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Abstract An element a in a ring R with identity is called strongly clean if it is the sum of an idempotent
and a unit that commute. And a ∈ R is called strongly π-regular if both chains aR ⊇ a2R ⊇ · · · and
Ra ⊇ Ra2 ⊇ · · · terminate. A ring R is called strongly clean (respectively, strongly π-regular) if every
element of R is strongly clean (respectively, strongly π-regular). Strongly π-regular elements of a ring are
all strongly clean. Let σ be an endomorphism of R. It is proved that for Σrix

i ∈ R[[x, σ]], if r0 or 1−r0 is
strongly π-regular in R, then Σrix

i is strongly clean in R[[x, σ]]. In particular, if R is strongly π-regular,
then R[[x, σ]] is strongly clean. It is also proved that if R is a strongly π-regular ring, then R[x, σ]/(xn)
is strongly clean for all n � 1 and that the group ring of a locally finite group over a strongly regular or
commutative strongly π-regular ring is strongly clean.

Keywords: strongly clean ring; power series ring; strongly π-regular ring; group ring

2000 Mathematics subject classification: Primary 16U99; 16S99

1. Introduction

Rings are associative with identity. An element in a ring is called clean if it is the sum
of an idempotent and a unit [8]. An element a in a ring R is called strongly clean if
a = e + u, where e2 = e ∈ R and u is a unit of R such that eu = ue. In this case we
also say that a = e + u is a strongly clean expression of a in R. A ring R is called clean
(respectively, strongly clean) if every element of R is clean (respectively, strongly clean).
Note that clean and strongly clean rings are the ‘additive analogues’ of unit-regular and
strongly regular rings, respectively, because a ring R is unit-regular if and only if every
element of R is the product of an idempotent and a unit (in either order) and R is
strongly regular if and only if every element of R is the product of an idempotent and a
unit that commute. Local rings are obviously strongly clean. An element a ∈ R is called
right π-regular if the chain aR ⊇ a2R ⊇ · · · terminates. The left π-regular elements are
defined analogously. An element a ∈ R is called strongly π-regular if it is both left and
right π-regular, and R is called a strongly π-regular ring if every element is strongly π-
regular. According to Dischinger [6], R is strongly π-regular if and only if every element
of R is right π-regular if and only if every element of R is left π-regular. According to
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Burgess and Menal [2], strongly π-regular rings are strongly clean; in particular one-sided
perfect rings are strongly clean. Strongly clean rings were introduced by Nicholson [9],
where their connection with strongly π-regular rings and hence to Fitting’s lemma were
discussed. In particular, it was proved in [9] that every strongly π-regular element is
strongly clean.

According to Han and Nicholson [7], a ring R is clean if and only if the power series
ring R[[x]] is clean. But it is unknown when a power series ring is strongly clean. For a
local ring R, R[[x]] is certainly strongly clean (being local). But for any ring R, R[[x]] is
never strongly π-regular because x is not strongly π-regular. Our main result says that,
for a ring R, Σi�0rix

i ∈ R[[x, σ]] is a strongly clean element if either r0 or 1−r0 is strongly
π-regular in R. In particular, R[[x, σ]] is strongly clean for any strongly π-regular ring R.
This gives a new family of strongly clean rings, neither local nor strongly π-regular.

It was proved in [7] that if R is a Boolean ring and G is a locally finite group, then the
group ring RG is a clean ring. Here it is proved that the group ring RG of a locally finite
group G over a strongly regular or commutative strongly π-regular ring R is strongly
π-regular (and hence strongly clean). This gives an affirmative answer to the question
in [7] of whether the group ring RG of a locally finite group G over a commutative
(von Neumann) regular ring R is clean. It is also proved here that, for a strongly π-
regular ring R, R[x, σ]/(xn) is strongly clean for all n � 1. We write Z for the ring of
integers, Zn for the ring of integers modulo n, and Z(p) for the localization of the ring Z

at the ideal generated by the prime number p. As usual, Q is the field of rationals, U(R)
stands for the group of units of R, and J(R) denotes the Jacobson radical of R. The
n × n upper triangular matrix ring over R is denoted Tn(R).

2. Strongly clean power series

When is R[[x]] strongly clean? Here we present a new family of strongly clean rings through
power series rings. If R is a ring and σ : R → R is a ring homomorphism (with σ(1) = 1),
let R[[x, σ]] denote the ring of skew formal power series over R; that is, all formal power
series in x with coefficients from R with multiplication defined by xr = σ(r)x for all
r ∈ R. Note that, by [1] or [9], an element a ∈ R is strongly π-regular if and only if there
exists n � 1 such that an = eu = ue, where e2 = e ∈ R and u ∈ U(R) and a, e and u all
commute. The main result of this section is the following theorem.

Theorem 2.1. Let R be a ring and r = Σrix
i ∈ R[[x, σ]]. If either r0 or 1 − r0 is a

strongly π-regular element of R, then r is a strongly clean element of R[[x, σ]].

Proof. Because r is strongly clean in R[[x, σ]] if and only if 1− r is also strongly clean
in R[[x, σ]], we need only to prove the claim for the case where r0 is a strongly π-regular
element of R. So write rm

0 = f0w0 = w0f0, where f2
0 = f0 ∈ R and w0 ∈ U(R) and r0,

f0 and w0 all commute. Let n = 2m. Then rn
0 = f0w

2
0 = w2

0f0. Next we show that there
exist e = Σeix

i, u = Σuix
i ∈ R[[x, σ]] such that

r = e + u, eu = ue, e2 = e and u ∈ U(R[[x, σ]]).
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Choose e0 = 1−f0 and u0 = r0−(1−f0). Then u0 ∈ U(R) by the proof of [9, Theorem 1]
and hence r0 = e0 + u0 is a strongly clean expression of r0 in R. Now let w = w2

0. Then

rm
0 = (1 − e0)w0 = w0(1 − e0), (2.1)

rn
0 = (1 − e0)w = w(1 − e0). (2.2)

Thus, r0, e0, w and u0 all commute and

rm
0 e0 = e0r

m
0 = 0, e0r

n−1
0 = rn−1

0 e0 = rm−1
0 rm

0 e0 = 0. (2.3)

Note that e2 = e is equivalent to

em = emσm(e0) + em−1σ
m−1(e1) + · · · + e1σ(em−1) + e0em (Em)

for m = 0, 1, 2, . . . , and eu = ue is equivalent to

emσm(u0) + em−1σ
m−1(u1) + · · · + e1σ(um−1) + e0um

= umσm(e0) + um−1σ
m−1(e1) + · · · + u1σ(em−1) + u0em (Fm)

for m = 0, 1, 2, . . . , and r = e + u is the same as

rm = em + um (Gm)

for m = 0, 1, 2, . . . . Clearly, e0, u0 satisfy (E0), (F0) and (G0). Since u0 ∈ U(R), u is a
unit of R[[x, σ]] no matter how we choose ui for i � 1. Thus, it suffices to show that there
exist ei, ui (i = 1, 2, . . . ) such that (Em), (Fm) and (Gm) are satisfied for all m � 1.
Assume that e0, . . . , ek, u0, . . . , uk have been obtained so that (Em), (Fm) and (Gm) are
satisfied for all m = 0, 1, . . . , k. We next find ek+1 and uk+1 that satisfy (Ek+1), (Fk+1)
and (Gk+1). Let

s0 = l0 = m0 = 0,

sk = e1σ(uk) + e2σ
2(uk−1) + · · · + ekσk(u1),

lk = u1σ(ek) + u2σ
2(ek−1) + · · · + ukσk(e1),

mk = e1σ(ek) + e2σ
2(ek−1) + · · · + ekσk(e1),

tk = e0rk+1 − rk+1σ
k+1(e0) + sk − lk.

Then sk, lk, mk and tk are well-defined elements of R.

Claim 1. mkσk+1(e0) = e0mk.

Proof of Claim 1. Noting that (Em) holds for m = 1, 2, . . . , k, we have

mkσk+1(e0) − e0mk

= [e1σ(ek) + e2σ
2(ek−1) + · · · + ekσk(e1)]σk+1(e0)

− e0[e1σ(ek) + e2σ
2(ek−1) + · · · + ekσk(e1)]

= e1σ[ekσk(e0)] + e2σ
2[ek−1σ

k−1(e0)] + · · · + ekσk[e1σ(e0)]

− e0e1σ(ek) − e0e2σ
2(ek−1) − · · · − e0ekσk(e1)
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= e1σ[ek − e0ek − e1σ(ek−1) − · · · − ek−1σ
k−1(e1)]

+ e2σ
2[ek−1 − e0ek−1 − e1σ(ek−2) − · · · − ek−2σ

k−2(e1)]

+ · · ·
+ ekσk(e1 − e0e1)

− e0e1σ(ek) − e0e2σ
2(ek−1) − · · · − e0ekσk(e1)

= [e1 − e1σ(e0) − e0e1]σ(ek) + [−e1σ(e1) + e2 − e2σ
2(e0) − e0e2]σ2(ek−1)

+ · · · + [−e1σ(ek−1) − · · · − ek−1σ
k−1(e0) + ek − ekσk(e0) − e0ek]σk(e1)

= 0σ(ek) + 0σ2(ek−1) + · · · + 0σk(e1) = 0.

Claim 2. e0tk + tkσk+1(e0) = tk + mkσk+1(r0) − r0mk.

Proof of Claim 2. Because of (Em) and (Fm) for m = 1, 2, . . . , k, we have

skσk+1(e0) + e0sk

= [e1σ(uk) + e2σ
2(uk−1) + · · · + ekσk(u1)]σk+1(e0)

+ e0[e1σ(uk) + e2σ
2(uk−1) + · · · + ekσk(u1)]

= e1σ(uk)σk+1(e0) + e2σ
2(uk−1)σk+1(e0) + · · · + ekσk(u1)σk+1(e0)

+ [e1 − e1σ(e0)]σ(uk)

+ [e2 − e2σ
2(e0) − e1σ(e1)]σ2(uk−1)

+ · · ·
+ [ek − ekσk(e0) − ek−1σ

k−1(e1) − · · · − e1σ(ek−1)]σk(u1)

= e1σ[uk + ukσk(e0) − e0uk − e1σ(uk−1) − · · · − ek−1σ
k−1(u1)]

+ e2σ
2[uk−1 + uk−1σ

k−1(e0) − e0uk−1 − · · · − ek−2σ
k−2(u1)]

+ · · ·
+ ek−1σ

k−1[u2 + u2σ
2(e0) − e0u2 − e1σ(u1)]

+ ekσk[u1 + u1σ(e0) − e0u1]

= e1σ(uk) + e2σ
2(uk−1) + · · · + ekσk(u1)

+ e1σ[ukσk(e0) − e0uk − e1σ(uk−1) − · · · − ek−1σ
k−1(u1)]

+ · · ·
+ ek−1σ

k−1[u2σ
2(e0) − e0u2 − e1σ(u1)]

+ ekσk[u1σ(e0) − e0u1]

= sk − e1σ[uk−1σ
k−1(e1) + · · · + u1σ(ek−1) + u0ek − ekσk(u0)]

− e2σ
2[uk−2σ

k−2(e1) + · · · + u1σ(ek−2) + u0ek−1 − ek−1σ
k−1(u0)]

− · · ·
− ek−1σ

k−1[u1σ(e1) + u0e2 − e2σ
2(u0)]

− ekσk[u0e1 − e1σ(u0)]
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= sk − e1σ[u0ek − ekσk(u0)] − e2σ
2[u0ek−1 − ek−1σ

k−1(u0)] − · · ·
− ekσk[u0e1 − e1σ(u0)]

− [e1σ(uk−1) + e2σ
2(uk−2) + · · · + ek−1σ

k−1(u1)]σk(e1)

− [e1σ(uk−2) + e2σ
2(uk−3) + · · · + ek−2σ

k−2(u1)]σk−1(e2)

− · · ·
− [e1σ(u1)]σ2(ek−1)

= sk − I1 − I2,

where

I1 = sk−1σ
k(e1) + sk−2σ

k−1(e2) + · · · + s1σ
2(ek−1),

I2 = e1σ[u0ek − ekσk(u0)] + e2σ
2[u0ek−1 − ek−1σ

k−1(u0)] + · · · + ekσk[u0e1 − e1σ(u0)].

Similarly, it can be verified that

e0lk + lkσk+1(e0) = lk − J1 − J2,

where

J1 = e1σ(lk−1) + e2σ
2(lk−2) + · · · + ek−1σ

k−1(l1)

and

J2 = [ekσk(u0) − u0ek]σk(e1) + [ek−1σ
k−1(u0) − u0ek−1]σk−1(e2) + · · ·

+ [e1σ(u0) − u0e1]σ(ek).

Moreover, we have

J1 = e1σ(lk−1) + e2σ
2(lk−2) + · · · + ek−1σ

k−1(l1)

= e1σ[uk−1σ
k−1(e1) + uk−2σ

k−2(e2) + · · · + u1σ(ek−1)]

+ e2σ
2[uk−2σ

k−2(e1) + uk−3σ
k−3(e2) + · · · + u1σ(ek−2)]

+ · · ·
+ ek−1σ

k−1(u1σ(e1))

= [e1σ(uk−1) + e2σ
2(uk−2) + · · · + ek−1σ

k−1(u1)]σk(e1)

+ [e1σ(uk−2) + e2σ
2(uk−3) + · · · + ek−2σ

k−2(u1)]σk−1(e2)

+ · · ·
+ [e1σ(u1)]σ2(ek−1)

= sk−1σ
k(e1) + sk−2σ

k−1(e2) + · · · + s1σ
2(ek−1) = I1,

and

−I2 + J2 = −e1σ[u0ek − ekσk(u0)] − e2σ
2[u0ek−1 − ek−1σ

k−1(u0)] − · · ·
− ekσk[u0e1 − e1σ(u0)]

+ [ekσk(u0) − u0ek]σk(e1) + [ek−1σ
k−1(u0) − u0ek−1]σk−1(e2) + · · ·

+ [e1σ(u0) − u0e1]σ(ek)
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= [e1σ(ek) + e2σ
2(ek−1) + · · · + ekσk(e1)]σk+1(u0)

− e1σ(u0)σ(ek) − e2σ
2(u0)σ2(ek−1) − · · · − ekσk(u0)σk(e1)

− u0[ekσk(e1) + ek−1σ
k−1(e2) + · · · + e1σ(ek)]

+ ekσk(u0)σk(e1) + ek−1σ
k−1(u0)σk−1(e2) + · · · + e1σ(u0)σ(ek)

= mkσk+1(u0) − u0mk.

Thus, we obtain

e0(sk − lk) + (sk − lk)σk+1(e0) = [skσk+1(e0) + e0sk] − [lkσk+1(e0) + e0lk]

= (sk − I1 − I2) − (lk − J1 − J2)

= sk − lk − I2 + J2

= sk − lk + mkσk+1(u0) − u0mk

= sk − lk + mkσk+1(r0 − e0) − (r0 − e0)mk

= sk − lk + mkσk+1(r0) − r0mk (by Claim 1). (2.4)

Hence,

e0tk + tkσk+1(e0) = e0[e0rk+1 − rk+1σ
k+1(e0) + sk − lk]

+ [e0rk+1 − rk+1σ
k+1(e0) + sk − lk]σk+1(e0)

= e0rk+1 − rk+1σ
k+1(e0) + e0(sk − lk) + (sk − lk)σk+1(e0)

= e0rk+1 − rk+1σ
k+1(e0) + sk − lk + mkσk+1(r0) − r0mk (by (2.4))

= tk + mkσk+1(r0) − r0mk,

proving Claim 2.

Claim 3. e0tkσk+1(e0) = e0mkσk+1(r0) − r0e0mk.

Proof of Claim 3. Multiplying the equality in Claim 2 by e0 from the left, we obtain

e0tk + e0tkσk+1(e0) = e0tk + e0mkσk+1(r0) − r0e0mk.

Thus, Claim 3 follows.

For each integer i � 0, let

ci = e0r
i
0, bi = σk+1(ci) = σk+1(e0r

i
0). (2.5)

Claim 4. Choose

ek+1 = −
m−1∑
i=0

ci(tkb + mk)bi +
m−1∑
i=0

ai(atk − mk)bi + mk,

where
a = w−1rn−1

0 , b = σk+1(a) = σk+1(w−1rn−1
0 ). (2.6)
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Then
ek+1 = ek+1σ

k+1(e0) + ekσk(e1) + · · · + e1σ(ek) + e0ek+1.

That is
ek+1 = ek+1σ

k+1(e0) + e0ek+1 + mk.

Proof of Claim 4. Notice that the following hold:

c0 = e0, b0 = σk+1(e0) (by (2.5)), (2.7)

cm = e0r
m
0 = 0 (by (2.3)), (2.8)

bm = σk+1(e0r
m
0 ) = 0, (2.9)

c0a = e0w
−1rn−1

0 = e0r
n−1
0 w−1 = 0 (by (2.3)), (2.10)

bb0 = σk+1(a)σk+1(c0) = σk+1(ac0) = σk+1(c0a) = 0, (2.11)

b0bi = bib0 = bi, (2.12)

c0ci = cic0 = ci. (2.13)

Therefore, we have

ek+1σ
k+1(e0) = ek+1b0

= −
m−1∑
i=0

ci(tkb + mk)bib0 +
m−1∑
i=0

ai(atk − mk)bib0 + mkb0

= −c0(tkb + mk)b0 +
m−1∑
i=0

ai(atk − mk)bi + mkb0 (by (2.11))

=
m−1∑
i=0

ai(atk − mk)bi − c0tkbb0 − c0mkb0 + mkb0

=
m−1∑
i=0

ai(atk − mk)bi − e0mkσk+1(e0) + mkσk+1(e0) (by (2.11))

=
m−1∑
i=0

ai(atk − mk)bi (by Claim 1)

and

e0ek+1 = −
m−1∑
i=0

c0ci(tkb + mk)bi +
m−1∑
i=0

c0a
i(atk − mk)bi + c0mk

= −
m−1∑
i=0

ci(tkb + mk)bi + c0(atk − mk)b0 + c0mk

= −
m−1∑
i=0

ci(tkb + mk)bi − c0mkb0 + e0mk (by (2.10))

= −
m−1∑
i=0

ci(tkb + mk)bi (by Claim 1).
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Hence,

e0ek+1 + ek+1σ
k+1(e0) + mk = −

m−1∑
i=0

ci(tkb + mk)bi +
m−1∑
i=0

ai(atk − mk)bi + mk

= ek+1.

Claim 5. Choose uk+1 = rk+1 − ek+1. Then we have

ek+1σ
k+1(u0) + ekσk(u1) + · · · + e1σ(uk) + e0uk+1

= uk+1σ
k+1(e0) + ukσk(e1) + · · · + u1σ(ek) + u0ek+1.

That is

ek+1σ
k+1(u0) + e0uk+1 + sk = uk+1σ

k+1(e0) + u0ek+1 + lk. (2.14)

Proof of Claim 5. Equation (2.14) is equivalent to

ek+1σ
k+1(r0 − e0) + e0(rk+1 − ek+1) + sk = (rk+1 − ek+1)σk+1(e0) + (r0 − e0)ek+1 + lk.

That is

r0ek+1 − ek+1σ
k+1(r0) = e0rk+1 − rk+1σ

k+1(e0) + sk − lk = tk.

So it suffices to show that

r0ek+1 − ek+1σ
k+1(r0) = tk. (2.15)

Because

r0ci = r0e0r
i
0 = e0r

i+1
0 = ci+1, (2.16)

(2.17)–(2.21) hold:

biσ
k+1(r0) = σk+1(e0r

i
0)σ

k+1(r0) = σk+1(e0r
i+1
0 ) = bi+1, (2.17)

r0a = r0w
−1rn−1

0 = w−1rn
0 = 1 − e0 (by (2.2)), (2.18)

bσk+1(r0) = σk+1(ar0) = σk+1(r0a) = 1 − σk+1(e0), (2.19)

r0a
2 = (1 − e0)a = a − e0a = a − c0a = a (by (2.10)), (2.20)

b2σk+1(r0) = σk+1(a2r0) = σk+1(a) = b. (2.21)
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Thus,

r0ek+1 − ek+1σ
k+1(r0)

= −
m−1∑
i=0

r0ci(tkb + mk)bi +
m−1∑
i=0

r0a
i(atk − mk)bi + r0mk

+
m−1∑
i=0

ci(tkb + mk)biσk+1(r0) −
m−1∑
i=0

ai(atk − mk)biσ
k+1(r0) − mkσk+1(r0)

= −
m−1∑
i=0

ci+1(tkb + mk)bi + r0(atk − mk)b0 + (1 − e0)(atk − mk)b1

+
m−1∑
i=2

ai−1(atk − mk)bi + r0mk

+ c0(tkb + mk)σk+1(r0) + c1(tkb + mk)(1 − σk+1(e0))

+
m−1∑
i=2

ci(tkb + mk)bi−1

−
m−1∑
i=0

ai(atk − mk)bi+1 − mkσk+1(r0) (by (2.16)–(2.21))

= −c1(tkb + mk) − cm(tkb + mk)bm−1 − (atk − mk)b1 − am−1(atk − mk)bm

+ r0(atk − mk)b0 + (1 − e0)(atk − mk)b1 + c0(tkb + mk)σk+1(r0)

+ c1(tkb + mk)(1 − σk+1(e0)) + r0mk − mkσk+1(r0)

= −c1(tkb + mk)σk+1(e0) − e0(atk − mk)b1 + r0(atk − mk)b0

+ c0(tkb + mk)σk+1(r0) + r0mk − mkσk+1(r0) (by (2.8), (2.9))

= −c1tkbσk+1(e0) − e0atkb1 + r0atkb0 + c0tkbσk+1(r0) − c1mkσk+1(e0)

+ e0mkb1 − r0mkb0 + c0mkσk+1(r0) + r0mk − mkσk+1(r0)

= (1 − e0)tkb0 + c0tk[1 − σk+1(e0)] − r0e0mkσk+1(e0) + e0mkσk+1(e0)σk+1(r0)

− r0mkσk+1(e0) + e0mkσk+1(r0)

+ r0mk − mkσk+1(r0) (by (2.10), (2.11), (2.18), (2.19))

= tkσk+1(e0) + e0tk − 2e0tkσk+1(e0) − r0e0mk + e0mkσk+1(r0)

− r0e0mk + e0mkσk+1(r0) + r0mk − mkσk+1(r0) (by Claim 1)

= tk − 2e0tkσk+1(e0) − 2r0e0mk + 2e0mkσk+1(r0) (by Claim 2)

= tk (by Claim 3),

verifying Claim 5.
Thus, by Claims 4 and 5, ek+1 and uk+1 satisfy (Ek+1), (Fk+1) and (Gk+1). The proof

is complete by the induction principle. �
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Corollary 2.2. If R is a strongly π-regular ring and σ is an endomorphism of R, then
R[[x; σ]] is a strongly clean ring.

The proof of Theorem 2.1 works for the next theorem.

Theorem 2.3. Let σ be an endomorphism of R, n � 1 and r =
∑n−1

i=0 rix
i ∈

R[x, σ]/(xn). If r0 or 1 − r0 is strongly π-regular in R, then r is strongly clean in
R[x, σ]/(xn).

Corollary 2.4. If R is a strongly π-regular ring and σ is an endomorphism of R, then
R[x, σ]/(xn) is strongly clean for all n � 1.

Remark 2.5.

(i) A ring R is said to satisfy the condition (∗) if for each a ∈ R, either a or 1 − a

is strongly π-regular. Both local rings and strongly π-regular rings satisfy (∗). If
R1 is a local ring that is not strongly π-regular and R2 is a strongly π-regular
ring that is not local, then R = R1 × R2 is neither local nor strongly π-regular,
but R satisfies (∗). Thus, the assumption in Theorem 2.1 unifies local and strongly
π-regular rings.

(ii) The condition (∗) is sufficient for R[[x, σ]] to be strongly clean, but it is not necessary.
Let R = T2(Z(2)) and let

A =

(
−1 0
0 2

)
∈ R.

It can be verified easily that neither A nor I − A is strongly π-regular. But

R[[x]] = T2(Z(2))[[x]] ∼= T2(Z(2)[[x]])

is strongly clean by [9, Example 2], because Z(2)[[x]] is a commutative local ring.

3. Other extensions

If G is a group, we denote the group ring of G over R by RG. In this section, Cn stands
for the cyclic group of order n and C∞ denotes the infinite cyclic group. It was proved
in [7, Proposition 4] that if R is a Boolean ring and G is a locally finite group, then RG

is clean. This is a consequence of the next result, the proof of which uses an idea in [4].
Recall that a ring R is strongly regular if, for any a ∈ R, a ∈ a2R.

Theorem 3.1. If R is a strongly regular or commutative strongly π-regular ring and
G is a locally finite group, then RG is strongly π-regular.

Proof. By [4, Corollary 3.2], it suffices to show that (R/P )G is strongly π-regular
for any prime ideal P of R. If R is commutative strongly π-regular, then R/P is a
commutative strongly π-regular domain; so R/P is a field. If R is strongly regular, then
R/P is a prime, regular ring whose idempotents are central; so R/P is a division ring.
Either way, for any finite subgroup G1 of G, (R/P )G1 is Artinian (by [5, Theorem 1])
and hence strongly π-regular. Hence, (R/P )G is strongly π-regular. �
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Theorem 3.1 gives an affirmative answer to the question in [7] of whether the group
ring RG of a locally finite group G over a commutative regular ring R is clean. Because
Z(7)C3 is not clean [7], ‘strongly π-regular’ in Theorem 3.1 cannot be replaced by ‘strongly
clean’. But if RG is commutative clean, then G must be locally finite.

Proposition 3.2. Let R be a commutative ring and G be an abelian group. If RG is
clean, then G is locally finite.

Proof. Suppose G is not locally finite. Then G is not torsion, so G/T (G) is non-trivial
and torsion free, where T (G) is the torsion subgroup of G. Then R(G/T (G)) is clean,
being an image of RG. So we can assume that G is torsion free. If G has rank greater
than 1, then G has a torsion-free quotient G′ of rank 1. Since RG′ is clean again, we
can assume that G is of rank 1. So G is isomorphic to a subgroup of (Q, +). Since R is
commutative, it has a quotient R′ which is a field. Because R′G is clean (being an image
of RG), we can assume that R is a field. Take g ∈ G such that g−1 �= g. Since g + g−1

is clean in RG, there exists a finitely generated subgroup G1 of G such that g ∈ G1 and
g + g−1 is clean in RG1. Because every finitely generated subgroup of (Q, +) is cyclic,
G1 is cyclic. Write G1 = 〈h〉. Then g = hk, g−1 = h−k for some positive integer k. There
is a natural isomorphism R〈h〉 ∼= R[x, x−1] with hk +h−k ←→ xk +x−k. Thus, xk + x−k

is clean in R[x, x−1]. But this is impossible because all the idempotents of R[x, x−1] are
in R and all the units of R[x, x−1] are in {axi : 0 �= a ∈ R, i ∈ Z}. The contradiction
shows that G is locally finite. �

It is proved in [3] that a ring R is semiperfect if and only if R is a clean ring containing
no infinite set of orthogonal idempotents. This result can be used to give many examples
of clean and non-clean rings. For example, for a finite group G and a prime p, Z(p)G is
Noetherian; so Z(p)G is clean if and only if it is semiperfect. It is known [7] that if R is
semiperfect, then RC2 is clean. Below we will see that C2 is the only non-trivial cyclic
group having this property. The proof of the next example follows by Proposition 3.2.

Example 3.3. If R is a commutative ring, then RC∞ is not clean.

Example 3.4. If k � 2, then Z(5)C2k is not clean.

Proof. In Z5[X], X4 − 1 = (X − 1̄)(X − 4̄)(X − 2̄)(X − 3̄). But in Z(5)[X], X4 − 1 =
(X − 1)(X + 1)(X2 + 1) with X2 + 1 irreducible. So Z(5)C4 is not semiperfect by [10,
Theorem 5.8]. Hence, Z(5)C4 is not clean. For k � 2, Z(5)C4 is an image of Z(5)C2k , so
Z(5)C2k is not clean. �

Example 3.5. If p �= 2 is a prime, then there exists a prime q such that Z(q)Cp is not
clean.

Proof. Because Z(7)C3 is not clean [7], we can assume that p � 5. By Euler’s theorem,
p divides 2p − 1 and p divides 4p − 1.

Claim. Either p is not the only prime divisor of 2p − 1, or 4p − 1 has a prime divisor
which is neither p nor 3.
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If the claim does not hold, then

2p − 1 = pn and 4p − 1 = 3spt,

where n � 1, s � 1 and t � 1. Thus, 3spt = (2p)2 − 1 = (2p + 1)(2p − 1) = (2p + 1)pn. It
must be that n = t. This gives 3s = 2p + 1 because p �= 3, and so s � 4.

If s = 2k is even, then k � 2 and 2p = (3k)2 − 1 = (3k + 1)(3k − 1). So 3k + 1 = 2l and
3k − 1 = 2p−l, where l � 3 and p − l � 3. Thus, 2 · 3k = 2l + 2p−l, and hence 2 divides
3k: a contradiction.

If s is odd, then

2p = (2 + 1)s − 1

=
(

s

0

)
+

(
s

1

)
2 +

(
s

2

)
22 + · · · +

(
s

s

)
2s − 1

=
(

s

1

)
2 +

(
s

2

)
22 + · · · +

(
s

s

)
2s.

This shows that 2 divides s, a contradiction. Therefore, the claim is proved. Let Φp(X) =
Xp−1 + Xp−2 + · · ·+X +1. It is well-known that Φp(X) is irreducible in Q[X] (applying
Eisenstein’s criterion to Φp(X + 1)). By the claim, there exist two cases.

Case 1. 2p − 1 has a prime divisor q with q �= p. Thus, q > 2 and q divides 2p−1 +
2p−2 + · · · + 2 + 1. So 2̄ is a root of Φp(X) in Zq. Because Φp(X) is irreducible in Z(q),
Z(q)Cp is not semiperfect by [10, Theorem 5.8]. Hence, Z(q)Cp is not clean.

Case 2. 4p − 1 has a prime divisor q with q �= p and q �= 3. Thus, q > 4 and q divides
4p−1 + 4p−2 + · · · + 4 + 1. So 4̄ is a root of Φp(X) in Zq. As above, Z(q)Cp is not clean.

�

Example 3.6. If n > 2, then there exists a prime q such that Z(q)Cn is not clean.

Proof. If n has an odd prime divisor p, then Cp is a quotient of Cn. By Example 3.5,
there exists a prime q such that Z(q)Cp is not clean. Because Z(q)Cp is an image of Z(q)Cn,
Z(q)Cn is not clean. If n = 2k, then k � 2. By Example 3.4, Z(5)Cn is not clean. �

Proposition 3.7. Let n � 2. The following are equivalent:

(i) RCn is clean for every semiperfect ring R;

(ii) RCn is clean for every local ring R;

(iii) n = 2.

Proof. By Example 3.6 and [7, Proposition 3]. �

If RH is clean for every finitely generated subgroup H of a group G, then RG is clean.
The converse does not hold: let R = Z(7) and let G = S3 be the symmetric group of
order 6. Then RG is semiperfect (and so is clean) by [10, Lemma 6.1], but RC3 is not
clean.
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