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A PERMUTABILITY PROBLEM IN INFINITE GROUPS AND
RAMSEY'S THEOREM

ALIREZA ABDOLLAHI AND ALIAKBAR MOHAMMADI HASSANABADI

We use Ramsey's theorem to generalise a result of L. Babai and T.S. Sos on Sidon
subsets and then use this to prove that for an integer n > 1 the class of groups in which
every infinite subset contains a rewritable n-subset coincides with the class of groups in
which every infinite subset contains n mutually disjoint non-empty subsets X\,... ,Xn

such that X\ • • • Xn D Xa(x)""' Xo(n) ¥" ® f°r some non-identity permutation a on the
set { l , . . . ,n} .

INTRODUCTION AND RESULTS

In [4], Babai and Sos called a subset S of a group G a Sidon subset of the first (second)
kind, if for any x,y,z,w € S of which at least 3 are different, xy ^ zw (xy'1 ^ zw'1,
respectively). Among other things, they proved [4, Proposition 8.1] that an infinite subset
of a group contains an infinite subset which is a Sidon subset of both kinds simultaneously.

We generalise the above definition as follows:

Let n be a positive integer greater than 1 and c*i,..., a2n be non-zero integers. We
say that a subset 5 of a group is a Sidon subset of kind (a\,..., a^n) if and only if for any
xi,...,x2neS of which at least n + 1 are different, x"' • • • x°n ^ x"^ 1 • • • i g " . Thus in
our terminology every Sidon set of kind (1,1,1,1) ( (1 , -1 ,1 , -1 ) ) is a Sidon set of the
first (respectively, second) kind.

Using Ramsey's Theorem [14], we prove the following which generalises [4, Propo-
sition 8.1].

THEOREM A. Let n > 1 be an integer, ot\,...,a2n be non-zero integers and X be
an infinite subset of a group such that for all i e { 1 , . . . , 2n} and for all distinct elements
x, y € X, xa< ^ yai. Then X contains an infinite Sidon subset of kind (a / ( i ) , . . . , a/(2*))
for all k € {2 , . . . , n} and for all functions / : { 1 , . . . , 2k} -> { 1 , . . . , 2n} simultaneously.

B.H. Neumann proved in [13] that a group is centre-by-finite if and only if every in-
finite subset of the group contains a pair of commuting elements. Extensions of problems
of this type are to be found in [10] and [12]. The notion of commutativity was extended
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to rewritable products in [7] with a complete description obtained in [9]. Detailed study
of rewritable groups may be found in [5] and [6]. In [8], the authors introduced a class
Rn of groups, where n is an integer greater than 1, as follows: a group G is called an
Rn group if every infinite subset X of G contains a subset {x\,...,xn} of n elements
such that x\,...,xn — xa(i),... ,xff(n) for some non-identity permutation a on the set
{ 1 , . . . , n}. They proved there that a group G is an Rn group for some integer n if and
only if G has a normal subgroup F such that G/F is finite, F is an FC-group and the
exponent of F/Z(F) is finite.

In [1] and [2] we considered the following condition on a group. Let n > 1 be an
integer. A group G is called restricted (oo, ra)-permutable if and only if for all n infinite
subsets X\,...,Xn of G there exists a non-identity permutation a on the set { 1 , . . . , n)
such that X\- • • Xn n -Xff(i) • • • Xa(n) ^ 0, where, as usual, for any non-empty subsets
Y\,..., Yk of a group, Y\-Yk equals the set of products y\- • -yk where yx € Y\,..., yk €
Yk.

In [1] we showed that every infinite restricted (oo, 2)-permutable group is Abelian
and in [2] we extended this result by proving that every restricted (oo, n)-permutable
group is n-permutable for all integers n > 1. Also in [3] we considered a class Qn of
groups which is defined as follows: a group G is a Qn-group if for all n infinite subsets
Xi,..., Xn of G there exists two distinct permutations a, r on the set { 1 , . . . , n} such
that XT(\) • • • XT(n) D Xa(\) • • • Xa(n) 7̂  0- We proved in [3] that every infinite Qn-group is
n-rewritable.

Now, for every integer n greater than 1, we consider another class of groups called
.Rn-groups and defined as follows: a group G is called an .Rn-group if every infinite
subset X of G contains n mutually disjoint non-empty subsets Xi,..., Xn such that
Xi • • • XnC\Xa(i) • • • X^ / 0 for some non-identity permutation a on the set { 1 , . . . ,n} .
Clearly, every .ftn-group is an .Rn-group and we use Theorem A to prove that the converse
also holds; namely we have:

THEOREM B. For every integer n greater than 1, the class Rn coincides with the
class Rn.

PROOFS

To prove Theorem A we need Ramsey's Theorem [14].

P R O O F OF THEOREM A: Let k e {2, . . . , n}, let r be an arbitrary element of the

set { 1 , . . . , k} and let Y be an infinite subset of X. Suppose that / is a function from the
set { 1 , . . . , 2k} to the set { 1 , . . . , 2n} and put et = a^ for al i i € { 1 , . . . , 2k}. List the
elements of Y as x^a^i • • • under some well order ^ so that X{ < Xj if i < j . Consider
the set y(*+r) of all (A; + r)-element subsets of Y. For each s € Y^h+r\ list the elements
xit,..., xik+r of s in the ascending order given by ^ and write s = (xh,..., xik+r). Now let
(ti,t2, • • • ,t2k) bea2fc-tupleofelementsof {1,2, ...,k+r} such that |{ i i , . . . ,t2k}\ — k+r,
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and let Tr be the set of all such 2A;-tuples. Define |Tr | + 1 sets, one Ut(Y) for each

element t of Tr and Vr(Y), as follows. For each s € y(*+r>, s = (xilt.. .,xit+r), put

s € Ut(Y) if x^ • • • 4 * = * £ « • • • x\»k and put s in Vr(Y) if s £ Ut(Y) for any t. By

Ramsey's Theorem, there exists an infinite subset Z C Y such that Z^k+r^ C f/«(y)

for some t or Z^fc+r' C Vr(Y). By restricting the order < to Z, we may assume that

Z = {xi,x2, • • •} and x, < Xj if i < j . Suppose, if possible, that Z(fc+r) C Ut(Y) for some

t = ( i i , . . . , t2k) € TT. Hence for any ii <i2 < • • • < ik+T,

Since {ii,...,<2*} = k + r > k, there exists I € {1, ...,2fc} such that tt / tfc for
any h e {1,... ,2k}\{l}. Thus we may write x\'t as a product of x j ^ ' s where th €
{ii, . . -,t2k}\{ti}. Now, since Z is infinite there exist sequences j i < j 2 < • • • < j * + r

and pi < p2 < • • • < Pk+r such that j t l ^ pt, and j t h = pth when h e { 1 , . . . , 2A;}\{/}.
Therefore x^ = xe

p'H, contrary to the hypothesis on the set X. Hence Z(*+r) C VT{Y).

Now, list the elements of X as x\, x2,. • • under some well order < so that x,- < Xj if
i < j . Replace Y by X and put r = 1 in the above argument, then there is an infinite
subset Xi of X such that x[h+1) C VipQ. By restricting the order ^ to each infinite
subset of X, the above process yields a chain of infinite subsets ^ ^ • • • C I 1 C I 0 =
X such that X?+i) C Vi{X^x) for &\\ i = 1,2,... ,k. Thus Xk is a Sidon subset of
kind (e i , . . . ,e2fc)- Since the set of such 2k-tuples is finite, where k ranges over the set
{2, . . . , n), the proof is complete. D

As we mentioned before, Theorem A generalises [4, Proposition 8.1]. In fact we
have:

COROLLARY 1 . Let G be an infinite group, n > 1 an integer and eu ... ,e2n €
{—1,1}. Then every infinite subset ofG contains a Sidon subset of kind (e/(i), • • •, £/(2*)j
for all k € {2 , . . . , n) and for all functions / : { 1 , . . . , 2k} —> { 1 , . . . , 2n) simultaneously.

Using the fact that in a torsion-free nilpotent group no two distinct elements can
have the same non-zero power (for example see [11, Theorem 16.2.8]), we also have the
following corollary of Theorem A on nilpotent groups.

COROLLARY 2 . Let G bea nilpotent group and let T be the torsion subgroup ofG.
Ifn > 1 and ai,..., a2n are non-zero integers, then every infinite subset X ofG such that
xT ^ yT for all distinct elements x, y € X, contains a Sidon set of kind (a/(i), • • •, «/(2t))
for all k € {2 , . . . , n} and for all functions f : { 1 , . . . , 2k} -> { 1 , . . . , 2n} simultaneously.

To prove Theorem B we need only to prove that every infinite i^-group is an Rn-

group for which we use Theorem A.
PROOF OF THEOREM B: Let G be an infinite i^-group. Let X be an infinite subset

2n

of G. By Corollary 1, X contains an infinite Sidon subset Xo of kind ( l , . . . , l ) . Now

since G € Rn, Xo contains mutually disjoint non-empty subsets Xi,...,Xn such that
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Xi • • • Xnf\Xa(i) • • • Xa(n) ^ 0 for some non-identity permutation a on the set { 1 , . . . , n}.
Therefore there exist elements xx,...,x2n € Xo of which at least n are distinct, such
t h a t x i - - - x n = x n + i • • • x 2 n , ( x u • • • , % n ) # ( x n + u • • • , x 2 n ) , a n d x u . . . , x n a r e d i s t i n c t a s

well as xn+i,..., x2n. Thus by the property of the set Xo, we must have {xi,..., xn} —
{xn+i,..., x2n}- Therefore there exists a non-identity permutation r on the set { 1 , . . . , n}
such that xn+i = xT(i) for all i € { l , . . . , n } , and so i i " - i n = av(i) • • -^(n)- This
completes the proof. D

By [8, Theorem A] and Theorem B, we obtain the following corollary which gener-
alises the key lemmas of [2] and [3] ([2, Lemma 2.3] and [3, Lemma 4]).

COROLLARY 3 . A group G is an Rn-group for some integer n > 1 if and only if
G has a normal subgroup F such that G/F is finite, F is an FC-group and the exponent
ofF/Z(F) is finite.

Lastly in this paper we consider another class of groups. Let n > 1 be an integer
and m > 0 be a cardinality of a countable set (finite or infinite). We say that a group G
is an R* (n, m)-group if and only if every infinite set of m-sets (a set with cardinality m
is said to be an m-set) in G contains n distinct members X\,..., Xn such that

Xi • • • Xn (~l Xa(\) • • • Xa(n) ^ 0

for some non-identity permutation a on the set { 1 , . . . , n}. It is natural to ask what are
the relations between this class of groups and iJn-groups. In fact we have:

PROPOSITION 4 . R*(n,m)- R,, for all n andm.

P R O O F : By Theorem B, it is enough to prove R*{n,m) = Rn. Suppose, for a
contradiction, that G is an infinite R*(n, m)-group which is not in Rn. Thus there
exists an infinite subset X of G such that for every n mutually disjoint non-empty sub-
sets Xi,..., Xn and for all non-identity permutation o on the set {1 ,2 , . . . , n}, we have
Xi • • • Xn n Xa(i) • • • Xa(n) = 0. Since X is infinite and m is the cardinality of a countable
set, there exists an infinite set of mutually disjoint m-sets of X. Now the existence of
the latter set contradicts the property R*(n,m). Conversely, suppose that G eR\, — R^.
Let X be an infinite set of m-sets of G. If two distinct members X\, X2 of X intersect in
an element x then by considering n - 2 other arbitrary different members X3,...,Xn of
X, we have X\X2 • • • XnnX2XiX3 • • • Xn ^ 0, so we may assume that the members of X
are mutually disjoint. Thus by choosing one element from each member of X, we obtain
an infinite set X such that each element of X belongs to one and only one member of
X. Now since G e Rn, there exist n elements x\,...,xn and a permutation a on the
set {1 ,2 , . . . , n) such that X\- • -xn — xa^ • • • £„(„). Now by the choice of X for each
i € {1 ,2 , . . . , n}, there exists an element Xt € X such that xt € Xi\ that is, there exist
Xi, X2,..., Xn € X such that

Xi • • • xn € XiX2•••XnOXa(X) • • • Xa(n),

so that G € R*(n, m). This completes the proof. D

https://doi.org/10.1017/S0004972700019651 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700019651


[5] A permutability problem and Ramsey's theorem 31

R E F E R E N C E S

[1] A. Abdollahi and A. Mohammadi Hassanabadi, 'A characterization of infinite abelian

groups', Bull. Iranian Math. Soc. 24 (1998), 41-47.

[2] A. Abdollahi, A. Mohammadi Hassanabadi and B. Taeri, 'A property equivalent to

n-permutability for infinite groups', J. Algebra 221 (1999), 570-578.

[3] A. Abdollahi, A. Mohammadi Hassanabadi and B. Taeri, 'An n-rewritability criterion
for infinite groups', Comm. Algebra (to appear).

[4] L. Babai and T.S. Sos, 'Sidon sets in groups and induced subgraphs of Cayley graphs',
European J. Combin. 6 (1985), 101-114.

[5] R.D. Blyth, 'Rewriting products of group elements I', J. Algebra 116 (1988), 506-521.

[6] R.D. Blyth, 'Rewriting products of group elements II', J. Algebra 118 (1988), 249-259.

[7] M. Curzio, P. Longobardi and M. Maj, 'On a combinatorial problem in group theory',
(in Italian), Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 74 (1983), 136-142.

[8] M. Curzio, P. Longobardi, M. Maj and A. Rhemtulla, 'Groups with many rewritable
products', Proc. Amer. Math. Soc. 115 (1992), 931-934.

[9] M. Curzio, P. Longobardi, M. Maj and D.J.S. Robinson, 'A permutational property of
groups', Arch. Math. (Basel) 44 (1985), 385-389.

[10] J.R.J. Groves, 'A conjecture of Lennox and Wiegold concerning supersoluble groups', J.

Austral. Math. Soc. Ser. A 35 (1983), 218-220.

[11] M.I. Kargapolov and Ju.I. Merzljakov, Fundamentals of the theory of groups

(Springer-Verlag, Berlin, Heidelberg, New York, 1979).

[12] J.C. Lennox and J. Wiegold, 'Extensions of a problem of Paul Erdos on groups', J.

Austral. Math. Soc. Ser. A 31 (1981), 459-463.

[13] B.H. Neumann, 'A problem of Paul Erdos on groups', J. Austral. Math. Soc. Ser. A 21
(1976), 467-472.

[14] F.P. Ramsey, 'On a problem of formal logic', Proc. London Math. Soc. (2) 30 (1929),
264-286.

Department of Mathematics
University of Isfahan
Isfahan 81744
Iran
and
Institute for Studies in Theoretical Physics and Mathematics
Tehran
Iran
e-mail: abdolahi@math.ui.ac.ir

aamohaha@math.ui.ac.ir

https://doi.org/10.1017/S0004972700019651 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700019651

