraints on the
type annotations are passed to an SMT solver, in our case the SMT solver z3> and solved over
the positive rational numbers. Here we can directly encode the equalities and inequalities of the

3See https://github.com/Z3Prover/z3/wiki.
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constraints given in the type system. Due to the use of Farkas’ Lemma (Lemma 17) only linear
constraints are generated.

Our implementation currently only supports type checking, taking user guidance into account
and thus is semi-automated. While deriving constraints for the AST nodes of the program is
straightforward (as there is only one type rule for every syntactic statement of our programming
language), we currently require user interaction for the application of the structural rules.

Structural Rules. The structural rules can in principle be applied at every AST node of the
program under analysis. However, they introduce additional variables and constraints and for per-
formance reasons it is better to apply them sparingly. For the sharing rule we proceed as follows:
We recall that the sharing rule allows us to assume that the type system is linear. In particular, we
can assume that every variable occurs exactly once in the type context, which is exploited in the
definition of the let rules. However, such an eager application of the sharing rule would directly
yield to a size explosion in the number of constraints, as the generation of each fresh variable
requires the generation of exponentially many annotations. Hence, we only apply sharing only
when strictly necessary. In this way the typing context can be kept small. Similar to the sharing
rule (share), variable weakening (w : var) is employed only when required. This in turn reduces
the number of constraints generated.

For the weakening rule, we employ our novel methods for symbolically comparing logarithmic
expressions, which we discussed in Section 7. Because of our use of Farkas’ Lemma, weakening
introduces new unknown coefficients, which again may result in a forbiddingly large search space.
Thus, weakening steps are particularly costly. For performance reasons, we need to control the size
of the resulting constraint system. Currently, we rely on the user to specify the number and place
of the applications of the weakening rule. This is achieved through the provision of suitable tactics
for type checking. Note that the weakening rule may need to be applied in the middle of a type
derivation, see for example the typing derivation for our motivating example on page 23. This
contrasts to the literature where the weakening rule can typically be incorporated into the axioms
of the type system and thus dispensed with. Perhaps, a similar approach is possible in the context
of logarithmic amortised resource analysis, but our current understanding does not support this.

Expert Knowledge. In Section 7, we propose the generation of a suitable matrix A collecting
the expert or prior knowledge on such inequalities. In particular, wrt. Lemma 16, generation of
this expert knowledge is straightforward. The corresponding inequality amounts to a line in the
expert knowledge matrix A. Wrt. monotonicity we have experimented with a dedicated size analy-
sis based on a simple static analysis of the given AST, as well as exploitation of the type annotations
directly. For the latter, note that the coefficients in the basic potential functions p((,, 4,6 are
reflected in the corresponding type annotations. Hence, comparison of these (unknown) coeffi-
cients allows a sufficient size comparison of the data structures (i.e. trees) used in the program at
hand.

For now, our exploitation of the expert knowledge is restricted to the monotonicity of log-
arithm together with the simple mathematical fact about logarithms presented in Lemma 16.
To improve the efficiency and effectivity of the methodology, the following additions could be
explored: (i) additional mathematical facts on the logarithm function; (ii) improvement of the
dedicated size analysis supporting the applicability of monotonicity laws; (iii) incorporation of
basic static analysis techniques, like the result of a reachability analysis, etc.

9. Related Work

To the best of our knowledge, the established type-and-effect system for the analysis of logarithmic
amortised complexity is novel and also the semi-automated resource analysis of self-balanced data
structures like splay trees is unparalleled in the literature. However, there is a vast amount of
literature on (automated) resource analysis. Without hoping for completeness, we briefly mention
Albert et al. (2008); Alias et al. (2010); Blanc et al. (2010); Gulwani and Zuleger (2010); Albert et al.
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(2011); Alonso-Blas and Genaim (2012); Hermenegildo et al. (2012); Avanzini et al. (2015, 2016);
Flores-Montoya (2017); Giesl et al. (2017) for an overview of the field.

(Constant) amortised cost analysis has been in particular pioneered by Martin Hofmann
and his collaborators. Starting with seminal work on the static prediction of heap space usage
(Hofmann and Jost, 2003; Hofmann and Rodriguez, 2013), the approach has been generalised
to (lazy) functional programming (Jost et al., 2009, 2010; Hoffmann et al.,, 2011, 2012b,a) and
rewriting (Hofmann and Moser, 2014, 2015). Automation of amortised resource analysis has
also been greatly influenced by Hofmann, yielding to sophisticated tools for the analysis of high-
erorder functional programs (Hoffmann and Hofmann, 2010b,a; Hoffmann, 2011), as well as of
object-oriented programs (Hofmann and Rodriguez, 2013; Bauer et al., 2018). We mention here
the highly sophisticated analysis behind the RaML prototype developed in Hoffmann and Sho
(2014); Hoffmann and Shao (2015a,b); Hoffmann et al. (2017) and the RAJA tool (Hofmann and
Rodriguez, 2013).

We now overview alternatives to conducting amortised cost analysis through the means of
a type-and-effect system. The line of work Zuleger et al. (2011); Sinn et al. (2014, 2015, 2017);
Fiedor et al. (2018) has focused on identifying abstractions resp. abstract program models that
can be used for the automated resource analysis of imperative programs. The goal has been to
identify program models that are sufficiently rich to support the inference of precise bounds
and sufficiently abstract to allow for a scalable analysis, employing the size-change abstraction
(Zuleger et al., 2011), (lossy) vector-addition systems (Sinn et al., 2014) and difference-constraint
systems (Sinn et al., 2015, 2017). This work has led to the development of the tool LOOPUS,
which performs amortised analysis for a class of programs that cannot be handled by related
tools from the literature. Interestingly, LOOPUS infers worst-case costs from lexicographic rank-
ing functions using arguments that implicitly achieve an amortised analysis (for details, we refer
the reader to Sinn et al. (2017)). Another line of work has targeted the resource bound analysis
of imperative and object-oriented programs through the extraction of recurrence relations from
the program under analysis, whose closed-form solutions then allow one to infer upper bounds
on resource usage (Albert et al., 2008, 2011; Alonso-Blas and Genaim, 2012; Flores-Montoya,
2017). Amortised analysis with recurrence relations has been discussed for the tools COSTA
(AlonsoBlas and Genaim, 2012) and CoFloCo (Flores-Montoya, 2017). Amortised analysis has
also been employed in the resource analysis for rewriting (Moser and Schneckenreither, 2020) and
non-strict function programs, in particular, if lazy evaluation is conceived, cf. Jost et al. (2017).

Sublinear bounds are typically not in the focus of these tools, but can be inferred by some
tools. In the recurrence relations-based approach to cost analysis (Albert et al., 2008, 2011) refine-
ments of linear ranking functions are combined with criteria for divide-and-conquer patterns;
this allows their tool PUBS to recognise logarithmic bounds for some problems, but examples
such as mergesort or splaying are beyond the scope of this approach. Logarithmic and exponential
terms are integrated into the synthesis of ranking functions in Chatterjee et al. (2017), making
use of an insightful adaption of Farkas’ and Handelman’s lemmas. The approach is able to handle
examples such as mergesort, but again not suitable to handle self-balancing data structures. A type-
based approach to cost analysis for an ML-like language is presented in Wang et al. (2017), which
uses the Master Theorem to handle divide-and-conquer-like recurrences. Very recently, support
for the Master Theorem was also integrated for the analysis of rewriting systems by Winkler and
Moser (2020), extending the work of Avanzini and Moser (2016) on the modular resource analysis
of rewriting to so-called logically constrained rewriting systems (Fuhs et al., 2017). The resulting
approach also supports the fully automated analysis of mergesort.

We also mention the quest for abstract program models whose resource bound analysis prob-
lem is decidable, and for which the obtainable resource bounds can be precisely characterised.
We list here the size-change abstraction, whose worst-case complexity has been completely
characterised as polynomial (with rational coefficients) (Colcombet et al., 2014; Zuleger, 2015),
vector-addition systems (Brazdil et al., 2018; Zuleger, 2020), for which polynomial complexity can
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be decided, and LOOP programs (Ben-Amram and Hamilton, 2019), for which multivariate poly-
nomial bounds can be computed. We are not aware of similar results for program models that
induce logarithmic bounds.

10. Conclusion

We have presented a novel amortised resource analysis based on the potential method. The
method is rendered in a type-and-effect system. Our type system has been designed with the
goal of automation. The novelty of our contribution is that this is the first approach towards an
automation of a logarithmic amortised complexity analysis. In particular, we show how the precise
logarithmic amortised cost of splaying—a central operation of Sleator and Tarjan’s splay trees—
can be checked semi-automatically in our system. As our potential functions are logarithmic, we
cannot directly encode the comparison between logarithmic expressions within the theory of lin-
ear arithmetic. This however is vital for, for example, expressing Schoenmakers’ and Nipkow’s
(manual) analysis (Nipkow, 2015; Schoenmakers, 1993) in our type-and-effect system. To over-
come this algorithmic challenge, we proposed several ideas for the linearisation of the induced
constraint satisfaction problem. These efforts can be readily extended by expanding upon the
expert knowledge currently employed, for example, via incorporation of the results of a static anal-
ysis performed in a pre-processing step. In future work, we aim at extension of the developed
prototypes to a fully automated analysis of logarithmic amortised complexity. Here it may be
profitable to expand the class of potential functions to take linear potential functions into account.
This does not invalidate our soundness theorem.

In Memoriam.

Martin Hofmann and the fourth author have discussed and developed a large part of the theo-
retical body of this work together. Unfortunately, Martin’s tragic hiking accident in January 2018
prevented the conclusion of this collaboration. Due to Martin’s great interest and contributions
to this work, we felt it fitting to include him as first author. We have tried our best to finalise
the common conceptions and ideas. Still automation and continued research clarified a number
of issues and also brought a different focus on various matters of the material presented. Martin
Hofmann’s work was revolutionary in a vast amount of fields and it will continue to inspire future
researchers—like he inspired us.
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