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Sufficient conditions for a continuous
linear operator to be weakly compact

Joe Howard and Kenneth Melendez

A locally convex topologicel vector (LCTV) space E is said to
have property V (Dieudonné property) if for every complete
separated LCTV space F , every unconditionally converging
(veakly completely continuous) operator T : E > F is weakly
compact. First, an investigation of the permanence of property
V is given. The permanence of the Dieudonné is analogous.
Relationships between property V and the Dieudonné property

are then given.

1. Preliminaries

In the following definitions (E, T) and (F, T') will denote
separated locally convex topological vector spaces (LCTVS) with topologies

T and T' respectively. All linear operators are to be continuous. We
o

use this fact without meking further reference to it. A series Z z, in
=1

(E, T) is unconditionally convergent (uc) if it is subseries convergent

relative to T . Equivalent conditions for uc series are given in [4]. A

o)
series Z x; in (E, 1) is said to be weakly unconditionally convergent
=1
[«
(wuc) if Z ]f(xi)l < o for every f in E' . An equivalent condition

1=1

for wuc is that S = Z x; 0 finite} be bounded relative to T .
oo
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A linear operator T : E + F (F complete) is said to be
unconditionally converging {uc operator) if it sends every wuc series in %
into uc series in F . T 1is said to be weakly compact if 7 maps bounded
sets of E into weakly relatively compact sets of F . This definition,
which can be found in Lemma 1 of [2], differs slightly from the more common
one given in [1]. It is easy to show using condition (E) of (4] that

every weakly compact operator is a uc operator.

N(E) is to denote JE (J is the natural map) plus all o(E", E')~
limits of wuc series in E . N(E) is a subset of E" . The following
theorem is a consequence of Proposition 9.4.9 of [1], and therefore a proof

will not be given.
THEOREM 1.1. The following conditions on E are equivalent.

(1) For every complete separated LCTVS F , every uc operator
T : E~>F 4is weakly compact.

(1) As (1), F being restricted to a Banach space.

(2} Any continuous linearmap T : E +F (F as in (1)) for which
" (N(E)) « F satisfies T'(E")c F .

(2') As (2), F being restricted to a Banach space.

(3)  Any equicontinuous, convex, balanced, and o(E', N(E))-compact
set in E' is also o(E', E")-compact.

That (1) and (2) are equivalent can be seen from the facts that
T :E~F is uc if and only if T"(W(E)) € F and T : E » F is weakly
compact if and only if T"(E") c F .

DEFINITION 1.2. Any LCTVS E which has one of the above equivalent

properties is said to have property V .

This definition is a generalization of property V for Banach spaces

studied by Petczyfdski in [5].

Let K(E) denote JE plus all o(E", E')-limits of weak Cauchy
sequences in E . By using K(E) instead of N(E) in Proposition 9.4.9
of [1], we have a theorem similar to Theorem 1.1 above. We state this as a

definition.

DEFINITION 1.3. E is said to have the Dieudonné property if one of
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the following equivalent properties is satisfied.

(1) For every complete separated LCTVS F , every operator
T : E~+F which transforms weak Cauchy sequences into weakly

convergent sequences is weakly compact.
(1') As (1), F being restricted to a Banach space.

(2) Any continuous linear map T : E+>F (F as in (1)), for which
7" (K(BE)) € F satisfies T'(E")CF .

(2') As (2), F being restricted to a Banach space.

(3) Any equicontinuous, convex, balanced and O(E', K(E))—compact

1

set in E' is also o(E', E")-compact.

A complete discussion of the Dieudonné property is found in [7] and
[2].

Another property which is somewhat related to both property V and
the Dieudonné property is the following property.

DEFINITION 1.4, A LCTV space E is said to have property (u) if

for every weak Cauchy sequence {xn} in E there exists a wuc series

n
Z u; such that the sequence {x - Z u converges weakly to O .
k =

2. Permanence of property Vv

Since condition (3) of Theorem 1.1 is a condition on the dual space
E' , compatible topologies for E must all agree on £ having (or not
having) property ¥ . Hence, if E is a Banach space having (not having)
property V , then E with the weak topology has (does not have) property
V . 1In particular, Zl with the weak topology does not have property V

since 1., with the norm topology does not [5]. An example of a LCIV space

1
which does have property V 1is a reflexive space.

PROPOSITION 2.1. Suppose E +is the regular inductive lirit [3] of the
LeTvVs E, . If each E, has property V , then E has property V .

Proof. Let T : £+ F be a uc operator, F complete, and B a
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bounded subset of E . Then for some n , f;ll(B) is a bounded set in
En where fn is the continuous linear mapping from En to £ such that

U fn (E'n) spans E . Now define Tn such that the diagram

fn
E———F
n
N /
n
F
is commutative. Then Tn = Tfn is a uc operator and since En has

property V , Tn is a weakly compact operator. Hence the weak closure of

Tn[f;ll(B)] = T7(B) is compact in the weask topology of F . Therefore T
is weakly compact, and £ has property V .

EXAMPLE 2.2. Projective limits do not necessarily preserve property

Proof. Let R denote the reals and define the map h : E » Ef =R
by h : e~ fle) where f belongs to E' . Now if we take E = Zl with

the weak topology, then Zl is the projective limit of |Zm| copies of

R , where llml denotes the cardinality of Zw . R = Ef has property V

since it is reflexive, but Zl with the weak topology does not.

REMARK. Suppose FE = El X E’2 . Then T : E > F 1is weakly compact if

and only if TIE‘l and TIE’2 (the restriction of T to E. and E'2 s

1
respectively] is weakly compact. This is also true for uc operators.

Hence, if E E . En are LCTVS with property V , then

1’ 722

El X E2 X oo, X En has property V . The following proposition shows that

this is also true for infinite products.

PROPOSITION 2.3. Swppose E is the infinite direct product of the
Lcrvs B, . If each E, has property V , then E has property V .

Proof. Let T : E + F be a continuous operator, F a Banach space,
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and h_  the natural map of E_ into E . Then T =T o h is
n n n n
continuous from En into F , so Tn =0 for all but a finite set of

indices. Therefore, it suffices to prove the case for a finite product.

But this is contained in the above remark.

REMARK. The direct sum of spaces with property V has property V .
The proof is analogous to that for the direct products.

PROPOSITION 2.4. If E 4is a normed linear space having property
V , then every quotient space E has property V .

Proof. Let M be a subspace of E . Define T such that the

diagram

T

E—=F
AN /s
E/M

is commutative where J is the canonical map and F is complete. Assume

S 1is a uc operator and let z x, be a wuc series in E . Since J is
continuous, z j(xn) is a wuc series in E/M and therefore

Z T[an =7 Sj(xn) is a uc series in F . So T is a uc operator and
since FE has property V , T 1is a weakly compact operator.

Let B # {0} be a bounded set in E/M . Since E 1is a normed space,
j-l(B) is a bounded set in E and hence the weak closure of

Zﬁ_l(B) = S(B) is compact in the weak topology of F . Therefore S is a
weakly compact operator, so E/M has property V .

REMARKS. (1) For LCTVS, Property V 1is not necessarily preserved
for quotient spaces. In Problem 20, page 195 of [7], there is given a

Montel space FE which has a quotient space isomorphic to Zl . Since F

is a Montel space, FE 1is reflexive and hence has property V . However,

Zl does not have property V . Since an inductive limit topology can be

considered as a quotient topology, this example also shows that property V

is not preserved by inductive limits.
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(2) Property V is not preserved for subspaces since Zl is

linearly isometric to a subspace of C(S) , S a compact Hausdorff space,

and C(S) has property V [5] while 7,1 with the norm topology does not.

However a space E has property V if and only if every complemented

subspace has property V .

(3) It is an open gquestion whether property V is preserved under

tensor products. Swartz has partially answered this question in [§].

3. The Dieudonné property and property V

Permanence properties for the Dieudonné property are analogous to

those for property V ; hence they are omitted.

If EF has property V then E has the Dieudonné property since
every wcc operator (a wce operator transforms weak Cauchy seguences into
weakly convergent sequences) is a uc operator. In general the converse is
not true (Example 3.3), however a space having property (u) (Definition

1.L4) is a sufficient condition for the converse to hold.
LEMMA 3.1. E has property (u) if and only if N(E) = K(E) .

Proof. Since WN(E) c K(E) it will suffice to show X(E) < N(E) . If
G € K(E) , then there exists a wesk Cauchy sequence {xn} in E such that

w* ~ lim an = G . Since E has property (u) , there exists a wuc series
n

n
Zui in E such that {xn- Z ui} converges weakly to O , thus
i=1

n
w* - lim ] Ju; =G and G € N(E) .

n 1=1

Conversely, assume X(E) = N(E) and let {xn} be a weak Cauchy

sequence in E . Since {xn} is weak Cauchy there exists a G ¢ XK(E) such

that w?* - lim an = G , and since K(E) = N(E) we have G ¢ N(E) , which
n

implies that there exists a wuc series z u; such that
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n n

w* - 1lim Z Ju. = G , thus {x - 2 u.] converges weakly to 0 , so F

1 Ju n L
n 1=l 1=1

has property (u)

THEQREM 3.2. If E has property (u) , then E has property V <if
and only if E has the Dieudonné property.

Proof. It suffices to show that every uc operator is a wcc operator.
Let T : E~>F be a uc operator. Then T'(N(E)) c-JE , but since E has
property (u) , N(E) = K(E) , so T"(K(E)) c JF . Since T is a wce
operator if and only if T"(K(E)) ¢ JF , T is a wcc operator.

REMARK. It is not possible to refine Theorem 3.2 to: E has property
V if and only if E has the Dieudonné property and property (u) . For
example C[0, 1] has both property V and the Dieudonné property, but not
property (u)

EXAMPLE 3.3. James defined a Banach space 33 such that BB’ Bé ,
and Bg are separable but Bg' is non-separable and Bg = B3 %) Zl . Bg

is separable, so every bounded sequence in 33 will have a Cauchy
subsequence, and thus every wce operator will be weakly compact. Hence Bé

has the Dieudonné property.

However, the identity map < : Bé > Bé is a uc operator, since if Bé

contained a subspace isomorphic to ey > it would contain a subspace

1

3

were weakly compact, then the unit disk of Bé would be weakly compact,

hence B! would be reflexive, which it is not, so B!

3 3

property V . Notice % 1is an example of a uc operator that is not a wece

isomorphic to m and B. would not be separable, a contradiction. If 2

does not have

operator.

REMARK. Several conclusions can easily be seen by considering the

sets N{(X) and K(X) . Here are a few.

(1) If N(X) = X" , then X has property V .

(2) If K(X) = X" , then X has the Dieudonné property.

(3) #(X) =JX if and only if X has no subspace isomorphic to ¢,
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(equivalent to every wuc series is uc).

(4) X is weakly complete if and only if X has property (u) and
N(X) = JX if and only if K(X) = JX .

It can be shown that if Y is a subspace of X , then

N(Y) = Y" nN(X) and K(Y) =Y" n K(X) . This gives the inheritance

properties (such as those given in this paper) for subspaces.
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