# A PERMUTABILITY PROBLEM IN INFINITE GROUPS AND RAMSEY'S THEOREM 

Alireza Abdollahi and Aliakbar Mohammadi Hassanabadi


#### Abstract

We use Ramsey's theorem to generalise a result of L. Babai and T.S. Sós on Sidon subsets and then use this to prove that for an integer $n>1$ the class of groups in which every infinite subset contains a rewritable $n$-subset coincides with the class of groups in which every infinite subset contains $n$ mutually disjoint non-empty subsets $X_{1}, \ldots, X_{n}$ such that $X_{1} \cdots X_{n} \cap X_{\sigma(1)} \cdots X_{\sigma(n)} \neq \emptyset$ for some non-identity permutation $\sigma$ on the set $\{1, \ldots, n\}$.


## Introduction and results

In [4], Babai and Sós called a subset $S$ of a group $G$ a Sidon subset of the first (second) kind, if for any $x, y, z, w \in S$ of which at least 3 are different, $x y \neq z w\left(x y^{-1} \neq z w^{-1}\right.$, respectively). Among other things, they proved [4, Proposition 8.1] that an infinite subset of a group contains an infinite subset which is a Sidon subset of both kinds simultaneously.

We generalise the above definition as follows:
Let $n$ be a positive integer greater than 1 and $\alpha_{1}, \ldots, \alpha_{2 n}$ be non-zero integers. We say that a subset $S$ of a group is a Sidon subset of kind ( $\alpha_{1}, \ldots, \alpha_{2 n}$ ) if and only if for any $x_{1}, \ldots, x_{2 n} \in S$ of which at least $n+1$ are different, $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \neq x_{n+1}^{\alpha_{n+1}} \cdots x_{2 n}^{\alpha_{2 n}}$. Thus in our terminology every Sidon set of kind $(1,1,1,1)((1,-1,1,-1))$ is a Sidon set of the first (respectively, second) kind.

Using Ramsey's Theorem [14], we prove the following which generalises [4, Proposition 8.1].

ThEOREM A. Let $n>1$ be an integer, $\alpha_{1}, \ldots, \alpha_{2 n}$ be non-zero integers and $X$ be an infinite subset of a group such that for all $i \in\{1, \ldots, 2 n\}$ and for all distinct elements $x, y \in X, x^{\alpha_{i}} \neq y^{\alpha_{i}}$. Then $X$ contains an infinite Sidon subset of kind $\left(\alpha_{f(1)}, \ldots, \alpha_{f(2 k)}\right)$ for all $k \in\{2, \ldots, n\}$ and for all functions $f:\{1, \ldots, 2 k\} \rightarrow\{1, \ldots, 2 n\}$ simultaneously.
B.H. Neumann proved in [13] that a group is centre-by-finite if and only if every infinite subset of the group contains a pair of commuting elements. Extensions of problems of this type are to be found in [10] and [12]. The notion of commutativity was extended

[^0]This research was in part supported by a grant from IPM.
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/01 $\$ \mathbf{A 2 . 0 0}+0.00$.
to rewritable products in [7] with a complete description obtained in [9]. Detailed study of rewritable groups may be found in [5] and [6]. In [8], the authors introduced a class $R_{n}$ of groups, where $n$ is an integer greater than 1 , as follows: a group $G$ is called an $R_{n}$ group if every infinite subset $X$ of $G$ contains a subset $\left\{x_{1}, \ldots, x_{n}\right\}$ of $n$ elements such that $x_{1}, \ldots, x_{n}=x_{\sigma(1)}, \ldots, x_{\sigma(n)}$ for some non-identity permutation $\sigma$ on the set $\{1, \ldots, n\}$. They proved there that a group $G$ is an $R_{n}$ group for some integer $n$ if and only if $G$ has a normal subgroup $F$ such that $G / F$ is finite, $F$ is an FC-group and the exponent of $F / Z(F)$ is finite.

In [1] and [2] we considered the following condition on a group. Let $n>1$ be an integer. A group $G$ is called restricted ( $\infty, n$ )-permutable if and only if for all $n$ infinite subsets $X_{1}, \ldots, X_{n}$ of $G$ there exists a non-identity permutation $\sigma$ on the set $\{1, \ldots, n\}$ such that $X_{1} \cdots X_{n} \cap X_{\sigma(1)} \cdots X_{\sigma(n)} \neq \emptyset$, where, as usual, for any non-empty subsets $Y_{1}, \ldots, Y_{k}$ of a group, $Y_{1} \cdots Y_{k}$ equals the set of products $y_{1} \cdots y_{k}$ where $y_{1} \in Y_{1}, \ldots, y_{k} \in$ $Y_{k}$.

In [1] we showed that every infinite restricted ( $\infty, 2$ )-permutable group is Abelian and in [2] we extended this result by proving that every restricted ( $\infty, n$ )-permutable group is $n$-permutable for all integers $n>1$. Also in [3] we considered a class $\overline{Q_{n}}$ of groups which is defined as follows: a group $G$ is a $\bar{Q}_{n}$-group if for all $n$ infinite subsets $X_{1}, \ldots, X_{n}$ of $G$ there exists two distinct permutations $\sigma, \tau$ on the set $\{1, \ldots, n\}$ such that $X_{\tau(1)} \cdots X_{\tau(n)} \cap X_{\sigma(1)} \cdots X_{\sigma(n)} \neq \emptyset$. We proved in [3] that every infinite $\overline{Q_{n}}$-group is $n$-rewritable.

Now, for every integer $n$ greater than 1, we consider another class of groups called $\bar{R}_{n}$-groups and defined as follows: a group $G$ is called an $\bar{R}_{n}$-group if every infinite subset $X$ of $G$ contains $n$ mutually disjoint non-empty subsets $X_{1}, \ldots, X_{n}$ such that $X_{1} \cdots X_{n} \cap X_{\sigma(1)} \cdots X_{\sigma(n)} \neq \emptyset$ for some non-identity permutation $\sigma$ on the set $\{1, \ldots, n\}$. Clearly, every $R_{n}$-group is an $\bar{R}_{n}$-group and we use Theorem A to prove that the converse also holds; namely we have:

Theorem B. For every integer $n$ greater than 1 , the class $R_{n}$ coincides with the class $\bar{R}_{n}$.

## Proofs

To prove Theorem A we need Ramsey's Theorem [14].
Proof of Theorem A: Let $k \in\{2, \ldots, n\}$, let $r$ be an arbitrary element of the set $\{1, \ldots, k\}$ and let $Y$ be an infinite subset of $X$. Suppose that $f$ is a function from the set $\{1, \ldots, 2 k\}$ to the set $\{1, \ldots, 2 n\}$ and put $\varepsilon_{i}=\alpha_{f(i)}$ for all $i \in\{1, \ldots, 2 k\}$. List the elements of $Y$ as $x_{1}, x_{2}, \ldots$ under some well order $\leqslant$ so that $x_{i}<x_{j}$ if $i<j$. Consider the set $Y^{(k+r)}$ of all $(k+r)$-element subsets of $Y$. For each $s \in Y^{(k+r)}$, list the elements $x_{i_{1}}, \ldots, x_{i_{k+r}}$ of $s$ in the ascending order given by $\leqslant$ and write $\bar{s}=\left(x_{i_{1}}, \ldots, x_{i_{k+r}}\right)$. Now let $\left(t_{1}, t_{2}, \ldots, t_{2 k}\right)$ be a $2 k$-tuple of elements of $\{1,2, \ldots, k+r\}$ such that $\left|\left\{t_{1}, \ldots, t_{2 k}\right\}\right|=k+r$,
and let $T_{r}$ be the set of all such $2 k$-tuples. Define $\left|T_{r}\right|+1$ sets, one $U_{t}(Y)$ for each element $t$ of $T_{r}$ and $V_{r}(Y)$, as follows. For each $s \in Y^{(k+r)}, \bar{s}=\left(x_{i_{1}}, \ldots, x_{i_{k+r}}\right)$, put $s \in U_{t}(Y)$ if $x_{i_{t_{1}}}^{\varepsilon_{1}} \cdots x_{i_{t_{k}}}^{\varepsilon_{k}}=x_{i_{t_{k+1}}}^{\varepsilon_{k+1}} \cdots x_{i_{t_{2 k}}}^{\varepsilon_{2 k}}$ and put $s$ in $V_{r}(Y)$ if $s \notin U_{t}(Y)$ for any $t$. By Ramsey's Theorem, there exists an infinite subset $Z \subseteq Y$ such that $Z^{(k+r)} \subseteq U_{t}(Y)$ for some $t$ or $Z^{(k+r)} \subseteq V_{r}(Y)$. By restricting the order $\leqslant$ to $Z$, we may assume that $Z=\left\{x_{1}, x_{2}, \ldots\right\}$ and $x_{i}<x_{j}$ if $i<j$. Suppose, if possible, that $Z^{(k+r)} \subseteq U_{t}(Y)$ for some $t=\left(t_{1}, \ldots, t_{2 k}\right) \in T_{r}$. Hence for any $i_{1}<i_{2}<\cdots<i_{k+r}$,

$$
x_{i_{t_{1}}}^{\varepsilon_{1}} \cdots x_{i_{t_{k}}}^{\varepsilon_{k}}=x_{i_{i_{k+1}}}^{\varepsilon_{k+1}} \cdots x_{i_{i_{2 k}}}^{\varepsilon_{2 k}}
$$

Since $\left|\left\{t_{1}, \ldots, t_{2 k}\right\}\right|=k+r>k$, there exists $l \in\{1, \ldots, 2 k\}$ such that $t_{l} \neq t_{h}$ for any $h \in\{1, \ldots, 2 k\} \backslash\{l\}$. Thus we may write $x_{i_{t_{l}}}^{\varepsilon_{1}}$ as a product of $x_{i_{t_{h}}}^{ \pm \varepsilon_{h}}$,s where $t_{h} \in$ $\left\{t_{1}, \ldots, t_{2 k}\right\} \backslash\left\{t_{l}\right\}$. Now, since $Z$ is infinite there exist sequences $j_{1}<j_{2}<\cdots<j_{k+r}$ and $p_{1}<p_{2}<\cdots<p_{k+r}$ such that $j_{t_{1}} \neq p_{t_{l}}$ and $j_{t_{h}}=p_{t_{h}}$ when $h \in\{1, \ldots, 2 k\} \backslash\{l\}$. Therefore $x_{j_{t_{i}}}^{\varepsilon_{t_{i}}}=x_{p_{t_{i}}}^{\varepsilon_{t}}$, contrary to the hypothesis on the set $X$. Hence $Z^{(k+r)} \subseteq V_{r}(Y)$.

Now, list the elements of $X$ as $x_{1}, x_{2}, \ldots$ under some well order $\leqslant$ so that $x_{i}<x_{j}$ if $i<j$. Replace $Y$ by $X$ and put $r=1$ in the above argument, then there is an infinite subset $X_{1}$ of $X$ such that $X_{1}^{(k+1)} \subseteq V_{1}(X)$. By restricting the order $\leqslant$ to each infinite subset of $X$, the above process yields a chain of infinite subsets $X_{k} \subseteq \cdots \subseteq X_{1} \subseteq X_{0}=$ $X$ such that $X_{i}^{(k+i)} \subseteq V_{i}\left(X_{i-1}\right)$ for all $i=1,2, \ldots, k$. Thus $X_{k}$ is a Sidon subset of kind $\left(\varepsilon_{1}, \ldots, \varepsilon_{2 k}\right)$. Since the set of such $2 k$-tuples is finite, where $k$ ranges over the set $\{2, \ldots, n\}$, the proof is complete.

As we mentioned before, Theorem A generalises [4, Proposition 8.1]. In fact we have:

Corollary 1. Let $G$ be an infinite group, $n>1$ an integer and $\varepsilon_{1}, \ldots, \varepsilon_{2 n} \in$ $\{-1,1\}$. Then every infinite subset of $G$ contains a Sidon subset of kind $\left(\varepsilon_{f(1)}, \ldots, \varepsilon_{f(2 k)}\right)$ for all $k \in\{2, \ldots, n\}$ and for all functions $f:\{1, \ldots, 2 k\} \rightarrow\{1, \ldots, 2 n\}$ simultaneously.

Using the fact that in a torsion-free nilpotent group no two distinct elements can have the same non-zero power (for example see [11, Theorem 16.2.8]), we also have the following corollary of Theorem A on nilpotent groups.

Corollary 2. Let $G$ be a nilpotent group and let $T$ be the torsion subgroup of $G$. If $n>1$ and $\alpha_{1}, \ldots, \alpha_{2 n}$ are non-zero integers, then every infinite subset $X$ of $G$ such that $x T \neq y T$ for all distinct elements $x, y \in X$, contains a Sidon set of kind $\left(\alpha_{f(1)}, \ldots, \alpha_{f(2 k)}\right)$ for all $k \in\{2, \ldots, n\}$ and for all functions $f:\{1, \ldots, 2 k\} \rightarrow\{1, \ldots, 2 n\}$ simultaneously.

To prove Theorem B we need only to prove that every infinite $\bar{R}_{n}$-group is an $R_{n}$ group for which we use Theorem A.

Proof of Theorem B: Let $G$ be an infinite $\bar{R}_{n}$-group. Let $X$ be an infinite subset of $G$. By Corollary $1, X$ contains an infinite Sidon subset $X_{0}$ of kind $(\overbrace{1, \ldots, 1}^{2 n})$. Now since $G \in \bar{R}_{n}, X_{0}$ contains mutually disjoint non-empty subsets $X_{1}, \ldots, X_{n}$ such that
$X_{1} \cdots X_{n} \cap X_{\sigma(1)} \cdots X_{\sigma(n)} \neq \emptyset$ for some non-identity permutation $\sigma$ on the set $\{1, \ldots, n\}$. Therefore there exist elements $x_{1}, \ldots, x_{2 n} \in X_{0}$ of which at least $n$ are distinct, such that $x_{1} \cdots x_{n}=x_{n+1} \cdots x_{2 n},\left(x_{1}, \ldots, x_{n}\right) \neq\left(x_{n+1}, \ldots, x_{2 n}\right)$, and $x_{1}, \ldots, x_{n}$ are distinct as well as $x_{n+1}, \ldots, x_{2 n}$. Thus by the property of the set $X_{0}$, we must have $\left\{x_{1}, \ldots, x_{n}\right\}=$ $\left\{x_{n+1}, \ldots, x_{2 n}\right\}$. Therefore there exists a non-identity permutation $\tau$ on the set $\{1, \ldots, n\}$ such that $x_{n+i}=x_{\tau(i)}$ for all $i \in\{1, \ldots, n\}$, and so $x_{1} \cdots x_{n}=x_{\tau(1)} \cdots x_{\tau(n)}$. This completes the proof.

By [8, Theorem A] and Theorem B, we obtain the following corollary which generalises the key lemmas of [2] and [3] ([2, Lemma 2.3] and [3, Lemma 4]).

Corollary 3. A group $G$ is an $\bar{R}_{n}$-group for some integer $n>1$ if and only if $G$ has a normal subgroup $F$ such that $G / F$ is finite, $F$ is an $F C$-group and the exponent of $F / Z(F)$ is finite.

Lastly in this paper we consider another class of groups. Let $n>1$ be an integer and $m>0$ be a cardinality of a countable set (finite or infinite). We say that a group $G$ is an $R^{*}(n, m)$-group if and only if every infinite set of $m$-sets (a set with cardinality $m$ is said to be an $m$-set) in $G$ contains $n$ distinct members $X_{1}, \ldots, X_{n}$ such that

$$
X_{1} \cdots X_{n} \cap X_{\sigma(1)} \cdots X_{\sigma(n)} \neq \emptyset
$$

for some non-identity permutation $\sigma$ on the set $\{1, \ldots, n\}$. It is natural to ask what are the relations between this class of groups and $\bar{R}_{n}$-groups. In fact we have:

Proposition 4. $R^{*}(n, m)=R_{n}$ for all $n$ and $m$.
Proof: By. Theorem B, it is enough to prove $R^{*}(n, m)=\bar{R}_{n}$. Suppose, for a contradiction, that $G$ is an infinite $R^{*}(n, m)$-group which is not in $\bar{R}_{n}$. Thus there exists an infinite subset $X$ of $G$ such that for every $n$ mutually disjoint non-empty subsets $X_{1}, \ldots, X_{n}$ and for all non-identity permutation $\sigma$ on the set $\{1,2, \ldots, n\}$, we have $X_{1} \cdots X_{n} \cap X_{\sigma(1)} \cdots X_{\sigma(n)}=\emptyset$. Since $X$ is infinite and $m$ is the cardinality of a countable set, there exists an infinite set of mutually disjoint $m$-sets of $X$. Now the existence of the latter set contradicts the property $R^{*}(n, m)$. Conversely, suppose that $G \in \bar{R}_{n}=R_{n}$. Let $\mathcal{X}$ be an infinite set of $m$-sets of $G$. If two distinct members $X_{1}, X_{2}$ of $\mathcal{X}$ intersect in an element $x$ then by considering $n-2$ other arbitrary different members $X_{3}, \ldots, X_{n}$ of $\mathcal{X}$, we have $X_{1} X_{2} \cdots X_{n} \cap X_{2} X_{1} X_{3} \cdots X_{n} \neq \emptyset$, so we may assume that the members of $\mathcal{X}$ are mutually disjoint. Thus by choosing one element from each member of $\mathcal{X}$, we obtain an infinite set $X$ such that each element of $X$ belongs to one and only one member of $\mathcal{X}$. Now since $G \in R_{n}$, there exist $n$ elements $x_{1}, \ldots, x_{n}$ and a permutation $\sigma$ on the set $\{1,2, \ldots, n\}$ such that $x_{1} \cdots x_{n}=x_{\sigma(1)} \cdots x_{\sigma(n)}$. Now by the choice of $X$ for each $i \in\{1,2, \ldots, n\}$, there exists an element $X_{i} \in \mathcal{X}$ such that $x_{i} \in X_{i}$; that is, there exist $X_{1}, X_{2}, \ldots, X_{n} \in \mathcal{X}$ such that

$$
x_{1} \cdots x_{n} \in X_{1} X_{2} \cdots X_{n} \cap X_{\sigma(1)} \cdots X_{\sigma(n)}
$$

so that $G \in R^{*}(n, m)$. This completes the proof.

## References

[1] A. Abdollahi and A. Mohammadi Hassanabadi, 'A characterization of infinite abelian groups', Bull. Iranian Math. Soc. 24 (1998), 41-47.
[2] A. Abdollahi, A. Mohammadi Hassanabadi and B. Taeri, 'A property equivalent to n-permutability for infinite groups', J. Algebra 221 (1999), 570-578.
[3] A. Abdollahi, A. Mohammadi Hassanabadi and B. Taeri, 'An n-rewritability criterion for infinite groups', Comm. Algebra (to appear).
[4] L. Babai and T.S. Sós, 'Sidon sets in groups and induced subgraphs of Cayley graphs', European J. Combin. 6 (1985), 101-114.
[5] R.D. Blyth, 'Rewriting products of group elements I', J. Algebra 116 (1988), 506-521.
[6] R.D. Blyth, 'Rewriting products of group elements II', J. Algebra 118 (1988), 249-259.
[7] M. Curzio, P. Longobardi and M. Maj, 'On a combinatorial problem in group theory', (in Italian), Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 74 (1983), 136-142.
[8] M. Curzio, P. Longobardi, M. Maj and A. Rhemtulla, 'Groups with many rewritable products', Proc. Amer. Math. Soc. 115 (1992), 931-934.
[9] M. Curzio, P. Longobardi, M. Maj and D.J.S. Robinson, 'A permutational property of groups', Arch. Math. (Basel) 44 (1985), 385-389.
[10] J.R.J. Groves, 'A conjecture of Lennox and Wiegold concerning supersoluble groups', J. Austral. Math. Soc. Ser. A 35 (1983), 218-220.
[11] M.I. Kargapolov and Ju.I. Merzljakov, Fundamentals of the theory of groups (Springer-Verlag, Berlin, Heidelberg, New York, 1979).
[12] J.C. Lennox and J. Wiegold, 'Extensions of a problem of Paul Erdös on groups', J. Austral. Math. Soc. Ser. A 31 (1981), 459-463.
[13] B.H. Neumann, 'A problem of Paul Erdös on groups', J. Austral. Math. Soc. Ser. A 21 (1976), 467-472.
[14] F.P. Ramsey, 'On a problem of formal logic', Proc. London Math. Soc. (2) 30 (1929), 264-286.

Department of Mathematics
University of Isfahan
Isfahan 81744
Iran
and
Institute for Studies in Theoretical Physics and Mathematics
Tehran
Iran
e-mail: abdolahi@math.ui.ac.ir
aamohaha@math.ui.ac.ir


[^0]:    Received 24th July, 2000

