A PERMUTABILITY PROBLEM IN INFINITE GROUPS AND RAMSEY'S THEOREM

Alireza Abdollahi and Aliakbar Mohammadi Hassanabadi

We use Ramsey's theorem to generalise a result of L. Babai and T.S. Sós on Sidon subsets and then use this to prove that for an integer n > 1 the class of groups in which every infinite subset contains a rewritable *n*-subset coincides with the class of groups in which every infinite subset contains *n* mutually disjoint non-empty subsets X_1, \ldots, X_n such that $X_1 \cdots X_n \cap X_{\sigma(1)} \cdots X_{\sigma(n)} \neq \emptyset$ for some non-identity permutation σ on the set $\{1, \ldots, n\}$.

INTRODUCTION AND RESULTS

In [4], Babai and Sós called a subset S of a group G a Sidon subset of the first (second) kind, if for any $x, y, z, w \in S$ of which at least 3 are different, $xy \neq zw$ $(xy^{-1} \neq zw^{-1}, respectively)$. Among other things, they proved [4, Proposition 8.1] that an infinite subset of a group contains an infinite subset which is a Sidon subset of both kinds simultaneously.

We generalise the above definition as follows:

Let n be a positive integer greater than 1 and $\alpha_1, \ldots, \alpha_{2n}$ be non-zero integers. We say that a subset S of a group is a Sidon subset of kind $(\alpha_1, \ldots, \alpha_{2n})$ if and only if for any $x_1, \ldots, x_{2n} \in S$ of which at least n + 1 are different, $x_1^{\alpha_1} \cdots x_n^{\alpha_n} \neq x_{n+1}^{\alpha_{n+1}} \cdots x_{2n}^{\alpha_2}$. Thus in our terminology every Sidon set of kind (1, 1, 1, 1) ((1, -1, 1, -1)) is a Sidon set of the first (respectively, second) kind.

Using Ramsey's Theorem [14], we prove the following which generalises [4, Proposition 8.1].

THEOREM A. Let n > 1 be an integer, $\alpha_1, \ldots, \alpha_{2n}$ be non-zero integers and X be an infinite subset of a group such that for all $i \in \{1, \ldots, 2n\}$ and for all distinct elements $x, y \in X, x^{\alpha_i} \neq y^{\alpha_i}$. Then X contains an infinite Sidon subset of kind $(\alpha_{f(1)}, \ldots, \alpha_{f(2k)})$ for all $k \in \{2, \ldots, n\}$ and for all functions $f : \{1, \ldots, 2k\} \rightarrow \{1, \ldots, 2n\}$ simultaneously.

B.H. Neumann proved in [13] that a group is centre-by-finite if and only if every infinite subset of the group contains a pair of commuting elements. Extensions of problems of this type are to be found in [10] and [12]. The notion of commutativity was extended

Received 24th July, 2000

This research was in part supported by a grant from IPM.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/01 \$A2.00+0.00.

[2]

28

to rewritable products in [7] with a complete description obtained in [9]. Detailed study of rewritable groups may be found in [5] and [6]. In [8], the authors introduced a class R_n of groups, where *n* is an integer greater than 1, as follows: a group *G* is called an R_n group if every infinite subset *X* of *G* contains a subset $\{x_1, \ldots, x_n\}$ of *n* elements such that $x_1, \ldots, x_n = x_{\sigma(1)}, \ldots, x_{\sigma(n)}$ for some non-identity permutation σ on the set $\{1, \ldots, n\}$. They proved there that a group *G* is an R_n group for some integer *n* if and only if *G* has a normal subgroup *F* such that G/F is finite, *F* is an FC-group and the exponent of F/Z(F) is finite.

In [1] and [2] we considered the following condition on a group. Let n > 1 be an integer. A group G is called restricted (∞, n) -permutable if and only if for all n infinite subsets X_1, \ldots, X_n of G there exists a non-identity permutation σ on the set $\{1, \ldots, n\}$ such that $X_1 \cdots X_n \cap X_{\sigma(1)} \cdots X_{\sigma(n)} \neq \emptyset$, where, as usual, for any non-empty subsets Y_1, \ldots, Y_k of a group, $Y_1 \cdots Y_k$ equals the set of products $y_1 \cdots y_k$ where $y_1 \in Y_1, \ldots, y_k \in Y_k$.

In [1] we showed that every infinite restricted $(\infty, 2)$ -permutable group is Abelian and in [2] we extended this result by proving that every restricted (∞, n) -permutable group is *n*-permutable for all integers n > 1. Also in [3] we considered a class $\overline{Q_n}$ of groups which is defined as follows: a group G is a $\overline{Q_n}$ -group if for all n infinite subsets X_1, \ldots, X_n of G there exists two distinct permutations σ, τ on the set $\{1, \ldots, n\}$ such that $X_{\tau(1)} \cdots X_{\tau(n)} \cap X_{\sigma(1)} \cdots X_{\sigma(n)} \neq \emptyset$. We proved in [3] that every infinite $\overline{Q_n}$ -group is *n*-rewritable.

Now, for every integer n greater than 1, we consider another class of groups called \overline{R}_n -groups and defined as follows: a group G is called an \overline{R}_n -group if every infinite subset X of G contains n mutually disjoint non-empty subsets X_1, \ldots, X_n such that $X_1 \cdots X_n \cap X_{\sigma(1)} \cdots X_{\sigma(n)} \neq \emptyset$ for some non-identity permutation σ on the set $\{1, \ldots, n\}$. Clearly, every R_n -group is an \overline{R}_n -group and we use Theorem A to prove that the converse also holds; namely we have:

THEOREM B. For every integer n greater than 1, the class R_n coincides with the class \overline{R}_n .

Proofs

To prove Theorem A we need Ramsey's Theorem [14].

PROOF OF THEOREM A: Let $k \in \{2, ..., n\}$, let r be an arbitrary element of the set $\{1, ..., k\}$ and let Y be an infinite subset of X. Suppose that f is a function from the set $\{1, ..., 2k\}$ to the set $\{1, ..., 2n\}$ and put $\varepsilon_i = \alpha_{f(i)}$ for all $i \in \{1, ..., 2k\}$. List the elements of Y as $x_1, x_2, ...$ under some well order \leq so that $x_i < x_j$ if i < j. Consider the set $Y^{(k+r)}$ of all (k + r)-element subsets of Y. For each $s \in Y^{(k+r)}$, list the elements $x_{i_1}, ..., x_{i_{k+r}}$ of s in the ascending order given by \leq and write $\overline{s} = (x_{i_1}, ..., x_{i_{k+r}})$. Now let $(t_1, t_2, ..., t_{2k})$ be a 2k-tuple of elements of $\{1, 2, ..., k+r\}$ such that $|\{t_1, ..., t_{2k}\}| = k+r$,

and let T_r be the set of all such 2k-tuples. Define $|T_r| + 1$ sets, one $U_t(Y)$ for each element t of T_r and $V_r(Y)$, as follows. For each $s \in Y^{(k+r)}$, $\overline{s} = (x_{i_1}, \ldots, x_{i_{k+r}})$, put $s \in U_t(Y)$ if $x_{i_{t_1}}^{\epsilon_1} \cdots x_{i_{t_k}}^{\epsilon_k} = x_{i_{t_{k+1}}}^{\epsilon_{k+1}} \cdots x_{i_{t_{2k}}}^{\epsilon_{2k}}$ and put s in $V_r(Y)$ if $s \notin U_t(Y)$ for any t. By Ramsey's Theorem, there exists an infinite subset $Z \subseteq Y$ such that $Z^{(k+r)} \subseteq U_t(Y)$ for some t or $Z^{(k+r)} \subseteq V_r(Y)$. By restricting the order \leq to Z, we may assume that $Z = \{x_1, x_2, \ldots\}$ and $x_i < x_j$ if i < j. Suppose, if possible, that $Z^{(k+r)} \subseteq U_t(Y)$ for some $t = (t_1, \ldots, t_{2k}) \in T_r$. Hence for any $i_1 < i_2 < \cdots < i_{k+r}$,

$$x_{i_{t_1}}^{\varepsilon_1} \cdots x_{i_{t_k}}^{\varepsilon_k} = x_{i_{t_{k+1}}}^{\varepsilon_{k+1}} \cdots x_{i_{t_{2k}}}^{\varepsilon_{2k}}.$$

Since $|\{t_1,\ldots,t_{2k}\}| = k+r > k$, there exists $l \in \{1,\ldots,2k\}$ such that $t_l \neq t_h$ for any $h \in \{1,\ldots,2k\} \setminus \{l\}$. Thus we may write $x_{it_l}^{\epsilon_l}$ as a product of $x_{it_h}^{\pm\epsilon_h}$'s where $t_h \in \{t_1,\ldots,t_{2k}\} \setminus \{t_l\}$. Now, since Z is infinite there exist sequences $j_1 < j_2 < \cdots < j_{k+r}$ and $p_1 < p_2 < \cdots < p_{k+r}$ such that $j_{t_l} \neq p_{t_l}$ and $j_{t_h} = p_{t_h}$ when $h \in \{1,\ldots,2k\} \setminus \{l\}$. Therefore $x_{jt_l}^{\epsilon_l} = x_{pt_l}^{\epsilon_l}$, contrary to the hypothesis on the set X. Hence $Z^{(k+r)} \subseteq V_r(Y)$.

Now, list the elements of X as x_1, x_2, \ldots under some well order \leq so that $x_i < x_j$ if i < j. Replace Y by X and put r = 1 in the above argument, then there is an infinite subset X_1 of X such that $X_1^{(k+1)} \subseteq V_1(X)$. By restricting the order \leq to each infinite subset of X, the above process yields a chain of infinite subsets $X_k \subseteq \cdots \subseteq X_1 \subseteq X_0 = X$ such that $X_i^{(k+i)} \subseteq V_i(X_{i-1})$ for all $i = 1, 2, \ldots, k$. Thus X_k is a Sidon subset of kind $(\varepsilon_1, \ldots, \varepsilon_{2k})$. Since the set of such 2k-tuples is finite, where k ranges over the set $\{2, \ldots, n\}$, the proof is complete.

As we mentioned before, Theorem A generalises [4, Proposition 8.1]. In fact we have:

COROLLARY 1. Let G be an infinite group, n > 1 an integer and $\varepsilon_1, \ldots, \varepsilon_{2n} \in \{-1, 1\}$. Then every infinite subset of G contains a Sidon subset of kind $(\varepsilon_{f(1)}, \ldots, \varepsilon_{f(2k)})$ for all $k \in \{2, \ldots, n\}$ and for all functions $f : \{1, \ldots, 2k\} \rightarrow \{1, \ldots, 2n\}$ simultaneously.

Using the fact that in a torsion-free nilpotent group no two distinct elements can have the same non-zero power (for example see [11, Theorem 16.2.8]), we also have the following corollary of Theorem A on nilpotent groups.

COROLLARY 2. Let G be a nilpotent group and let T be the torsion subgroup of G. If n > 1 and $\alpha_1, \ldots, \alpha_{2n}$ are non-zero integers, then every infinite subset X of G such that $xT \neq yT$ for all distinct elements $x, y \in X$, contains a Sidon set of kind $(\alpha_{f(1)}, \ldots, \alpha_{f(2k)})$ for all $k \in \{2, \ldots, n\}$ and for all functions $f : \{1, \ldots, 2k\} \rightarrow \{1, \ldots, 2n\}$ simultaneously.

To prove Theorem B we need only to prove that every infinite \overline{R}_n -group is an R_n -group for which we use Theorem A.

PROOF OF THEOREM B: Let G be an infinite \overline{R}_n -group. Let X be an infinite subset of G. By Corollary 1, X contains an infinite Sidon subset X_0 of kind $(1, \ldots, 1)$. Now since $G \in \overline{R}_n$, X_0 contains mutually disjoint non-empty subsets X_1, \ldots, X_n such that

30

 $X_1 \cdots X_n \cap X_{\sigma(1)} \cdots X_{\sigma(n)} \neq \emptyset$ for some non-identity permutation σ on the set $\{1, \ldots, n\}$. Therefore there exist elements $x_1, \ldots, x_{2n} \in X_0$ of which at least n are distinct, such that $x_1 \cdots x_n = x_{n+1} \cdots x_{2n}$, $(x_1, \ldots, x_n) \neq (x_{n+1}, \ldots, x_{2n})$, and x_1, \ldots, x_n are distinct as well as x_{n+1}, \ldots, x_{2n} . Thus by the property of the set X_0 , we must have $\{x_1, \ldots, x_n\} = \{x_{n+1}, \ldots, x_{2n}\}$. Therefore there exists a non-identity permutation τ on the set $\{1, \ldots, n\}$ such that $x_{n+i} = x_{\tau(i)}$ for all $i \in \{1, \ldots, n\}$, and so $x_1 \cdots x_n = x_{\tau(1)} \cdots x_{\tau(n)}$. This completes the proof.

By [8, Theorem A] and Theorem B, we obtain the following corollary which generalises the key lemmas of [2] and [3] ([2, Lemma 2.3] and [3, Lemma 4]).

COROLLARY 3. A group G is an \overline{R}_n -group for some integer n > 1 if and only if G has a normal subgroup F such that G/F is finite, F is an FC-group and the exponent of F/Z(F) is finite.

Lastly in this paper we consider another class of groups. Let n > 1 be an integer and m > 0 be a cardinality of a countable set (finite or infinite). We say that a group G is an $R^*(n, m)$ -group if and only if every infinite set of m-sets (a set with cardinality m is said to be an m-set) in G contains n distinct members X_1, \ldots, X_n such that

$$X_1\cdots X_n\cap X_{\sigma(1)}\cdots X_{\sigma(n)}\neq \emptyset$$

for some non-identity permutation σ on the set $\{1, \ldots, n\}$. It is natural to ask what are the relations between this class of groups and \overline{R}_n -groups. In fact we have:

PROPOSITION 4. $R^*(n,m) = R_n$ for all n and m.

PROOF: By Theorem B, it is enough to prove $R^*(n,m) = \overline{R}_n$. Suppose, for a contradiction, that G is an infinite $R^*(n,m)$ -group which is not in \overline{R}_n . Thus there exists an infinite subset X of G such that for every n mutually disjoint non-empty subsets X_1, \ldots, X_n and for all non-identity permutation σ on the set $\{1, 2, \ldots, n\}$, we have $X_1 \cdots X_n \cap X_{\sigma(1)} \cdots X_{\sigma(n)} = \emptyset$. Since X is infinite and m is the cardinality of a countable set, there exists an infinite set of mutually disjoint m-sets of X. Now the existence of the latter set contradicts the property $R^*(n, m)$. Conversely, suppose that $G \in \overline{R}_n = R_n$. Let \mathcal{X} be an infinite set of *m*-sets of *G*. If two distinct members X_1, X_2 of \mathcal{X} intersect in an element x then by considering n-2 other arbitrary different members X_3, \ldots, X_n of \mathcal{X} , we have $X_1X_2\cdots X_n\cap X_2X_1X_3\cdots X_n\neq \emptyset$, so we may assume that the members of \mathcal{X} are mutually disjoint. Thus by choosing one element from each member of \mathcal{X} , we obtain an infinite set X such that each element of X belongs to one and only one member of \mathcal{X} . Now since $G \in R_n$, there exist n elements x_1, \ldots, x_n and a permutation σ on the set $\{1, 2, \ldots, n\}$ such that $x_1 \cdots x_n = x_{\sigma(1)} \cdots x_{\sigma(n)}$. Now by the choice of X for each $i \in \{1, 2, ..., n\}$, there exists an element $X_i \in \mathcal{X}$ such that $x_i \in X_i$; that is, there exist $X_1, X_2, \ldots, X_n \in \mathcal{X}$ such that

$$x_1 \cdots x_n \in X_1 X_2 \cdots X_n \cap X_{\sigma(1)} \cdots X_{\sigma(n)},$$

so that $G \in R^*(n, m)$. This completes the proof.

D

[4]

[5]

References

- A. Abdollahi and A. Mohammadi Hassanabadi, 'A characterization of infinite abelian groups', Bull. Iranian Math. Soc. 24 (1998), 41-47.
- [2] A. Abdollahi, A. Mohammadi Hassanabadi and B. Taeri, 'A property equivalent to n-permutability for infinite groups', J. Algebra 221 (1999), 570-578.
- [3] A. Abdollahi, A. Mohammadi Hassanabadi and B. Taeri, 'An *n*-rewritability criterion for infinite groups', *Comm. Algebra* (to appear).
- [4] L. Babai and T.S. Sós, 'Sidon sets in groups and induced subgraphs of Cayley graphs', European J. Combin. 6 (1985), 101-114.
- [5] R.D. Blyth, 'Rewriting products of group elements I', J. Algebra 116 (1988), 506-521.
- [6] R.D. Blyth, 'Rewriting products of group elements II', J. Algebra 118 (1988), 249-259.
- [7] M. Curzio, P. Longobardi and M. Maj, 'On a combinatorial problem in group theory', (in Italian), Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 74 (1983), 136-142.
- [8] M. Curzio, P. Longobardi, M. Maj and A. Rhemtulla, 'Groups with many rewritable products', Proc. Amer. Math. Soc. 115 (1992), 931–934.
- [9] M. Curzio, P. Longobardi, M. Maj and D.J.S. Robinson, 'A permutational property of groups', Arch. Math. (Basel) 44 (1985), 385-389.
- [10] J.R.J. Groves, 'A conjecture of Lennox and Wiegold concerning supersoluble groups', J. Austral. Math. Soc. Ser. A 35 (1983), 218-220.
- [11] M.I. Kargapolov and Ju.I. Merzljakov, Fundamentals of the theory of groups (Springer-Verlag, Berlin, Heidelberg, New York, 1979).
- [12] J.C. Lennox and J. Wiegold, 'Extensions of a problem of Paul Erdös on groups', J. Austral. Math. Soc. Ser. A 31 (1981), 459-463.
- [13] B.H. Neumann, 'A problem of Paul Erdös on groups', J. Austral. Math. Soc. Ser. A 21 (1976), 467-472.
- [14] F.P. Ramsey, 'On a problem of formal logic', Proc. London Math. Soc. (2) 30 (1929), 264-286.

Department of Mathematics University of Isfahan Isfahan 81744 Iran and Institute for Studies in Theoretical Physics and Mathematics Tehran Iran e-mail: abdolahi@math.ui.ac.ir aamohaha@math.ui.ac.ir