RECENT PROGRESS

Progress in Understanding and Treating Parkinson’s Disease

ANDRÉ BARBEAU

SUMMARY: This review evaluates the long-term results of Levodopa therapy in Parkinson’s disease upon quality of life, prolongation of survival and excess mortality. It also focuses on recent and new therapeutic approaches: Levodopa in combination with a Dopa-decarboxylase inhibitor or MAO-B inhibitor, dopamine agonists and an active tripeptide: L-prolyl-L-leucyl-glycine amide (MIF-I). It ends by looking at new avenues of etiological research in Parkinson’s disease which may indicate specific accelerated ageing of catecholaminergic (pigmented) neuronal systems.

Research in Parkinson’s disease has been extremely productive within the last 20 years as a result of the impetus given successively by the advent of stereotaxic surgery and later of Levodopa. A number of publications and monographs should be consulted for understanding the background discoveries until 1975 (Barbeau and McDowell, 1970; Yahr, 1973; Calne, 1973; De Ajuriaguerra, 1971; McDowell and Barbeau, 1974; Calne et al., 1975). It would be impossible, because of space limitations, to review all the basic developments underlying and justifying the recent clinical-therapeutic advances. Many original findings based on newly developed fluorescence histochemical techniques as well as electrophysiologic and iontophotoretic methods have revolutionized our understanding of the role of catecholamines in the brain (Blaschko and Muschall, 1972).

For example, we now know of at least four important dopaminergic pathways in the central nervous system: a nigro-striatal pathway, a mesolimbic pathway, an infundibulo-hypothalamic pathway and, more recently, a cortical dopaminergic system (Fuxe, 1970; Thierry et al., 1975). We now understand better the central role of the locus coeruleus as the head center for almost all noradrenergic pathways irradiating to all parts of the brain, including the cerebellum (Divett, 1973). Moreover a new independent “islandic” catecholaminergic system has been identified within the striatum, whose function is still not completely understood (Fuxe, Unpublished observations).

Dopamine receptors, formerly thought to be entirely post-synaptic in location, can also be found presynaptically and even upon the cell bodies, leading to the use of the new term auto-receptors. Each one of these developing concepts bears justifying the recent clincio-therapeutic advances. Many original findings based on newly developed fluorescence histochemical techniques as well as electrophysiologic and iontophotoretic methods have revolutionized our understanding of the role of catecholamines in the brain (Blaschko and Muschall, 1972).

From the Department of Neurobiology, Clinical Research Institute of Montreal.

Reprint requests to: Dr. André Barbeau, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, Quebec, Canada.
extending the life of less severely affected patients. For example, their evidence places the average age at death of these patients at 73, from a previous 65.9. This new figure is close to the average age at death of a control population. More important still, Levodopa would appear to decrease significantly the increased mortality previously observed with Parkinson's disease. This figure had been estimated at 3.0 and 1.5 times the expected mortality rates of control populations by Hoehn and Yahr (1967). It now apparently stands at 1.5 and 1.0 respectively in Yahr (1975) and Markham's (1974) material. Most of this gain, however, is by reducing the early deaths in the first few years of treatment. This development is most important and, if confirmed by others, could indicate that a decreased striatal dopamine does contribute to cell ageing phenomena (Barbeau, 1973), and if it is corrected early enough, that one could arrest the inexorable progress of specific "accelerated" cell death in Parkinson's disease. Once the cells have disappeared, as they probably have in the severe cases, dopamine replacement, while effective on motility, cannot alter the cell death process. It will be extremely important, in the next few years, to follow these developments, since they bear upon the crucial process of ageing.

Some of the long-term problems encountered with Levodopa: abnormal involuntary movements, and oscillations in performance, have already been described in detail and correlated to the supersensitivity of dopamine receptors and the effective plasma DOPA levels (McDowell and Barbeau, 1974; Calne et al., 1975). Little new data has been added concerning the pathophysiology of these still disturbing occurrences. It is now recognized, however, that one of the main disabling symptoms of advancing Parkinsonism is a progressive gait disturbance which combines features of "start hesitation", and cerebellar damage. The analysis of this phenomenon has led to the recognition of four types of "akinesia": (1) akinesia secondary to rigidity, which still responds best to stereotaxic surgery and, partially only, to Levodopa; (2) akinesia secondary to striatal dopamine deficiency: this is the ideal indication for Levodopa therapy; (3) "akinesia paradoxica", of paroxystic hypotonic freezing, a progressively more frequent impairment thought to be due to evolving central noradrenergic pathway damage and occasionally made worse by Levodopa; (4) finally a "pure akinesia syndrome" masquerading as Parkinsonism, which appears to include cerebellar involvement and does not respond to Levodopa (Barbeau, 1975a, b; Marsden and Parkes, 1976).

In an attempt to break through these emerging therapeutic barriers, and relieve the various forms of akinesia, oscillations in performance and dyskinesias, a number of new approaches have recently been proposed. The first of these, which has now reached the level of a marketable drug after 6 years of experimental study, is the combined treatment with Levodopa and a peripheral Dopa-decarboxylase inhibitor (Birkmayer and Mentasti, 1967). This has permitted, as is now well known, a marked decrease in the peripheral side-effects of nausea, vomiting and cardiac arrhythmia, possibly at the expense of earlier and slightly more severe dyskinesias. In our experience, this combined treatment is much to be preferred to the standard Levodopa high level therapy. However, it has not appreciably modified the central neurological side effects previously observed (Barbeau and Roy, 1976).

Because it was thought that some of these complications were due to metabolites of Levodopa, or to modifications in the metabolism of other neurotransmitters by Levodopa, it was natural to turn to analogues of dopamine as was previously thought. Another way to increase brain dopamine levels has recently been proposed. It is based on the studies of Youdim and collaborators (1972) showing that there are two forms of monoamine oxidase (MAO) in the brain: MAO-A which mainly deaminates serotonin, noradrenaline, octopamine, tyramine and dopamine; and MAO-B which concentrates on the drug (Cotzias et al., 1970, Duby et al., 1972). A derivative, N-propylnoraporphine (Cotzias et al., 1976) was also effective, but its therapeutic effect lasted only a few weeks except when combined with α-methyltyrosine hydrazine plus Levodopa. Other analogues fared less well. This was especially the case for Piribedil (ET-495, Trivastal R ) and Lergotryle R, although the latter appeared to be free of dyskinesia producing effects (Calne et al., 1975). The latest compound to be tried is an ergot derivative, also useful in the control of galactorrhoea and now of acromegaly: CB-154 (Bromocryptine) (Calne et al., 1974). Like all the other dopamine analogues, CB-154 is paradoxically most effective against tremor, and only secondarily, at much higher doses, upon akinesia. It does produce a significant improvement in the motor performance of Parkinsonian patients, but is not free of side effects. Nausea, vomiting, abnormal involuntary movements and even "on/off" phenomena attest to the central dopaminergic action of this drug, but also indicate that these manifestations could not have previously been due to Levodopa metabolites other than dopamine. In my opinion, most of these analogues will be useful tools for the physiological study and dissection of Parkinsonism and of its symptoms, but not many will replace Levodopa as a drug. Meanwhile new analogues are still being developed and tested, both in animals and in humans. It is interesting to note that the use of variable test-models have recently revealed that all analogues do not behave in identical fashion, leading to the conclusions that they act either on different dopamine receptors or that they are not as specific to dopamine as was previously thought.

Another way to increase brain dopamine levels has recently been proposed. It is based on the studies of Youdim and collaborators (1972) showing that there are two forms of monoamine oxidase (MAO) in the brain: MAO-A which mainly deaminates serotonin, noradrenaline, octopamine, tyramine and dopamine; and MAO-B which concentrates on
phenylethylamine, tyramine and dopamine. Chlorgyline and Har- 
maline are specific inhibitors of 
MAO-A, while DeprenilR (N-2-
dimethyl-N-propyl-2-phenyl-
ethylamine-hydrochloride) inhibits 
MAO-B. DeprenilR has recently 
been tried in Parkinsonian patients 
(Birkmayer et al., 1975). Alone it 
was not very successful, but in 
combination with Levodopa and a 
dopa-decarboxylase inhibitor it 
appears to offer promise.

Finally, we should report on a 
completely new approach to the 
treatment of Parkinsonism which 
started from two independent obser-
vations: First, it was shown by Cot-
zias and co-workers (1967) that 
M.S.H. (melanocyte-stimulating 
hormone) injections produced a 
rapid worsening of the existing Par-
kinsonian symptomatology; sec-
ondly, Shuster and associates (1973) 
demonstrated the presence of ele-
vated plasma MSH levels in Parkin-
sonian patients. Nair et al (1971) 
synthesized a tripeptide L-
prolyl-L-leucyl-glycine amide (PLG) 
which proved to have M.I.F. 
(MSH-release inhibitory factor) ac-
tivity. Subsequently Plotnikoff et al 
(1971) and Plotnikoff and Kastin 
(1974) showed that this peptide 
could potentiate the actions of 
Levodopa and of oxotremorine in 
animals. Soon PLG (MIF-1) was 
tried in humans and shown to have 
some antiparkinson activity (Kastin 
and Barbeau, 1972; Chase et al., 
1974; Fischer et al., 1974; Barbeau, 
Roy and Kastin, 1976) especially by 
the intravenous route. Barbeau 
(1975c) recently reported a specula-
tory potentiation of the response to 
Levodopa in humans. He also re-
viewed all the studies leading to this 
result during the 5th International 
Symposium on Parkinson’s Disease 
in Vienna (September 1975). There 
is no doubt that this approach de-
serves a more thorough investiga-
tion, since it constitutes one of the 
first demonstrations of the be-
havioural action of hypothalamic 
polypeptides upon the brain.

As it should be obvious to all 
neurologists, further progress in the 
therapy of Parkinson’s disease will 
require new imaginative approaches, 
and particularly a solution to the 
problem of the etiology of this ill-
ness. This solution is probably still 
far away, but two new facts should 
help in future studies: First, the de-
monstration that Parkinsonian 
platelets also exhibit a dopamine up-
take defect (Barbeau et al., 1975), 
thus providing an easily accessible 
model; and secondly, the emerging 
importance of superoxide radicals as 
a factor in the cell damage of ageing, 
and the fact that dopamine can serve as 
a trapping agent for these radia-
cals. G. Cohen (1975, unpublished 
observations) has postulated that the 
gradually decreasing striatal levels of 
dopamine in Parkinson’s disease 
and with age (Barbeau, 1973) con-
tributes to the accelerated process of 
cell ageing. These recent findings 
amare, of course, preliminary, but 
should be pursued further. They 
indicate that, in Parkinson’s disease, 
there may be accelerated ageing of 
specific catecholaminergic (pig-
mented) neuronal systems. We re-
cently hypothesized (Barbeau, A.R.N.M.D. Meeting, December, 
1975) that a deficit in the specialized 
“A.P.U.D.” cells in the 
hypothalamus (cells that produce 
peptides and amines and originate 
from the neural crest) may be at the 
origin of the disease.

ACKNOWLEDGEMENTS

The author's own studies reported in this 
review have been supported in part by grants 
from the Medical Research Council of Canada 
(MT-4938), the W. Garfield Weston Foundation 
and the United Parkinson Foundation. Collaborators 
to these studies have been indicated as co-authors in the articles cited.

REFERENCES

BARBEAU, A. (1961). Biochemistry of 
Parkinson’s disease. Excerpta Medica. 

BARBEAU, A. (1969). L-DOPA therapy in 
Parkinson’s disease: A critical review of 
101: 791-800.

BARBEAU, A. (1973). Aging and the 

BARBEAU, A. (1975). Résultats à long 
term de la L-Dopa dans la maladie de 
Parkinson. Union Méd. Canada 104: 32- 
38, 1975.

BARBEAU, A. (1975). Long-term assess-
ment of Levodopa therapy in Parkinson’s 

BARBEAU, A. (1975). Potentiation of 
Levodopa effect by intravenous 
L-prolyl-L-leucyl-glycine amide in man. 

BARBEAU, A. (1976). 6 years of high level 
Levodopa therapy in severely akinetic park-

BARBEAU, A., CAMPANELLA, G., 
BUTTERWORTH, R. F. and YAMADA, 
K. (1975). Uptake and efflux of 
4C-dopamine in platelets: Evidence for a 
generalized defect in Parkinson’s disease. 

BARBEAU, A. and MCDOWELL, F. H. 

Six-year results of treatment with Levodopa 
plus benzarzeride in Parkinson’s disease. 
Neurology, in press.

BARBEAU, A., ROY, M. and KASTIN, A. 
L-prolyl-L-leucyl-glycine amide in 
120-122.

BIRKMAYER, W. and HÖRNKYEWICZ, 
O. (1961). Der L-3,4-dioxo-phenylalanin 
(Dopa) — Effekt bei der Parkinson akinese. 

BIRKMAYER, W. and MENTASTI, M. 
(1967). Weitere experimentelle unter-
suchungen über den catecholamin-stoffwechsel bei extrapyramidalen erkrun-
kungen (Parkinson und chorea syndrom). 

BIRKMAYER, W., RIEDEKER, P., 
YOUDIM, M. B. H. and LINAUER, W. 
(1975). The potentiation of the anti-akinetic 
effect after L-DOPA treatment by an in-
hibitor of MAO-B, deprenil. J. Neural 
Transmission 36: 303-326.

BLASIKO, H. and MUSCHOLL, E. 
(Editors) (1972). Catecholamines 

CALNE, D. B. (Editor) (1973). Progress in the 
treatment of Parkinsonism. Advances in 

CALNE, D. B., CHASE, T. N. and 
BARBEAU, A. (Editors) (1975). Dopaminergic 

CALNE, D. B., TECHENNE, P. F. and 
LEIGH, P. N. (1974). Treatment of Parkin-
sionism with Bromocriptine. Lancet 
2: 1355-1356.

CHASE, T. N., WOODS, A. C., LIPTON, 
Hypothalamic releasing factors and 
Parkinson’s disease. Arch. Neuroi. 31: 
55-56.

COTZIAS, G. C., PAPAVASILIOU, P. S., 
FEHLING, C., KAUFMAN, B. and 
neurologic effects of L-DOPA and apomor-

COTZIAS, G. C., PAPAVASILIOU, P. S., 
TOLOSA, E. S., MENDEZ, J. S. and 
BELL-MIDURA, M. (1976). Treatment of


