We use Ramsey’s theorem to generalise a result of L. Babai and T.S. Sós on Sidon subsets and then use this to prove that for an integer \(n > 1 \) the class of groups in which every infinite subset contains a rewritable \(n \)-subset coincides with the class of groups in which every infinite subset contains \(n \) mutually disjoint non-empty subsets \(X_1, \ldots, X_n \) such that \(X_1 \cdots X_n \cap X_{\sigma(1)} \cdots X_{\sigma(n)} \neq \emptyset \) for some non-identity permutation \(\sigma \) on the set \(\{1, \ldots, n\} \).

Introduction and results

In [4], Babai and Sós called a subset \(S \) of a group \(G \) a Sidon subset of the first (second) kind, if for any \(x, y, z, w \in S \) of which at least 3 are different, \(xy \neq zw \) (\(xy^{-1} \neq zw^{-1} \), respectively). Among other things, they proved [4, Proposition 8.1] that an infinite subset of a group contains an infinite subset which is a Sidon subset of both kinds simultaneously.

We generalise the above definition as follows:

Let \(n \) be a positive integer greater than 1 and \(\alpha_1, \ldots, \alpha_{2n} \) be non-zero integers. We say that a subset \(S \) of a group is a Sidon subset of kind \((\alpha_1, \ldots, \alpha_{2n})\) if and only if for any \(x_1, \ldots, x_{2n} \in S \) of which at least \(n + 1 \) are different, \(x_1^{\alpha_1} \cdots x_{2n}^{\alpha_{2n}} \neq x_1^{\alpha_{n+1}} \cdots x_{2n}^{\alpha_{2n}} \). Thus in our terminology every Sidon set of kind \((1,1,1,1)\) (\((1,-1,1,-1)\)) is a Sidon set of the first (respectively, second) kind.

Using Ramsey’s Theorem [14], we prove the following which generalises [4, Proposition 8.1].

Theorem A. Let \(n > 1 \) be an integer, \(\alpha_1, \ldots, \alpha_{2n} \) be non-zero integers and \(X \) be an infinite subset of a group such that for all \(i \in \{1, \ldots, 2n\} \) and for all distinct elements \(x, y \in X \), \(x^{\alpha_i} \neq y^{\alpha_i} \). Then \(X \) contains an infinite Sidon subset of kind \((\alpha_{f(1)}, \ldots, \alpha_{f(2k)})\) for all \(k \in \{2, \ldots, n\} \) and for all functions \(f : \{1, \ldots, 2k\} \to \{1, \ldots, 2n\} \) simultaneously.

B.H. Neumann proved in [13] that a group is centre-by-finite if and only if every infinite subset of the group contains a pair of commuting elements. Extensions of problems of this type are to be found in [10] and [12]. The notion of commutativity was extended

Received 24th July, 2000
This research was in part supported by a grant from IPM.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/01 $A2.00+0.00.
to rewritable products in [7] with a complete description obtained in [9]. Detailed study of rewritable groups may be found in [5] and [6]. In [8], the authors introduced a class \(R_n \) of groups, where \(n \) is an integer greater than 1, as follows: a group \(G \) is called an \(R_n \) group if every infinite subset \(X \) of \(G \) contains a subset \(\{x_1, \ldots, x_n\} \) of \(n \) elements such that \(x_1, \ldots, x_n = x_{\sigma(1)}, \ldots, x_{\sigma(n)} \) for some non-identity permutation \(\sigma \) on the set \(\{1, \ldots, n\} \). They proved there that a group \(G \) is an \(R_n \) group for some integer \(n \) if and only if \(G \) has a normal subgroup \(F \) such that \(G/F \) is finite, \(F \) is an FC-group and the exponent of \(F/Z(F) \) is finite.

In [1] and [2] we considered the following condition on a group. Let \(n > 1 \) be an integer. A group \(G \) is called restricted \((\infty, n)\)-permutable if and only if for all \(n \) infinite subsets \(X_1, \ldots, X_n \) of \(G \) there exists a non-identity permutation \(\sigma \) on the set \(\{1, \ldots, n\} \) such that \(X_1 \cdots X_n \cap X_{\sigma(1)} \cdots X_{\sigma(n)} \neq \emptyset \), where, as usual, for any non-empty subsets \(Y_1, \ldots, Y_k \) of a group, \(Y_1 \cdots Y_k \) equals the set of products \(y_1 \cdots y_k \) where \(y_1 \in Y_1, \ldots, y_k \in Y_k \).

In [1] we showed that every infinite restricted \((\infty, 2)\)-permutable group is Abelian and in [2] we extended this result by proving that every restricted \((\infty, n)\)-permutable group is \(n \)-permutable for all integers \(n > 1 \). Also in [3] we considered a class \(Q_n \) of groups which is defined as follows: a group \(G \) is a \(Q_n \)-group if for all \(n \) infinite subsets \(X_1, \ldots, X_n \) of \(G \) there exists two distinct permutations \(\sigma, \tau \) on the set \(\{1, \ldots, n\} \) such that \(X_{\sigma(1)} \cdots X_{\tau(1)} \cap X_{\sigma(2)} \cdots X_{\tau(2)} \cap \cdots \neq \emptyset \). We proved in [3] that every infinite \(Q_n \)-group is \(n \)-rewritable.

Now, for every integer \(n \) greater than 1, we consider another class of groups called \(\overline{R}_n \)-groups and defined as follows: a group \(G \) is called an \(\overline{R}_n \)-group if every infinite subset \(X \) of \(G \) contains \(n \) mutually disjoint non-empty subsets \(X_1, \ldots, X_n \) such that \(X_1 \cdots X_n \cap X_{\sigma(1)} \cdots X_{\sigma(n)} \neq \emptyset \) for some non-identity permutation \(\sigma \) on the set \(\{1, \ldots, n\} \). Clearly, every \(R_n \)-group is an \(\overline{R}_n \)-group and we use Theorem A to prove that the converse also holds; namely we have:

Theorem B. For every integer \(n \) greater than 1, the class \(R_n \) coincides with the class \(\overline{R}_n \).

Proofs

To prove Theorem A we need Ramsey's Theorem [14].

Proof of Theorem A: Let \(k \in \{2, \ldots, n\} \), let \(r \) be an arbitrary element of the set \(\{1, \ldots, k\} \) and let \(Y \) be an infinite subset of \(X \). Suppose that \(f \) is a function from the set \(\{1, \ldots, 2k\} \) to the set \(\{1, \ldots, 2n\} \) and put \(e_i = \alpha_{f(i)} \) for all \(i \in \{1, \ldots, 2k\} \). List the elements of \(Y \) as \(x_1, x_2, \ldots \) under some well order \(\preceq \) so that \(x_i < x_j \) if \(i < j \). Consider the set \(Y^{(k+r)} \) of all \((k+r) \)-element subsets of \(Y \). For each \(s \in Y^{(k+r)} \), list the elements \(x_{i_1}, \ldots, x_{i_{k+r}} \) of \(s \) in the ascending order given by \(\preceq \) and write \(s = (x_{i_1}, \ldots, x_{i_{k+r}}) \). Now let \((t_1, t_2, \ldots, t_{2k}) \) be a \(2k \)-tuple of elements of \(\{1, 2, \ldots, k+r\} \) such that \(\{t_1, \ldots, t_{2k}\} = k+r \),
and let \(T_r \) be the set of all such \(2k \)-tuples. Define \(|T_r| + 1\) sets, one \(U_t(Y) \) for each element \(t \) of \(T_r \) and \(V_r(Y) \), as follows. For each \(s \in Y^{(k+r)} \), \(\bar{s} = (x_{i_1}, \ldots, x_{i_{k+r}}) \), put \(s \in U_t(Y) \) if \(x_{i_1} \cdot \cdots \cdot x_{i_{k+r}} = x_{i_{k+1}} \cdot \cdots \cdot x_{i_{2k}} \) and put \(s \in V_r(Y) \) if \(s \notin U_t(Y) \) for any \(t \). By Ramsey's Theorem, there exists an infinite subset \(Z \subset Y \) such that \(Z^{(k+r)} \subset U_t(Y) \) for some \(t \) or \(Z^{(k+r)} \subset V_r(Y) \). By restricting the order \(\leq \) to \(Z \), we may assume that \(Z = \{x_1, x_2, \ldots\} \) and \(x_i < x_j \) if \(i < j \). Suppose, if possible, that \(Z^{(k+r)} \subset U_t(Y) \) for some \(t = (t_1, \ldots, t_{2k}) \in T_r \). Hence for any \(i_1 < i_2 < \cdots < i_{k+r} \),
\[
x_{i_1}^{t_1} \cdot \cdots \cdot x_{i_{k+r}}^{t_{k+r}} = x_{i_{k+1}}^{t_{k+1}} \cdot \cdots \cdot x_{i_{2k}}^{t_{2k}}.
\]
Since \(\{t_1, \ldots, t_{2k}\} = k + r > k \), there exists \(l \in \{1, \ldots, 2k\} \) such that \(t_l \neq t_h \) for any \(h \in \{1, \ldots, 2k\} \setminus \{l\} \). Thus we may write \(x_{i_1}^{t_1} \) as a product of \(x_{i_h}^{t_h} \)'s where \(t_h \in \{t_1, \ldots, t_{2k}\} \setminus \{l\} \). Now, since \(Z \) is infinite there exist sequences \(j_1 < j_2 < \cdots < j_{k+r} \) and \(p_1 < p_2 < \cdots < p_{k+r} \) such that \(j_l \neq p_l \) and \(j_h = p_h \) when \(h \in \{1, \ldots, 2k\} \setminus \{l\} \). Therefore \(x_{j_1}^{j_1} = x_{p_1}^{p_1} \), contrary to the hypothesis on the set \(X \). Hence \(Z^{(k+r)} \subset V_r(Y) \).

Now, list the elements of \(X \) as \(x_1, x_2, \ldots \) under some well order \(< \) so that \(x_i < x_j \) if \(i < j \). Replace \(Y \) by \(X \) and put \(r = 1 \) in the above argument, then there is an infinite subset \(X_1 \) of \(X \) such that \(X_1^{(k+1)} \subset V_1(X) \). By restricting the order \(\leq \) to each infinite subset of \(X \), the above process yields a chain of infinite subsets \(X_1, X_2, \ldots, X_k \) such that \(X_i^{(k+i)} \subset V_i(X_{i-1}) \) for all \(i = 1, 2, \ldots, k \). Thus \(X_k \) is a Sidon subset of kind \((e_1, \ldots, e_{2k})\). Since the set of such \(2k \)-tuples is finite, where \(k \) ranges over the set \{2, \ldots, n\}, the proof is complete.

As we mentioned before, Theorem A generalises [4, Proposition 8.1]. In fact we have:

Corollary 1. Let \(G \) be an infinite group, \(n > 1 \) an integer and \(e_1, \ldots, e_{2n} \in \{-1,1\} \). Then every infinite subset of \(G \) contains a Sidon subset of kind \((e_{f(1)}, \ldots, e_{f(2k)})\) for all \(k \in \{2, \ldots, n\} \) and for all functions \(f : \{1, \ldots, 2k\} \rightarrow \{1, \ldots, 2n\} \) simultaneously.

Using the fact that in a torsion-free nilpotent group no two distinct elements can have the same non-zero power (for example see [11, Theorem 16.2.8]), we also have the following corollary of Theorem A on nilpotent groups.

Corollary 2. Let \(G \) be a nilpotent group and let \(T \) be the torsion subgroup of \(G \). If \(n > 1 \) and \(a_1, \ldots, a_{2n} \) are non-zero integers, then every infinite subset \(X \) of \(G \) such that \(xT \neq yT \) for all distinct elements \(x, y \in X \), contains a Sidon set of kind \((a_{f(1)}, \ldots, a_{f(2k)})\) for all \(k \in \{2, \ldots, n\} \) and for all functions \(f : \{1, \ldots, 2k\} \rightarrow \{1, \ldots, 2n\} \) simultaneously.

To prove Theorem B we need only to prove that every infinite \(\widehat{R}_n \)-group is an \(\widehat{R}_n \)-group for which we use Theorem A.

Proof of Theorem B: Let \(G \) be an infinite \(\widehat{R}_n \)-group. Let \(X \) be an infinite subset of \(G \). By Corollary 1, \(X \) contains an infinite Sidon subset \(X_0 \) of kind \((1, \ldots, 1)\). Now since \(G \in \widehat{R}_n \), \(X_0 \) contains mutually disjoint non-empty subsets \(X_1, \ldots, X_n \) such that...
Therefore there exist elements \(x_1, \ldots, x_{2n} \in X \) of which at least \(n \) are distinct, such that \(x_1 \cdots x_n = x_{n+1} \cdots x_{2n} \). Thus by the property of the set \(X \), we must have \(\{ x_1, \ldots, x_n \} = \{ x_{n+1}, \ldots, x_{2n} \} \). Therefore there exists a non-identity permutation \(\tau \) on the set \(\{ 1, \ldots, n \} \) such that \(x_{n+i} = x_{\tau(i)} \) for all \(i \in \{ 1, \ldots, n \} \), and so \(x_1 \cdots x_n = x_{\tau(1)} \cdots x_{\tau(n)} \). This completes the proof. \(\square \)

By [8, Theorem A] and Theorem B, we obtain the following corollary which generalises the key lemmas of [2] and [3] ([2, Lemma 2.3] and [3, Lemma 4]).

Corollary 3. A group \(G \) is an \(R_n \)-group for some integer \(n > 1 \) if and only if \(G \) has a normal subgroup \(F \) such that \(G/F \) is finite, \(F \) is an FC-group and the exponent of \(F/Z(F) \) is finite.

Lastly in this paper we consider another class of groups. Let \(n > 1 \) be an integer and \(m > 0 \) be a cardinality of a countable set (finite or infinite). We say that a group \(G \) is an \(R^*(n, m) \)-group if and only if every infinite set of \(m \)-sets (a set with cardinality \(m \) is said to be an \(m \)-set) in \(G \) contains \(n \) distinct members \(X_1, \ldots, X_n \) such that

\[
X_1 \cdots X_n \cap X_{\sigma(1)} \cdots X_{\sigma(n)} \neq \emptyset
\]

for some non-identity permutation \(\sigma \) on the set \(\{ 1, \ldots, n \} \). It is natural to ask what are the relations between this class of groups and \(R_n \)-groups. In fact we have:

Proposition 4. \(R^*(n, m) = R_n \) for all \(n \) and \(m \).

Proof: By Theorem B, it is enough to prove \(R^*(n, m) = R_n \). Suppose, for a contradiction, that \(G \) is an infinite \(R^*(n, m) \)-group which is not in \(R_n \). Thus there exists an infinite subset \(X \) of \(G \) such that for every \(n \) mutually disjoint non-empty subsets \(X_1, \ldots, X_n \) and for all non-identity permutation \(\sigma \) on the set \(\{ 1, 2, \ldots, n \} \), we have \(X_1 \cdots X_n \cap X_{\sigma(1)} \cdots X_{\sigma(n)} = \emptyset \). Since \(X \) is infinite and \(m \) is the cardinality of a countable set, there exists an infinite set of mutually disjoint \(m \)-sets of \(X \). Now the existence of the latter set contradicts the property \(R^*(n, m) \). Conversely, suppose that \(G \in R_n = R_n \). Let \(X \) be an infinite set of \(m \)-sets of \(G \). If two distinct members \(X_1, X_2 \) of \(X \) intersect in an element \(x \) then by considering \(n - 2 \) other arbitrary different members \(X_3, \ldots, X_n \) of \(X \), we have \(X_1 X_2 \cdots X_n \cap X_2 X_1 X_3 \cdots X_n \neq \emptyset \), so we may assume that the members of \(X \) are mutually disjoint. Thus by choosing one element from each member of \(X \), we obtain an infinite set \(X \) such that each element of \(X \) belongs to one and only one member of \(X \). Now since \(G \in R_n \), there exist \(n \) elements \(x_1, \ldots, x_n \) and a permutation \(\sigma \) on the set \(\{ 1, 2, \ldots, n \} \) such that \(x_1 \cdots x_n = x_{\sigma(1)} \cdots x_{\sigma(n)} \). Now by the choice of \(X \) for each \(i \in \{ 1, 2, \ldots, n \} \), there exists an element \(x_i \in X \) such that \(x_i = x_i \); that is, there exist \(X_1, X_2, \ldots, X_n \in X \) such that

\[
x_1 \cdots x_n \in X_1 X_2 \cdots X_n \cap X_{\sigma(1)} \cdots X_{\sigma(n)}
\]

so that \(G \in R^*(n, m) \). This completes the proof. \(\square \)
REFERENCES

Department of Mathematics
University of Isfahan
Isfahan 81744
Iran
and
Institute for Studies in Theoretical Physics and Mathematics
Tehran
Iran
e-mail: abdolahi@math.ui.ac.ir
aamohaha@math.ui.ac.ir