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Spacings Between Integers Having
Typically Many Prime Factors

Rizwanur Khan

Abstract. We show that the sequence of integers which have nearly the typical number of distinct

prime factors forms a Poisson process. More precisely, for δ arbitrarily small and positive, the nearest

neighbor spacings between integers n with |ω(n)− loglogn| < (loglogn)δ obey the Poisson distribution

law.

1 Introduction

Consider n random variables independently and uniformly taking real values in the

interval [0, n]. Let Y1 < · · · < Yn denote the order statistics obtained by arranging

these random variables in increasing order. Setting Y0 = 0 and Yn+1 = n, let Di =

Yi−Yi−1 for 1 ≤ i ≤ n+1 denote the nearest neighbor spacings of the order statistics.

Thus D1 +· · ·+Dn = n, and by symmetry it follows that for 0 < λ < n a real number,

Prob(Di > λ) = Prob(D1 > λ) =

( n − λ

n

) n

.

Thus Prob(Di > λ) ∼ e−λ as n → ∞. For the (k + 1)-th neighbor spacing it can be

shown that

(1.1) Prob(Yi+k+1 − Yi > λ) ∼
k∑

j=0

λ j

j!
e−λ

as n → ∞. The right-hand side of (1.1) is the Poisson distribution function.

We are interested in the spacing distributions of arithmetic sequences. An exam-

ple of such a sequence is the sequence of prime numbers less than x, which by the

prime number theorem form a sparse subset of the integers of density 1/ log x. This

is similar to Y1, . . . ,Yn being sparse in the interval [0, n]. If pi denotes the i-th prime

less than x, we rescale to consider instead the sequence p̃i = pi/ log x of “normal-

ized” primes so that that the average spacing between consecutive normalized primes

is 1 as x → ∞. This matches the expected value of Di above as n → ∞. Gallagher

[3] showed that assuming the validity of the Hardy–Littlewood prime r-tuple conjec-

tures, we have for λ > 0 real and k ≥ 0 integral,

1

x
#{i ≤ x : p̃i+k+1 − p̃i > λ} ∼

k∑

j=0

λ j

j!
e−λ
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Spacings Between Integers Having Typically Many Prime Factors 103

as x → ∞. Thus, conditionally we see that the spacings between primes obey the

Poisson distribution law, as in the prototypical situation of randomly dispersed ob-

jects mentioned at the start. More recently Kurlberg and Rudnick [8] showed that

the spacings between quadratic residues modulo q follow the Poisson distribution as

the number of distinct prime divisors of q tends to infinity. There are many other in-

teresting arithmetic sequences that are conjectured to be Poisson processes, but only

a few examples exist with proof. For example, it is an open problem to show that

the spacings between the fractional parts of n2
√

2 for n ≤ x, as x → ∞ are Poisson

distributed (see [10]). The reader may find more examples of such work listed in

the references [1,4,6]. Of course there are important arithmetic sequences which are

not expected to behave like randomly dispersed elements in this sense, such as the

non-trivial zeros of the Riemann Zeta function. In this paper we are interested in the

spacings between integers with not only one prime factor as in Gallagher’s work, but

with the typical number of distinct prime factors. We first explain what is meant by

“typical”.

Let ω(n) denote the number of distinct prime factors of n. It is easy to see that

integers n ≤ x have log log x distinct prime factors on average:

(1.2) 1
x

∑

n≤x

ω(n) =
1
x

∑

n≤x

∑

p|n
1 =

1
x

∑

p≤x

∑

n≤x
p|n

1 =
1
x

∑

p≤x

⌊
x
p

⌋
= log2 x + O(1),

where we write log2 x for log log x, and similarly for log j x. Also, throughout this

paper p and q will be used to denote primes. The variance can be shown to be

1
x

∑

n≤x

(ω(n) − log2 x)2 ∼ log2 x.(1.3)

Note that (1.2) and (1.3) imply that ω(n) ∼ log2 x for all most all n ≤ x. Erdős

and Kac [2] further showed that ω(n) is normally distributed with mean log2 x and

standard deviation
√

log2 x. Rényi and Turán [9] proved this result with a sharp error

term. The following theorem can also be found in Tenenbaum’s book [11].

Theorem 1.1 Given a real number C > 0 we have for 0 < c < C that the number of

integers n ≤ x for which −c <
ω(n)−log2 x√

log2 x
< c is

x
1√
2π

∫ c

−c

exp(−u2/2)du + OC (x/
√

log2 x).

In [7] we proved a slightly weaker version of the Theorem 1.1 by methods similar

to those in this paper.

We conjecture that the spacings between integers n ≤ x with |ω(n) − log2 x| ≤√
π
2

(that is, integers with more or less exactly log2 x distinct prime factors) obey the

Poisson distribution law, but we are unable to prove it. Instead we look at an easier

question. For any fixed 0 < δ < 1/2, let us say an integer less than x2 is δ-normal

if |ω(n) − log2 x| ≤
√

π
2

(log2 x)δ . We study the sequence of δ-normal numbers.
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104 R. Khan

These are integers having nearly the expected number of prime factors, as (log2 x)δ

is smaller than the standard deviation
√

log2 x of ω(n). Denote the sequence of δ-

normal numbers in increasing order by N1, N2, . . . . Up to x, there are x(log2 x)−1/2+δ

such integers by Theorem 1.1, since an integer is δ-normal if and only if

∣∣∣
ω(n) − log2 x√

log2 x

∣∣∣ ≤
√

π

2
(log2 x)−1/2+δ.

Thus we should rescale these integers by setting Ñi = Ni(log2 x)−1/2+δ . Our main

theorem is as follows.

Theorem 1.2 For any fixed real number λ > 0 and fixed integer k ≥ 0 we have

1

x
#{i ≤ x : Ñi+k+1 − Ñi > λ} ∼

k∑

j=0

λ j

j!
e−λ

Throughout this paper, all implicit constants may depend implicitly on δ, λ and k.

2 Independence Between Additive Shifts of the ω(−) Function

In this section we show how Theorem 1.2 can be reduced to studying correlations

between the additive shifts of the function ω(−). We will show for example that

ω(n) − log2 x, ω(n + 1) − log2 x, and ω(n + 3) − log2 x behave independently. Define

N(x) to be the number of integers n ≤ x for which n is δ-normal. The left-hand side

of Theorem 1.2 is asymptotic to

(2.1)
1

x
#{i ≤ x : Ni+k+1 − Ni > λ(log2 x)1/2−δ}

∼ 1

x
#{N ≤ x(log2 x)1/2−δ : N

(
N + λ(log2 x)1/2−δ

)
− N

(
N

)
≤ k},

where N denotes a δ-normal number. Define Nb1,...,br
(x) to be the number of integers

n ≤ x for which n + bi is δ-normal for all 1 ≤ i ≤ r and let σ(m, r) denote the

number of maps from the set {1, . . . , m} onto {1, . . . , r}. We have the m-th moment

of N
(

N + λ(log2 x)1/2−δ
)
− N

(
N

)
:

(2.2)
1

x

∑

N≤x(log2 x)1/2−δ

(
N

(
N + λ(log2 x)1/2−δ

)
− N(N)

)m
=

1

x

m∑

r=1

σ(m, r)
∑

1≤b1<···<br≤λ(log2 x)1/2−δ

N0,b1,...,br

(
x(log2 x)1/2−δ

)
.

We will prove the following.
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Theorem 2.1 For a fixed integer r and any integers

0 ≤ b1 < · · · < br ≤ λ(log2 x)1/2−δ,

we have
1

x
Nb1,...,br

(x) ∼ (log2 x)(−1/2+δ)r.

Throughout this paper all implied constants may depend implicitly on r. Since a

randomly chosen integer less than x is δ-normal with probability (log2 x)−1/2+δ , the

theorem above says that n + b1, . . . , n + br are independently likely to be δ-normal.

Theorem 2.1 implies that for fixed m we have that (2.2) is asymptotic to

(2.3) ∼
m∑

r=1

σ(m, r)
λr

r!
=

∞∑

j=0

jm e−λλ j

j!
,

the m-th moment of the Poisson distribution (the identity above is known as Dobin-

ski’s formula). The Poisson distribution can be recovered from these moments. For

example, for k = 0 we have that (2.1) is

1

x
#{N ≤ x(log2 x)1/2−δ : N(N + λ(log2 x)1/2−δ) − N(N) = 0}

∼ 1 − 1

x

∞∑

j=1

∑

N≤x(log2 x)1/2−δ

N(N+λ(log2 x)1/2−δ)−N(N)= j

1

= 1 − 1

x

∞∑

j=1

∞∑

m=0

(2πi)m

m!
jm

∑

N≤x(log2 x)1/2−δ

N(N+λ(log2 x)1/2−δ)−N(N)= j

1.

(2.4)

Now

1

x

∞∑

j=1

jm
∑

N≤x(log2 x)1/2−δ

N(N+λ(log2 x)1/2−δ)−N(N)= j

1

is the m-th moment of N
(

N + λ(log2 x)1/2−δ
)
−N

(
N

)
. By (2.3) we get (an explicit

dependence on m of the error term is not needed) that (2.4) is asymptotic to

∼ 1 −
∞∑

j=1

∞∑

m=0

(2πi)m

m!
jm e−λλ j

j!
= e−λ.

Also for k > 0 the Poisson moments imply that (2.1) ∼
∑k

j=0
λ j

j!
e−λ. Thus Theorem

1.2 follows from Theorem 2.1. Next we discuss the demonstration of Theorem 2.1.
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The characteristic function of a random variable with a normal distribution is

exp(−T2/2). We show the independence of

ω(n + bi) − log2 x√
log2 x

for 1 ≤ i ≤ r by showing that their joint characteristic function equals essentially∏r
i=1 exp(−T2

i /2). Actually it is more convenient to work with ω(n; y, z) in place of

ω(n), where we set

y = y(x) = (log x)3r and z = z(x) = x(log2 x)−3r

,

and define

ω(n; y, z) =

∑

p|n
y<p<z

1.

Accordingly we work with ω(n; y, z) − ∑
y<p<z

1
p

in place of ω(n) − log2 x. We will

soon see that there is not much loss in disregarding the primes less than y or greater

than z. In the next section we will prove the following theorem.

Theorem 2.2 Let ti = Ti(
∑

y<p<z
1
p

)−1/2 be real. For |Ti | ≤ 1
1000

(
∑

y<p<z
1
p

)1/2, we

have

1
x

∑

n≤x

r∏

i=1

exp
(

iTi

ω(n + bi ; y, z) − ∑
y<p<z

1
p√∑

y<p<z
1
p

)
=

r∏

i=1

exp
((

eiti − 1 − iti

) ∑

y<p<z

1
p

)
+ O(1/ log x).

Observe that for Ti ≤ (log2 x)ǫ for small enough ǫ > 0, we have

exp
(

(eiti − 1 − iti)
∑

y<p<z

1
p

)
= exp

(( −t2
i

2
+ O(t3

i )
) ∑

y<p<z

1
p

)

= exp
( −T2

i

2

)(
1 + O

( T3
i√

log2 x

))
,

(2.5)

and for (log2 x)ǫ < Ti ≤ (log2 x)1/2−ǫ, we have

(2.6) exp
(

(eiti − 1 − iti)
∑

y<p<z

1
p

)
≪ exp(−T2

i /4),

where the implied constants depend on ǫ.

To see how Theorem 2.2 implies Theorem 2.1, we will use the following lemmas.
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Lemma 2.3 Let ψ(x) be a real function differentiable ⌊4r/δ⌋ times and satisfying

(2.7)

0 ≤ ψ(x) ≤ 1 for |x| ∈ R, ψ(x) = 0 for |x| ≥ 2(log2 x)−1/2+δ,
∫ ∞

−∞
ψ(x)dx ∼

√
2π(log2 x)−1/2+δ, and

|ψ( j)(x)| ≪ (log2 x) j(1−δ)/2 for any positive integer j ≤ ⌊4r/δ⌋.

We have

1

x

∑

n≤x

r∏

i=1

ψ
( ω(n + bi ; y, z) − ∑

y<p<z
1
p√∑

y<p<z
1
p

)
∼ (log2 x)(−1/2+δ)r.

Proof Let ψ̂(T) =
∫ ∞
−∞ ψ(u)e−iuTdu denote the Fourier transform of ψ. By Fourier

inversion we have

(2.8)
1

x

∑

n≤x

r∏

i=1

ψ
( ω(n + bi ; y, z) − ∑

y<p<z
1
p√∑

y<p<z
1
p

)
=

1

x

∑

n≤x

r∏

i=1

1

2π

∫ ∞

−∞
ψ̂(Ti) exp

(
iTi

ω(n + bi ; y, z) − ∑
y<p<z

1
p√∑

y<p<z
1
p

)
dTi .

We have that |ψ̂(Ti)| ≪ (log2 x) j(1−δ)/2|Ti |− j , by integrating by parts j times and

using (2.7). Thus (2.8) equals

1

x

∑

n≤x

r∏

i=1

1

2π

∫ (log2 x)1/2−δ/4

−(log2 x)1/2−δ/4

ψ̂(Ti) exp
(

iTi

ω(n + bi ; y, z) −
∑

y<p<z
1
p√∑

y<p<z
1
p

)
dTi

+ O
(

(log2 x)−r
)
.

Now by Theorem 2.2 and observations (2.5) and (2.6), the main term above equals

(2.9)

r∏

i=1

( 1

2π

∫ (log2 x)ǫ

−(log2 x)ǫ

ψ̂(Ti) exp
( −T2

i

2

)
dTi + O

( 1√
log2 x

))
=

( 1

2π

∫ ∞

−∞
ψ̂(T) exp

( −T2

2

)
dT + O

( 1√
log2 x

)) r

.

Recall that the Fourier transform of 1√
2π

exp
( −u2

2

)
is exp

( −T2

2

)
. By the Plancherel

formula, (2.9) equals

( 1√
2π

∫ ∞

−∞
ψ(u) exp

( −u2

2

)
du + O

( 1√
log2 x

)) r

∼ (log2 x)(−1/2+δ)r.
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To prove Theorem 2.1 we need to show

1

x

∑

n≤x

r∏

i=1

ψ
( ω(n + bi) − log2 x√

log2 x

)
∼ (log2 x)(−1/2+δ)r,

where ψ is a suitable smooth function approximating the characteristic function

of the interval [−
√

π
2

(log2 x)−1/2+δ,
√

π
2

(log2 x)−1/2+δ]. This is accomplished by

Lemma 2.3, provided that we can show that we may neglect prime factors smaller

than y or larger than z without significant loss. This is the purpose of the next lemma.

Lemma 2.4 Except for O
(

x(log2 x)−r
)

integers less than x, we have

∣∣∣
ω(n) − log2 x√

log2 x
−

ω(n; y, z) − ∑
y<p<z

1
p√∑

y<p<z
1
p

∣∣∣ ≪ (log2 x)−1/2+δ/2.

Proof Let E(x) denote the set of integers less than or equal to x with more than

(log2 x)δ/2 distinct prime factors less than y or more than (log2 x)δ/2 distinct prime

factors greater than z. The size of this set is

|E(x)| ≤ x

⌊(log2 x)δ/2⌋!

( ∑

p≤y

1

p

) (log2 x)δ/2

+
x

⌊(log2 x)δ/2⌋!

( ∑

z≤p≤x

1

p

) (log2 x)δ/2

≪ x

(log2 x)r
,

using
∑

p≤x
1
p

= log2 x + C + O(1/ log x) and Stirling’s estimate, n! ∼
√

2πnn+ 1
2 e−n.

For n /∈ E(x) we have ω(n) − ω(n; y, z) ≪ (log2 x)δ/2, and so it follows that

ω(n) − log2 x√
log2 x

−
ω(n; y, z) − ∑

y<p<z
1
p√∑

y<p<z
1
p

=

ω(n) − log2 x − ω(n; y, z) +
∑

y<p<z
1
p√∑

y<p<z
1
p

+ O
( |ω(n) − log2 x| log3 x

log2 x

)

≪ (log2 x)δ/2

√
log2 x

+
|ω(n) − log2 x| log3 x

log2 x
.

The proof is complete by noting that except for O
(

x/(log2 x)r
)

integers less than

x we have |ω(n) − log2 x| ≪ (log2 x)1/2+δ/4. This is because
ω(n)−log2 x√

log2 x
has normal

moments and in particular

1

x

∑

n≤x

( ω(n) − log2 x√
log2 x

) 8⌊r/δ⌋
≪ 1,

where the implied constant depends on r/δ.
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3 Proof of Theorem 2.2

Define for a prime p

fp(n) =

{
1 − 1

p
if p|n

− 1
p

if p ∤ n
,

and if m =
∏

i pαi

i , define fm(n) =
∏

i fpi
(n)αi . (Thus f1(n) = 1.) If we think of a

prime p dividing n with probability 1/p independently of other primes, then we have

E( fm(n)) = 0 for square-free m. So we have written ω(n)−∑
p≤x 1/p =

∑
p≤x fp(n)

as a sum of independent random variables of mean 0, which already suggests by the

Central Limit Theorem that ω(n) −
∑

p≤x 1/p is normally distributed. This simple

idea is actually very powerful. It is borrowed from Granville and Soundararajan [5],

who use it to efficiently compute very high moments of ω(n) −∑
p≤x

1
p

and provide

a new proof of the Erdős–Kac theorem.

We have that the left-hand side of Theorem 2.2 equals

1
x

∑

n≤x

r∏

i=1

exp
(

iTi

ω(n + bi ; y, z) − ∏
y<p<z

1
p√∏

y<p<z
1
p

)

=
1
x

∑

n≤x

r∏

i=1

exp
( ∏

y<p<z

iti fp(n + bi)
)

=
1
x

∑

n≤x

∏

y<p<z

exp
( r∑

i=1

iti fp(n + bi)
)

=
1
x

∑

n≤x

∏

y<p<z

(
1 +

( r∑

i=1

iti fp(n + bi)
)

+
1

2!

( r∑

i=1

iti fp(n + bi)
) 2

+ · · ·
)

.

(3.1)

Now upon expansion of the product, (3.1) equals

(3.2) 1
x

∑

n≤x

∑

ai≥1
p|ai⇒y<p<z

Ka1,...,ar

r∏

i=1

tΩ(ai )
i fai

(n + bi),

for some constants Ka1,...,ar
of modulus bounded by 1, where Ω(a) is the number

of prime factors of a counted with multiplicity. Note that when the integers ai are

pairwise coprime we have that

(3.3) Ka1,...,ar
=

r∏

i=1

∏

pα|ai

iα

α!
.

We will evaluate (3.2) using the following results. The first generalizes a result

from [5].
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Lemma 3.1 Let ai be pairwise coprime integers for 1 ≤ i ≤ r. Denote the square-free

part of ai by Ai . We have

1
x

∑

n≤x

r∏

i=1

fai
(n + bi) =

r∏

i=1

∏

pα‖ai

(
1
p

(
1− 1

p

)α
+

( −1
p

)α(
1− 1

p

))
+ O

(
1
x

r∏

i=1

τ (Ai)
2
)

,

where τ (A) denotes the number of divisors of A and pα ‖ a means that pα|a and pα+1 ∤
a. Note that the main term is zero unless each ai is square-full (that is, p|ai implies

p2|ai).

Proof For a fixed integer a, the value fa(n) depends only on the common prime

factors of a and n, so fa(n) = fa((A, n)). Thus we can group terms this way:

1

x

∑

n≤x

r∏

i=1

fai
(n + bi) =

1

x

∑

di |Ai

∑

n≤x
(Ai ,n+bi )=di

r∏

i=1

fai
(di)

=
1

x

∑

di |Ai

∑

n≤x
di |(n+bi )

∑

ei | (Ai ,n+bi )

di

r∏

i=1

µ(ei) fai
(di)

=
1

x

∑

di |Ai

∑

ei | Ai
di

( ∑

n≤x
ei di |n+bi

1
) r∏

i=1

µ(ei) fai
(di).

(3.4)

By the Chinese Remainder Theorem, since the integers ai are pairwise coprime,

∑

n≤x
ei di |n+bi

1 =
x∏r

i=1 eidi

+ O(1).

Therefore the above sum is

r∏

i=1

∑

di |Ai

fai
(di)

di

∑

ei | Ai
di

µ(ei)

ei

+ O
( 1

x

r∏

i=1

τ (Ai)
2
)

=

r∏

i=1

∑

di |Ai

fai
(di)

di

φ( Ai

di
)

Ai

di

+ O
( 1

x

r∏

i=1

τ (Ai)
2
)

=

r∏

i=1

∑

di |Ai

fai
(di)

1

Ai

φ
( Ai

di

)
+ O

( 1

x

r∏

i=1

τ (Ai)
2
)

.

Now it is easily verified (by multiplicativity in ai) that the main term of the last line

above equals
r∏

i=1

∏

pα‖ai

(
1
p

(
1 − 1

p

)α

+
( −1

p

)α(
1 − 1

p

))
.
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In the case that a1, . . . , ar are not pairwise coprime, we will need the following.

Lemma 3.2 Let r ≥ 2 and 0 ≤ b1 < · · · < br ≤ λ(log2 x)1/2−δ . Suppose that for

some prime y < q < z, we have that q|a1 and q|a2. Let qαi ‖ ai and let a ′
i = aiq

−αi .

Let Ai denote the square-free part of ai , and let A ′
i denote the square-free part of a ′

i . We

have

1

x

∑

n≤x

r∏

i=1

fai
(n + bi) = O

( 1

q2

1

x

∑

n≤x

r∏

i=1

fa ′

i
(n + bi)

)
+ O

( 1

qx

r∏

i=1

τ (Ai)
2
)

.

Proof From (3.4), we have

(3.5)
1

x

∑

n≤x

r∏

i=1

fai
(n + bi) =

1

x

∑

di |Ai

∑

ei | Ai
di

( ∑

n≤x
ei di |n+bi

1
) r∏

i=1

µ(ei) fai
(di).

The sum ∑

n≤x
ei di |n+bi

1

is zero for large enough x if q divides more than one integer eidi . This is because if

q|n + bi and q|n + b j then q|bi −b j and hence i = j since q > y and the integers bi are

distinct and bounded by λ(log2 x)1/2−δ . Thus we can suppose that q divides at most

one integer eidi . First consider the terms of (3.5) with q ∤ eidi for all i. These terms

contribute

1
x

∑

di |A ′

i

∑

ei |A ′

i /di

( ∑

n≤x
ei di |n+bi

1
) r∏

i=1

µ(ei) fa ′

i
(di) fqαi (di) =

( −1
q

)α1+···+αr 1
x

∑

n≤x

r∏

i=1

fa ′

i
(n+bi),

using the fact that fqαi (di) = (−1/q)αi and the identity of (3.5). Since α1 +α2 ≥ 2 we

get the desired factor of 1/q2. Now say q|e1d1 and q ∤ eidi for i 6= 1. The contribution

of this case is,

1

x

∑

di |A ′

i

∑

ei |A ′

i /di

( ∑

n≤x
qe1d1|n+b1

ei di |n+bi ,i 6=1

1

)
µ(e1) fa ′

1
(qd1) fqα1 (qd1)

r∏

i=2

µ(ei) fa ′

i
(di) fqαi (di)

+
1

x

∑

di |A ′

i

∑

ei |A ′

i /d ′

i

( ∑

n≤x
qe1d1|n+b1

ei di |n+bi ,i 6=1

1

)
µ(qe1) fa ′

1
(d1) fqα1 (d1)

r∏

i=2

µ(ei) fa ′

i
(di) fqαi (di),

(3.6)

where the first line corresponds to q|d1 and the second to q|e1. By the Chinese Re-

mainder Theorem, we have

∑

n≤x
qe1d1|n+b1

ei di |n+bi ,i 6=1

1 =
1

q

∑

n≤x
ei di |n+bi

1 + O(1).
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Thus the contribution of the sums of (3.6) is

(3.7)
(

1
q

(
1 − 1

q

)α1
( −1

q

)α2+···+αr − 1
q

( −1
q

)α1+···+αr
)

1
x

∑

n≤x

r∏

i=1

fa ′

i
(n + bi)

+ O
(

1
x
| fqα2 (d2)|

r∏

i=1

∑

ei di |A ′

i

1
)

.

Again we have a factor of 1/q2 in the first line above since α2 ≥ 1. The second line of

(3.7) is O( 1
qx

∏r
i=1 τ (Ai)

2) since α2 ≥ 1 and q ∤ d2. This completes the proof as terms

with q|e jd j and q ∤ eidi for i 6= j are dealt with similarly.

We will also need the following observations.

Lemma 3.3 We have

1

x

∑

n≤x

∑

ai≥1
p|ai⇒y<p<z

ω(a1)≥(log2 x)2r

|Ka1,...,ar
|

r∏

i=1

| fai
(n + bi)||ti |Ω(ai ) ≪ 1

log x
.

Proof We first bound the contribution of terms with ω(ai) = wi for some positive

integers wi . Recall that |Ka1,...,ar
| ≤ 1 and note that | fpα (n)| ≤ | fp(n)|. Thus

(3.8)
1

x

∑

n≤x

∑

ai≥1
p|ai⇒y<p<z

ω(ai )=wi

|Ka1,...,ar
|

r∏

i=1

| fai
(n + bi)||ti |Ω(ai )

≪ 1

x

∑

n≤x

∑

ai≥1
p|ai⇒y<p<z

ω(ai )=wi

r∏

i=1

| fAi
(n + bi)||ti |Ω(ai ).

For a fixed square-free integer Ai with ω(Ai) = wi we have

∑

ai≥1
Ai=square-free part of ai

|ti |Ω(ai ) ≤ 1,

since |ti | ≤ 1
1000

. Thus (3.8) is bounded by

≪ 1

x

∑

n≤x

r∏

i=1

1

wi !

( ∑

y<p<z

| fp(n + bi)|
)wi

.(3.9)
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Since | fp(n)| ≤ 1 if p|n and | fp(n)| ≤ 1
p

if p ∤ n, we have that (3.9) is bounded by

≪ 1

x

∑

n≤x

r∏

i=1

1

wi !

(
ω(n + bi ; y, z) + log2 x

)wi

≪
( r∏

i=1

1

wi !

) 1

x

∑

n≤x

r∑

i=1

2rwi

(
ω(n + bi ; y, z)rwi + (log2 x)rwi

)
.

(3.10)

We have

(3.11)
1

x

∑

n≤x

ω(n + bi ; y, z)rwi ≪ 1

x

∑

y<p1,...,prwi
<z

∑

n≤x
[p1,...,prwi

]|n+bi

1,

where [p1, . . . , prwi
] denotes the lowest common multiple of p1, . . . , prwi

. Now

(3.11) is bounded by

≪
∑

y<p1,...,prwi
<z

1

[p1, . . . , prwi
]
≪ 2rwi (log2 x)rwi .

Thus we have that (3.10) is bounded by

≪
( r∏

i=1

1

wi !

) r∑

i=1

4rwi (log2 x)rwi .

Summing over integers wi ≥ 1 for i ≥ 2, this is bounded by

(3.12) ≪ (4 log2 x)rw1 exp((4 log2 x)r)

w1!
.

Finally the sum of (3.12) over integers w1 ≥ (log2 x)2r is ≪ 1/ log x.

Lemma 3.4 We have

∑

ai≥1
p|ai⇒y<p<z

ω(a1)≥(log2 x)2r

r∏

i=1

|ti |Ω(ai )
∏

pα‖ai

∣∣∣
1

p

(
1 − 1

p

)α

+
(

1 − 1

p

)( −1

p

)α∣∣∣ ≪ 1

log x
.
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Proof We first bound the contribution of terms with ω(ai) = wi for some positive

integers wi . We have

∑

ai≥1
p|ai⇒y<p<z

ω(ai )=wi

r∏

i=1

|ti |Ω(ai )
∏

pα‖ai

∣∣∣
1

p

(
1 − 1

p

)α

+
(

1 − 1

p

)( −1

p

)α∣∣∣

≪
r∏

i=1

1

wi !

( ∑

y<p<z

1

p

)wi

≪
r∏

i=1

(log2 x)wi

wi !
.

Summing over integers wi ≥ 1 for i ≥ 2, this is bounded by

≪ (log2 x)w1 exp(r log2 x)

w1!
.

The sum of (3.12) over integers w1 ≥ (log2 x)2r is ≪ 1/ log x.

Back to the Proof

By Lemma 3.3 we see that (3.2) equals, up to an error of O(1/ log x),

(3.13)
1

x

∑

n≤x

∑

ai≥1
p|ai⇒y<p<z

ω(ai )≤(log2 x)2r

Ka1,...,ar

r∏

i=1

fai
(n + bi)tΩ(ai )

i .

Let us first treat the terms of (3.13) with a1, . . . , ar not pairwise coprime. Applying

Lemma 3.2 repeatedly, these terms contribute an amount bounded by

(3.14) ≪
∑

y<q<z

1

q2

∑

ai pairwise coprime
p|ai⇒y<p<z

ω(ai )≤(log2 x)2r

∣∣∣
1

x

∑

n≤x

r∏

i=1

fai
(n + bi)tΩ(ai )

i

∣∣∣

+
∑

y<q<z

1

qx

∑

ai≥1
p|ai⇒y<p<z

ω(ai )≤(log2 x)2r

r∏

i=1

|ti |Ω(ai )τ (Ai)
2.
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For the second line of (3.14), we have

(3.15)
1

x

r∏

i=1

∑

ai≥1
p|ai⇒y<p<z

ω(ai )≤(log2 x)2r

|ti |Ω(ai )τ (Ai)
2 ≪ 1

x

r∏

i=1

∑

ai square-free
p|ai⇒y<p<z

ω(ai )≤(log2 x)2r

τ (Ai)
2

≪ 1

x

r∏

i=1

z(log2 x)2r

4(log2 x)2r ≪ x−1/2.

Thus the second line of (3.14) falls into the error term of Theorem 2.2. To bound the

first line of (3.14) we use Lemma 3.1 to get that

∑

y<q<z

1

q2

∑

ai pairwise coprime
p|ai⇒y<p<z

ω(ai )≤(log2 x)2r

∣∣∣
1

x

∑

n≤x

r∏

i=1

fai
(n + bi)tΩ(ai )

i

∣∣∣

≪ 1

y

( ∑

ai≥1
p|ai⇒y<p<z

ω(ai )≤(log2 x)2r

r∏

i=1

|ti |Ω(ai )
∏

pα‖ai

1

p
+

∑

ai≥1
p|ai⇒y<p<z

ω(ai )≤(log2 x)2r

1

x

r∏

i=1

|ti |Ω(ai )τ (Ai)
2
)

≪ 1

y

r∏

i=1

∏

y<p<z

(
1 +

1

p

)
+ x−1/2,

where we used the bound of (3.15). Now this is less than
(log x)r

y
+ x−1/2 ≪ 1/ log x.

Thus only the terms of (3.13) with a1, . . . , ar coprime will give a main contribu-

tion. Using Lemma 3.1 and (3.3) we get

(3.16)
1

x

∑

n≤x

∑

ai pairwise coprime
p|ai⇒y<p<z

ω(ai )≤(log2 x)2r

Ka1,...,ar

r∏

i=1

fai
(n + bi)tΩ(ai )

i

=

r∏

i=1

∑

ai pairwise coprime
p|ai⇒y<p<z

ω(ai )≤(log2 x)2r

∏

pα‖ai

iα

α!
tα

i

( 1

p

(
1 − 1

p

)α

+
(

1 − 1

p

)( −1

p

)α)

+ O
( ∑

ai≥1
p|ai⇒y<p<z

ω(ai )≤(log2 x)2r

1

x

r∏

i=1

|ti |Ω(ai )τ (Ai)
2
)

.

We have already seen in (3.15) that the error term above is negligible. The main term

of (3.16) is zero if ai is not square-full for all i. Thus we may further impose the
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condition p|ai ⇒ p2|ai . By Lemma 3.4 we may also extend the sum in the main term

of (3.16) to all pairwise coprime and square-full integers ai whose prime factors lie

between y and z, up to an error of O(1/ log x). Thus (3.16) equals, up to this error,

r∏

i=1

∏

y<p<z

(
1 +

1

p

∑

α≥2

iα

α!
tα

i

(
1 − 1

p

)α

+
(

1 − 1

p

) ∑

α≥2

iα

α!
tα

i

(
− 1

p

)α)

=

r∏

i=1

∏

y<p<z

(
1 +

1

p

(
eiti − 1 − iti

)
+ O

( 1

p2

))

=

r∏

i=1

exp
( ∑

y<p<z

log
(

1 +
1

p

(
eiti − 1 − iti

)
+ O

( 1

p2

)))
.

(3.17)

Now since

log
(

1 +
1

p

(
eiti − 1 − iti

)
+ O

( 1

p2

))
=

1

p

(
eiti − 1 − iti

)
+ O

( 1

p2

)
,

we have that (3.17) equals

r∏

i=1

exp
((

eiti − 1 − iti

) ∑

y<p<z

1

p
+ O

( 1

y

))

=

r∏

i=1

exp
((

eiti − 1 − iti

) ∑

y<p<z

1

p

)
+ O(1/ log x).
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