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A PERMUTABILITY PROBLEM IN INFINITE GROUPS AND
RAMSEY’S THEOREM

ALIREZA ABDOLLAHI AND ALIAKBAR MOHAMMADI HASSANABADI

We use Ramsey’s theorem to generalise a result of L. Babai and T.S. Sés on Sidon
subsets and then use this to prove that for an integer n > 1 the class of groups in which
every infinite subset contains a rewritable n-subset coincides with the class of groups in

which every infinite subset contains » mutually disjoint non-empty subsets Xj,..., X,
such that X; --- X, N Xo1) " Xom) # ¢ for some non-identity permutation ¢ on the
set {1,...,n}.

INTRODUCTION AND RESULTS

In [4], Babai and Sés called a subset .S of a group G a Sidon subset of the first (second)
kind, if for any z,y,z,w € S of which at least 3 are different, zy # 2w (zy~! # zw™,
respectively). Among other things, they proved [4, Proposition 8.1] that an infinite subset
of a group contains an infinite subset which is a Sidon subset of both kinds simultaneously.

We generalise the above definition as follows:

Let n be a positive integer greater than 1 and ¢y, ..., az, be non-zero integers. We
say that a subset S of a group is a Sidon subset of kind (e, . .., agy,) if and only if for any
T1,...,T2a € S of which at least n+ 1 are different, z3* - - - z2» # z;24' - - - 232». Thus in

our terminology every Sidon set of kind (1,1,1,1) ( (1,—1,1,-1) ) is a Sidon set of the
first (respectively, second) kind.
Using Ramsey’s Theorem [14], we prove the following which generalises [4, Propo-

sition 8.1].
THEOREM A. Let n > 1 be an integer, ay, ..., 02, be non-zero integers and X be
an infinite subset of a group such that for alli € {1,...,2n} and for all distinct elements

z,y € X, x% # y*. Then X contains an infinite Sidon subset of kind (af(l), ceey af(gk))
for all k € {2,...,n} and for all functions f : {1,...,2k} = {1,...,2n} simultaneously.

B.H. Neumann proved in [13] that a group is centre-by-finite if and only if every in-
finite subset of the group contains a pair of commuting elements. Extensions of problems
of this type are to be found in [10] and [12]. The notion of commutativity was extended
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to rewritable products in [7] with a complete description obtained in [9]. Detailed study
of rewritable groups may be found in [5] and [6]. In [8], the authors introduced a class
R, of groups, where n is an integer greater than 1, as follows: a group G is called an
R, group if every infinite subset X of G contains a subset {zi,...,z,} of n elements
such that z1,...,%n = Zo(1),-- -, To(n) fOr some non-identity permutation o on the set
{1,...,n}. They proved there that a group G is an R, group for some integer n if and
only if G has a normal subgroup F such that G/F is finite, F is an FC-group and the
exponent of F/Z(F) is finite.

In (1] and [2] we considered the following condition on a group. Let n > 1 be an
integer. A group G is called restricted (oo, n)-permutable if and only if for all n infinite
subsets Xj,..., X, of G there exists a non-identity permutation o on the set {1,...,n}
such that X;---Xp N Xo) -+ Xom) # 0, where, as usual, for any non-empty subsets
Yi,..., Y, of a group, Y; - - - Y, equals the set of products y, - - -y where y; € Y1,...,yx €
Yk.

In [1] we showed that every infinite restricted (oo, 2)-permutable group is Abelian
and in [2] we extended this result by proving that every restricted (oo, n)-permutable
group is n-permutable for all integers n > 1. Also in [3] we considered a class @, of
groups which is defined as follows: a group G is a Q,-group if for all n infinite subsets
X1,..., X, of G there exists two distinct permutations o,7 on the set {1,...,n} such
that X,(1) - - Xrn) NV Xo(1) - Xo(n) # 0. We proved in [3] that every infinite Q,-group is
n-rewritable.

Now, for every integer n greater than 1, we consider another class of groups called
R,-groups and defined as follows: a group G is called an R,-group if every infinite
subset X of G contains n mutually disjoint non-empty subsets X;,..., X, such that
Xy XaNXoq) -+ Xo(n) # @ for some non-identity permutation o on the set {1,...,n}.
Clearly, every R,-group is an R,-group and we use Theorem A to prove that the converse
also holds; namely we have:

THEOREM B. For every integer n greater than 1, the class R, coincides with the
class R,,.

PRroOFS

To prove Theorem A we need Ramsey’s Theorem [14].

ProOF OF THEOREM A: Let k € {2,...,n}, let r be an arbitrary element of the
set {1,...,k} and let Y be an infinite subset of X. Suppose that f is a function from the
set {1,...,2k} to the set {1,...,2n} and put &; = ay; for all i € {1,...,2k}. List the
elements of Y as zi, z,, ... under some well order < so that z; < z; if ¢ < j. Consider
the set Y**7) of all (k + r)-element subsets of Y. For each s € Y*+7) list the elements
Tiy; - - -4 Tiy,, Of s in the ascending order given by < and write 3 = (zy,,...,%;,,,). Now let
(t1,t2,. .., 1) be a 2k-tuple of elements of {1, 2, ..., k+r} such that l{tl, ... ,tzk}l = k-+r,
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and let T, be the set of all such 2k-tuples. Define |T,| + 1 sets, one U(Y) for each
element ¢ of T, and V,(Y), as follows. For each s € Y+ 3 = (ziy, ..., Ti,,), put
s € U(Y) if 23} -+ 25} = .rf::l -z and put s in V,(Y) if s ¢ Uy(Y) for any ¢. By
Ramsey’s Theorem, there exists an infinite subset Z C Y such that Z*:+) C Uy (Y)
for some t or Z*+7) C V,(Y). By restricting the order < to Z, we may assume that
Z ={z1,%,,...} and 7; < z; if i < j. Suppose, if possible, that Z*+) C U,(Y) for some
t = (t1,...,t2) € T,. Hence for any i; <ip < -+ < tgyy,

L gk SRR e

I‘h Bty L gy

Since |{t1,...,t2k}| =k + 1 > k, there exists | € {1,...,2k} such that ¢; # £, for
any h € {1,...,2k}\{l}. Thus we may write z;, as a product of :r,ff"’s where ¢, €
{t1,...,t2}\{t:}. Now, since Z is infinite there exist sequences j; < j2 < -+ < Jaqr
and p; < p < - < Pi4, such that j, # p;, and j, = p, when h € {1,...,2k}\{i}.
Therefore x?j‘ = zf,‘q, contrary to the hypothesis on the set X. Hence Z**") C V,(Y).

Now, list the elements of X as z,,z,,... under some well order < so that z; < z; if
i < j. Replace Y by X and put 7 = 1 in the above argument, then there is an infinite
subset X; of X such that X{¥*1 ¢ Vi(X). By restricting the order < to each infinite
subset of X, the above process yields a chain of infinite subsets X, C--- C X; C X¢ =
X such that X**9 C Vj(X;_,) for all i = 1,2,...,k. Thus X is a Sidon subset of
kind (ey,...,€2¢). Since the set of such 2k-tuples is finite, where k ranges over the set
{2,...,n}, the proof is complete. 0

As we mentioned before, Theorem A generalises {4, Proposition 8.1]. In fact we
have:

COROLLARY 1. Let G be an infinite group, n > 1 an integer and ¢, ... e, €
{—1,1}. Then every infinite subset of G contains a Sidon subset of kind (e F1)y € f(2k))
for all k € {2,...,n} and for all functions f : {1,...,2k} — {1,...,2n} simultaneously.

Using the fact that in a torsion-free nilpotent group no two distinct elements can
have the same non-zero power (for example see [11, Theorem 16.2.8]), we also have the
following corollary of Theorem A on nilpotent groups.

COROLLARY 2. LetG be a nilpotent group and let T be the torsion subgroup of G.
Ifn>1and ay,...,as, are non-zero integers, then every infinite subset X of G such that
zT # yT for all distinct elements z,y € X, contains a Sidon set of kind (a 1)y O ,(2k))
for all k € {2,...,n} and for all functions f : {1,...,2k} — {1,...,2n} simultaneously.

To prove Theorem B we need only to prove that every infinite R,-group is an R,-
group for which we use Theorem A.

PROOF OF THEOREM B: Let G be an infinite R,-group. Let X be an infinite subset
2n

. . . - ’_A_N
of G. By Corollary 1, X contains an infinite Sidon subset X, of kind (1, A 1). Now
since G € R,, X, contains mutually disjoint non-empty subsets X1,..., X, such that
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X1+ XnNXo) - Xon) # 0 for some non-identity permutation o on the set {1,...,n}.
Therefore there exist elements z;,...,Ts, € Xo of which at least n are distinct, such
that T, -+~ Zn = Tne1 - Ton, (T1,- > Tn) # (Tat1s- .-, T2q), and 24, ..., Z, are distinct as
well as Tpy1,...,To,. Thus by the property of the set X,, we must have {zi,...,z,} =
{Za+1,---»T2n}. Therefore there exists a non-identity permutation 7 on the set {1,...,n}
such that z,4; = z. for all i € {1,..., n}, and SO Ty --Tn = ZTy1):Ty(n). This
completes the proof.

By [8, Theorem A] and Theorem B, we obtain the following corollary which gener-
alises the key lemmas of [2] and [3] ({2, Lemma 2.3] and [3, Lemma 4]).

COROLLARY 3. A group G is an R,-group for some integer n > 1 if and only if
G has a normal subgroup F such that G/F is finite, F' is an FC-group and the exponent
of F/Z(F) is finite.

Lastly in this paper we consider another class of groups. Let n > 1 be an integer
and m > 0 be a cardinality of a countable set (finite or infinite). We say that a group G
is an R*(n, m)-group if and only if every infinite set of m-sets (a set with cardinality m

is said to be an m-set) in G contains n distinct members X,, ..., X, such that
Xl "'XnnXa(l)"'Xa(n) # 0
for some non-identity permutation o on the set {1,...,n}. It is natural to ask what are

the relations between this class of groups and Ry-groups. In fact we have:

PROPOSITION 4. R*(n,m) = R, for alln and m.

PROOF: By Theorem B, it is enough to prove R*(n,m) = R,. Suppose, for a
contradiction, that G is an infinite R*(n,m)-group which is not in R,. Thus there
exists an infinite subset X of G such that for every n mutually disjoint non-empty sub-
sets X1,...,X, and for all non-identity permutation ¢ on the set {1,2,...,n}, we have
X1+ XaNXy) - Xom) = 0. Since X is infinite and m is the cardinality of a countable
set, there exists an infinite set of mutually disjoint m-sets of X. Now the existence of
the latter set contradicts the property R*(n,m). Conversely, suppose that G € R, = R,,.
Let X be an infinite set of m-sets of G. If two distinct members X;, X, of X intersect in
an element z then by considering n — 2 other arbitrary different members X3, ..., X, of
X, we have X1 Xy --- X, N XX, X3 - X, # 0, so we may assume that the members of X
are mutually disjoint. Thus by choosing one element from each member of X', we obtain
an infinite set X such that each element of X belongs to one and only one member of
X. Now since G € R,, there exist n elements z1,...,Z, and a permutation o on the
set {1,2,...,n} such that z,:--z, = Z,q)- - ZTo(n). Now by the choice of X for each
i € {1,2,...,n}, there exists an element X; € X such that z; € X;; that is, there exist
X1, Xs,...,X, € X such that

Ty -Tq € XIXZ"'Xn nXa(l) o 'Xa(n)a
so that G € R*(n,m). This completes the proof. 0
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