VOL. 3 (1970), 1-8.

The multiplicator of finite nilpotent groups

J. W. Wamsley

Let G be a group and M a G-module; then $d(G)$ denotes the minimal number of generators of G and $d_{G}(M)$ the minimal number of generators over $Z G$ of M. For G a finite nilpotent group let $G=F / R, F$ free, be a presentation for G; then it is shown that

$$
d(R /[F, R])=d_{G}(R /[R, R])
$$

that is

$$
d(G)+d(M(G))=d_{G}\left(R / R^{\prime}\right)
$$

where $M(G)$ denotes the Schur multiplicator of G.

1. Introduction

If a finite group G is generated by n elements and defined by m relations between them then G has a presentation

$$
G=\left\{x_{1}, \ldots, x_{n} \mid R_{1}, \ldots, R_{m}\right\}
$$

Clearly $m \geq n$ and the value $n-m$ is said to be the deficiency of the given presentation. The deficiency of G, denoted $\operatorname{def}(G)$, is the maximum of the deficiencies of all the finite presentations of G.

It is implicit in J. Schur [3] that the minimal number of generators of the Schur "multiplicator", as an abelian group, is less than or equal to $-\operatorname{def}(G)$. B.H. Neumann [2] asks whether a finite group with trivial

Received 7 March 1970.
multiplicator has deficiency zero; R.G. Swan [4] answers this question by giving a family of finite soluble groups with trivial multiplicator and negative deficiency. However the question is still unanswered in the case of finite nilpotent groups.

In this paper we apply a theorem of R.G. Swan [4] to show that if G is a finite nilpotent group generated by n elements such that the Schur multiplicator is minimally generated by r elements then G has a presentation

$$
G=F / R=\left\{x_{1}, \ldots, x_{n} \mid R_{1}, \ldots, R_{n+r}, S_{1}, \ldots, S_{t}\right\}
$$

where F has free generators $\left\{x_{1}, \ldots, x_{n}\right\}$ and R is the smallest normal subgroup of F containing the defining relations R_{1}, \ldots, R_{n+r}, S_{1}, \ldots, S_{t} such that S_{1}, \ldots, S_{t} belong to R^{\prime}, the commutator subgroup of R.

2. The Lyndon resolution

Let G be a finite group, then we construct a sequence of matrices with elements in $Z G$ as follows,

$$
M^{\circ}=\left(\begin{array}{cc}
x_{1} & -1 \\
& \cdots \\
x_{\alpha_{1}} & -1
\end{array}\right) \text {, a column matrix }
$$

where $x_{1}, \ldots, x_{\alpha_{1}}$ is a set of elements generating G.
Given M^{p-1}, let M^{2} be any matrix whose row space spans (over $Z G$) all vectors v such that

$$
v \cdot M^{p-1}=0
$$

that is the row space of M^{2} is a set of vectors
$v_{1}, \ldots, v_{\alpha_{r+1}}$ such that if $v \cdot M^{r-1}=0$ then $v=\sum_{i=1}^{\alpha_{r+1}} y_{i} v_{i}, y_{i} \in Z G$.

Since G is finite we may choose α_{r} finite for all r and the $\alpha_{r+1} \times \alpha_{r}$ matrix M^{r} is said to be the r-th incidence matrix for G. Let F_{r} be a $Z G$ module free on α_{r} generators, then

$$
\xrightarrow{M^{r}} F_{r} \xrightarrow{M^{r-1}} \ldots+F_{1} \rightarrow 2 G \rightarrow 2 \rightarrow 0
$$

 resolution.

We state without proof the following two lemmas implicit in Lyidon [1],

LEMMA 2.1. Let G be a finite group. If $\left\{x_{1}, \ldots, x_{n} \mid R_{1}, \ldots, R_{m}\right\}$ is a presentation for G, then we may take the first incidence matrix, M^{l}, to be the matrix

$$
M^{1}=\left(\gamma\left(\partial R_{i} / \partial x_{j}\right)\right)
$$

where γ is the natural homomorphism of F onto G and $\partial R_{i} / \partial x_{j}$ denotes the Fox derivative of R_{i} with respect to x_{j}.

Conversely corresponding to any M^{1}, there exists a presentation $\left\{x_{1}, \ldots, x_{n} \mid R_{1}, \ldots, R_{m}\right\}$ for G such that

$$
M^{1}=\left(\gamma\left(\partial R_{i} / \partial x_{j}\right)\right)
$$

LEMMA 2.2. Let G be a finite group with presentation

$$
G=F / R=\left\{x_{1}, \ldots, x_{n} \mid R_{1}, \ldots, R_{m}\right\}
$$

and

$$
M^{1}=\left(\gamma\left(\partial R_{i} / \partial x_{j}\right)\right),
$$

then R / R^{\prime} is equivalent as a $Z G$ module to \bar{R} where \bar{R} is the submodule generated by the row space of M^{1}. The equivalence mapping is defined by ϕ where

$$
\phi\left(r R^{\prime}\right)=\gamma\left(\partial r / \partial x_{1}, \ldots, \partial r / \partial x_{n}\right)
$$

Let $\tau: Z G \rightarrow Z$ be the homomorphism induced by $\tau(g)=1$, for all g belonging to G, then we have

THEOREM 2.3. Let G be a finite group, then we may choose a presentation for G such that

$$
\begin{gathered}
G=\left\{x_{1}, \ldots, x_{n} \mid R_{1}, \ldots, R_{m}\right\}, \\
M^{1}=\left(\gamma\left(\partial R_{i} / \partial x_{j}\right)\right), \\
\tau\left(M^{1}\right)=\binom{n_{n}}{0},
\end{gathered}
$$

where M_{n} is a non-singular $n \times n$ integral matrix, and

$$
\tau\left(M^{2}\right)=\left(\begin{array}{ll}
0 & D_{m-n} \\
0 & 0
\end{array}\right)
$$

where D_{m-n} is a non-singular diagonal $(m-n) \times(m-n)$ integral matrix, $D\left(z_{1}, \ldots, z_{m-n}\right)$, such that

$$
z_{i} \mid z_{i+1}, \quad i=1, \ldots, m-n-1 .
$$

Proof. Clearly we can carry out elementary row operations on M^{1} and M^{2}. Thus M^{1} may be put in the required form. With M^{1} in this form then the first n columns of $\tau\left(M^{2}\right)$ are zero, so that column operations are then induced on the non-zero columns of $\tau\left(M^{2}\right)$ by carrying out row operations on the zero rows of $\tau\left(M^{l}\right)$. //

COROLLARY 2.4. Let Z_{p} be a trivial $Z G$-module, then
(i) $\operatorname{dim} H^{2}\left(G, Z_{p}\right)=m-s-\operatorname{rank} M_{n}$;
(ii) $\operatorname{dim} H^{1}\left(G, Z_{p}\right)=$ nullity M_{n};
(iii) $\operatorname{dim} H^{\circ}\left(G, z_{p}\right)=1$,
where M_{n} is considered as a matrix with entries in Z_{p} and s is the number of z_{i} in the set $\left\{z_{1}, \ldots, z_{m-n}\right\}$ prime to p. //

COROLLARY 2.5. The minimal number of generators of the multiplicator of G is equal to $m-n-t$ where t is the number of times 1 occurs in the set $\left\{z_{1}, \ldots, z_{m-n}\right\}$. //

COROLLARY 2.6. Let G be a finite group such that the minimal number of generators of the multiplicator of G is r; then $r+1 \geq \operatorname{dim} H^{2}\left(G, Z_{p}\right)-\operatorname{dim} H^{1}\left(G, Z_{p}\right)+\operatorname{dim} H^{0}\left(G, Z_{p}\right)$, for all trivial $Z G$ modules z_{p}. //

3. A theorem of Swan

The following theorem is due to R.G. Swan [4], Theorem (5.1). The proof will only be outlined to the extent we wish to use it.

THEOREM 3.1. Let G be a finite group of order g. Let f_{0}, f_{1}, \ldots be given integers. Then there is a free resolution of z over $Z G$

$$
\ldots \rightarrow F_{2}+F_{1} \rightarrow F_{0} \rightarrow Z \rightarrow 0
$$

with each F_{i} free on f_{i} generators, if and only if the following two conditions are satisfied:
(1) for all primes $p l g$ (and one other if $G=1$) and all simple $z_{p} G$-modules M, we have
$(\operatorname{dim} M)\left(f_{n}-f_{n-1}+\ldots\right) \geq \operatorname{dim} H^{n}(G, M)-\operatorname{dim} H^{n-1}(G, M)+\ldots$ for all n;
(2) if G has periodic cohomology with (minimal) period q, then for every n such that $n \equiv-1(\bmod q)$ and G has no periodic free resolution of period $n+1$, we must hove

$$
f_{n}-f_{n-1}+\ldots \geq 1
$$

Proof. The theorem is proved by supposing we have an exact sequence

$$
F_{n}+F_{n-1} \rightarrow \ldots \rightarrow F_{0} \rightarrow z \rightarrow 0
$$

where F_{i} is $2 G$-free on f_{i} generators; then if the f_{i} satisfy the
conditions of the theorem we extend the exact sequence to

$$
F_{n+1} \rightarrow F_{n} \rightarrow \ldots \rightarrow F_{0} \rightarrow Z \rightarrow 0
$$

where F_{n+1} is free on f_{n+1} generators. //

4. Applications

LEMMA 4.1. Let G be a finite nizpotent group such that the minimal number of generators of the multiplicator of G is r; then

$$
r+1 \geq \operatorname{dim} H^{2}\left(G, Z_{p}\right)-\operatorname{dim} H^{1}\left(G, Z_{p}\right)+\operatorname{dim} H^{0}\left(G, Z_{p}\right)
$$

Proof. The lemma was proved for z_{p} trivial in Corollary 2.6. For Z_{p} not trivial then $H^{i}\left(G, Z_{p}\right)=0$. //

LEMMA 4.2. Let G be a finite nilpotent group such that the minimal number of generators of the multiplicator of G is r; then

$$
(\operatorname{dim} M)(r+1) \geq \operatorname{dim} H^{2}(G, M)-\operatorname{dim} H^{l}(G, M)+\operatorname{dim} H^{\circ}(G, M)
$$

for all simple 2_{p} G-modules M.
Proof. M simple implies M is an elementary abelian group of exponent p and order p^{r}. The case $r=1$ was treated in the previous lemma so we may assume $r>1$.

For K a normal subgroup of G let M^{K} be the maximal trivial $Z_{p} K$-submodule of M. Also let S_{p} be the Sylow p subgroup of G, whence $G=S_{p} \times S$. We consider the various cases:
(i) $M^{G}=M$ then $r=1$, hence $M^{G}=0$;
(ii) $M^{S}=0$ then $H^{i}(G, M)=0$ for all $i \geq 0$;
(iii) $M^{S} \neq 0$ then $A=\left\langle g m \mid g \in S_{p}, m \in M^{s}\right\rangle$ is a submodule of M whence $M=A=M^{S}$;

$$
\text { (iv) } M=M^{s} \text { then } r=1
$$

LEMMA 4.3. Let G be a finite nilpotent group generated by n elements $\left\{x_{1}, \ldots, x_{n}\right\}$ such that the multiplicator of G is generated by r elements; then there exists an exact sequence

$$
F_{2} \stackrel{\alpha}{\rightarrow} F_{1} \xrightarrow{M^{0}} F_{0} \stackrel{\tau}{\rightarrow} Z \rightarrow 0
$$

where F_{2} is free on $n+r$ generators, F_{1} free on n generators, F_{0} free on 1 generator and M° is given in matrix form by

$$
M^{0}=\left(\begin{array}{c}
x_{1}-1 \\
\ldots \\
x_{n}-1
\end{array}\right)
$$

Proof. This follows from the Lyndon resolution, Theorem 3.1 and Lerma 4.2. //

THEOREM 4.4. Let G be a finite nilpotent group generated by n elements such that the multiplicator of G is generated by r elements ; then G has a presentation

$$
G=\left\{x_{1}, \ldots, x_{n} \mid R_{1}, \ldots, R_{n+r}, S_{1}, \ldots, S_{t}\right\}
$$

where S_{i} belong to R^{\prime} for $i=1, \ldots, t$.
Proof. Writing α of Lemma 4.3 in matrix terms and using the fact that $H_{1}(G, Z G)=0$ then α is a possible M^{1} for the Lyndon resolution and hence by Lemmas 2.1 and 2.2 the result follows. //

COROLLARY 4.5. Let G be a finite nitpotent group, where n equals the minimal number of generators of the multiplicator of G, then there exists a group K with deficiency $-n$ such that G is the maximal soluble factor group of K. //

It would be of interest to know the form of the presentation given by Theorem 4.4 for some of the well known three generator p groups with trivial muitiplicator; for example, let $G=\left\{a, b, c \mid b^{-1} a b=a^{1+p}, c^{-1} b c=b^{1+p}, a^{-1} c a=c^{1+p}\right.$, $\left.a^{p^{3}}=b^{p^{3}}=c^{p^{3}}=1\right\}$.

Then G has trivial multiplicator for $p \geq 5$; however actual calculation of a presentation of the form given by Theorem 4.4 with $r=0$ seems very difficult.

References

[1] Roger C. Lyndon, "Cohomology theory of groups with a single defining relation", Ann. of Math. (2) 52 (1950), 650-665.
[2] B.H. Neumann, "On some finite groups with trivial multiplicator", Publ. Math. Debrecen 4 (1956), 190-194.
[3] J. Schur, "Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen", J. Reine. Angew. Math. 132 (1907), 85-137.
[4] Richard G. Swan, "Minimal resolutions for finite groups", Topology 4 (1965), 193-208.

The Flinders University of South Australia, Bedford Park, South Australia.

