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COMMUTING OF TOEPLITZ OPERATORS
ON THE BERGMAN SPACES OF THE BIDISC

YUureENG Lu

In this paper we describe when two Toeplitz operators Ty and T, on the Bergman
space of the bidisc commute, where f = fi+f2,9 = g1+ 52, fi,9i € H®(D?)(i = 1,2).

1. INTRODUCTION

For a bounded domain 2 in C"®, let dA denote the Lebesgue measure on {} normalised
so that ) has measure 1. The Bergman space L%(f) is the Hilbert space consisting of
analytic functions on  that are also in L?(},dA). The norm ||.||; and the inner product
( , ) are those of the space L?(f2,dA). In this paper let 2 denote the bidisc D2. For
z € Q, the Bergman reproducing kernel is the function K, € L2(2) such that

f(z) = (f,Kz>

for every f € L%(2). The normalised Bergman reproducing kernel k, is the function
K./ 1Kl |

Let P denote the orthogonal projection of L%(f2,dA) onto L2(2). For a function
f € L*(Q, dA), the Toeplitz operator Ty : L2(Q) — L2() is defined by ’

Ty(g) = P(fg),9 € L3(Q).

These are clearly bounded linear operators for every function f € L*°(2). Note that if f
is a bounded analytic function on €2, then T} is simply the operator of multiplication by
£ on L2(Q).

For f € L2(R, dA), we define f, the Berezin symbol of f, by

f(2) = (fks, kz) =/nf(w)|kz(w)|2dA(w),zeQ.

By making the change of variable z = ¢,,(u), where @, (w) is the Mébius transformation
on £, we have

F= /n f 0 02 (w)dA(w).
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For the polydisk D", Mobius transformations are described in [4, Section 10.1].

The general problem that we are interested in is the following: when two Toeplitz
operators commute, what is the relationship between their symbols? On the Hardy space
of the circle, this question has been solved in [3]. On the Bergman space of the unit
disk, partial results were obtained by Axler and Cuckovi¢ [1] and Axler and Cuckovié
and Rao [2]. On the Bergman space of several complex variables, the situation is more
complicated. In this paper we give a partial result for the general problem on the Bergman
space of the bidisc.

2. COMMUTANTS OF TOEPLITZ OPERATORS ON THE BIDISC

Following [6, Definition 2.1.1}, we say f € C(D") is n-harmonic if f is harmonic in
each variable separately, that is,

A f=0yf=---=A,f=0.

Here variable means complex variable. If z; = z; + iy;,

a (0 2 &
A f =4£(3—£) =3t o
Since the harmonic functions are those for which Y A; = 0, every n-harmonic function
is harmonic. The two classes coincide if and only if n = 1.
In this section, we describe when Ty and T}, defined on the Bergman space of the
bidisc commute, where f = fi + f2,9 = g1 + G2, fi, g: € H*(D?).
We use f(z1) (or f(z2)) to denote the function f(z1,22) on D? which depends only

zi(or z).For a function f(2;), we set % = f’. In this section, ¢ always denotes a
1

constant, and it may be different in different places. Suppose f = fi + f2,9 = g1 + 73,
fi,gi(a = 1,2) € H*(D?). We study this problem for the following four types of functions.

TYPE 1. f, g have the following form:
f=h(z)+f 9=g0(z)+c,

or

f=f(2)+ foz), 9=g1(21) +c
Interchanging f and g or z; and zz,we can obtain all of Type 1 functions. For example,
f = fa(z1) + f2, 9 = 92(22) + ¢ is Type 1, too.
TYPE 2. f, g have the following form.

f = h(z) + fa(21), 9 = g1(22) + g2(21),
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or

= h(za) + fal22), 9= g1(21) + g2(22)-

TYPE 3. f,g satisfy the following condition. There exist constants ¢, ¢;, and an analytic
function a such that

fi = cg1(22) + co, f2 = Cga(2) + a(z1).
Interchanging f and g or z; and 2., we can obtain all of Type 3 functions. For example,
fi=ca1(2) + a(z), f2 =7Tga(z2) + co.
TYPE 4. f,g satisfy the following condition. There exist analytic functions a,, ag, b1, by
and constants ¢y, ¢s, c3, such that

fi = aai(z2) + ebi(z), f2=7Caz(2) + Gbe(21)
and
g1 = cza1(22) + bi(z1), g2 = Tzaz(z2) + ba(21).
If both a; and a, are constant, then exists a constant ¢ such that f + cg is constanc.

LEMMA 2.1. Suppose f,g € L®(D? dA) and f = fi + f5, g9 = g1 + G,, where
fi, gi € H®(D?)(i = 1,2). If f and g are one of the above four Types, then T;T, = T,T;."

PROOF:
(1) If f, g are Type 1. Without loss of generality, we assume

[ = fi(2) + fa(z2), 9= g1(21)-

Then Tf = le +Tf2‘, Tg = Tgl' By [7], ng‘Tgl = 719l Tf2" SO Tng = TgT/.
(2) If f,g are Type 2. Without loss of generality, we assume

= hlz) + Fale), 9= ai(zr) + 52(20).

By (7], Ty Ty," = Tp,* Ty, and Ty, *Ty, = T, T4,"*, hence TyT, = T,Ty .
(3) If f,g are Type 3. Without loss of generality, we assume

fi = cq1(z) + a1(z2), fo =Tga(21).
Then

sz‘Tgl + Tfngz‘ = ngtTgx + CTleg; + Tangzta
Ty, " Ty, + Ty, T5," = Ty, Ty, + Ty, T, + Ty, " T,

Using (7] again, we have TyT, = T,T}.
(4) If f, g are Type 4, the proof is analogous. 1]
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THEOREM 2.2. Suppose f,g € L*(D? dA) and f = f, + f,, 9 = g1 +7,, where
fi» 9 € H®(D?)(i = 1,2). Then T;T, = T,T; if and only if
(a) f and g are both analytic on D?; or
(b) f and g are both co-analytic on D?; or
(c) f org is a constant function; or
(

d) f and g are one of the above four Types.

PROOF: By Lemma 2.1, the sufficiency of the Theorem is obvious. Now assume
T;T, = T,T;.Then

(TiToks, k) = (fP(gk.), k.) = ( (i + f2) (91k. + F2(2)k ),kz>
= (figiks, k) + (fagiks, k.) + Ta(2)(fiks, ko) + Ga(2) (Fakz, K2)
= [1(2)91(2) + (fag1ks, k.) + [1(2)%(2) + (27 (2).

Analogously, we obtain
(T Tikz, k) = f1(2)91(2) + (G2fikz, k2) + 91(2) Fa(2) + G2(2) o 2).
Combining the above results we conclude
(TfTy = TeTp)ks, k) = t(2) ~ u(z) =0,
where u = f,9, — fi32- By [5, Theorem 3.1] we get u is a 2-harmonic function. Thus
Aju = Ayu=0.

If f is analytic on D?, then for i = 1, 2,

f _o 9 _ of _of
az_,' = 0, BZi = 0, and 6_z_l = 6—2'
Sofori=1,2
_ i 211 — 3f2 6!]1 3f1 392 9
0= 43z_i(az,~) 4((921 8z 0z 62,) on D

Thus we have

af2 691 _ af1 392
321 621 azl 621

9f209: _ 0f19g;
622 622 622 612

(2.3) on D?,

(2.4) on D?.

To finish the proof, we consider three cases. Because there are many detailed sub-
cases in each case, we let (1.1), (1.2) and (1.3) denote three different subcases in (1).
Analogously, (1.3.1), (1.3.2), (1.3.3) denote three different subcases in (1.3), and so on.
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(1) Suppose 99, = 0, then g; = ¢;(22). In this case, either ?ﬁ =0or 992 =0.

5 0z 0z 0z,
(11) 1f a—il =0, then f; = f1(2;). By equation (2.4), we get
1
| Oh
(25) fl az gl 822

We analysis equation (2.5). (1.1.1) If ¢{(22) = 0. Then g, is a constant. (1.1.1.1) When

fi(z2) = 0, then f and g are coanalytic, (b) would hold. (1.1.1.2) When g% = 0, then
2

g=c+g:(21), f= fi(z2) + fo. So f,g are Type 1, (d) would hold. (1.1.2) If g% =90,
- 2
then g = g1(22) + g2(21). (1.1.2.1) When g¢j(2;) = 0, this case is (1.1.1.2) and (d) would

hold. (1.1.2.2) When of _ 0, then f = fi(22) + f2(21), and g = g1(22) + g2(z1). So

622
f,g are Type 2, (d) would hold. Thus we may assume (1.1.3) that neither g; or %9 is

622
identically 0 on D?%. By (2.5) we have
O 9 _ i
8z 820 g}’
Therefore f)(22) = cg1(22) + co, f2(2) = g2(2) + az2(z1), f, g are Type 3 and (d) holds.

(1.2) If 8_2 = 0, then g = g1(22) + ¢2(22). By (2.4), we have
| afl 6_f2 !
(26) 622 622 9r-

We analysis equation (2.6). (1.2.1) Suppose g; = 0, then g = go(23). (1.2.1.1) When

go! = 0, then g is a constant and (c) holds. (1.2.1.2) When % =0, then f = fi(z1)+ fa,
2

9 = g2(22), hence f, g are Type 1 and (d) holds. (1.2.2) Suppose g,/ = 0, then g = g1(z)+

¢. (1.2.2.1) If g7 = 0, then g is a constant. (1.2.2.2) If a—‘? =0, then f = fi + fo(z1),
2

g = g1(22). So f, g are Type 1 and (d) would hold. We assume (1.2.3) both g; and g¢; are
not zero. Then by (2.6),
6f1/3z2 _ 6f2/622
o @
Thus there are a constant ¢ and two analytic functions a;(z;), az(z;), such that

fi = cgi(22) + ai(21), fo =7Tga(22) + az(21).
Thus f, g are Type 4 and (d) holds.
0
(2) Suppose 992 =0, then g, = go(22). (2.1} If a—‘zl = 0, this case is (1.2) and the
1

621
theorem are proved. (2.2) If f2 =0, then f, = f2(22). By (2.4) we have
—0 —0
(2) Tiglk = G
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We analysis equation (2.7). (2.2.1) Suppose g5 = 0. If (2.2.1.1) % =0, then
2

f=h+ falz), 9=a9(2)
Hence f, g are Type 1 and (d) holds. (2.2.1.2) If f} = 0, then f, g are analytic and (a)
would hold. (2.2.2) Suppose % =0. (2.2.2.1) If g} = 0, then this case is (2.2.1.1) and
2
is proved. (2.2.2.2) If 6—f1-=0, then
622

[ = filz1) + fa(22), 9 = g1(21) + g2(22).

Thus f, g are Type 2 and (d) holds. (2.2.3) Suppose both g) and
(2.7) we get

On
—— are not zero. B
32, I zer y

8f1/0% _ i
091/0z g
Then there exist constant ¢, ¢y and a analytic function a;(2;), such that

fr =cq1(2) + a1(z1), f2 =Tga(22) + co.
Thus f, g are Type 3 and (d) holds.

(3) Suppose both g—zi and % are not zero. By (2.3),

0f2/0z _ 0f1/0z
692/621 Bgl/azl )

So there exist a constant ¢ and analytic functions a;(22), as(22) such that
(2.8) f1(2) = cg1(2) + a1(22), f2(2) = Tga(2) + az(22).
Combining (2.4), (2.8), we obtain

_agl Ia_g2
T9l _ g 222
(2.9) al, 7 ay B2
(3.1) Suppose a] = 0. (3.1.1) If aj, = 0, then there exist constant a,b such that
f=ag+b. So f,g are Type 4 and (d) holds. (3.1.2) If % =0, then
2

fi=cg1(z1) + 1, fr=7Tg2(2) + a2(22).
So f,g are Type 3 and (d) holds. Similiarly, if (3.2) @}, = 0, then (d) holds. Suppose
(3.3) both a] and a} are not zero. By (2.9) we have

0g1/0z; _ 0g2/0z;

'l !
a 7]

Thence there are a constant ¢, and two analytic functions b;(z;) and bs(2;) such that
(2.10) a1 = c1a1(z2) + bi(z1), 92 = Craz(22) + by(z1).
By (2.8) and (2,10), f, g are Type 4 and (d) would hold. 0
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