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1. Statement of the problem

Let Xx, X2, • • • be independent and identically distributed non-lattice
random variables with mean zero, variance a2 < oo, and partial sums
Sn = Xx+X2-\ +Xn. When a moment E\X\r, r ^ 3, is finite we have
(under a minor restriction) the estimate as n -> oo,

(1) P(Sn ^ xay/n)- f" </>(y)dy = <f>(x) % n-i*+lRk(x)+o(n-ir+i),
J -oo fc=3

where

([1] page 81; [2] page 515; [3] page 220). The Rk(x) are polynomials con-
veniently written in terms of the Hermite polynomials H^x);

If Y is a standard normal variable, that is

^x) = T <p(y)dy,
J — oo

the expansion (1) estimates the difference between the distributions of Sn

and Yo\/n, for large n. In this paper we are interested in estimating the
difference

(3) Eb(Sn)-Eb(YoVn)

for large values of n and suitable functions b (x). The main result is Theorem 1
given in § 3 and extensions and applications are considered in subsequent
sections. The method used relies heavily on the classical approach as
expounded in the works cited above by Cramer, Gnedenko and Kolmogorov,
and Feller.

We confine our attention to functions b(x) which are bounded and
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integrable. A different technique is required when b (x) grows unboundly
with x and this case is not discussed here.

NOTATION: The symbol Y will always denote a standard normal
variable, that is, the density function of Y is

4>{y) = - = e~iy\ — co < y < co,
V 2

with distribution function P(Y ;£ y) — 0(y). The characteristic function
of X is written

Ee** =

The jth moment of X (when it exists) is pLt = EX'. H^x), j — 1, 2,
denotes the Hermite polynomial defined in (2). We recall that

Hk+1{x) = -

and H'k(x) == kH^^x) so that

+i(°) = (-l)k'Hk-l)(k-3) • • • 3.1. k even
( ,

= 0, k odd.

Assuming fi3, [xi finite the Edgeworth expansion for P(Sn ^ a^nx) is

(5) P(Sn ^ aVnx) = \x <f>(y){l+n-iP3(y)+n-lP4(y)}dy+o(n^)

(e.g. [2] page 508) where

Ps(x) =

Pt(x) =

2. Preliminaries

Firstly it should be pointed out that some restrictions must be placed
on the function b(x). For example suppose E\X\k = co for some k S; 4 and
6(a;) = x*. Then Eb(Sn) = $xkdP(Sn^L x) is either infinite or not defined
whereas

is certainly defined for all finite n. On the other hand if b(x) is continuous
and bounded a result of Helly ([7] page 52) shows that

1 Equation (2.13) page 508 of [2], contains a misprint.
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as n -> oo, in which case it is meaningful to ask for an asymptotic expansion
in decreasing powers of n. It turns out that the problem can be properly
formulated by requiring (i) sufficiently strong regularity conditions on
b(x), or (ii) keeping b(x) as general as possible and imposing smoothness
conditions on the distribution function of X. The hypotheses of Theorem 1
below cannot be claimed to be the most general conditions for the required
expansion (9) to hold, but they do cover a reasonably wide variety of cases.

Before proceeding to the Theorem we dispose of a special case that may
on occasion prove useful. Suppose that b(x) is a square integrable function
admitting an expansion in Hermite polynomials such that

Then if Sn/(a-\/w) has a density fn(x) which can be expanded in a convergent
Edgeworth type series

we have formally

Eb(Sn) =
j

Pk,n
I TT fM*W*) [l+ 2ct.nHt(x)\dx

k=0

Hence

Eb{Sn)-Eb{Yoy/n) = pOyn+ f /?fc,nct>1,- 2 f t > n { Hk(x)<f>{x)dx
oo

= 2 &,.<:*.„ = #> . .
fc=O

where
/>' //} /? /? \

C n = = ( C 0 , n > c l , n » C 2 , n > ' * ')•

Thus the required difference can be written as the inner product of the
coefficient vectors of the Hermite expansions of b(xa\/n) and fn(x). The
major drawback to this approach is that even if the vectors /Jn and cn are
known, the ckn at least are complicated functions of n so that rate of
convergence properties are in general not readily obtainable from ji'ncn.
Mainly for this reason we do not use the Hermite expansion for b (x) (even if
it exists), but we do assume that b(x) is at least integrable and bounded.
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However we do use the Edge worth expansion for the distribution of
SJ(o\/n). Since the latter can be rearranged as a series in Hermite poly-
nomials the following result will prove useful.

LEMMA. / / m is a fixed nonnegative integer and zmb(z) e Lt and is
bounded then for k — 1, 2, • • •.

(7) J b(yaVn)<l>(y)Hk(y)dy = — % L_-i_±tiL2 J x'b(x)dx+o(n-i™),

n -»• oo.

PROOF. Using the Taylor expansion

4(z)Ht(z) = ( -1 )^<*>(S)

i=o / '

we find, after a change of variable,

(8)

But <^<*+m)(0nXCT~1w~i) is uniformly bounded so that by dominated con-
vergence

Urn f xmb(x)cf)<k+m^dnxa-1n-i)dx = <£<*+m>(0) f x
n-*oo J J

The assertion of the lemma follows by substituting

in (8).
It is useful to recall that Ht(0) — 0 if / is odd and non-zero for / even.

Thus the sum on the right hand side of (7) consists of only l + [wi/2] terms.

3. The main results

THEOREM 1. If

(i) b (x) and xb (x) are bounded and Lx,

(ii) Hi exists and Cramer's condition, l imsup|^( | ) | < 1, holds, then
either one of Ifl-*00

(a) [ip(£)]v e l j for some v ^ 1 or

(b) p{S)=fe«'b(x)dxeLl

ensures that as n -> oo
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(9) Eb(Sn)-Eb(YoVn) =-^^-^P's(0) jxb(x)dx+oPi(0) jb(x)

where

PROOF. Put
v-%-J ^ y)~ \v

J —O

where P3{x), Pt(x) are defined in (6). Then

Eb(Sn)-Eb(YaVn) = jb(yaVn)dP(Sna^n-i ^y)~ Jb{ya

= J 6 (yaVn)dGiin (y) + jb [ya^/n) [n~* P3

We show first that if either (a) or (b) holds then the first integral on
the right is o(n~$). If (a) is true then S^CT"1^""* has a density for n >v
so that

gi,n(X) = G'iAX)

exists. It follows that gi>n{x) = o(n~1) uniformly in x (e.g. [2] page 508)
so that

J b(ya\/n)dGi>n(y) ^ o(n-1) J \b(ya\/n)|dy

= o(nr1)(T1n-i J \b{x)\dx = o{n~i).

On the other hand if (b) is true then

Jb(yaVn)dGiin(y) = i - j j e - ^ ^

(10) = ~ j mV4.n(

= - (2jiav
rn)-1 J |8(-a;<r-1n-*)y4f1,(

where

being a polynomial of degree six.
A result in [3] (Theorem 1 (b) page 204) states that there is a constant

a such that (in our notation)
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< ay/n.

o(l) f
(\x\*+\x\6)e-&xldx = O(M-I),

since |/3(—a;"1*-*)! is bounded by J|%)|<fy and (|z|4+|z|6)«~<i)x* is
integrable. It follows that the integral in (10) is o(n~i) if it can be shown that

I 0.

But this is easily seen to be so since CrameYs condition implies that the
tail integral decreases exponentially fast. Thus supposing without loss of
generality that

lv(f)| ^ < 5 < 1 for HI >aa-\
we have

n*I,
""/,.

The proof is complete if

and that this is the case follows from the Lemma and the definition (6) of
P3(x), Pt(x).

Note that the condition lim sup |y-'(!)| < 1 excludes from consideration
amongst non-lattice variables only a relatively unusual class of purely
singular variables.2 For lattice variables this condition is of course not
satisfied, and the coefficients of the expansion differ from those in (9).

It will frequently be the case that

a For an example see [7] page 27.
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can be evaluated without difficulty. On the other hand an asymptotic
expansion for Eb(Sn) commencing with a term of order 0(n~i) can be
readily obtained from

Hence

COROLLARY TO THEOREM 1. / / in addition to the conditions of the Theorem,
x2b(x) is bounded and integrable then

Eb(Sn) = . * [b(x)dx + 3
 1

/ __

4(0) fb(x)dx+P'3{0) (xb(x)dx- — fa;2i(x
(11)

One of the results of Rosdn ([8], Theorem l(c)) is that for the partial
sums of any independent and identically distributed variables the inequality

P(ct <Sn^ c2) ̂  cn-i

holds. Taking b (z) as unity for cx < x rgi c2 and zero elsewhere in (11) we
obtain a sharpening of Rosen's result for the class of random variables
satisfying the conditions of the theorem.

If higher moments exist the right hand side of (9) can be expanded
further. In place of Gin(y) introduced in the proof of theorem 1 we use

Gr,n(y) =

and similar considerations apply. The Pk(u) appearing on the right hand
side are the same as those in [2] pages 508—509. We only state the result;

THEOREM 2. Suppose each of b(x), xb(x), • • •, xmb(x) are bounded and
Lx and £|X|r < 00, where r, m are fixed integers r > 4, m > 1. / / Cramer's
condition and either of (a) or (b) of Theorem 1 hold then

r+m-l c

(12) Eb(Sn)-Eb(YaVn) = I ~ +o(w-i<'+m-i>).
k—3 W '

The ck depend only on the first r moments of X and the integrals

I x'b(x)dx, j = 0, 1, • • -, m.
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Calculation of the constants ck in (12) is tedious but the method is
precisely that used in the proof of Theorem 1.

Extensions are possible in several directions. Firstly the case of in-
dependent but non-identically distributed variables can be treated with
little additional difficulty provided certain regularity conditions are satis-
fied. Secondly one can consider a sequence of functions bn(x), which if
uniformly bounded and convergent to b (x), yields precisely (9).

4. Variables with moment generating functions and non-zero mean

Let Wx, W2, • • • be proper two sided variables independently and
identically distributed as W. It is assumed that EW =/= 0 and that the
moment generating function

Ee~sW = 6{s)

exists for real s in some nondegenerate interval I. For each u el a random
variable W(u) can be defined by

(13) P(W{u) S x) = [^(M)]-1 J"^ e-»"dP(W ^ y).

W(u) is said to be conjugate to W with respect to the parameter u.
Conjugate variables have proved useful in certain problems related

to the central limit theorem (particularly large deviations) and recent
expositions are to be found in [5] and [2] (where the term associated is
used). The expansions obtained below are extensions of some of the results
in [4].

If Zn = ^ + ^ 2 + • • • +Wn, a conjugate variable is

Zn(u) = W1(u) + W2(u)+ • • • +Wn(u),
and

P{Zn(u) <x) = [d(u)-"] \x_j-»UP{Zn ^ y).

Conversely

P(Zn £x) = [6(u)r iX e»«dP{Zn(u) 5= y).
J —00

Thus for a suitable function a(x),

(14) Ea(Zn) = [O(u)TJa(x)e«xdP{Zn(u) rg x).

By choosing u el in a particular way we use (14) to estimate the difference

Ea[Zn)—Ea(Yay/n),

where as before Y is a standard normal variable. It turns out that optimum
results are obtained when u = s0, where
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0(so) = inf 0(s).
86/

That s0 is finite for two sided variables is a result of [6], Lemma 2.

DEFINITION. The random variable W is said to satisfy condition # if

(i) EW ^ 0 and Ee~'w = 0(s) exists for —^KsK c2 with ct ^ 0,
c2 ^ 0, q + c 2 > 0,

(ii) 0(so) = inf, 0(s) is attained for an interior point s0, i.e.
—cx < s0 < c2,

(iii) the conjugate variable W(s0) satisfies Cramer's condition

Urn sup \EeKw<*>\ = lim sup ' ^ ° ~ ^ ' < i.

Since 0'(O) = —EW, V (i) and <€ (ii) ensure that s0 ^ 0, 0(so) < 1
and O'(s0) = 0. Thus W(s0) has zero mean and furthermore (since s0 is an
interior point) has itself a moment generating function, namely

Eer~w™ = 0(so+a)/0(so),

and so has finite moments of all orders. The results obtained so far are
therefore immediately applicable to the sequence {{Zn{s0)}, provided W
satisfies %', and we use this fact in conjunction with (14) to study Ea(Zn).

THEOREM 3. Let Zn be the nth partial sum of independent variables
distributed as W, where W satisfies condition <€. If a(x) is a given function
such that xa(x)e'°x is bounded and in Llt then as n -> oo

(15) fe(so^

{3,o(O) jxa{x)e>°*dx+o0Pit0(0)

where

2[0"(So)] l

PROOF. From (14)
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f ^ n -E[a(YoVn)e»rW*] = f a(x)e»*dP(Zn(s0) 5= x)

1 f

= f a^VwyJ^^V^p/ -^ ^ jA -L [a(o0^/ny)e-Mn*t+"""v:iivdy

Writing Zn(s0) = Sn, b(x) = a^e8"*, it is apparent that Theorem 1 is
directly applicable, and we obtain (15).

The moments in P'3(0), P4(0) are now the moments of W(s0),

6(so)

An expansion including smaller terms can be similarly derived from
Theorem 2.

As an example suppose a (x) is unity for cx < x < c2 and zero elsewhere.
Then

Ea(Zn) = P(Cl<Zn< c2)

aoy/n

and (15) yields an exponentially decreasing estimate of P(cx < Zn ^ c2).

5. Application to random walks

As in the preceding section let W1, W2, • • • be independent identically
distributed variables satisfying the condition <€. Let

Mn = max (0, Zx, Z2, • • -, Zn), n^\,

Mo = 0, where as before Zn is the wth partial sum of the Wi. The distribu-
tion of Mn is in principle obtainable from the Pollaczek-Spitzer formula

(16) f znEe^M" = exp ( £ zn

where Z+ = max (0, Zn). If EW = n < 0 it is known that the sequence
{P(Mn f^x)} converges to a proper distribution function say P(Mro f^x).
We now wish to apply our results to estimating

when fx < 0 and Ee~$w = d(s) exists for at least —cx < s ^ 0, q > 0.
Our estimate extends that obtained in § II.5 of [4] for the difference
EMoo—EMn, and also the work of Kingman [6].
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From (16)

EMn = £ j-iEZ+ = £ r 1 rxdP(Z, =£ x)
i=l 1=1 J 0

so that

The proof of the following Theorem follows from Theorem 3 by the
substitution a(x) = xk, x > 0, and a(x) = 0 for x sS 0.

THEOREM 4. If W satisfies ^ with EW < 0 (and hence s0 < 0) then for
k = 1, 2, • • •

To obtain an expansion for E(Z+)k itself we must evaluate

)+}"eY'o-oVn] = 1 f ° ° ^ exp L a ; - - ^

T J - , 0 O - 0 V »

and this can be done without difficulty. For example if k — 1 then

3 15

with ^ = 0«>(so)/L0(so)]. Then

EZ+ =

Hence

i=n+l

^ 2 r nr7i
2 7 r S C T 2 ^ 3=n+l
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which generalises equation II.5.5 of [4]. Somewhat more involved mani-
pulations are required to estimate E(Moo)

k—E(Mn)
k when k > 1.
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