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This is a survey of the theory of adaptive finite element methods (AFEMs), which are
fundamental to modern computational science and engineering but whose mathe-
matical assessment is a formidable challenge. We present a self-contained and
up-to-date discussion of AFEMs for linear second-order elliptic PDEs and dimen-
sion 3 > 1, with emphasis on foundational issues. After a brief review of functional
analysis and basic finite element theory, including piecewise polynomial approxim-
ation in graded meshes, we present the core material for coercive problems. We
start with a novel a posteriori error analysis applicable to rough data, which delivers
estimators fully equivalent to the solution error. They are used in the design and study
of three AFEMs depending on the structure of data. We prove linear convergence of
these algorithms and rate-optimality provided the solution and data belong to suit-
able approximation classes. We also address the relation between approximation and
regularity classes. We finally extend this theory to discontinuous Galerkin methods
as prototypes of non-conforming AFEMs, and beyond coercive problems to inf-sup
stable AFEMs.
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1. Introduction: overview of AFEMs
This is a survey of the theory of adaptive finite element methods (AFEMs), which
are fundamental to modern computational science and engineering. We present a
self-contained and up-to-date discussion of AFEMs for linear second-order elliptic
PDEs in dimension 3 > 1, with emphasis on foundational issues rather than
applications of AFEMs. This paper builds on and expands the older surveys by
Nochetto, Siebert and Veeser (2009) and Nochetto and Veeser (2012). In fact, we
decided to incorporate several new aspects into the theory described below.

The paper develops the theory of AFEMs gradually, and is meant to be access-
ible to advanced students and researchers interested in learning the fundamental
aspects of adaptivity and why AFEMs outperform classical FEMs. We quantify
the superior performance of AFEMs with precise mathematical statements rather
than simulations. We present very few numerical experiments to illustrate some
key (and new) algorithmic ideas and methods, but the paper is otherwise a tour
through the numerical analysis of adaptive approximation of linear elliptic PDEs.
By design, this paper goes deep into some foundational aspects ofAFEMs theory,

provides full discussions and proofs, as well as pointers to the main literature. We
consider the following model problem on a polyhedral domainΩ ⊂ R3 with 3 ≥ 2:

! [D] ≔ − div(G∇D) + 2D = 5 , (1.1)

with general variable coefficients (G, 2), forcing 5 ∈ �−1(Ω) and homogeneous
Dirichlet boundary conditions D = 0 on mΩ mostly, but not exclusively. If V ≔
�1

0(Ω) and B : V×V→ R is the bilinear form associated with (1.1), the weak form
reads

D ∈ V : B[D, E] = 〈 5 , E〉 for all E ∈ V. (1.2)
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Given a conforming and shape-regular partition T of Ω, created by successive
refinement of a coarse mesh T0, let VT denote the space of continuous piecewise
polynomial functions of degree = ≥ 1 over T vanishing on mΩ. The Galerkin
approximation DT of D solves

DT ∈ VT : B[DT , E] = 〈 5 , E〉 for all E ∈ VT . (1.3)

This is a conforming approximation because VT ⊂ V. The aim of this paper is as
follows.

• To design and analyse practical ways to estimate the error |D − DT |� 1
0 (Ω) ≔

‖∇(D − DT )‖!2(Ω) in terms of so-called a posteriori error estimators, which
are computable quantities depending on the discrete solution DT and data
D = (G, 2, 5 ).
• To design adaptive algorithms that equidistribute the local errors ‖∇(D −
DT )‖!2() ) for all elements ) ∈ T , thereby optimizing the computational
effort; this is a key step that makes complex three-dimensional situations
accessible computationally.
• To show that this strategy delivers a performance comparable with the best
possible in terms of degrees of freedom, which is a measure of computational
complexity. This is a delicate matter because it entails dealing with approx-
imation classes and their relation to regularity classes in terms of Besov and
Lipschitz spaces.
• To present and analyse the bisection method for mesh refinement, one of the
most versatile techniques for local mesh refinement that guarantees shape reg-
ularity and optimal complexity; the latter is instrumental to the previous point.
Our study includes conforming meshes as well as certain non-conforming
meshes.
• To extend the theory to a range of important problems that fail to be conform-
ing or coercive. The first class is that of discontinuous Galerkin methods and
the second class is inf-sup stable FEMs. The former is a notorious example
of non-conforming approximation, whereas the latter is non-coercive.

In achieving these goals we provide several new ideas and methods. We also refer
to the pertinent literature but we do not give a full list of references or get into
comparisons of various approaches. It is not our intention to be comprehensive
but rather to cover basic aspects of adaptivity in depth at the expense of important
topics we do not touch upon. Some of them are:

• adaptive eigenvalue approximation,
• goal-oriented error analysis,
• non-conforming discretizations (except for discontinuous Galerkin),
• coarsening or aggregation,
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• anisotropic refinements,
• ℎ?-adaptivity,
• tree approximation,
• other PDEs, e.g. convection–diffusion equations, nonlinear and evolution
equations.

We devote the rest of this introduction to providing a roadmap for the rest of the
paper. In doing so, we introduce notation that will be used later, and present some
topics in their most primitive form to provide an early idea about how they fit and
interrelate.

A posteriori error analysis. We refer to the books by Ainsworth and Oden (2000)
and Verfürth (2013) for the classical theory. However, in contrast to most of
the existing literature, the current theory deals with forcing 5 ∈ �−1(Ω). This
allows for rough data useful in applications, such as line Dirac masses, but also
encompasses a new approach to error estimation that leads to an error-dominated
estimator and oscillation, and prevents error overestimation; this extends Kreuzer
and Veeser (2021) to (1.1) and polynomial degree = ≥ 1. The new twist is the
construction of a projection operator %T : �−1(Ω)→ FT into a space of piecewise
polynomials in T and on its skeleton F , namely the set of all internal faces. Such
an operator happens to be locally stable on stars (or patches)lI of T for all vertices
I ∈ V of T :

‖%T ℓ‖�−1(lI ) ≤ �lStb‖ℓ‖�−1(lI ) for all ℓ ∈ �−1(lI). (1.4)

An important property of %T and its range FT is that for piecewise polynomial
coefficients (G, 2), or in short discrete coefficients, %T is invariant in the subspace
! [VT ] of �−1(Ω) or equivalently

%T (! [E]) = ! [E] ∈ FT for all E ∈ VT . (1.5)

It is worth realizing that ! [E] is made of two distinct parts. The first one is
absolutely continuous relative to the Lebesgue measure, namely − div(G∇E) + 2E
in every element ) ∈ T . The second part is singular and supported in the skeleton
F , namely [[G∇E]] · n|�X� for every face � ∈ F , where [[·]] is the jump across �,
n is a unit normal to �, and X� is the Dirac mass on �.
These two properties of %T have the following crucial consequences. Let

'T ≔ ! [D − DT ] = 5 − ! [DT ] ∈ �−1(Ω) (1.6)

be the residual of the Galerkin approximation of (1.2). Using (1.5) yields

'T − %T 'T = 5 − %T 5 .
This shows that 'T decomposes into a discrete, thus finite-dimensional and com-
putable, PDE part %T 'T = %T 5 − ! [DT ] and an infinite-dimensional component
5 −%T 5 , the so-called data oscillation that depends on 5 and can only be evaluated
with additional knowledge of 5 .
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The non-local �−1-norm of 'T splits into local contributions on stars, whence1

|D − DT |2� 1
0 (Ω) ≈ ‖'T ‖

2
�−1(Ω) ≈

∑
I∈V
‖'T ‖2�−1(lI ).

The discrete nature of %T 'T allows us to derive a computable !2-weighted PDE
estimator [T (DT , I) equivalent to ‖'T ‖�−1(lI ), which together with the remaining
data oscillation oscT ( 5 , I)−1 ≔ ‖ 5 − %T 5 ‖�−1(lI ) gives the upper bound

|D − DT |2� 1
0 (Ω) .

∑
I∈V

(
[T (DT , I)2 + oscT ( 5 , I)2

−1
)
.

It turns out that this estimate is sharp or, in other words, that there is no overestima-
tion of the error. To see this important and unique property of these new estimators,
we invoke (1.4) to write the local lower bounds

[T (DT , I) ≈ ‖%T 'T ‖�−1(lI ) ≤ �lStb‖'T ‖�−1(lI ),

oscT ( 5 , I)−1 = ‖'T − %T 'T ‖�−1(lI ) ≤ (1 + �lStb)‖'T ‖�−1(lI ).

Section 4 constructs the operator %T , and derives several important properties
such as its local quasi-best approximation and the above error-dominated a posteri-
ori bounds. The former guarantees the inequality for the local !2-projection ΠT ,
that is,

‖ 5 − %T 5 ‖�−1(lI ) . ‖ 5 − ΠT 5 ‖�−1(lI ) . ‖ℎ( 5 − ΠT 5 )‖!2(lI ),

which is the typical form of data oscillation provided 5 ∈ !2(Ω). However, this
!2-weighted oscillation is not bounded above by the error and is thus responsible
for potential overestimation. Section 4 proves further properties of [T (DT ) such
as its reduction upon refinement and its localized discrete upper bound, as well as
quasi-monotonicity of oscT ( 5 )−1 upon refinement. These properties, known for
the standard !2-weighted estimator and oscillation, are thus retained by the new
construction.
Section 4 also deals with the alternative error estimators that result from solving

local problems, using hierarchy, or imposing flux equilibration. We show that all
of them lead, essentially, to estimators equivalent to ‖'T ‖�−1(lI ). Moreover, we
present an optimal framework to deal with non-homogeneous Dirichlet boundary
conditions as well as with Robin and Neumann boundary conditions.

Linear convergence of AFEMs. Local a posteriori error indicators are usually em-
ployed to mark elements (or sets of elements) with largest indicators for refinement.
We are concerned with the most popular Dörfler marking (or bulk chasing): given
a parameter \ ∈ (0, 1], select a setM ⊂ T such that

[T (DT ,M) ≥ \ [T (DT ); (1.7)

1 Throughout this work � . � signifies � ≤ �� with a constant� independent of the discretization
parameters, and � ≈ � stands for � . � and � . �.
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hereafter we define
[T (DT ,M)2 ≔

∑
) ∈M

[T (DT , ))2,

where [T (DT , )) is the PDE indicator associated with a generic element ) ∈ T .
Note that \ = 1 corresponds to uniform refinement. In Section 5 we present three
AFEMs in increasing order of complexity regarding data D = (G, 2, 5 ) and prove
their linear convergence.
The simplest algorithm, so-called GALERKIN, works for discrete D and is the

usual adaptive loop

SOLVE→ ESTIMATE→ MARK→ REFINE .

We assume SOLVE computes the exact Galerkin solution DT , so we refrain from
addressing linear algebra issues. The module ESTIMATE computes the a posteriori
error indicator and themoduleMARK implements (1.7); inmost of the paperwe deal
with weighted !2-error indicators [T (DT ) but we also address linear convergence
for alternative estimators. The module REFINE bisects marked elements and
perhaps a few more to keep meshes conforming (or Λ-admissible if they are non-
conforming). We let |||D − DT |||Ω denote the energy error associated with the bilinear
form B. This error is monotone with refinement but may stagnate. We thus exploit
the estimator reduction property with refinement, typical of [T (DT ), to show that
the combined quantity

ZT (DT )2 ≔ |||D − DT |||2Ω + W [T (DT )2 (1.8)

contracts in every iteration of GALERKIN for a suitable scaling parameter W > 0.
This readily leads to linear convergence of both |D − DT |� 1

0 (Ω) and [T (DT ).
We next keep the coefficients (G, 2) discrete but allow for a general 5 ∈ �−1(Ω).

This is to prevent the multiplicative interaction between (G, 2) and D that occurs in
(1.1) if we were to approximate (G, 2). In contrast, the effect of 5 is linear in (1.1).
We show examples where |||D − DT |||Ω may stagnate because the adaptive process
is dominated by oscillation oscT ( 5 )−1 (pre-asymptotic regime). To compensate
for this fact, we design a one-step AFEM with switch as in Kreuzer, Veeser and
Zanotti (2024), the so-called AFEM-SW, that proceeds like GALERKIN provided
[T (DT ) dominates and otherwise reduces oscT ( 5 )−1 separately. We show that for
a suitable parameter W > 0, the combined quantity

ZT (DT )2 ≔ |||D − DT |||2Ω + W[T (DT )2 + oscT ( 5 )2
−1 (1.9)

contracts in every loop of AFEM-SW. This yields linear convergence of the error
|D − DT |�10(Ω) and the estimator ET (DT , 5 ) = [T (DT ) + oscT ( 5 )−1.
The third algorithm is the two-step AFEM, the so-called AFEM-TS, which allows

for general data D = (G, 2, 5 ). To handle the aforementioned nonlinear effect of
(G, 2) and also deal with general 5 , all data D are first approximated by a routine
DATA to a desired level of accuracy, which is adjusted at every step of AFEM-TS,
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and then fed to GALERKIN which handles discrete data. Suitably combining the
accuracies of each intermediate module leads to linear convergence and optimal
complexity of GALERKIN within each loop. The structure of AFEM-TS is flexible
enough to easily handle discontinuous coefficients (G, 2) with discontinuities that
may not be aligned with the mesh. This is because the approximation of (G, 2) by
discontinuous polynomials takes place in ! ?(Ω) for ? < ∞.

It is worth stressing two important points. First, the approximation ofD is carried
out by aGREEDY algorithm, which is shown to perform optimally starting from any
refinement of T0. Second, the discontinuous piecewise polynomial approximations
(Ĝ, 2̂) of (G, 2) may not respect, for polynomial degree ≥ 1, the positivity bounds
associated with the coefficients. This requires a nonlinear correction of the output
of GREEDY that restores positivity and does not reduce accuracy beyond a modest
multiplicative constant. We postpone the discussion of these two delicate and
technical processes to Section 7, which can be omitted in a first reading.

Rate-optimality of AFEMs. Showing that AFEMs outperform classical FEMs is a
difficult but important matter. This reduces to proving a superior relation between
the required degrees of freedom (or number of elements) for a desired accuracy; the
former is in fact an acceptablemeasure of complexity. Showing that AFEMs deliver
performance comparable with the best entails the following basic ingredients.

• Nonlinear approximation classes. These classify functions in terms of the best
possible algebraic decay rate of approximation 4# (E)- of a given function
E in a given norm - with # number of elements; roughly speaking, we say
E ∈ AB if 4# (E)- . #−B. These classes are related to regularity classes
(Sobolev, Besov and Lipschitz) along Sobolev embedding lines.

• Dörfler marking. If the oscillation oscT ( 5 )−1 is dominated by the PDE
estimator [T (DT ) for a givenmesh T , then any conforming refinement T∗ ≥ T
of T that reduces [T (DT ) by a substantial amount induces a refined set R ≔
T \ T∗ to modify T into T∗ satisfying (1.7), namely [T (DT ,R) ≥ \ [T (DT ).

• Minimality of M. If the subset M ⊂ T in (1.7) is minimal, then the
cardinality ofM compares favourably to the cardinality of the best mesh with
a comparable error accuracy, thereby leading to rate-optimality of AFEM.

Together, these comprise the topic of Section 6. It is important to notice that
membership of AB is never used explicitly by AFEM to learn about problem (1.1)
and improve its resolution. The fundamental reason for the superior performance
of AFEM relative to FEM lies in nonlinear approximation theory. We now illustrate
this point with the following insightful approximation example for 3 = 1 and
- = !∞(0, 1) (DeVore 1998, Kahane 1961): let Ω = (0, 1), T# = {[G 9−1, G 9]}#9=1
be a partition of Ω, with

0 = G0 < G1 < · · · < G 9 < · · · < G# = 1,
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and let E : Ω → R be an absolutely continuous function to be approximated by
a piecewise constant function E# over T# . To quantify the difference between E
and E# we resort to the maximum norm, and study two cases depending on the
regularity of E. We define E# (G) ≔ E(G 9−1) for all G 9−1 ≤ G < G 9 and note that

|E(G) − E# (G)| = |E(G) − E(G 9−1)| ≤
∫ G

G 9−1

|E′(C)| dC.

• Case 1: ,1∞-regularity. If D ∈ ,1∞(0, 1) and G 9−1 ≤ G < G 9 , then

|E(G) − E# (G)| ≤ ℎ 9 ‖E′‖!∞(G 9−1,G 9 ) ⇒ ‖E − E# ‖!∞(Ω) ≤ 1
#
‖E′‖!∞(Ω)

for a uniform mesh. We thus deduce a rate #−1 using the same integrability
!∞ on both sides of the error estimate.

• Case 2: ,1
1 -regularity. Let ‖E′‖!1(Ω) = 1 and T# be a graded partition so

that ∫ G 9

G 9−1

|E′(C)| dC = 1
#
.

Then, for G ∈ [G 9−1, G 9],

|E(G)− E(G 9−1)| ≤
∫ G 9

G 9−1

|E′(C)| dC = 1
#

⇒ ‖E− E# ‖!∞(Ω) ≤ 1
#
‖E′‖!1(Ω).

We thus conclude that we could achieve the same rate of convergence #−1 for
rougher functions with just ‖D′‖!1(Ω) < ∞. Three comments are now in order.
First, the contrast between Cases 1 and 2 is more dramatic for E(G) = GU with
U ∈ (0, 1) because Case 1 only yields the suboptimal rate ‖E − E# ‖!∞(Ω) ≤ #−U.
Second, T# in Case 2 equidistributes the max-error, a concept that will permeate
our discussions later. Third, the optimal rate of Case 2 is due to the exchange
of differentiability with integrability along the critical Sobolev embedding line
between the left- and right-hand sides of the error estimate (nonlinear Sobolev
scale), while Case 1 relies on the linear Sobolev scale with constant integrability.

We exploit and further elaborate these concepts in Section 6 to show rate-
optimality of the three algorithms GALERKIN, AFEM-SW and AFEM-TS, discussed
in Section 5, provided D and D belong to suitable approximation classes. We also
investigate the relation between these approximation classes with regularity classes,
allowing for discontinuous coefficients, and present a fairly complete discussion.

Mesh refinement. A key component of any adaptive algorithm, such as the three
AFEMs already described, is the routine REFINE which refines a current mesh T
into T∗ to improve resolution. In Section 8 we study the bisection method, which
is the most popular method to refine simplicial meshes in R3 for 3 ≥ 1. For
simplicity we focus our attention on this method, but most results apply to other
refinement strategies such as quadtrees (for quadrilaterals), octrees (for hexagons)
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and red–green (for simplicial meshes). We do not insist on these extensions but
refer to Bonito and Nochetto (2010) for details.
Given an initial grid T0 with a suitable labelling, the bisection method splits a

given simplex into two children. The rules for successive cutting of simplices, for
instance newest vertex bisection for 3 = 2, are such that the ensuing meshes are
shape-regular (with a uniform constant depending only on T0 and 3). However,
bisection may not be completely local to keep conformity. The analysis of propaga-
tion of refinement is a delicate combinatorial problem. It is easy to see by example
that bisecting one element of large generation (i.e. the number of bisections needed
to produce it) may require a chain of elements with length similar to the generation.
Therefore the number of refined elements in one step cannot be bounded by the
number of marked elements. The following amazing estimate by Binev, Dahmen
and DeVore (2004) for 3 = 2 and Stevenson (2008) for 3 > 2 shows that the
cumulative effect of bisection, counting all the marked elements M 9 from T0, is
quasi-optimal: there exists a constant � > 0, depending on T0 and 3, such that

#T: − #T0 ≤ �
:−1∑
9=0

#M 9 . (1.10)

This estimate is crucial for the study of rate-optimality of AFEM and is proved
in Section 8 for 3 = 2 and for both conforming refinement and Λ-admissible
refinement. The latter is a systematic way to handle non-conforming meshes that
goes back to Beirão da Veiga et al. (2023). It associates a computable global index
to hanging nodes and imposes a restriction on them not to exceed a preassigned
value Λ ≥ 0; if Λ = 0 then the mesh is conforming. Section 8 also discusses
several interesting geometric properties of Λ-admissible meshes which turn out to
be crucial for discontinuous Galerkin methods. Since Section 8 is quite technical,
it can be skipped in a first reading.

Discontinuous Galerkin methods. These methods, so-called dG, are the natural
first step in investigating the role of non-conformity in adaptivity, namely that the
discrete space of discontinuous piecewise polynomials VT is no longer a subspace
of �1

0(Ω). To this end, we study the symmetric interior penalty dG method in
Section 9 on Λ-admissible partitions T of T0. Such dG methods exhibit some
characteristic and novel featureswith respect to conformingFEMs: themost notable
one is the presence of weighted jumps that stabilize the method and compensate for
the lack of �1-conformity. We consider the formulation with lifting, which allows
for minimal regularity D ∈ �1

0(Ω), and forcing 5 ∈ �−1(Ω) despite the fact thatVT
is not a subspace of �1

0(Ω). The latter is possible because, within the framework
of AFEM-TS, 5 is approximated by a piecewise polynomial %T 5 for which the
pairing with functions in VT is meaningful.
The fact that jumps are not monotone upon refinement constitutes one of the

main obstructions to studying adaptivity for dG. To circumvent this issue we
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follow Bonito and Nochetto (2010), who in turn modified the original approach
of Karakashian and Pascal (2007), and introduce the largest conforming subspace
V0
T of VT . It turns out that, despite being coarser, V0

T exhibits a local resolution
comparable with VT because of key geometric properties of Λ-admissible meshes
that control the degree of non-conformity of T . In addition, V0

T is responsible for
the scaled jumps being bounded by the PDE estimator [T (DT ). Exploiting prop-
erties of [T (DT ), similar to the conforming case, leads to a quasi-orthogonality
estimate for the dG norm, a dG variant of the Pythagoras equality. This is instru-
mental in proving a contraction property for the error plus scaled estimator and
deducing convergence for both GALERKIN and AFEM-TS. Moreover, we derive
rate-optimality for both algorithms provided D andD belong to suitable approxima-
tion classes. Such classes are the same as for conforming AFEMs: in fact we prove
that the approximation classes for D using continuous and discontinuous piecewise
polynomials on Λ-admissible meshes coincide.

Inf-sup stable AFEMs. The convergence and optimality theories developed in Sec-
tions 5 and 6 rely on the bilinear form in (1.2) being coercive. We remove this strong
restriction in Section 10 and consider uniformly inf-sup stable FEMs on conform-
ing refinements T 9 of T0. The lack of an energy norm and its monotone behaviour
upon refinement has been an obstacle to the study of this class of problems. We
follow the recent work by Feischl (2022), who introduced the following form of
quasi-orthogonality between consecutive Galerkin solutions D 9 ∈ V 9 , originally
proposed in Carstensen, Feischl, Page and Praetorius (2014) as part of an abstract
set of axioms of adaptivity:

9+#∑
:= 9

‖D:+1 − D: ‖2V ≤ �(#)‖D − D 9 ‖2V, 9 ≥ 0, (1.11)

where �(#)/# → 0 as # → ∞. This is our departure point for developing a
variational approach to prove linear convergence of D 9 provided data D is dis-
crete; the latter is reflected in an equivalence property between error and estimator
(without oscillation). This is the context of a GALERKIN routine, which is next
used as a building block together with DATA for an AFEM-TS that handles general
dataD. Moreover, we prove rate-optimality for both algorithms, thereby extending
Sections 5 and 6.
This discussion is fairly abstract. We specialize it to the Stokes equations

for viscous incompressible fluids and mixed formulations of (1.1) using Raviart–
Thomas–Nédélec and Brezzi–Douglas–Marini elements. We thereby obtain con-
vergence and rate-optimality for AFEM-SW for the Stokes equations and AFEM-TS
for mixed methods with variable and possibly discontinuous coefficients (G, 2).

We conclude with a complete proof of (1.11) following Feischl (2022). This is
a tour de force in applied linear algebra and is rather technical. It can be omitted
in a first reading.
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2. Linear elliptic boundary value problems: basic theory
In this section we examine the variational formulation of elliptic partial differential
equations (PDEs). We start with a brief review of Sobolev spaces and their proper-
ties, and continue with two model boundary value problems that are instrumental
to our subsequent analysis. We next present the so-called inf-sup theory, which
characterizes the existence, uniqueness and stability of variational problems, and
apply it to coercive and saddle point problems. These two classes will play essential
roles later.

2.1. Sobolev spaces: scaling and embedding

Let Ω ⊂ R3 with 3 > 1 be a Lipschitz and bounded domain, and let : ∈ N,
1 ≤ ? ≤ ∞. The Sobolev space, :

?(Ω) is defined by

, :
?(Ω) ≔ {E : Ω→ R| �UE ∈ ! ?(Ω) for all |U | ≤ :},

and is a Banach space with the norm

‖E‖, :
? (Ω) =

( :∑
9=1
|E |?
,
9
? (Ω)

)1/?
, |E |

,
9
? (Ω) =

(∫
Ω
|� 9E |?

)1/?
.

The space , :
?(Ω;R<) is the space , :

?(Ω) of vector- or matrix-valued functions.
If ? = 2 we write �:(Ω) = , :

2 (Ω) and note that this is a Hilbert space. We let
�1

0(Ω) ⊂ �1(Ω) denote the completion of �∞0 (Ω) within �1(Ω).
Sobolev spaces, :

?(Ω) of fractional order : > 0 can be defined as well, by apply-
ing the real interpolation method between, [: ]? (Ω) and, [: ]+1? (Ω); see Bergh and
Löfström (1976) and Adams and Fournier (2003) for the details. The subsequent
definitions and properties hold for Sobolev spaces of integer or fractional order.
The Sobolev number of, :

?(Ω) is given by

sob(, :
?) ≔ : − 3

?
. (2.1)

This number governs the scaling properties of the seminorm |E |, :
? (Ω), because

rescaling variables Ĝ = G/ℎ for all G ∈ Ω, transforms Ω into Ω̂ and E into Ê, while
the corresponding norms scale as

|Ê |, :
? (Ω̂) = ℎ

sob(, :
? ) |E |, :

? (Ω).

2.2. Properties of Sobolev spaces

We now summarize, but do not prove, several important properties of Sobolev
spaces which play a key role later. We refer to Evans (2010), Gilbarg and Trudinger
(2001) and Grisvard (2011) for details. We use the notation ↩→ to denote a
continuous embedding.
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differentiability

1/summability

<

:

1/@1/?

, :
?(Ω)

,<
@ (Ω)

0

sob(,<
@ (Ω)) = const.

(slope = 3)

Figure 2.1. DeVore diagram (DeVore 1998). The space , :
?(Ω) is represented by

the point (1/?, :) in the first quadrant. The line sob(,<
@ ) = const. = sob(, :

?),
with slope 3, may be called the (critical) Sobolev embedding line for , :

?(Ω). It
represents all Sobolev spaces having the same Sobolev number as, :

?(Ω). Sobolev
spaces corresponding to points inside the grey region and on its boundary on the
vertical axis are compactly embedded in, :

?(Ω). Spaces on the oblique and hori-
zontal lines emanating from , :

?(Ω) are generally continuously but not compactly
embedded in , :

?(Ω) with exceptions such as ? = ∞. Note that indices : and <
may take non-integer values, corresponding to fractional Sobolev spaces.

Lemma 2.1 (Sobolev embedding). Let < > : ≥ 0 and assume sob(,<
@ ) >

sob(, :
?). Then the embedding,<

@ (Ω) ↩→ , :
?(Ω) is compact and

‖E‖, :
? (Ω) ≤ �‖E‖,<

@ (Ω) for all E ∈ ,<
@ (Ω),

where � = �(<, :, @, ?,Ω, 3).

We say that two Sobolev spaces are in the same nonlinear Sobolev scale if they
have the same Sobolev number; see Figure 2.1. We thus note that for compactness
the space ,<

@ (Ω) must be above the Sobolev scale of , :
?(Ω), i.e. sob(,<

@ ) >
sob(, :

?).
The assumption on the Sobolev number cannot be relaxed. To see this, consider

Ω to be the unit ball of R3 for 3 ≥ 2 and set E(G) = log log(|G |/2) for G ∈ Ω \ {0}.
Then we have E ∈ ,1

3(Ω) \ !∞(Ω), but

sob(,1
3) = 1 − 3/3 = 0 = 0 − 3/∞ = sob(!∞).

Therefore equality cannot be expected in the embedding theorem. On the other
hand, consider 3 = 1 and the spaces ,1

1 (Ω) and !∞(Ω). We see that sob(,1
1 ) =
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sob(!∞) = 0 but,1
1 (Ω) is compactly embedded in !∞(Ω) in this case. This shows

that these two spaces are in the same nonlinear Sobolev scale and that the above
inequality between Sobolev numbers for a compact embedding is only sufficient.
Moreover, if 0 < U = sob(, :

?) ≤ 1, then functions of, :
?(Ω) are Hölder-U and

|E |�0,U(Ω) ≤ � |E |, :
? (Ω) for all E ∈ , :

?(Ω).

This allows for the use of the standard Lagrange interpolation operator. We will
exploit this fact later in Section 3.

Lemma 2.2 (first Poincaré inequality). LetΩ ⊂ R3 be a bounded and Lipschitz
domain. Then there exists a constant �% = �3 |Ω|1/3 such that

‖E‖!2(Ω) ≤ �% ‖∇E‖!2(Ω) for all E ∈ �1
0(Ω). (2.2)

The same inequality is valid in,1
?(Ω) for any 1 ≤ ? ≤ ∞ provided E has vanishing

trace (Gilbarg and Trudinger 2001, page 158).

Lemma 2.3 (second Poincaré inequality). There exists�% depending onΩ such
that

‖E − E‖!2(Ω) ≤ �% ‖∇E‖!2(Ω) for all E ∈ �1(Ω), (2.3)

where E ≔ |Ω|−1
∫
Ω
E. The best constant within the class of convex domains is

�% = c−1 diam(Ω) (Payne and Weinberger 1960). The same inequality is valid in
,1
?(Ω) for 1 ≤ ? ≤ ∞ (Gilbarg and Trudinger 2001).

Lemma 2.4 (traces). Let Ω be Lipschitz. There exists a unique linear operator
) : �1(Ω)→ !2(mΩ) such that

‖)E‖!2(mΩ) ≤ 2(Ω)‖E‖� 1(Ω) for all E ∈ �1(Ω),

)E = E |mΩ for all E ∈ �0(Ω) ∩ �1(Ω).

The operator) is also well-defined on,1
?(Ω) for 1 ≤ ? ≤ ∞ (Evans 2010, Grisvard

1985).

Since )E = E |mΩ for continuous functions, we write E for )E. The image of )
is a strict subspace of !2(mΩ), the so-called �1/2(mΩ). This is a Hilbert space if
equippedwith the norm ‖6‖� 1/2(mΩ) ≔ inf{‖E‖� 1(Ω) | )E = 6}, and) is continuous
with respect to this norm, since

‖)E‖� 1/2(mΩ) ≤ ‖E‖� 1(Ω) for all E ∈ �1(Ω). (2.4)

The definition of �1
0(Ω) can be reconciled with that of traces because

�1
0(Ω) = {E ∈ �1(Ω) | E = 0 on mΩ}.
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We point out that, in view of Lemma 2.2, the seminorm |E |� 1
0 (Ω) ≔ ‖∇E‖!2(Ω) is a

norm in �1
0(Ω). We let �−1(Ω) be the dual of �1

0(Ω), with corresponding norm

‖ 5 ‖�−1(Ω) ≔ sup
E∈� 1

0 (Ω)

〈 5 , E〉
|E |� 1

0 (Ω)
.

These definitions extend to any ? ∈ (1,∞).

Lemma 2.5 (Gauss divergence theorem). If n is the outer unit normal to Ω,
then ∫

Ω
div w =

∫
mΩ

w · n for all w ∈ ,1
1 (Ω;R3).

Lemma 2.6 (Green’s formula). We have the integration by parts formula∫
Ω

div w E = −
∫
Ω
w · ∇E +

∫
mΩ
E w · n for all E ∈ �1(Ω), w ∈ �1(Ω;R3).

2.3. Examples of boundary value problems

We consider two model elliptic problems in this paper. We start with the scalar
diffusion–reaction equation with variable coefficients

! [D] ≔ − div(G∇D) + 2D = 5 in Ω,
D = 0 on mΩ,

(2.5)

where Ω ⊂ R3 is a bounded domain with Lipschitz boundary, G ∈ !∞(Ω;R3×3)
is a diffusion tensor, uniformly symmetric positive definite (SPD) over Ω, that is,
there exist constants 0 < U1 ≤ U2 such that

U1 |/ |2 ≤ />G(G) / ≤ U2 |/ |2 for all G ∈ Ω, / ∈ R3 , (2.6)

2 ∈ !∞(Ω), 2 ≥ 0 is a reaction term, and 5 ∈ !2(Ω) is a scalar load term.
To derive the variational formulation of (2.5) we let V = �1

0(Ω) and V∗ =
�−1(Ω). Since �1

0(Ω) is the subspace of �1(Ω) of functions with vanishing trace,
asking for D ∈ V accounts for the homogeneous Dirichlet boundary values in (2.5).
We next multiply (2.5) by a test function E ∈ �1

0(Ω), integrate over Ω and use
Lemma 2.6 (Green’s formula), provided w = −G∇D ∈ �1(Ω;R3), to obtain

D ∈ V : B [D, E] = 〈 5 , E〉 for all E ∈ V. (2.7)

Here, B : V × V→ R stands for the bilinear form

B [F, E] :=
∫
Ω
∇E · G∇F + 2EF for all E, F ∈ V (2.8)

and 〈·, ·〉 stands for the !2(Ω)-scalar product and also for a duality pairing�−1(Ω)−
�1

0(Ω). Since G is assumed to be symmetric, the bilinear formB is also symmetric;
however, G does not have to be symmetric in general. Note that the weak form
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(2.7) allows for fluxes w ∈ !2(Ω;R3) and forcing 5 ∈ �−1(Ω). We examine the
existence, uniqueness and stability of (2.7) in Section 2.4 below.
We assume homogeneous Dirichlet boundary conditions in (2.5) for simplicity

and because this will be our basic setting later. However, we could allow a non-
homogeneous Dirichlet condition in the sense of traces, that is,

)D = 6 on mΩ, (2.9)

for any given function 6 ∈ �1/2(mΩ). To write the companion variational formu-
lation to (2.7), we first introduce the subspace V(6) ⊂ �1(Ω) of functions E with
trace )E = 6 on mΩ, and then rewrite (2.7) as follows:

D ∈ V(6) : B[D, E] = 〈 5 , E〉 for all E ∈ V(0). (2.10)

Moreover, we could consider a Robin boundary condition for given functions 6 and
? on mΩ:

G∇D · n + ?D = 6 on mΩ, (2.11)

where n is the outer unit normal to Ω. To figure out the variational formulation,
we now multiply the PDE in (2.5) by a test function E ∈ �1(Ω) and integrate by
parts to find the following variant of (2.7):

D ∈ �1(Ω) : B[D, E] = ℓ(E) for all E ∈ �1(Ω), (2.12)

where for all E, F ∈ �1(Ω),

B[F, E] ≔
∫
Ω
∇E · G∇F + 2EF +

∫
mΩ
?EF, ℓ(E) ≔ 〈 5 , E〉 +

∫
mΩ
6E. (2.13)

We realize that (2.13) makes sense for ? ∈ !∞(mΩ), ? ≥ 0 and 6 ∈ �−1/2(mΩ), the
dual space of �1/2(mΩ), whence the last integral in (2.13) means a duality pairing.
If ? = 0, then (2.13) reduces to the weak form of the Neumann boundary condition.
The second model problem is the Stokes system, which is the simplest model of

a stationary viscous incompressible fluid. Given an external force f ∈ !2(Ω;R3),
let the velocity–pressure pair (u, ?) satisfy the momentum and incompressibility
equations with no-slip boundary condition:

−Δu + ∇? = f in Ω,
div u = 0 in Ω,

u = 0 on mΩ.
(2.14)

For the variational formulation we consider two Hilbert spacesV = �1
0(Ω;R3) and

Q = !2
0(Ω), where !2

0(Ω) is the space of !2 functions with zero mean value. The
space �1

0(Ω;R3) takes care of the no-slip boundary values of the velocity. We
first multiply the momentum equation in (2.14) by v ∈ V, assume u ∈ �2(Ω;R3)
and use Lemma 2.6 (Green’s formula) component-wise. We next multiply the
incompressibility equation in (2.14) by @ ∈ Q and integrate over Ω. We end up
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with the following variational formulation: find (u, ?) ∈ V × Q such that

0[u, v] + 1[?, v] = 〈 f , v〉 for all v ∈ V,
1[@, u] = 0 for all @ ∈ Q. (2.15)

Here the bilinear forms 0 : V × V→ R and 1 : Q × V→ R read

0[w, v] :=
∫
Ω
∇v : ∇w =

3∑
8=1

∫
Ω
∇E8 · ∇F8 for all v, w ∈ V

and

1[@, v] := −
∫
Ω
@ div v for all @ ∈ Q, v ∈ V.

We observe that 0[w, v] does not require w ∈ �2(Ω;R3) and that (2.15) makes
sense for f ∈ �−1(Ω;R3); note that the second equation in (2.15) is always
satisfied for constant @ due to Gauss’s theorem, which explains the choice @ ∈ Q.
Furthermore, (2.15) can be reformulated as (2.7), namely

(u, ?) ∈ V × Q : B [(u, ?), (v, @)] = 〈 f , v〉 for all (v, @) ∈ V × Q, (2.16)

with
B [(u, ?), (v, @)] := 0[u, v] + 1[?, v] + 1[@, u] .

We discuss the existence, uniqueness and stability of (2.16) in Section 2.4.
We could formulate the Stokes system with other boundary conditions. First, we

may allow a non-homogeneous Dirichlet condition u = g for a given function g ∈
�1/2(mΩ;R3) satisfying the compatibility condition

∫
Ω
g·n = 0 imposed byGauss’s

theorem, and proceed as in the scalar case (2.10). Second, to deal with a Neumann
boundary condition, we introduce the stress tensor 2(u, ?) ≔ 1

2 (∇u + ∇u>) − ?O
and the symmetric part of the velocity gradient 9(u) ≔ 1

2 (∇u+∇u>). Then instead
of (2.14) we could write the strong form of the Neumann problem as

− div2(u, ?) = f , div u = 0 in Ω,
2(u, ?)n = g on mΩ,

(2.17)

and its weak form as (2.15) but with

V ≔

{
v ∈ �1(Ω;R3) |

∫
Ω
v = 0

}
, Q ≔ !2(Ω), (2.18)

as well as bilinear form 0 and right-hand side

0[u, v] ≔
∫
Ω
9(u) : 9(v), ℓ(v) ≔ 〈 f , v〉 +

∫
mΩ

g · v (2.19)

for all v ∈ V. Again, the last integral in (2.19) is to be interpreted as a duality
pairing for g ∈ �−1/2(mΩ;R3).
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2.4. Inf-sup theory

We present a functional framework for the existence, uniqueness and stability of
variational problems of the form (2.7) or (2.16). Throughout this section we let
(V, 〈·,·〉V) and (W, 〈·,·〉W) be a pair of Hilbert spaces with induced norms ‖ · ‖V and
‖ · ‖W. We let V∗ andW∗ denote their respective dual spaces equipped with norms

‖ 5 ‖V∗ = sup
E∈V

〈 5 , E〉
‖E‖V and ‖6‖W∗ = sup

E∈W

〈6, E〉
‖E‖W .

We write !(V;W) for the space of all linear and continuous operators from V into
W with operator norm

‖�‖!(V;W) = sup
E∈V

‖�E‖W
‖E‖V .

The following result relates a continuous bilinear form B : V ×W → R with an
operator � ∈ !(V;W) (Nečas 1962, Babuška 1971).

Theorem 2.7 (Banach–Nečas). Let B : V × W → R be a continuous bilinear
form with norm

‖B‖ := sup
E∈V

sup
F ∈W

B [E, F]
‖E‖V‖F‖W . (2.20)

Then there exists a unique linear operator � ∈ !(V,W) such that

〈�E, F〉W = B [E, F] for all E ∈ V, F ∈ W
with operator norm

‖�‖!(V;W) = ‖B‖.
Moreover, the bilinear form B satisfies the following two conditions:

there exists U > 0 such that U‖E‖V ≤ sup
F ∈W

B [E, F]
‖F‖W for all E ∈ V; (2.21a)

for every 0 ≠ F ∈ W there exists E ∈ V such that B [E, F] ≠ 0, (2.21b)

if and only if � : V→W is an isomorphism with

‖�−1‖!(W,V) ≤ U−1. (2.22)

We now consider the abstract variational problem

D ∈ V : B [D, E] = 〈 5 , E〉 for all E ∈ W. (2.23)

The following result, due to Nečas (1962, Theorem 3.3), characterizes properties
of the bilinear form B that imply that (2.23) is well-posed.

Theorem 2.8 (Nečas). Let B : V ×W→ R be a continuous bilinear form. Then
the variational problem (2.23) admits a unique solution D ∈ V for all 5 ∈ W∗,
which depends continuously on 5 , if and only if the bilinear form B satisfies one of
the following equivalent inf-sup conditions.
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(1) There exists U > 0 such that

sup
F ∈W

B [E, F]
‖F‖W ≥ U‖E‖V for some U > 0; (2.24a)

for every 0 ≠ F ∈ W there exists E ∈ V such that B [E, F] ≠ 0. (2.24b)

(2) We have

inf
E∈V

sup
F ∈W

B [E, F]
‖E‖V‖F‖W > 0, inf

F ∈W
sup
E∈V

B [E, F]
‖E‖V‖F‖W > 0. (2.25)

(3) There exists U > 0 such that

inf
E∈V

sup
F ∈W

B [E, F]
‖E‖V‖F‖W = inf

F ∈W
sup
E∈V

B [E, F]
‖E‖V‖F‖W = U. (2.26)

In addition, the solution D of (2.23) satisfies the stability estimate

‖D‖V ≤ U−1‖ 5 ‖W∗ . (2.27)

The equality in (2.26) might at first seem surprising but is just a consequence of
‖�−∗‖!(V;W) = ‖�−1‖!(W;V). In general, (2.24) is simpler to verify than (2.26) and
U of (2.26) is the largest possible U in (2.24a). Since (2.22) shows that ‖�−1‖!(W,V)
is the best inf-sup constant U in (2.21a), we readily obtain the following result.

Corollary 2.9 (well-posedness implies inf-sup). If the variational problem (2.23)
admits a unique solution D ∈ V for all 5 ∈ W∗, so that

‖D‖V ≤ �‖ 5 ‖W∗ ,
then B satisfies the inf-sup condition (2.26) with U ≥ �−1.

We next apply these abstract results to two special but important cases. The
first class comprises problems with coercive bilinear form and the second class
comprises problems of saddle point type.

Coercive problems. An existence and uniqueness result for coercive bilinear forms
was established by Lax and Milgram eight years prior to the result by Nečas (Lax
and Milgram 1954). Coercivity of B is a sufficient condition for existence and
uniqueness but it is not necessary. In this case, we assume V =W.

Corollary 2.10 (Lax–Milgram). Let B : V × V → R be a continuous bilinear
form that is coercive, namely there exists U > 0 such that

B [E, E] ≥ U‖E‖2V for all E ∈ V. (2.28)

Then (2.23) has a unique solution that satisfies the stability estimate (2.27).

If the bilinear form B is also symmetric, that is,

B [E, F] = B [F, E] for all E, F ∈ V,
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then B is a scalar product on V. The norm induced by B is the so-called energy
norm

|||E |||Ω := B [E, E]1/2.
For the reaction–diffusion equation (2.5), the bilinear form given in (2.8) satisfies

0 < U1 ≤ U ≤ ‖B‖ ≤ U2 + ‖2‖!∞(Ω)�
2
%, (2.29)

where �% is the constant in Lemma 2.2 (first Poincaré inequality). Coercivity and
continuity of B, with constants 2B = U1 and �B = ‖B‖, in turn imply that the
energy norm ||| · |||Ω is equivalent to the natural norm ‖ · ‖V in V = �1

0(Ω):

2B‖E‖2V ≤ |||E |||2Ω ≤ �B‖E‖2V for all E ∈ V. (2.30)

Moreover, it is fairly easy to show that for symmetric and coercive B the solution
D of (2.23) is the unique minimizer of the quadratic energy

� [E] :=
1
2
B [E, E] − 〈 5 , E〉 for all E ∈ V,

that is, D = arg minE∈V � [E]. In particular, the energy norm and the quadratic
energy play a relevant role in Sections 5, 6 and 9.
This framework applies to the scalar diffusion–reaction equation (2.7)with homo-

geneous Dirichlet condition. Since the full �1-norm ‖ · ‖� 1(Ω) and the seminorm
| · |� 1

0 (Ω) are equivalent in the space V = �1
0(Ω), according to Lemma 2.2 (first

Poincaré inequality), the bilinear formB in (2.8) is coercive and continuous in view
of (2.6) and 2 ≥ 0. This framework also applies to the non-homogeneous Dirichlet
problem (2.10), upon extending 6 to a function 6 ∈ �1(Ω), rewriting the problem
in terms of F = D − 6 ∈ �1

0(Ω) and forcing ℓ = 5 − ! [6] ∈ �−1(Ω).
On the other hand, the bilinear formB in (2.13) associatedwith aRobin boundary

condition is coercive provided ? ≥ ?0 on mΩ (or at least on an open subset of mΩ)
with some constant ?0 > 0. This is a consequence of the norm equivalence

‖E‖2
� 1(Ω) ≈ |E |2� 1

0 (Ω) + ‖E‖
2
!2(mΩ) for all E ∈ �1(Ω). (2.31)

For the Neumann problem, instead, we have ? = 0 in mΩ, whence B is coercive
whenever 2 > 0 in Ω (or at least in an open subset of Ω). If 2 = 0 in Ω, then B
is only coercive in the subspace of �1(Ω) of functions with vanishing mean value,
according to Lemma 2.3 (second Poincaré inequality). Existence, uniqueness and
stability is thus guaranteed by Corollary 2.10 (Lax–Milgram) provided the forcing
in (2.13) satisfies the compatibility condition ℓ(1) = 0.

Saddle point problems. We now consider an abstract problem a bit more general
than (2.15), so the following results apply to the Stokes system (2.14).
Given a pair of Hilbert spaces (V,Q), we consider two continuous bilinear forms

0 : V × V → R and 1 : Q × V → R. If 5 ∈ V∗ and 6 ∈ Q∗, then we seek a pair
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(D, ?) ∈ V × Q solving the saddle point problem

0[D, E] + 1[?, E] = 〈 5 , E〉 for all E ∈ V, (2.32a)
1[@, D] = 〈6, @〉 for all @ ∈ Q. (2.32b)

Problem (2.32) is variational and can be rewritten in the form (2.23)

(D, ?) ∈ V × Q : B [(D, ?), (E, @)] = 〈 5 , E〉 + 〈6, @〉 for all (E, @) ∈ V × Q,
(2.33)

where B is the bilinear form

B [(D, ?), (E, @)] := 0[D, E] + 1[?, E] + 1[@, D] . (2.34)

Therefore the saddle point problem (2.32) is well-posed if and only ifB satisfies the
inf-sup condition (2.26). SinceB is defined via the bilinear forms 0 and 1, and (2.32)
has a degenerate structure, it is not that simple to show (2.26) directly. However,
the result is a consequence of the inf-sup theorem for saddle point problems given
by Brezzi (1974).

Theorem 2.11 (Brezzi). The saddle point problem (2.32) has a unique solution
(D, ?) ∈ V ×Q for all data ( 5 , 6) ∈ V∗ ×Q∗, that depends continuously on data, if
and only if there exist constants U, V > 0 such that

inf
E∈V0

sup
F ∈V0

0[E, F]
‖E‖V‖F‖V = inf

F ∈V0

sup
E∈V0

0[E, F]
‖E‖V‖F‖V = U > 0, (2.35a)

inf
@∈Q

sup
E∈V

1[@, E]
‖@‖Q‖E‖V = V > 0, (2.35b)

where
V0 := {E ∈ V | 1[@, E] = 0 for all @ ∈ Q}.

In addition, there exists W = W(U, V, ‖0‖) such that the solution (D, ?) is stable,
that is, (‖D‖2V + ‖?‖2Q)1/2 ≤ W(‖ 5 ‖2V∗ + ‖6‖2Q∗)1/2

. (2.36)

Combining Theorem 2.11 (Brezzi) with Corollary 2.9 (well-posedness implies
inf-sup), we infer the inf-sup condition for the bilinear form B in (2.34).

Corollary 2.12 (inf-sup of B). Let the bilinear form B : W → W be defined by
(2.34). Then

inf
(E,@)∈W

sup
(F,A )∈W

B [(E, @), (F, A)]
‖(E, @)‖W‖(F, A)‖W = inf

(F,A )∈W
sup

(E,@)∈W

B [(E, @), (F, A)]
‖(E, @)‖W‖(F, A)‖W ≥ W

−1,

where W is the stability constant from Theorem 2.11.

Assume that 0 : V×V→ R is symmetric and let (D, ?) be the solution to (2.32).
Then D is the unique minimizer of the energy � [E] := 1

20[E, E] − 〈 5 , E〉 under the
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constraint 1[·, D] = 6 in Q∗. In view of this, ? is the corresponding Lagrange
multiplier and the pair (D, ?) is the unique saddle point of the Lagrangian

! [E, @] := � [E] + 1[@, E] − 〈6, @〉 for all E ∈ V, @ ∈ Q.
Stokes system. Theorem 2.11 (Brezzi) applies to the Stokes system (2.14) and
(2.15) once we verify the inf-sup property (2.35b) for the bilinear form 1[@, v] =
−

∫
Ω
@ div v. This turns out to be equivalent to the following problem: for any

@ ∈ !2
0(Ω) there exists a w ∈ �1

0(Ω;R3) such that

− div w = @ in Ω and |w |� 1(Ω;R3) ≤ �(Ω)‖@‖!2(Ω). (2.37)

This non-trivial result goes back to Nečas (Carroll et al. 1966) and a proof can be
found in Galdi (1994, Theorem III.3.1), for example. This implies

sup
v∈� 1

0 (Ω;R3)

1[@, v]
|v |� 1(Ω;R3)

≥ 1[@, w]
|w |� 1(Ω;R3)

=
‖@‖2

!2(Ω)

|w |� 1(Ω;R3)
≥ �(Ω)−1‖@‖!2(Ω).

Therefore (2.35b) holds with V ≥ �(Ω)−1.
The inf-sup condition is also satisfied for the spaces V and Q defined in (2.18),

which are appropriate for the weak formulation (2.17) of the Neumann boundary
value problem. Indeed, given any @ ∈ !2(Ω), we can split it as @ = (@ − @̂)+ @̂ with
@̂ ≔ |Ω|−1

∫
Ω
@. Let w0 ∈ �1

0(Ω;R3) be the function defined as in (2.37) with @
replaced by @− @̂, and let ŵ = 1

2 (@̂G, @̂H). Then it is easily checked that the function
w = w̄ − |Ω|−1

∫
Ω
w̄ with w̄ = w0 + ŵ belongs to V and satisfies

− div w = @ in Ω and ‖w‖� 1(Ω;R3) ≤ �‖@‖!2(Ω).

2.5. ,1
?-regularity of reaction–diffusion equation

It will be useful later in Lemma 5.20 to know whether !∞-coefficients (G, 2) allow
for enhanced regularity beyond �1

0(Ω) for solutions D of (2.7). We can reformulate
this question as an extension of the Lax–Milgram theory, which states that the
solution operator !−1 of (2.5) is an isomorphism between �−1(Ω) and �1

0(Ω); see
Corollary 2.10 (Lax–Milgram).
This issue is well understood for the Laplace operator, i.e. G = O and 2 = 0. It is

known that for Lipschitz domains Ω ⊂ R3 , there exists ?0 = ?0(Ω) > 2 such that

‖∇D‖!?(Ω) ≤  ‖ 5 ‖, −1
? (Ω) for all ? ∈ [2, ?0], (2.38)

where  depends on ? (see e.g. Jerison and Kenig 1995); in particular, ?0 > 4 for
3 = 2 and ?0 > 3 for 3 = 3. Hereafter,,−1

? (Ω) denotes the dual space of ,̊1
@(Ω),

i.e. functions in,1
@(Ω) with zero trace and @ = ?/(? − 1). For G ∈ !∞(Ω,R3×3)

and 2 = 0, estimate (2.38) was first derived by Meyers (1963) as a perturbation
result for the Laplacian; see also Brenner and Scott (2008). We now present a
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simple proof for ? > 2 following Bonito, DeVore and Nochetto (2013b). Let

\(?) ≔
1/2 − 1/?
1/2 − 1/?0

for all ? ∈ [2, ?0], (2.39)

and note that \(?) increases strictly from 0 at ? = 2 to 1 at ? = ?0. Let  0 be the
constant  in (2.38) for ? = ?0 and, for any C ∈ (0, 1), define

?∗(C) ≔ max
{
? ∈ [2, ?0] |  \(?)

0 (1 − C) ≤ 1
}
. (2.40)

Lemma 2.13 (,1
?-regularity). Let G ∈ !∞(Ω,R3×3) satisfy (2.6) with U1 ≤ U2,

let 2 ∈ !∞(Ω) be non-negative, and let Ω be Lipschitz. If 5 ∈ ,−1
? (Ω) for some

? ∈
[
2,min

{
?∗

(
U1
U2

)
,

23
3 − 2

})
,

then the solution D ∈ �1
0(Ω) of (2.7) satisfies

‖∇D‖!?(Ω) ≤ �(?)
(
1 + 2−1

B �(Ω)‖2‖!∞(Ω)
)‖ 5 ‖, −1

? (Ω) (2.41)

with constants

�(?) =
1
U2

 \(?)
0

1 −  \(?)
0

(
1 − U1

U2

)
and �(Ω) = �B�%, where �B is the constant in Lemma 2.1 (Sobolev embedding)
and �% is the constant in Lemma 2.2 (first Poincaré inequality).

Proof. We first consider the principal part of the operator ! in (2.5), namely
we take 2 = 0. In fact, let the operator ( : ,̊1

?(Ω) → ,−1
? (Ω) be defined by

(E ≔ − div(U2
−1G∇E). In order to prove (2.41) for (, we resort to a perturbation

argument for the Laplace operator )E ≔ −ΔE.
The first task is to bound  in (2.38) in terms of  0 and ?. To this end, we recall

that the operator ) : �1
0(Ω)→ �−1(Ω) is an isomorphism with norm ‖)−1‖2 = 1.

Moreover, ) : ,̊1
?(Ω)→ ,−1

? (Ω) is also an isomorphism with norm ‖)−1‖?0 =  0

according to (2.38) for ? = ?0, provided we adopt the norm ‖∇ · ‖!?(Ω) in ,̊1
?(Ω).

By the real method of interpolation, we know that ,̊1
?(Ω) =

[
�1

0(Ω), ,̊1
?0(Ω)

]
\(?), ?

is the interpolation space between �1
0(Ω) and ,̊1

?0(Ω) with parameter \(?) given
by (2.39). Hence operator interpolation theory implies that ) : ,̊1

?(Ω)→ ,−1
? (Ω)

is an isomorphism with
 = ‖)−1‖? =  \(?)

0 .

We regard ( as a perturbation of ) , define the operator & ≔ ) − ( : ,̊1
?(Ω) →

,−1
? (Ω), and observe that ‖&‖? ≤ 1 − U1/U2 because

〈&E, F〉 =
∫
Ω

(
�− 1
U2

G

)
∇E∇F ≤

(
1−U1
U2

)
‖∇E‖!?(Ω)‖∇F‖!@(Ω), F ∈ ,̊1

@(Ω).
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Therefore the operator )−1& : ,̊1
?(Ω)→ ,̊1

?(Ω) satisfies

‖)−1&‖? ≤ ‖)−1‖? ‖&‖? ≤  \(?)
0

(
1 − U1

U2

)
as well as ‖)−1&‖? < 1 for any ? ∈ [

2, ?∗(U1/U2)
)
in view of definition (2.40)

of ?∗(C). We conclude by the Neumann theorem that the operator ( = )(� −
)−1&) : ,̊1

?(Ω)→ ,−1
? (Ω) is invertible and its norm is bounded by

‖(−1‖? ≤ ‖)−1‖? ‖� − )−1&‖? ≤
‖)−1‖?

1 − ‖)−1&‖?
≤  \(?)

0

1 −  \(?)
0 (1 − U1/U2)

.

This yields the asserted estimate for ( = − div(U2
−1G∇E).

Finally, we consider the operator ! in (2.5) with 2 ≠ 0. If D ∈ �1
0(Ω) is the

solution of (2.7) given by Corollary 2.10 (Lax–Milgram), rewrite (2.7) as

(D = − div
(

1
U2

G∇D
)
=

1
U2

( 5 − 2D) =
1
U2
6,

and apply the preceding estimate for ( to infer that

‖(−16‖,̊ 1
? (Ω) = ‖∇D‖!?(Ω) ≤ �(?)‖6‖, −1

? (Ω) ≤ �(?)
(‖ 5 ‖, −1

? (Ω) + ‖2D‖, −1
? (Ω)

)
.

It remains to estimate the last term on the right-hand side. Using the Cauchy–
Schwarz inequality in conjunction with Lemma 2.2 (first Poincaré inequality), i.e.
‖D‖!2(Ω) ≤ �% ‖∇D‖!2(Ω), and Lemma 2.1 (Sobolev embedding), i.e. ‖F‖!2(Ω) ≤
�‖F‖,̊ 1

@ (Ω) ≤ �B ‖∇F‖!@(Ω) for @ = ?/(? − 1) ≥ 23/(3 + 2), we see that

〈2D, F〉 ≤ �%�B ‖2‖!∞(Ω)‖∇D‖!2(Ω)‖∇F‖!@(Ω)

≤ �%�B
��
‖2‖!∞(Ω)‖ 5 ‖�−1(Ω)‖∇F‖!@(Ω)

because of the stability estimate (2.27) with constant U = 2B. Since ‖ 5 ‖�−1(Ω) ≤
|Ω|(?−2)/(2?)‖ 5 ‖, −1

? (Ω), the asserted estimate (2.41) for 2 ≠ 0 follows immediately.

3. A priori approximation theory
We devote this section to discussing basic concepts about piecewise polynomial
approximation in Sobolev spaces over graded meshes in any dimension 3. We start
by introducing the Petrov–Galerkin method in an abstract setting (Section 3.1); this
motivates our interest in approximation results in Sobolev spaces. Hence we briefly
discuss the construction of finite element spaces in Section 3.2, along with poly-
nomial interpolation of functions in Sobolev spaces in Section 3.3. This provides
local estimates suitable for the comparison of quasi-uniform and graded meshes
for 3 > 1. We exploit them in developing the so-called error equidistribution

https://doi.org/10.1017/S0962492924000011 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000011


186 A. Bonito, C. Canuto, R. H. Nochetto and A. Veeser

principle in Section 3.4 and the construction of suitably graded meshes via a
greedy algorithm in Section 3.6. We conclude that graded meshes can deliver op-
timal interpolation rates for certain classes of singular functions, and thus supersede
quasi-uniform refinement.
In the second part of the section, we explore the geometric aspects of mesh

refinement for conforming meshes in Section 3.5 and non-conforming meshes in
Section 3.7, but postpone a full and rather technical discussion to Section 8. We
include a statement about complexity of the refinement procedure, which turns out
to be instrumental later and will be proved in Section 8.

3.1. The Galerkin method: best approximation

In order to make the variational problem (2.23) computable, we let V# ⊂ V
and W# ⊂ W be subspaces with the same dimension # < ∞ and consider the
Petrov–Galerkin approximation

D# ∈ V# : B [D# , F] = 〈 5 , F〉 for all F ∈ W# . (3.1)

If V# = W# , this is called Galerkin approximation. Since (3.1) is a square
algebraic system, the existence and uniqueness of D# ∈ V# are equivalent to the
kernel of the corresponding linear discrete operator being trivial. This leads to
the following equivalent conditions for unique solvability (Nečas 1962, Babuška
1971); see also Nochetto et al. (2009, Proposition 1).

Lemma 3.1 (discrete inf-sup condition). The following statements are equival-
ent.

(1) For every 0 ≠ E ∈ V# there exists F ∈ W# such that B [E, F] ≠ 0.
(2) For every 0 ≠ F ∈ W# there exists E ∈ V# such that B [E, F] ≠ 0.
(3) The following discrete inf-sup condition holds with a constant V# > 0:

inf
E∈V#

sup
F ∈W#

B [E, F]
‖E‖V‖F‖W = inf

F ∈W#
sup
E∈V#

B [E, F]
‖E‖V‖F‖W = V# . (3.2)

(4) inf
E∈V#

sup
F ∈W#

B [E, F]
‖E‖V‖F‖W > 0.

(5) inf
F ∈W#

sup
E∈V#

B [E, F]
‖E‖V‖F‖W > 0.

This is a discrete version of Theorem 2.8 (Nečas) and leads to the stability bound

‖D# ‖V ≤ 1
V#
‖ 5 ‖W∗ . (3.3)

Therefore V−1
# acts as a stability constant for (3.1), and it is thus desirable for it to

be uniformly bounded below away from zero. This is always the case for coercive
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problems because (2.28) is inherited within the subspaces V# =W# ⊂ V, whence
V# ≥ U > 0. In contrast, a uniform lower bound for saddle point problems,

V# ≥ V > 0, (3.4)

requires compatibility between the subspacesV# andW# (Boffi, Brezzi and Fortin
2013).
If we now subtract (3.1) from (2.23), we obtain Galerkin orthogonality:

B [D − D# , F] = 0 for all F ∈ W# . (3.5)

This relation is instrumental in deriving the following best approximation property
as well as developing a posteriori error estimates in Section 4.

Proposition 3.2 (quasi-best-approximation property). Let B : V ×W→ R be
continuous and satisfy (3.2). Then the error D − D# satisfies the bound

‖D − D# ‖V ≤ ‖B‖
V#

min
E∈V#

‖D − E‖V. (3.6)

Proof. We give a simplified proof, which follows Babuška (1971) and Babuška
and Aziz (1972), and yields the constant 1+ ‖B‖/V# . The asserted constant is due
to Xu and Zikatanov (2003).
Combining (3.2), (3.5) and the continuity of B, we derive for all E ∈ V#

V# ‖D# − E‖V ≤ sup
F ∈W#

B [D# − E, F]
‖F‖W = sup

, ∈W#

B [D − E, F]
‖F‖W ≤ ‖B‖‖D − E‖V,

whence

‖D# − E‖V ≤ ‖B‖
V#
‖D − E‖V.

Using the triangle inequality yields

‖D − D# ‖V ≤ ‖D − E‖V + ‖E − D# ‖V ≤
(

1 + ‖B‖
V#

)
‖D − E‖V

for all E ∈ V# . It just remains to minimize in V# .

Corollary 3.3 (quasi-monotonicity). Let B : V × W → R be continuous and
satisfy (3.2). If V" is a subspace of V# , then for all E ∈ V"

‖D − D# ‖V ≤ ‖B‖
V#
‖D − E‖V. (3.7)

Moreover, ifV =W and B is symmetric and coercive with constants 2B ≤ �B, then
for all E ∈ V"

|||D − D# |||Ω ≤ |||D − E |||Ω, ‖D − D# ‖V ≤ �Céa‖D − E‖V, (3.8)

where �Céa ≔
√
�B/2B.
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Proof. Inequality (3.7) is a consequence of the previous bound (3.6) upon taking
E ∈ V" instead of V# . To show the left inequality in (3.8), we combine (2.28)
and (3.5):

|||D − D# |||2Ω = B[D − D# , D − E] ≤ |||D − D# |||Ω |||D − E |||Ω for all E ∈ V" .
This together with the norm equivalence (2.30) gives the remaining inequality.

The significance of (3.6) is thatwe need to construct discrete spacesV# with good
approximation properties. Next we introduce piecewise polynomial approximation,
which gives rise to the finite element method.

3.2. Finite element spaces

In this section we focus on the construction of the discrete spaces V# and W# .
We consider the bilinear forms B introduced in Section 2.3 with emphasis on the
diffusion–reaction case (2.8). We assume that Ω is a bounded polyhedral domain
Ω ⊂ R3 and is partitioned into a conforming or non-conforming mesh T made of
simplices ) , which are assumed to be closed with non-overlapping interiors; thus

Ω =
⋃
{) | ) ∈ T }.

The reference element is denoted by

)3 ≔

{
G = (G1, . . . , G3) ∈ R3 | 0 ≤ G8 ≤ 1, 8 = 1, . . . , 3,

3∑
8=1

G8 ≤ 1
}
.

We will discuss the construction of conforming meshes in Section 3.5 by the
bisection method and that of non-conforming meshes (constrained to the fulfilment
of an admissibility condition) in Section 3.7, both for 3 = 2. We will embark on a
thorough discussion in Section 8. We assume for the moment that T is an element
of a (possibly infinite) class T of conforming shape-regularmeshes. To define this
geometric concept, we let ℎ) denote the diameter of ) ∈ T , let ℎ) denote the
diameter of the largest ball contained in ) , and impose the restriction

f ≔ sup
T ∈T

sup
) ∈T

ℎ)
ℎ)

< ∞. (3.9)

The constant f is referred to as the shape regularity constant of T.
Given a shape-regular mesh T ∈ T, we define the finite element space of

discontinuous piecewise polynomials of total degree up to = ≥ 1,

S=,−1
T ≔ {E ∈ !2(Ω) | E |) ∈ P=()) for all ) ∈ T },

and its globally continuous counterpart

S=,0T ≔ S=,−1
T ∩ �0(Ω).
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qI

I

(a)

lI

I

(b)

Figure 3.1. (a) Piecewise linear basis function qI corresponding to interior node I.
(b) Support lI of qI and skeleton WI (solid line)

Note that S=,0T ⊂ �1(Ω), which makes it adequate for (2.7)–(2.8). We refer to
Braess (2007), Brenner and Scott (2008), Ciarlet (2002) and Siebert (2012) for a
discussion of the local construction of this space (i.e. Lagrange elements of degree
= ≥ 1) along with its properties. We let

VT ≔ S
=,0
T ∩ �1

0(Ω) (3.10)

denote the subspace of finite element functions which vanish on mΩ. Note that we
do not explicitly refer to the polynomial degree, which will be clear in each context.
We focus on the conforming piecewise linear case = = 1 (Courant elements),

but most results extend to non-conforming meshes or = > 1. In this vein, global
continuity can be simply enforced by imposing continuity at the set V of vertices I
of T , the so-called nodal values. However, the following local construction leads
to global continuity. If ) is a generic simplex of T , namely the convex hull of
{I8}38=0, then we associate to each vertex I8 a barycentric coordinate _)8 , which is
the linear function in ) with nodal value 1 at I8 and 0 at the other vertices of ) .
Upon pasting together the barycentric coordinates _)I of all simplices ) containing
the vertex I ∈ V , we obtain a continuous piecewise linear function qI ∈ S1,0

T , as
depicted in Figure 3.1 for 3 = 2.

The set {qI}I∈V of all such functions is the nodal basis of S1,0
T , or Courant basis.

We let lI ≔ supp(qI) denote the support of qI , from now on called the star
associated to I, and let WI be the interior skeleton of lI , namely the union of all
the faces containing I.

In view of the definition of qI , we have the following unique representation of
any function E ∈ S1,0(T ):

E(G) =
∑
I∈V

E(I)qI(G).
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The functions qI are non-negative and satisfy the partition of unity property∑
I∈V

qI(G) = 1 for all G ∈ Ω. (3.11)

If we further impose E(I) = 0 for all I ∈ mΩ ∩ V , then E ∈ �1
0(Ω).

For each simplex ) ∈ T , generated by vertices {I8}38=0, the dual functions
{_∗8 }38=0 ⊂ P1()) to the barycentric coordinates {_8}38=0 satisfy the bi-orthogonality
relation

∫
)
_∗8_ 9 = X8 9 , and are given by

_∗8 =
(1 + 3)2

|) | _8 − 1 + 3
|) |

∑
9≠8

_ 9 for all 0 ≤ 8 ≤ 3.

The Courant dual basis q∗I ∈ S1,−1(T ) is formed by the functions over T given by

q∗I =
1
+I

∑
) 3I

(_)I )∗j) for all I ∈ V ,

where+I ∈ N is the valence of I (number of elements of T containing I) and j) is
the characteristic function of ) . These functions have the same support lI as the
nodal basis qI and satisfy the global bi-orthogonality relation∫

Ω
q∗IqH = XIH for all I, H ∈ V .

Finally, we let N denote the Lagrange nodes of order = of a mesh T , and let
kI ∈ S=,0T be the corresponding Lagrange basis of S=,0T ; hence S=,0T = span{kI}I∈N .

3.3. Polynomial interpolation in Sobolev spaces

We wish to use the space VT defined in (3.10) as the discrete space V# in the
Galerkin method (3.1). If the bilinear form B satisfies an inf-sup condition with
constant VT > 0, we find a discrete solution DT ∈ VT which satisfies the error
bound (3.6), that is,

‖D − DT ‖V ≤ ‖B‖
VT

min
E∈VT

‖D − E‖V.

In turn, the minimum on the right-hand side can be bounded from above by the
quantity ‖D − E‖V for any chosen E ∈ VT . This motivates the search for quasi-best
approximations of D in the norm ofV. One classical tool to generate approximations
to any given function is interpolation. Interpolation in VT is discussed next.
If E ∈ �0(Ω), we define the Lagrange interpolant �T E of E as follows,

�T E(G) =
∑
I∈N

E(I)kI(G),
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and note that �T E = E for all E ∈ S=,0T (i.e. �T is invariant in S=,0T ). For functions
without point values, such as functions in �1(Ω) for 3 > 1, we need to determine
nodal values by averaging. For any conforming mesh T ∈ T, the averaging process
extends beyond nodes and so gives rise to the discrete neighbourhood

lT ()) :=
⋃
) ′∈T
) ′∩) ≠∅

) ′

for each element ) ∈ T , along with the local quasi-uniformity properties

max
) ∈T

#lT ()) ≤ �(f), max
) ′⊂lT () )

|) |
|) ′ | ≤ �(f),

where f is the shape regularity coefficient defined in (3.9). We will often write l)
if there is no confusion about the underlying mesh T . We shall also need a smaller
subset, namely the set of elements sharing a face with a given element ) :

l̃) ≔ l̃T ()) ≔
⋃
) ′∈T
) ′∩) ∈F

) ′, (3.12)

where F is the set of all (3 − 1)-dimensional faces of the mesh T .
We now introduce one such operator �T due to Scott and Zhang (Brenner and

Scott 2008, Scott and Zhang 1990), from now on called a quasi-interpolation
operator. We focus on polynomial degree = = 1, but the construction is valid for
any =; see Brenner and Scott (2008) and Scott and Zhang (1990) for details. We
recall that {qI}I∈V is the global Lagrange basis of S1,0

T , {q∗I}I∈V is the global dual
basis, and supp q∗I = supp qI for all I ∈ V . We thus define �T : !1(Ω)→ S1,0

T to be

�T E ≔
∑
I∈V
〈E, q∗I〉qI , (3.13)

If 0 ≤ B ≤ 2 (integer) is a regularity index and 1 ≤ ? ≤ ∞ is an integrability index,
then we would like to prove the quasi-local error estimate

|E − �T E |, C
@ () ) . ℎ

sob(, B
? )−sob(, C

@ )
) |E |, B

? (l) ) (3.14)

for all ) ∈ T , provided 0 ≤ C ≤ B, 1 ≤ @ ≤ ∞ are such that sob(, B
?) > sob(, C

@).
We first recall that �T is invariant in S1,0

T , namely,

�T F = F for all F ∈ S1,0
T .

Since the averaging process giving rise to the values of �T E for each element ) ∈ T
takes place in the neighbourhood l) , we also deduce the local invariance

�T F |) = F for all F ∈ P1(l) ),

as well as the local stability estimate for any 1 ≤ @ ≤ ∞,
‖�T E‖!@() ) . ‖E‖!@(l) ).
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We may thus write

E − �T E |) = (E − F) − �T (E − F)|) for all ) ∈ T ,
where F ∈ PB−1 is arbitrary (F = 0 if B = 0). It now suffices to prove (3.14) in the
reference element )̂ and scale back and forth to ) ; the definition (2.1) of Sobolev
number accounts precisely for this scaling. We keep the notation ) for )̂ , apply the
inverse estimate for linear polynomials |�T E |, C

@ () ) . ‖�T E‖!@() ) to E − F instead
of E, and use the above local stability estimate, to infer that

|E − �T E |, C
@ () ) . ‖E − F‖, C

@ (l) ) . ‖E − F‖, B
? (l) ).

The last inequality is a consequence of the inclusion, B
?(l) ) ⊂ , C

@(l) ) because
sob(, B

?) > sob(, C
@) and C ≤ B. Estimate (3.14) now follows from the Bramble–

Hilbert lemma (seeBrenner andScott (2008, Lemma4.3.8), Ciarlet (2002, Theorem
3.1.1), Dupont and Scott (1980)) or Proposition 6.34 below:

inf
F ∈PB−1(l) )

‖E − F‖, B
? (l) ) . |E |, B

? (l) ). (3.15)

This proves (3.14) for = = 1. The construction of �T and ensuing estimate (3.14) is
still valid for any = > 1 (Brenner and Scott 2008, Scott and Zhang 1990).

Proposition 3.4 (quasi-interpolant without boundary values). Let B, C be reg-
ularity indices with 0 ≤ C ≤ B ≤ =+1, and let 1 ≤ ?, @ ≤ ∞ be integrability indices
so that sob(, B

?) > sob(, C
@). Then there exists a quasi-interpolation operator

�T : !1(Ω)→ S=,0T , which is invariant in S=,0T and satisfies

|E − �T E |, C
@ () ) . ℎ

sob(, B
? )−sob(, C

@ )
) |E |, B

? (l) ) for all ) ∈ T . (3.16)

The hidden constant in (3.14) depends on the shape coefficient of T0 and 3.

To impose a vanishing trace on �T E we may suitably modify the averaging
process for boundary nodes. We thus define a set of dual functions with respect to
an !2-scalar product over (3 − 1)-subsimplices contained on mΩ; see again Brenner
and Scott (2008) and Scott and Zhang (1990) for details. This retains the invariance
property of �T on S=,0(T ) and guarantees that �T E has a zero trace if E ∈ ,1

1 (Ω)
does. Hence the above argument applies, and (3.16) follows provided B ≥ 1.

Proposition 3.5 (quasi-interpolant with boundary values). Let B, C, ?, @ be as
in Proposition 3.4. There exists a quasi-interpolation operator �T : ,1

1 (Ω)→ S=,0T
invariant in S=,0T which satisfies (3.16) for B ≥ 1 and preserves the boundary
values of E provided they are piecewise polynomial of degree ≤ =. In particular, if
E ∈ ,1

1 (Ω) has a vanishing trace on mΩ, then so does �T E.

Remark 3.6 (fractional regularity). We observe that (3.16) does not require the
regularity indices C and B to be integer. The proof follows along the same lines
but replaces the polynomial degree = with the greatest integer smaller than B; the
generalization of (3.15) can be taken from Dupont and Scott (1980).
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Remark 3.7 (local error estimate for Lagrange interpolant). Let the regular-
ity index B and integrability index 1 ≤ ? ≤ ∞ satisfy B − 3/? > 0. This implies
that sob(, B

?) > sob(!∞), whence , B
?(Ω) ⊂ �(Ω) and the Lagrange interpolation

operator �T : , B
?(Ω)→ S=,0T is well-defined and satisfies the local error estimate

|E − �T E |, C
@ () ) . ℎ

sob(, B
? )−sob(, C

@ )
) |E |, B

? () ), (3.17)

provided 0 ≤ C ≤ B, 1 ≤ @ ≤ ∞ are such that sob(, B
?) > sob(, C

@). We point out
that l) in (3.14) is now replaced by ) in (3.17). We also remark that if E vanishes
on mΩ then so does �T E. The proof of (3.17) proceeds along the same lines as
that of Proposition 3.4, except that the nodal evaluation does not extend beyond the
element ) ∈ T , and the inverse and stability estimates over the reference element
are replaced by

|�T E |, C
@ ()̂ ) . ‖�T E‖!@()̂ ) . ‖E‖!∞()̂ ) . ‖E‖, B

? ()̂ ).

The following global interpolation error estimate builds on Proposition 3.4 and
relates to Figure 2.1 (DeVore diagram).

Theorem 3.8 (global interpolation error estimate). Let 1 ≤ B ≤ = + 1, C = 0, 1,
C < B and 1 ≤ ? ≤ @ satisfy A ≔ sob(, B

?) − sob(, C
@) > 0. If E ∈ , B

?(Ω), then

|E − �T E |, C
@ (Ω) .

(∑
) ∈T

ℎA ?) |E |
?
, B
? (l) )

)1/?
. (3.18)

Proof. Use Proposition 3.4 along with the elementary property of series
∑
= 0= ≤

(
∑
= 0

?/@
= )@/? for 0 < ?/@ ≤ 1.

Continuous vs. discontinuous approximation of gradients. The preceding discus-
sionmight induce us to believe thatwhen dealingwith Sobolev functions E ∈ ,1

?(Ω)
without point values, namely 1 ≤ ? ≤ 3, global continuity of the quasi-interpolant
�T E might degrade the approximation quality relative to discontinuous approxim-
ations. The following instrumental result shows that this is not the case (Veeser
2016, Theorem 2). It hinges on a new geometric concept: we say that a star lI
is (3 − 1)-face-connected if, for any element ) ⊂ lI and (3 − 1)-face � ⊂ lI
containing I, there exists a sequence ()8)<8=0 such that

• any )8 is an element of lI for 0 ≤ 8 ≤ <,
• any intersection )8 ∩ )8+1 is a (3 − 1)-face of lI for 0 ≤ 8 ≤ < − 1,
• )0 contains � and )< = ) .

Note that a star lI is (3 − 1)-face-connected if the set lI ∩Ω is connected.

Proposition 3.9 (approximation of gradients). Let E ∈ ,1
?(Ω) for 1 ≤ ? ≤ 3.

Let T be a conforming mesh such that its stars are (3 − 1)-face-connected. Then
there exists a constant �(f) depending on the shape regularity coefficient f of
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(3.9), the dimension 3 and the polynomial degree = ≥ 1, such that

1 ≤
minF ∈S=,0T

‖∇(E − F)‖!?(Ω)

minF ∈S=,−1
T
‖∇(E − F)‖!?(Ω;T )

≤ �(f), (3.19)

where ‖∇F‖!?(Ω;T ) stands for the broken norm over T .

The left inequality in (3.19) is obvious because S=,0T ⊂ S=,−1
T . In contrast, the

right inequality is delicate and relies on examining the quasi-interpolant (3.13)
(Veeser 2016, Theorems 1 and 22). An important consequence of (3.19) is the
following localized version of (3.18).

Proposition 3.10 (localized quasi-interpolation estimate). Let 1 < B ≤ = + 1,
1 ≤ ? ≤ 3 and A = sob(, B

?) − sob(,1
@) > 0. If E ∈ ,1

@(Ω), then

‖∇(E − �T E)‖!@(Ω) .

(∑
) ∈T

ℎ?A) |E |
?
, B
? () )

)1/?
, (3.20)

Proof. Since E − �T E = (E − F) − �T (E − F) for any F ∈ S=,0T , combine Proposi-
tion 3.9 with Proposition 6.34 (Bramble–Hilbert for Sobolev spaces) to write

‖∇(E − �T E)‖!@(Ω) . min
F ∈S=,−1

T

‖∇(E − F)‖!@(Ω) .

(∑
) ∈T

ℎ?A) |E |
?
, B
? () )

)1/?
.

This concludes the proof.

The crucial difference between (3.20) and (3.18) is that the function E ∈ ,1
@(Ω)

does not have to belong to , B
?(Ω) globally but rather locally, namely E ∈ , B

?())
for every ) ∈ T , to get optimal a priori error estimates. This property will find
several applications later. A special case of (3.20) for ? = @ = 2 and B = 2 reads

|E − �T E |2� 1(Ω) .
∑
) ∈T

ℎ2
) |E |2� 2() ),

for E ∈ �2(Ω; T ) ≔ {F ∈ �1(Ω) | F |) ∈ �2()) for all ) ∈ T }.
Quasi-uniform meshes. We now apply Theorem 3.8 to quasi-uniform meshes,
namely meshes T ∈ T for which all its elements are of comparable size ℎ, whence

ℎ ≈ (#T )−1/3 |Ω|1/3 ≈ (#T )−1/3 .

Corollary 3.11 (quasi-uniform meshes). Let 1 < B ≤ = + 1 and E ∈ �B(Ω). If
T ∈ T is quasi-uniform, then

‖∇(E − �T E)‖!2(Ω) . |E |� B(Ω)(#T )−(B−1)/3 . (3.21)

Remark 3.12 (optimal rate). If B = = + 1, and so E has the maximal regularity
E ∈ �=+1(Ω), then we obtain the optimal convergence rate in a linear Sobolev scale

‖∇(E − �T E)‖!2(Ω) . |E |�=+1(Ω)(#T )−=/3 . (3.22)
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Table 3.1. Rate of convergence B in term of uniform mesh size ℎ. We
observe an asymptotic error decay of about ℎ2/3 (i.e. B = 2/3), or equival-
ently (#T )−1/3, irrespective of the polynomial degree =. This provides a
lower bound for ‖E − �T E‖!2(Ω) and thus shows that (3.21) is sharp.

ℎ
linear quadratic cubic

(= = 1) (= = 2) (= = 3)

1/4 1.14 9.64 9.89
1/8 0.74 0.67 0.67
1/16 0.68 0.67 0.67
1/32 0.66 0.67 0.67
1/64 0.66 0.67 0.67
1/128 0.66 0.67 0.67

The order −=/3 is just dictated by the polynomial degree = and cannot be improved
upon assuming either higher regularity than �=+1(Ω) or a graded mesh T . The
presence of 3 in the exponent is referred to as the curse of dimensionality.

Example (corner singularity in two dimensions). To explore the effect of a geo-
metric singularity on (3.21), we let Ω = (−1, 1)2 \ [0, 1]2 be an L-shaped domain
and let E ∈ �1(Ω) be

E(A, \) = A2/3 sin(2\/3) − A2/4.
This function E ∈ �1(Ω) exhibits the typical corner singularity of the solution of
−ΔE = 5 with suitable Dirichlet boundary condition: E ∈ �B(Ω) for B < 5/3.
Table 3.1 displays the best approximation error for polynomial degree = = 1, 2, 3
and a sequence of uniform refinements in the seminorm | · |� 1(Ω) = ‖∇ · ‖!2(Ω).
This gives a lower bound for the interpolation error in (3.21).

Even though B is fractional, the error estimate (3.21) is still valid, as stated
in Remark 3.6. In fact, for uniform refinement, (3.21) can be derived by space
interpolation between �1(Ω) and �=+1(Ω). The asymptotic rate (#T )−1/3 reported
in Table 3.1 is consistent with (3.21) and independent of the polynomial degree =;
this shows that (3.21) is sharp. It is also suboptimal as compared with the optimal
rate (#T )−=/2 of Remark 3.12.
The question arises whether the rate (#T )−1/3 ≈ ℎ2/3 in Table 3.1 is just a

consequence of uniform refinement or unavoidable. It is important to realize that
E ∉ �B(Ω) for B ≥ 5/3 and thus (3.21) is not applicable. However, the problem
is not that second-order derivatives of E do not exist but rather that they are not
square-integrable. In particular, it is true that E ∈ ,2

?(Ω) if 1 ≤ ? < 3/2. We
may therefore apply Theorem 3.8 with, for example, = = 1, B = 2 and ? ∈ [1, 3/2),
and then ask whether the structure of (3.18) can be exploited, for example by
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compensating the local singular behaviour of E with the local mesh size ℎ. This
enterprise naturally leads to graded meshes adapted to E.

3.4. Principle of error equidistribution.

We investigate the relation between local interpolation error and regularity for the
design of optimal graded meshes adapted to a given function E ∈ �1(Ω) for 3 = 2.
We recall that ,2

1 (Ω) is in the same nonlinear Sobolev scale of �1(Ω), namely
sob(,2

1 ) = sob(�1), but,2
1 (Ω) ⊂ �0(Ω) (Brenner and Scott 2008, Lemma 4.3.4),

and the Lagrange interpolant �T E is well-defined and satisfies

‖∇(E − �T E)‖!2() ) ≤ � |E |, 2
1 () ) ≕ 4T (E, )) for all ) ∈ T . (3.23)

We formulate a discrete minimization problem on the surrogate quantity e ≔
(4T (E, )))) ∈T ∈ R# with # = #T : minimize the square of the total �1-error
�T (E),

�T (E)2 ≔
∑
) ∈T

4T (E, ))2,

subject to the constraint ∑
) ∈T

4T (E, )) = � |E |, 2
1 (Ω).

We idealize the problem upon allowing 4T (E, )) to attain any non-negative real
value, despite the fact that shape regularity of T entails geometric restrictions
between adjacent elements. We next form the Lagrangian

L[e, _] ≔
∑
) ∈T

4T (E, ))2 − _
(∑
) ∈T

4T (E, )) − � |E |, 2
1 (Ω)

)
,

with Lagrange multiplier _ ∈ R. We thus realize that the optimality condition reads

4T (E, )) =
_

2
for all ) ∈ T

or that 4T (E, )) is constant over T . We rewrite this insightful conclusion as follows:

A gradedmesh is quasi-optimal if the local error is equidistributed. (3.24)

This calculation yields

�T (E)2 =
_2

4
#, � |E |, 2

1 (Ω) =
_

2
#,

whence
�T (E) = � |E |, 2

1 (Ω)#
−1/2 (3.25)

is the optimal decay rate but with regularity E ∈ ,2
1 (Ω) rather than �2(Ω). This

is the second instance of nonlinear approximation, namely mesh design tailored to
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the specific function E at hand; the first one was in Section 1. The principle of error
equidistribution (3.24) was originally derived by Babuška and Rheinboldt (1978)
for 3 = 1, and extended to 3 = 2 by Nochetto and Veeser (2012, Section 1.6), using
an idealized continuous minimization problem involving a mesh size function. The
current formulation is closer to applications and does not require a positive power
of ℎ) in (3.23).

Remark 3.13 (point singularities). Corner singularities (Grisvard 1985) as well
as singularities due to intersecting interfaces (Kellogg 1974/75) are of the form

E(G) ≈ A(G)W , 0 < W < 1, (3.26)

for 3 = 2. This implies E ∈ ,2
1 (Ω) for all W and the decay rate (3.25) provided

T equidistributes the �1-error. Babuška, Kellogg and Pitkäranta (1979) and
Grisvard (1985) designed such meshes for corner singularities using weighted
�2-regularity. The preceding approach is more powerful in that it does not require
any characterization of the singularities, rather than E ∈ ,2

1 (Ω), and also applies
to line discontinuities for 3 = 2. We will come back to this point in Section 6.

We now consider an important abstract variant of the discrete minimization
process leading to (3.24), which will be instrumental in understanding the success
of greedy algorithms later. Suppose that 0 < @, ? ≤ ∞, E ∈ !@(Ω), - C?(Ω) is an
abstract regularity space with C = 1/? − 1/@ > 0, and �T (E)@ and 4T (E, ))@ are
global and local !@-interpolation error indicators of E that satisfy the following
two abstract properties.

• Summability in ℓ@. There exists a constant �1 > 0 such that

�T (E)@@ ≤ �@1
∑
) ∈T

4T (E, ))@@ . (3.27)

• Summability in ℓ?. There exists a constant �2 > 0 such that∑
) ∈T

4T (E, ))?@ = �
?
2 |E |

?

- C?(Ω). (3.28)

We intend to find conditions on amesh T that minimize the global !@-error �T (E)@
of E subject to the constraint (3.28). We again propose a Lagrangian

L[e, _] ≔
∑
) ∈T

4T (E, ))@@ − _
(∑
) ∈T

4T (E, ))?@ − � ?2 |E |
?

- C?(Ω)

)
.

The optimality condition for e reads

4T (E, ))@ =
(
_
?

@

)1/(@−?)
for all ) ∈ T ,

which is a third instance of error equidistribution and thus consistent with (3.24).
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We now resort to (3.27) and (3.28), to arrive at
∑
) ∈T

4T (E, ))@@ = #
(
_
?

@

)@/(@−?)
, � ?2 |E |

?

- C?(Ω) = #

(
_
?

@

)?/(@−?)
,

whence
�T (E)@ ≤ �1�2 |E |- C?(Ω)#

1/@−1/? . (3.29)

We see that the decay rate in (3.29) is −C = 1/@ − 1/? < 0 and is just dictated
by the different summabilities of (3.27) and (3.28). In the applications of (3.29)
below, C = B/3 will be proportional to a differentiability index B, and the condition

0 = C − 1
?
+ 1
@
=
B

3
− 1
?
+ 1
@

will correspond to the spaces !@(Ω) and -B?(Ω) being on the same nonlinear
Sobolev scale. This minimization process is an idealization that does not account
for mesh regularity of T , which in turn entails some geometric constraints in
the construction of T . A key question is whether estimates of the form (3.29)
can be achieved under conditions that are practical but weaker than (3.24). In
Section 3.5 we will study the bisection method, a flexible technique for conforming
mesh refinement with optimal complexity. In Section 3.6 we will present and
analyse GREEDY, a practical algorithm that implements these ideas and constructs
quasi-optimal conforming bisection meshes under the slightly stronger assumption

B − 3
?
+ 3
@
> 0. (3.30)

Moreover, in Section 3.7 we will extend this analysis to non-conforming meshes.
We realize from (3.29) that in order to maximize the error decay rate we would

like to have ? as small as possible, even 0 < ? < 1. The range of @, ? does not
matter in the argument above and, despite the fact that @ ≥ 1 in all applications
below, the range of ? is only limited by that of B, which in turn depends on the
polynomial degree = ≥ 1 in that 0 < B ≤ = + 1.
We now return to the special case (3.23), namely @ = 2, ? = 1 and ∇E ∈ !2(Ω).

As already shown in (3.23), in the nonlinear Sobolev scale

sob(,2
1 ) − sob(�1) =

(
2 − 2

1

)
−
(

1 − 2
2

)
= 0,

we expect the best error decay

‖∇(E − �T E)‖!2(Ω) . |E |, 2
1 (Ω)(#T )−1/2,

whereas the linear Sobolev scale yields the reduced order

‖∇(E − �T E)‖!2(Ω) . |E |� B(Ω)(#T )−(B−1)/2

for B < 1 + W < 2 and E satisfying (3.26), where �T is the Lagrange interpolation
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�())
)

E()) )2

)1

�()2)

�()1)

E()1) = E()2)

Figure 3.2. Triangle ) ∈ T with vertex E()) and opposite refinement edge �()).
The bisection rule for 3 = 2 consists of connecting E()) with the midpoint of �()),
thereby giving rise to children )1, )2 with common vertex E()1) = E()2), the newly
created vertex, and opposite refinement edges �()1), �()2).

operator. The nonlinear Sobolev scale entails a trade of differentiability with integ-
rability: we gain up to differentiability B = 2 at the expense of lower integrability
? = 1 for polynomial degree = = 1. This trade-off is at the heart of the optimal
estimate (3.25) and is represented in the so-called DeVore diagram in Figure 2.1.
If the polynomial degree is = ≥ 2, then the largest differentiability index is

B = = + 1, which for 3 = 2 leads to integrability index ? < 1:(
B − 2

?

)
−
(

1 − 2
2

)
= 0 ⇒ ? =

2
= + 1

< 1. (3.31)

To measure regularity of E, the corresponding Sobolev space must be replaced by
the Besov space �=+1?,?(Ω) or the Lipschitz space Lip=+1? (Ω). We will introduce and
study these spaces in Section 6.8.

3.5. Conforming meshes: the bisection method

In order to approximate functions in, :
?(Ω) by piecewise polynomials, we decom-

pose Ω into simplices. We briefly discuss the bisection method, an elegant and
versatile technique for subdividingΩ in any dimension into a conformingmesh. We
also briefly discuss non-conforming meshes in Section 3.7. We present complete
proofs, especially of the complexity of bisection, later in Section 8.
We focus on 3 = 2 and follow Binev et al. (2004), but the results carry over to

any dimension 3 > 2 (Stevenson 2008). We refer to Nochetto et al. (2009) for a
fairly complete discussion for 3 ≥ 2.

Let T denote a mesh (triangulation or grid) made of simplices ) , and let T be
conforming (edge-to-edge). Each element is labelled, namely it has an edge �())
assigned for refinement (and an opposite vertex E()) for 3 = 2); see Figure 3.2.

The bisection method consists of a suitable labelling of the initial mesh T0 and
a rule to assign the refinement edge to the two children. For 3 = 2 we consider the
newest vertex bisection as depicted in Figure 3.2. For 3 > 2 the situation is more
complicated and we need the concepts of type and vertex order (Nochetto et al.
2009, Stevenson 2008). More precisely, we identify a simplex ) with the set of its
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(a) (b) (c)

Figure 3.3. Refinement of a single tetrahedron ) of type C. The child )1 in (b)
has the same node ordering regardless of type. In contrast, for the child )2 in (c) a
triple is appended to two nodes. The local vertex index is given for these nodes by
the Cth component of the triple.

ordered vertices and its type C by

) = {I0, I1, . . . , I3}C ,
with C ∈ {0, . . . , 3 − 1}. Given such a 3-simplex ) , we use the following bisection
rule to split it in a unique fashion and to impose both vertex order and type on its
children. The edge I0I3 connecting the first and last vertex of ) is the refinement
edge of ) , and its midpoint Ī = (I0 + I3)/2 becomes the new vertex. Connecting
the new vertex Ī to the vertices of ) other than I0, I3 determines the common face
( = {Ī, I1, . . . , I3−1} shared by the two children )1, )2 of ) . The bisection rule
dictates the following vertex order and type for )1, )2:

)1 := {I0, Ī, I1, . . . , IC︸     ︷︷     ︸
→

, IC+1, . . . , I3−1︸           ︷︷           ︸
→

}(C+1) mod 3 ,

)2 := {I3 , Ī, I1, . . . , IC︸     ︷︷     ︸
→

, I3−1, . . . , IC+1︸           ︷︷           ︸
←

}(C+1) mod 3 ,
(3.32)

with the convention that arrows point in the direction of increasing indices and
{I1, . . . , I0} = ∅, {I3 , . . . , I3−1} = ∅. For instance, in three dimensions the
children of ) = {I0, I1, I2, I3}C are (see Figure 3.3)

C = 0: )1 = {I0, Ī, I1, I2}1 and )2 = {I3, Ī, I2, I1}1,
C = 1: )1 = {I0, Ī, I1, I2}2 and )2 = {I3, Ī, I1, I2}2,
C = 2: )1 = {I0, Ī, I1, I2}0 and )2 = {I3, Ī, I1, I2}0.

Note that the vertex labelling of )1 is type-independent, whereas that of )2 is the
same for type C = 1 and C = 2. To account for this fact, the vertices I1 and I2 of )
are tagged {3, 2, 2} and {2, 3, 3} in Figure 3.3. The type of ) then dictates which
component of the triple is used to label the vertex.
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Figure 3.4. Sequence of bisection meshes {T: }2:=0 starting from the initial mesh
T0 = {)8}48=1 with longest edges labelled for bisection. Mesh T1 is created from T0
upon bisecting )1 and )4, whereas mesh T2 arises from T1 upon refining )6 and )7.
The bisection rule is described in Figure 3.2.

Bisection creates a unique master forest F of binary trees with infinite depth,
where each node is a simplex (a triangle in two dimensions), its two successors
are the two children created by bisection, and the roots of the binary trees are
the elements of the initial conforming partition T0. It is important to realize that,
no matter how an element arises in the subdivision process, its associated newest
vertex is unique and depends only on the labelling of T0, so the edge �()) assigned
for refinement (and the opposite vertex E()) for 3 = 2) are independent of the order
of the subdivision process for all ) ∈ F; see Lemma 8.1. Therefore F is unique.
A finite subset F ⊂ F is called a forest if T0 ⊂ F and the nodes of F satisfy

• all nodes of F \ T0 have a predecessor;
• all nodes in F have either two successors or none.

Anynode) ∈ F is thus uniquely connectedwith a node)0 of the initial triangulation
T0, that is, ) belongs to the infinite tree F()0) emanating from )0. Furthermore,
any forest may have interior nodes, i.e. nodes with successors, as well as leaf
nodes, i.e. nodes without successors. The set of leaves corresponds to a mesh (or
triangulation, grid, partition) T = T (F) of T0, which may not be conforming or
edge-to-edge.
We thus introduce the set T of all conforming refinements of T0:

T ≔ {T = T (F) | F ⊂ F is finite and T (F) is conforming}.
If T∗ = T (F∗) ∈ T is a conforming refinement of T = T (F) ∈ T, we write T∗ ≥ T
and understand this inequality in the sense of trees, namely F ⊂ F∗.

Example. Consider T0 = {)8}48=1 and the longest edge to be the refinement edge.
Figure 3.4 displays a sequence of conforming meshes T: ∈ T created by bisection.
Each element )8 of T0 is a root of a finite tree emanating from )8 , which together
form the forest F2 corresponding to mesh T2 = T (F2). Figure 3.5 displays F2,
whose leaf nodes are the elements of T2.
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Figure 3.5. Forest F2 corresponding to the grid sequence {T: }2:=0 of Figure 3.4.
The roots of F2 form the initial mesh T0 and the leaves of F2 constitute the
conforming bisection mesh T2. Moreover, each level of F2 corresponds to all
elements with generation equal to the level.

Figure 3.6. Bisection produces atmost four similarity classes for any triangle.

Properties of bisection. We now discuss several crucial geometric properties of
bisection. We start by recalling the concept of shape regularity. For any ) ∈ T ,
we define

ℎ)

ℎ)

ℎ) ≔ diam())
ℎ) ≔ |) |1/3
ℎ) ≔ 2 sup{A > 0 | �(G, A) ⊂ ) for G ∈ )}.

Then
ℎ) ≤ ℎ) ≤ ℎ) ≤ fℎ) for all ) ∈ T ,

where f > 1 is the shape regularity constant of (3.9). The next lemma guarantees
that bisection keeps f bounded.

Lemma 3.14 (shape regularity). The partitions T generated by newest vertex
bisection satisfy a uniform minimal angle condition, or equivalently f is uniformly
bounded, depending only on the initial partition T0.

Proof. Each ) ∈ T0 gives rise to a fixed number of similarity classes, namely four
for 3 = 2 according to Figure 3.6. This, combined with the fact that #T0 is finite,
yields the assertion.

We define the generation (or level) 6()) of an element ) ∈ T as the number of
bisections needed to create ) from its ancestor )0 ∈ T0. Since bisection splits an
element into two children with equal measure, we realize that

ℎ) = 2−6() )/2ℎ)0 for all ) ∈ T . (3.33)
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Figure 3.7. Initial labelling and its evolution for the sequence of conforming
refinements T0 ≤ T1 ≤ T2 of Figure 3.4.

Referring to Figure 3.5, we observe that the leaf nodes )9, )10, )11, )12 have gener-
ation 2, whereas )5, )8 have generation 1 and )2, )3 have generation 0.
The following geometric property is a simple consequence of (3.33).

Lemma 3.15 (element size vs. generation). There exist constants 0 < �1 <
�2, depending only on T0, such that

�12−6() )/2 ≤ ℎ) < ℎ) ≤ �22−6() )/2 for all ) ∈ T . (3.34)

Labelling and bisection rule. Whether the recursive application of bisection does
not lead to inconsistencies depends on a suitable initial labelling of edges and a
bisection rule. For 3 = 2 they are simple to state (Binev et al. 2004). Given ) ∈ T
with generation 6()) = 8, we assign the label (8+1, 8+1, 8) to) with 8 corresponding
to the refinement edge �()). The following rule dictates how the labelling changes
with refinement: the side 8 is bisected and both new sides as well as the bisector
are labelled 8 + 2 whereas the remaining labels do not change. To guarantee that
the label of an edge is independent of the elements sharing this edge, we need
a special labelling for T0, due to Mitchell (1989, Theorem 2.9) and Binev et al.
(2004, Lemma 2.1), for 3 = 2:

Edges of T0 have labels 0 or 1 and all elements ) ∈ T have
exactly two edges with label 1 and one with label 0. (3.35)

There is a variant for 3 > 2 due to Stevenson (2008, Section 4). It is not obvious
that labelling (3.35) exists, but if it does then all elements of T0 can be split into
pairs of compatibly divisible elements. We refer to Figure 3.7 for an example of
initial labelling of T0 satisfying (3.35) and the way it evolves for two successive
refinements T2 ≥ T1 ≥ T0 corresponding to Figure 3.4.

To guarantee (3.35) we can proceed as follows: given a coarse mesh of elements
) , we can bisect each ) twice and label the four grandchildren as indicated in
Figure 3.8, for the resulting mesh T0 to satisfy the initial labelling (Binev et al.
2004).
For 3 ≥ 3 a general strategy of initial labelling is due to Stevenson (2008,

Section 4, Condition (b)), who in turn improves upon Maubach (1995) and Traxler
(1997) and shows how to impose it upon further refining each element of T0.
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Figure 3.8. Bisecting each triangle of T0 twice and labelling edges in such a way
that all boundary edges have label 1 yields an initial mesh satisfying (3.35).

We refer to the survey by Nochetto et al. (2009) for a discussion of this condition.
A key consequence is:

Every uniform refinement of T0 gives a conforming bisection mesh. (3.36)

Condition (3.35) is still valid, and can be fulfilled by a construction by successive
bisections, similar to but much trickier than the one described for 3 = 2; yet for
3 = 3 the number of elements increases by an order of magnitude, which indicates
that (3.35) is a severe restriction in practice. Finding alternative, more practical
conditions is an important problem.

Initialization of arbitrary triangulations. A novel initialization procedure that can
be applied to any conforming triangulation T0 has recently been proposed by
Diening, Gehring and Storn (2023); hereafter we present a short account of it.
The key concept is that of colouring the vertices of T0. A coloured initial

triangulation in R3 is a pair (T0, 2), where 2 : VT0 → {0, . . . , 3} is such that the
colours of all vertices of each ) ∈ T0 are distinct. The colour map 2 allows us to
sort the vertices of each initial element ) = {I0, . . . , I3}C ∈ T0 so that

2(I 9) = 9 , 9 ∈ {0, . . . , 3}.
To refine a marked ) ∈ T0, we apply the Maubach bisection rule leading to (3.32),
and possibly add a recursive closure, which is proved to terminate, to guarantee the
conformity of the final triangulation. The colouring property is conserved in this
process, and the conclusion of Theorem 3.16 below holds true, starting from any
initially coloured triangulation T0.

Unfortunately, not every initial triangulation can be coloured. For instance,
consider in dimension 3 = 2 a patch of triangles sharing a common vertex. If
colour 0 is assigned to such an inner vertex, then the outer vertices must take
colours 1 and 2 successively, but if the number of triangles in the patch is odd,
there will be a vertex that is not colourable.
To overcome this obstruction, Diening et al. (2023) propose using more colours,

and introduce the concept of generalized colouring: a pair (T0, 2) is an (# + 1)-
coloured triangulation if there exists an integer # ≥ 3 and a mapping 2 : VT0 →
{0, . . . , #} such that the colours of all vertices of each ) ∈ T0 are distinct. Any
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initial T0 can be coloured in this generalized sense: indeed, after the initialization
2(I) = +∞ for all I ∈ VT0 , we define

2(I) ≔ min(N0 \ {2(F) | [I, F] is an edge of T0}), I ∈ VT0 ,

as the smallest colour not already attained by a neighbouring vertex. Then, we set
# ≔ max {2(I) | I ∈ VT0}, and note that # is bounded by the maximal number of
edges connected to a vertex of T0.

A generalized (# + 1)-coloured triangulation (T0, 2) in R3 can be seen as a
collection of 3-simplices contained in a virtual, coloured triangulation T +0 in R# .
It suffices to add # − 3 virtual nodes to each simplex in T0, so that it becomes a
#-simplex, and attribute to these nodes the remaining # − 3 colours. Note that
these virtual simplices are only connected via their 3-subsimplices belonging to
T0. In the example mentioned above of a patch of triangles sharing a vertex, a
(3 + 1)-coloured triangulation is defined as follows: a tetrahedron is built on top of
each triangle; the previously uncolourable vertex takes the new colour 3, whereas
colour 2 is attributed to the new vertices of the two tetrahedra sharing that vertex;
the new vertex of any other tetrahedron takes the colour 3.

With the new triangulation T +0 at hand, one could apply the Mauback bisection
rule to it, which as a by-product would refine the initial triangulation T0. However,
Diening, Gehring and Storn (2023) suggest a short-cut that directly refines T0 by
invoking an algorithm that bisects a :-simplex in dimension < > : . A further
round of recursive refinements may be needed to guarantee conformity. Diening
et al. prove that the recursion terminates. In addition, for any (# + 1)-coloured
initial triangulation, the conclusion of Theorem 3.16 below holds true in this case
too, with a constant � satisfying � . #3 .

The procedure REFINE. Given T ∈ T and a selected subset M ⊂ T (the set of
marked elements), the procedure

[T∗] = REFINE(T ,M)

creates a new conforming refinement T∗ of T by bisecting all elements of M at
least once and perhaps additional elements to keep conformity.
Conformity is a constraint in the refinement procedure that prevents it from

being completely local. The propagation of refinement beyond the set of marked
elements M is a rather delicate matter, which we discuss later in Section 8. For
instance, we show that a naive estimate of the form

#T∗ − #T ≤ � #M
is not valid with an absolute constant � independent of the refinement level. This
can be repaired upon considering the cumulative effect for a sequence of conforming
bisection meshes {T: }∞:=0. This is expressed in the following crucial complexity
result due to Binev et al. (2004) for 3 = 2 and Stevenson (2008) for 3 > 2. We
present a complete proof later in Section 8.
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Theorem 3.16 (complexity of REFINE). If T0 satisfies the initial labelling (3.35)
for 3 = 2, or that in Stevenson (2008, Section 4) for 3 > 2, then there exists a
constant � > 0 depending only on T0 and 3 such that, for all : ≥ 1,

#T: − #T0 ≤ �
:−1∑
9=0

#M 9 .

If elements ) ∈M are to be bisected 1 ≥ 1 times, then the procedure REFINE
can be applied recursively, and Theorem 3.16 remains valid with � also depending
on 1.

Mesh overlay. For the subsequent discussion it will be convenient to merge (or
superpose) two conforming meshes T1, T2 ∈ T, thereby giving rise to the so-called
overlay T1 ⊕ T2. This operation corresponds to the union in the sense of trees
(Cascón, Kreuzer, Nochetto and Siebert 2008, Stevenson 2007). We next bound
the cardinality of T1 ⊕ T2 in terms of that of T1 and T2.

Lemma 3.17 (mesh overlay). Let T1, T2 ∈ T. The overlay T = T1 ⊕ T2 ∈ T is
conforming and

#T ≤ #T1 + #T2 − #T0. (3.37)

For a proof we refer to Cascón et al. (2008, Lemma 3.7), and to Proposition 8.15
below for a more general situation.

3.6. Constructive approximation

We now construct graded bisection meshes T for = = 1, 3 = 2 that achieve the
optimal decay rate (#T )−1/2 of (3.25) under the global regularity assumption

E ∈ ,2
?(Ω), ? > 1. (3.38)

Therefore,2
?(Ω) is strictly above the Sobolev line for the space �1(Ω): sob(,2

?) =
2 − 2/? > 0 = sob(�1). Note that B = 1, ? > 1 and @ = 2 obey the restriction
(3.30) for ∇E ∈ !2(Ω). In particular, ,2

?(Ω) is compactly embedded into �1(Ω)
according to Lemma 2.1 (Sobolev embedding).
Following Binev, Dahmen, DeVore and Petrushev (2002) and Gaspoz andMorin

(2014), we use a greedy algorithm that is based on the knowledge of the element
errors and on bisection. The algorithm hinges on (3.24): if X > 0 is a given
tolerance, the element error is equidistributed and within tolerance 4T (E, )) ≈ X,
and the global error decays with maximum rate (#T )−1/2, then

X2#T ≈
∑
) ∈T

4T (E, ))2 = |E − �T E |2� 1(Ω) . (#T )−1

whence #T . X−1; here �T stands for the Lagrange interpolation operator. With
this in mind, we impose 4) (E) ≤ X as a threshold to stop refining and expect
#T . X−1. The following algorithm implements this idea.
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Algorithm 3.18 (greedy algorithm). Given a tolerance X > 0 and a conforming
mesh T0, GREEDY finds a conforming refinement T ≥ T0 of T0 by bisection such
that 4T (E, )) ≤ X for all ) ∈ T : let T = T0 and

[T ] = GREEDY(T , X, E)
whileM ≔ {) ∈ T | 4T (E, )) > X} ≠ ∅

T ≔ REFINE(T ,M)
return T

Since,2
?(Ω) ⊂ �0(Ω), because ? > 1, we can use the Lagrange interpolant and

local estimate (3.17) with A = sob(,2
?) − sob(�1) = 2 − 2/? > 0. We deduce

4T (E, )) . ℎA) ‖�2E‖!?() ). (3.39)

We assess the quality of the resulting mesh in a slightly more general setting,
following Bonito et al. (2016, Proposition 1 and Corollary 1), needed later in
Sections 6 and 7 for solution and data approximation for any polynomial degree.

An abstract greedy algorithm. We consider a generic (possibly vector-valued)
function E ∈ !@(Ω,R" ), with " ≥ 1 and 1 ≤ @ ≤ ∞, let 4T (E, )) = ‖E −
ΠT E‖!@() ) denote the abstract !@-local error for ) ∈ T used in the GREEDY
procedure, and let �T (E) = ‖E − ΠT E‖!@(Ω) denote the global !@-interpolation
error by either continuous or discontinuous piecewise polynomials (the definition
of ΠT E is irrelevant now). We formulate the following assumptions.

• Summability in ℓ@. The errors {4T (E, ))}) ∈T satisfy

‖E‖@!@(Ω) .
∑
) ∈T

4T (E, ))@ . (3.40)

Rather than (3.38), we assume that E belongs to an abstract space -B?(Ω; T0) of
functions with differentiability index B ∈ (0, =] and integrability index ? ∈ (0,∞]
piecewise over T0 with two crucial properties.

• Local error estimate. For A = B − 3/? + 3/@ > 0 and all ) ∈ T ,

4T (E, )) . ℎA) |E |-B?() ). (3.41)

• Norm subadditivity. For ? < ∞, and obvious modification for ? = ∞,∑
) ∈T
|E |?
-B?() ) . |E |

?
-B?(Ω;T0). (3.42)

The space -B?(Ω; T0) will later be either a Sobolev space, B
?(Ω; T0), a Besov space

�B?,?(Ω; T0) or a Lipschitz space LipB?(Ω; T0), with piecewise regularity over T0;
the latter two will allow 0 < ? < 1. For the moment we do not need to be specific
and just rely on the two properties above.

Proposition 3.19 (abstract greedy error). Let T0 be an initial subdivision of
Ω ⊂ R3 satisfying the initial labelling property (3.35) for 3 = 2, or its variant for
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3 > 2. Let" ≥ 1, 0 < @, ? ≤ ∞ and B−3/?+3/@ > 0. Let E ∈ !@(Ω,R" ) satisfy
(3.40), (3.41) and (3.42). Then GREEDY(T0, X, E) terminates in a finite number of
iterations with local errors verifying 4T (E, )) ≤ X for all ) ∈ T , and there is a
constant � = �(?, @, B, 3,Ω, T0) such that the output T ∈ T satisfies

‖E − ΠT E‖!@(Ω) ≤ � |E |-B?(Ω;T0)(#T − #T0)−B/3 . (3.43)

Proof. We proceed in several steps.
1 Termination. Since ℎ) decreases monotonically to 0 with bisection, so does
4T (E, )) in view of (3.41). Consequently, GREEDY terminates in a finite number
: ≥ 1 of iterations. Upon termination, the local errors satisfy 4T (E, )) ≤ X for all
) ∈ T by construction, whence (3.40) implies

‖E − ΠT E‖!@(Ω) . X(#T )1/@ .

2 Counting. Let M = M0 ∪ · · · ∪M:−1 be the set of marked elements. We
organize the elements in M by size in a way that allows for a counting argument.
Let P 9 be the set of elements ) of M with size

2−( 9+1) ≤ |) | < 2− 9 ⇒ 2−( 9+1)/3 ≤ ℎ) < 2− 9/3 ,

because ℎ) = |) |1/3 for shape-regular meshes T ∈ T.
We first observe that all the ) in P 9 are disjoint. This is because if )1, )2 ∈ P 9

and )̊1 ∩ )̊2 ≠ ∅, then one of them is contained in the other, say )1 ⊂ )2, due to the
bisection procedure which works in any dimension 3 ≥ 1; see Section 8. Hence

|)1 | ≤ 1
2
|)2 |,

contradicting the definition of P 9 . This implies the first bound

2−( 9+1) #P 9 ≤ |Ω| ⇒ #P 9 ≤ |Ω| 2 9+1. (3.44)

In light of (3.41), we have for ) ∈ P 9
X ≤ 4T (E, )) . 2− 9A/3 |E |-B?() ).

Therefore, accumulating these quantities in ℓ? and invoking (3.42) yields

X? #P 9 . 2− 9A ?/3
∑
) ∈P 9

|E |?
-B?() ) . 2− 9A ?/3 |E |?

-B?(Ω;T0)

and gives rise to the second bound

#P 9 . X−? 2− 9A ?/3 |E |?
-B?(Ω;T0). (3.45)

3 Cardinality. The two bounds for #P in (3.44) and (3.45) are complementary.
The first one is good for 9 small whereas the second is suitable for 9 large (think of
X � 1). The crossover takes place for 90 such that

2 90+1 |Ω| ≈ X−? 2− 90A ?/3 |E |?
-B?(Ω;T0) ⇒ 2 90 ≈ (|Ω|−1X−? |E |?

-B?(Ω;T0)
)3/(3+A ?)

.
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We now compute

#M =
∑
9

#P 9 .
∑
9≤ 90

2 9 |Ω| + X−? |E |?
-B?(Ω)

∑
9> 90

(2−A ?/2) 9 .

Since ∑
9≤ 90

2 9 ≈ 2 90 ,
∑
9> 90

(2−A ?/3) 9 . 2−A ? 90/3 ,

we can write

#M . |Ω|1−3/(3+A ?)(X−1 |E |-B?(Ω;T0)
)3?/(3+A ?)

.

We finally apply Theorem 3.16 (complexity of REFINE), to arrive at

#T − #T0 . #M . |Ω|A ?/(3+A ?)(X−1 |E |-B?(Ω;T0)
)3?/(3+A ?)

,

or equivalently

X . |Ω|A/3 |E |-B?(Ω;T0)(#T − #T0)−(3+A ?)/(3?).

4 Total error. Since
3 + A ?
3?

=
B

3
+ 1
@
,

we deduce from step 1 that

‖E − ΠT E‖!@(Ω) . X(#T )1/@ . |Ω|A/3 |E |-B?(Ω;T0)(#T − #T0)−B/3 ,

which is the desired estimate.

The output mesh T of GREEDY(T0, X, E) starting from T0 satisfies #T ≥ 20#T0
for some 20 > 1, whence #T − #T0 ≥ (1 − 1/20)#T and (3.43) yields

‖E − ΠT E‖!@(Ω) . � |E |-B?(Ω;T0)(#T )−B/3 , (3.46)

where � depends on 20. In many applications of GREEDY, to be discussed later
in Sections 6 and 7, it will be convenient for the starting mesh to be a conforming
refinement of T0 to enhance its efficiency. We will prove in Section 7.1 that (3.46)
remains valid.
It is instructive to realize that GREEDY is a practical algorithm that hinges on

the different summabilities of (3.40) and (3.42), and delivers a global !@-error
consistent with (3.29) of Section 3.4. Moreover, the outcome graded grid T is
quasi-optimal but may not equidistribute the error, not even approximately.
We are now in a position to show thatGREEDY constructs optimal gradedmeshes

for the interpolation error in �1(Ω) alluded to at the beginning of this section. To
this end, we let �T be the Lagrange interpolation operator for 3 = 2.

Corollary 3.20 (optimal �1-convergence rate). If E ∈ �1(Ω) ∩,2
?(Ω) for 1 <

? ≤ 2 and 3 = 2, then GREEDY yields graded bisection meshes T so that

|E − �T E |� 1(Ω) . |Ω|1−1/? ‖�2E‖!?(Ω)(#T )−1/2.
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Proof. We invoke Proposition 3.19 (abstract greedy error) and equation (3.46)
for ∇E ∈ !2(Ω,R2) with ΠT ∇E = ∇�T E and B = 1, @ = 2, ? > 1, whence
B − 3/? + 3/@ > 0.

Remark 3.21 (piecewise,2
?-smoothness). Since (3.39) is completely local for

3 = 2, we see from (3.42) that it suffices for E ∈ �1(Ω) to be piecewise in,2
? over

the initial partition T0, namely ,2
?(Ω; T0). It turns out that this statement is valid

for any dimension 3 ≥ 2 in view of Proposition 3.9 (approximation of gradients).
We will revisit this issue in Section 6.8.

Remark 3.22 (case ? < 1). We now consider polynomial degree = ≥ 1. The
integrability ? corresponding to differentiability =+1 results from equating Sobolev
numbers:

= + 1 − 3
?
= sob(�1) = 1 − 3

2
⇒ ? =

23
2= + 3 .

Depending on 3 ≥ 2 and = ≥ 1, this may lead to 0 < ? < 1, in which case,=+1
? (Ω)

is to be replaced by the Besov space �B?,?(Ω) for B < = + 1 or the Lipschitz space
Lip=+1? (Ω) (DeVore 1998). We will discuss this matter in Section 6.8 and make the
abstract greedy setting precise.

Remark 3.23 (isotropic vs. anisotropic elements). Since geometric singularit-
ies are of the form (3.26) for 3 = 2, Corollary 3.20 (optimal �1-convergence rate)
shows that isotropic gradedmeshes are able to deliver optimal convergence rates for
3 = 2. Unfortunately this is no longer the case for 3 > 2, and anisotropic meshes
are necessary for optimal meshes. This topic is delicate in several respects. Deriv-
ing reliable and efficient a posteriori error estimators is largely open for anisotropic
meshes; this is the subject of Section 4 for isotropic meshes. Even having such
estimators, building a theory of adaptivity is open; this is the subject of Sections 5,
6 and 10 for isotropic meshes. Finally, constructing anisotropic meshes based on
a posteriori information alone and that easily allow for refinement and coarsening
is problematic. For these reasons we do not dwell on anisotropic refinement in this
survey.

3.7. Non-conforming meshes

More general subdivisions of Ω than those in Section 3.5 are used in practice. If
the elements of T0 are quadrilaterals for 3 = 2, or their multidimensional variant
for 3 > 2, then it is natural to allow for improper or hanging nodes for the
resulting refinements T to be graded; see Figure 3.9(a). On the other hand, if
T0 is made of triangles for 3 = 2, or simplices for 3 > 2, then red refinement
without green completion also gives rise to graded meshes with hanging nodes;
see Figure 3.9(b). In both cases, the presence of hanging nodes is inevitable to
enforce mesh grading. Finally, bisection may produce meshes with hanging nodes,
as depicted in Figure 3.9(c), if the completion process is incomplete. All three
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(a) (b) (c)

Figure 3.9. Non-conforming meshes made of quadrilaterals (a), triangles with red
refinement (b) and triangles with bisection (c). The shaded regions depict the
domain of influence of a proper or conforming node %.

refinements maintain shape regularity, but for both practice and theory, they cannot
be arbitrary: we need to restrict the level of non-conformity. We discuss this next,
starting with the case of polynomial degree = = 1 (Bonito and Nochetto 2010,
Beirão da Veiga et al. 2023).

We say that a node % of T is a proper (or conforming) node if it is a vertex of all
elements containing %; otherwise, we say that % is an improper (non-conforming
or hanging) node. The setN of all nodes of T is thus partitioned into the set P of
proper nodes, and the setH = N \ P of hanging nodes.

A useful notion in dealing with hanging nodes is the global index of a node,
introduced in Beirão da Veiga et al. (2023): it measures the number of non-
conforming refinements needed to generate a hanging node from proper nodes. To
define it, for any G ∈ H which has been generated by the bisection of an edge
[G ′, G ′′], let us set B(G) = {G ′, G ′′}.
Definition 3.24 (global index of a node). The global index _(G) of a node G ∈ N
is defined recursively as follows:

• if G ∈ P , set _(G) = 0;
• if G ∈ H and B(G) = {G ′, G ′′}, set _(G) = max(_(G ′), _(G ′′)) + 1.

The set of all nodes of T is thus partitioned according to the value of the global
index: for any integer ; ≥ 0, we set H; = {G ∈ N | _(G) = ;}. Note that H0 = P .
An example of distribution of global indices for 3 = 2 is shown in Figure 3.10.
We define the global index of the triangulation T by _(T ) ≔ maxG∈N _(G). The

level of non-conformity of the triangulations we are dealing with is controlled by
the following condition of admissibility.

Definition 3.25 (Λ-admissibility). Let Λ ≥ 0 be an integer. A refinement T of
T0 is Λ-admissible if

_(T ) ≤ Λ. (3.47)
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Figure 3.10. Example of distributions of proper nodes (red) and hanging nodes
(black), with associated global indices _.

If _(T ) ≥ 1, then T is non-conforming, but otherwise T ∈ T is conforming if
_(T ) = 0. The collection of all Λ-admissible partitions is denoted by TΛ.

Λ-admissibility has the following basic implications.

Proposition 3.26 (properties of Λ-admissible partitions). Let) be any element
of a Λ-admissible partition T .

(i) If 4 ⊂ m) is an edge of ) , then 4 may contain at most 2Λ − 1 hanging nodes.
(ii) If 4 ⊂ m) is an edge of some other element ) ′, then ℎ) ′ ' ℎ) , where the

hidden constants depend only on the shape of the initial triangulation T0 and
possibly on Λ.

Proof. Case (i) stems from the fact that the edgemay contain at most 2:−1 hanging
nodes of level : for 1 ≤ : ≤ Λ. To prove (ii) we observe that the length ratio
|4̄ |/|4 |, where 4̄ is the edge of ) containing 4, is at most 2Λ, and we conclude by
invoking the shape regularity of the partition.

In the space VT of continuous piecewise linear maps over T , functions are
uniquely defined by their values at the proper nodes of T . So it is natural to
introduce the canonical continuous piecewise linear basis functions q% associated
with any proper node %. They satisfy

E =
∑
%∈P

E(%)q% for all E ∈ VT , (3.48)

and are defined by the conditions q% ∈ VT and

• q%(I) = 1 if I = %, q%(I) = 0 if I ∈ P \ {%}.
The values of q% at the hanging nodes, hence everywhere in the domain, can be
reconstructed by linear interpolation as follows: assuming that q% has been defined
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Figure 3.11. Plot of the basis function q% on the non-conforming triangulation
shown in Figure 3.10, for % equal to the upper right corner of the domain, after
using bisection to convert the lowest hanging node with global index 3 into a
proper node.

at all nodes of global index < ;, if I ∈ H; and B(I) = {I′, I′′}, then

q%(I) =
1
2

(q%(I′) + q%(I′′)).

An example of basis function q% on a non-conforming triangulation is provided in
Figure 3.11.
The domain of influence of a proper node % is the set

lT (%) = supp(q%),

highlighted in grey in Figure 3.9; this notion was introduced in Babuška and Miller
(1987) in the context of  -meshes; see also Bonito and Nochetto (2010). To
identify elements ) ∈ T contained in lT (%), we introduce for any node G ∈ N the
set P(G) of the proper nodes influencing G, which is defined recursively as follows:

• initialize P(G) = {G};
• while P(G) ∩H ≠ ∅, if H ∈ P(G) ∩H replace P(G) with (P(G) \ {H}) ∪ B(H).

Then ) ⊆ lT (%) if and only if % influences some vertex of ) , that is, there exists
a vertex E of ) such that % ∈ P(E).
One of the consequences of theΛ-admissibility assumption of T is the following

result, which says that all elements ) contained in lT (%) have comparable size.

Proposition 3.27 (size of the domain of influence). There exists a positive con-
stant � = �(T0,Λ), depending only on the shape of the initial triangulation T0 and
possibly on Λ, such that for any % ∈ P

diamlT (%) ≤ � ℎ) for all ) ∈ T , ) ⊆ lT (%).

Proof. Elements in lT (%) having % as a vertex share in pairs an edge or a
portion of an edge, hence – as noted above – Λ-admissibility implies the existence
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of a characteristic size, say ℎ%, which is comparable to the diameter of each of
them. On the other hand, any ) ⊂ lT (%) not containing % has at least one vertex
E) ∈ H such that % ∈ P(E) ). Thus there exists a sequence {H: | 0 ≤ : ≤  }
of vertices satisfying H0 = E) , H = % and H:+1 ∈ B(H:) for 0 ≤ : <  ; since
_(H:) ≥ _(H:+1) + 1, necessarily  ≤ Λ. Correspondingly, we can find a chain of
at most  elements, starting at ) and ending at an element containing %, which
share in pairs an edge or a portion of an edge. We deduce that ℎ) ' ℎ%, and
dist(), %) ' ℎ) , where the hidden constants may depend only on the shape of the
initial triangulation and on Λ. The conclusion easily follows from these results.

We now turn to the case of polynomial degree = > 1; we refer to Canuto and
Fassino (2023) for more details. The concept of hanging node is no longer solely
related to the geometry of the mesh, but also to the distribution of degrees of
freedom along the edges of the elements. For instance, consider a full edge 4
shared by two triangles ) and ) ′, and bisect ) ′ to create two new elements )1 and
)2 having 4 as a vertex. If we use quadratic Lagrangian elements, the midpoint G
of 4 carries a degree of freedom for the three elements that share it, so we do not
consider it as a hanging node; on the other hand, the nodes at distance 1

4 |4 | and
3
4 |4 | from an endpoint of 4 are hanging nodes (despite being vertices of no triangle)
since they do not carry a degree of freedom for the element ) . If we move to cubic
Lagrangian elements, then G becomes a hanging node, together with the nodes at
distance 1

6 |4 | and 5
6 |4 | from an endpoint of 4, whereas the nodes at distance 1

3 |4 | and
2
3 |4 | are not hanging nodes, since they carry a degree of freedom for each triangle
they belong to.

In general, for a partition T made of classical affine Lagrangian or Hermitian
elements, the hanging nodes are defined as follows.

• Given an element ) ∈ T , the set P) of the proper nodes of ) is made of all
images of the reference =-lattice via the affine transformation. The setH) of
the hanging nodes of ) collects the points of m) that are not proper nodes of
) , but are proper nodes of some other contiguous element ) ′. The set of all
nodes of ) is N) ≔ P) ∪H) .
• At the global level, if N =

⋃
) ∈T N) is the set of all nodes of T , the set

P ⊆ N of the proper nodes of T contains those nodes that are proper nodes
for all elements they belong to. The complementary set H ≔ N \ P is the
set of the hanging nodes of T .

In other words, a hanging node of T is a point that carries a degree of freedom
for some but not all elements it belongs to. With this definition of proper nodes,
representation (3.48) of continuous piecewise linear maps extends to = > 1.

The global index _(G) of a node G ∈ N is precisely defined as in Definition 3.24.
The set B(G) ⊂ N collects the endpoints of an interval [G ′, G ′′], contained in the
skeleton of T , that has been bisected when G has been created, and contains no
other node inside.
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(a) (b)

Figure 3.12. Triangulation after the three refinements in the case = = 2 (a) and in
the case = = 3 (b). Blue crosses represent the original degrees of freedom on the
initial conforming mesh. Red squares, green circles and orange triangles are used
for the degrees of freedom of the first, second and third refinement, respectively.
All nodes are proper, except those on the horizontal line, whose global index is
reported.

Figure 3.12 provides two examples, for = = 2 and = = 3, of distributions of
hanging nodes and corresponding global indices, created by successive bisections
starting from an initial conforming partition.
The concept of Λ-admissibility, given in Definition 3.25, remains unchanged for

= > 1. The statements in Proposition 3.26, too, extend to the higher-order case; the
maximum number of hanging nodes on an edge now being$(=2Λ). Consequently,
the conclusion of Proposition 3.27 remains valid when = > 1 as well: there is a
constant � = �(T0,Λ) such that

diamlT (%) ≤ � ℎ) for all ) ∈ T , ) ⊆ lT (%). (3.49)

Remark 3.28 (quadrilateral and hexahedral partitions). It is readily seen that
the definitions of global index of a node and Λ-admissible partition extend seam-
lessly to shape-regular meshes made of quadrilaterals refined by a quadtree strategy
(3 = 2) (see Figure 3.9(a) for an example), or by hexahedra refined by an octree
strategy (3 = 3). The same holds for heterogeneous partitions made of a com-
bination of simplices and hexahedra. All results reported above are valid for such
partitions. We refer to Bonito and Nochetto (2010) for details.

Λ-admissible meshes under refinement. Given a Λ-admissible grid T , a subsetM
of elements marked for refinement, and a desired number 1 ≥ 1 of subdivisions to
be performed in each marked element, the procedure

T∗ = REFINE(T ,M,Λ)

creates a minimal Λ-admissible mesh T∗ ≥ T such that all the elements of M
are subdivided at least 1 times. In order for T∗ to be Λ-admissible, perhaps other
elements not in M must be partitioned. Despite the fact that admissibility is a
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constraint on the refinement procedure weaker than conformity, it cannot avoid
the propagation of refinements beyond M. The complexity of REFINE is again
an issue which we discuss in Section 8.2: we show that Theorem 3.16 extends to
this case.

Theorem 3.29 (complexity of REFINE for Λ-admissible meshes). Let T0 be an
arbitrary conforming partition of Ω, except for the bisection algorithm in which
case T0 satisfies the labelling (3.35) for 3 = 2 or its higher-dimensional counterpart
(Stevenson 2008). Then the estimate

#T: − #T0 ≤ �
:−1∑
9=0

#M 9 for all : ≥ 1

holds with a constant � depending on T0, 3, = and Λ.

The following result about uniform refinements of Λ-admissible partitions will
be used below. The uniform refinement T∗ of a partition T ∈ TΛ is the partition
obtained by bisecting each element of T 3 times. This implies, in particular, that
each edge of T is bisected once.

Proposition 3.30 (Λ-admissibility of uniform refinements). If T ∈ TΛ is a Λ-
admissible partition and T∗ is its uniform refinement, then T∗ is Λ-admissible.

Proof. A simple recursion argument on the global index of the hanging nodes
of T shows that after refinement each such node either becomes a proper node or
its global index is reduced by 1. At the same time, new nodes are created by the
refinement, whose global index is at most 1 plus the maximal global index of the
pre-existing nodes. In both cases, the maximal global index of T∗ cannot exceed Λ.

A simple consequence is the following result, which is useful for controlling the
mesh size between consecutive refinements.

Corollary 3.31 (bound on the refinements). REFINE with 1 = 1 never refines
an element of a Λ-admissible partition T more than 3 times.

Proof. REFINE gives the smallest Λ-admissible mesh T∗ such that all the marked
elements of T have been refined. Since the uniform refinement of T remains
Λ-admissible, the minimality of T∗ implies that no element of the marked set can
be refined more than 3 times.

We conclude by emphasizing that the polynomial interpolation and adaptive
approximation theories of Sections 3.3 and 3.6 extend to non-conforming meshes
with fixed level of incompatibility as well.
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4. A posteriori error analysis
Numerical solutions to a boundary value problem serve to approximate its unknown
exact solution. In such a context, it is of interest

• to quantify the error of the numerical solution,
• to gain information for adapting the discretization to the exact solution

in a computationally accessible manner. These are the two goals of an a posteriori
error analysis, where the term a posteriori hints at the fact that the numerical
solution itself can be involved. To achieve the two goals, the a posteriori analysis
individuates so-called error estimators that, ideally, are computable, split into local
contributions called indicators, and bound the error from above and below.

This section exemplifies such an analysis, considering the numerical solution of
the boundary value problem (2.5), that is,

− div(G∇D) + 2D = 5 in Ω, D = 0 on mΩ,

with Lagrange elements of arbitrary fixed order = ≥ 1. Throughout this section we
adopt the notation and assumptions of previous sections for this model setting. In
particular, the exact solution D ∈ �1

0(Ω) solves the variational problem (2.7) and,
given a simplicial conforming mesh T ∈ T of Ω and finite element space

VT :=
{
E ∈ S=,0T | E |Ω = 0

} ⊂ �1
0(Ω),

the Galerkin approximation solves

DT ∈ VT : B[DT , F] = 〈 5 , F〉 for all F ∈ VT , (4.1)

with the bilinear form B from (2.8).
We stress that the analysis will be conducted under the regularity assumptions

G ∈ !∞(Ω;R3×3), 2 ∈ !∞(Ω), 5 ∈ �−1(Ω) = �1
0(Ω)∗, (4.2)

used in Section 2.4 to establish existence and uniqueness of the exact solution.
This fact distinguishes the approach below, which builds on Kreuzer and Veeser
(2019), from most other approaches requiring additional regularity; see e.g. Ver-
fürth (2013). Notably, this difference not only allows for covering more examples
but is also related to strengthening the relationship between error and estimator to
a true equivalence on any admissible mesh T ∈ T.

It is useful to recall two differences between the forcing 5 and the coefficients
(G, 2). First, while the exact solution D depends linearly on the forcing 5 , it
depends nonlinearly on the diffusion tensor G and the reaction coefficient 2. To
state the second difference, let D ∈ �1

0(Ω) and note that the assumptions (4.2)
on (G, 2) imply the ‘missing’ 5 ∈ �−1(Ω). On the other hand, the assumptions
on (�, 5 ) imply only 2D ∈ �−1(Ω), while the assumptions on (2, 5 ) imply only
− div(G∇D) ∈ �−1(Ω). These conditions are weaker than the ‘missing’ D ∈ �1

0(Ω),
and are due to the multiplicative role of (G, 2) in the differential equation.
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In order to elucidate the new twists allowing for (4.2), this section is organized
as follows. We start with steps of the a posteriori analysis that are common to the
‘classical’ and new approaches. We then illustrate the classical approach with the
standard residual estimator, and afterwards develop the new approach resulting
in a modification of the standard residual estimator, called the modified residual
estimator. Finally, we conclude by adapting the new approach to other techniques
of a posteriori error estimation and boundary conditions.
In what follows, the notation may or may not indicate the dependences of a given

quantity. We shall balance readability and the importance of the dependence in the
given context. For example, in (4.1), the discrete solution depends not only on the
mesh T but also on the data Ω, G, 2 and 5 in problem (2.5). We write T explicitly
because of its more prominent role in the a posteriori analysis. LetF ≔ FT denote
the set of all interior (3 − 1)-dimensional faces of T . The letter � will be used
for a generic constant, with possibly different values at each occurrence. If not
stated otherwise, it may depend on the shape regularity coefficient f from (3.9),
the dimension 3 and the polynomial degree = in VT .

4.1. Error, residual and localization of residual norm

This section starts the a posteriori analysis by establishing that a suitable norm of
the so-called residual

• is equivalent to the error ‖∇(D − DT )‖!2(Ω), and
• admits a localization in the sense that it splits into suitable local contributions
depending on accessible quantities, i.e. on dataD = (G, 2, 5 ) and the discrete
solution DT .

We do not yet consider computability: this important aspect will be addressed in
the following sections.

Replacing the exact solution D in the weak form (2.7) with its approximation DT ,
we define the residual 'T ∈ �−1(Ω):

〈'T , F〉 = 〈 5 , F〉 − B[DT , F] for all F ∈ �1
0(Ω).

We thus have a quantity that depends only on data D and the approximate solution
DT and relates to the error function D − DT as follows:

〈'T , F〉 = B[D − DT , F] for all F ∈ �1
0(Ω). (4.3)

Continuity and coercivity of the bilinear form B then provide a quantitative rela-
tionship between error and residual.

Lemma 4.1 (error and residual). The error of the approximation DT is equival-
ent to the residual norm. More precisely,

1
‖�‖ ‖'T ‖�−1(Ω) ≤ ‖∇(D − DT )‖!2(Ω) ≤

1
U
‖'T ‖�−1(Ω),

https://doi.org/10.1017/S0962492924000011 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000011


Adaptive finite element methods 219

where ‖B‖ ≥ U > 0 are, respectively, the continuity and coercivity constants of the
bilinear form B.

Proof. The error–residual relationship (4.3) yields the lower bound,

‖'T ‖�−1(Ω) = sup
F ∈� 1

0 (Ω)

〈'T , F〉
‖∇F‖!2(Ω)

= sup
F ∈� 1

0 (Ω)

B[D − DT , F]
‖∇F‖!2(Ω)

≤ ‖B‖‖∇(D − DT )‖!2(Ω),

while the choice F = D − DT therein gives

U‖∇(D − DT )‖2
!2(Ω) ≤ B[D − DT , D − DT ] = 〈'T , D − DT 〉

≤ ‖'T ‖�−1(Ω)‖∇(D − DT )‖!2(Ω)

and thus the upper bound.

Remark 4.2 (role of forcing vs. role of coefficients). In addition to the two dif-
ferences between right-hand side 5 and coefficients (G, 2) mentioned in the intro-
duction of this section, a third one implicitly arises in the proof of Lemma 4.1: the
coefficients defining the bilinear form B are fixed, while the right-hand side 5 is
replaced by the residual 'T in (4.3), which varies with the mesh T .

Remark 4.3 (local lower estimate for the error). The proof of Lemma4.1 shows
that the lower bound of the error hinges on the continuity of the bilinear form B.
Since the evaluation of B involves only local operators, one might expect that
there are also local lower bounds. This, however, depends on the interplay of the
underlying differential operator and the choice of the test space norm. Indeed,
in the case of the Poisson problem, i.e. G = O, 2 = 0, and the test space norm
‖∇ · ‖!2(Ω), we easily see that

‖'T ‖�−1(l) ≤ ‖∇(D − DT )‖!2(l)

for any subdomain l ⊂ Ω. This local lower bound, however, does not carry over to
the general case with 2 ≠ 0, as the error function itself is bounded by its gradient
only through the global inequality in Lemma 2.2 (first Poincaré inequality). On the
other hand, endowing the test space �1

0(Ω) with the full �1-norm ‖ · ‖� 1(Ω) yields

‖'T ‖(� 1(l))∗ ≤ max{U1, ‖2‖!∞(Ω)}‖D − DT ‖� 1(l)

for any subdomain l ⊂ Ω.
In line with Carstensen et al. (2014), we shall not invoke local lower bounds to

derive convergence and rate-optimality for the error of AFEM, although they might
appear useful or even crucial in other settings.

Remark 4.4 (constants in error–residual relationship). Given the normmeas-
uring the error, i.e. the norm of the trial space, the choice of the test space norm
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is important for the ensuing constants in the error–residual relationship; see e.g.
Verfürth (2013, Sections 4.3, 4.6). To avoid related additional technicalities and
difficulties, the test space is endowed with the straightforward norm ‖∇ · ‖!2(Ω).

Lemma 4.1 establishes the first goal that was set out at the beginning of this
section. We now turn to the second one, that is, we split the residual norm
‖'T ‖�−1(Ω) into local contributions. Note that the nature of the dual norm ‖·‖�−1(Ω)
makes this task less obvious than for integral norms as in the error ‖∇(D−DT )‖!2(Ω).

We start by recalling that the definition of the Galerkin approximation DT implies
that its residual is orthogonal to the discrete trial space VT = S

=,0
T ∩ �1

0(Ω):

〈'T , F〉 = 0 for all F ∈ VT .

Let V denote the set of vertices of T and let qI ∈ S1,0
T be the hat function with

qI(H) = XHI for all vertices H ∈ V . In what follows, the partial orthogonality
〈'T , qI〉 = 0 for all I ∈ V (4.4)

will be crucial for splitting the non-local norm of the residual into local contri-
butions. The latter ones will be formulated in terms of the supports of the hat
functions, and thus to each vertex I ∈ V we associate the following subset and
submesh:

lI := supp qI =
⋃
) ∈TI

) with TI := {) ∈ T | ) 3 I}. (4.5)

These subsets, called stars, form a subdomain covering of Ω, that is, each interior
l̊I is a domain and Ω = ∪I∈V lI . The overlapping index ess supG∈Ω #{I ∈ V |
lI 3 G} of this covering is bounded by (3 + 1).

Lemma 4.5 (localization of �−1-norm). Let ℓ ∈ �−1(Ω) be an arbitrary linear
functional on �1

0(Ω).

(i) If 〈ℓ, qI〉 = 0 for all interior vertices I ∈ V ∩Ω, then
‖ℓ‖2

�−1(Ω) ≤ (3 + 1)�2
loc

∑
I∈V
‖ℓ‖2

�−1(lI ),

where �loc depends only on the shape regularity coefficient f from (3.9)
and 3.

(ii) For any subdomain covering (l8)8∈� ofΩwith finite overlapping index�ovrl :=
ess supG∈Ω #{8 ∈ � | l8 3 G}, we have∑

8∈�
‖ℓ‖2

�−1(l8)
≤ �ovrl‖ℓ‖2�−1(Ω).

Theorem 3.5 of Blechta, Málek and Vohralík (2020) generalizes Lemma 4.5 to
the,−1

? -norm, 1 < ? < ∞. Lemma 4.66 below provides an alternative localization
with different local norms.
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Proof. 1 We start by showing statement (i). Thanks to the orthogonality of ℓ, we
may write

〈ℓ, F〉 =
〈
ℓ, F −

∑
I∈V

2IqI

〉
,

where any 2I is an arbitrary constant if I ∈ V ∩ Ω is an interior vertex and 0 if
I ∈ V ∩ mΩ is a boundary vertex. Using the partition of unity

∑
I∈V qI = 1 on Ω,

we split the new test function

F −
∑
I∈V

2IqI =
∑
I∈V

(F − 2I)qI

into local contributions (F − 2I)qI ∈ �1
0(lI), I ∈ V . The constant 2I allows us

to counter the gradient generated by the cut-off with qI . Indeed, the product rule,
0 ≤ qI ≤ 1 and |∇qI | ≤ �(3)fℎ−1

) on an element ) ∈ T lead to

‖∇((F − 2I)qI)‖!2(lI ) ≤ ‖qI∇(F − 2I)‖!2(lI ) + ‖(F − 2I)∇qI ‖!2(lI )

≤ ‖qI ‖!∞(lI )‖∇F‖!2(lI ) + ‖∇qI ‖!∞(lI )‖F − 2I ‖!2(lI )

≤ ‖∇F‖!2(lI ) + �(3)f
(

max
) ⊂lI

ℎ−1
)

)
‖F − 2I ‖!2(lI ).

If we choose 2I =
⨏
lI
F for interior vertices I ∈ V ∩ Ω, then Lemma 2.3 (second

Poincaré inequality) on reference stars implies

‖F − 2I ‖!2(lI ) . diamlI ‖∇F‖!2(lI ).

The same inequality follows for boundary vertices I ∈ V∩mΩ thanks to the fact that
F vanishes on at least one face of mlI ∩ mΩ. Combining this with diamlI . ℎ)
for ) ⊂ lI , we thus obtain, for all local contributions, the stability bound

‖∇((F − 2I)qI)‖!2(lI ) ≤ �loc‖∇F‖!2(lI ), (4.6)

where the constant �loc depends only on 3 and f. Hence

〈ℓ, F〉 =
〈
ℓ, F −

∑
I∈V

2IqI

〉
=

∑
I∈V
〈ℓ, (F − 2I)qI〉

gives

|〈ℓ, F〉| ≤ �loc
∑
I∈V
‖ℓ‖�−1(lI )‖∇F‖!2(lI )

≤
√
3 + 1�loc

(∑
I∈V
‖ℓ‖2

�−1(lI )

)1/2
‖∇F‖!2(Ω)

and (i) is proved.
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2 We verify statement (ii). For each index 8 ∈ �, define E8 ∈ �1
0(l8) ⊂ �1

0(Ω) by∫
l8

∇E8 · ∇F = 〈ℓ, F〉 for all F ∈ �1
0(l8).

We obtain
〈ℓ, E8〉 = ‖∇E8 ‖2!2(l8)

= ‖ℓ‖2
�−1(lI )

by arguments similar to those in the proof of Lemma 4.1 (error and residual). The
sum E :=

∑
8∈� E8 is in �1

0(Ω) with

‖∇E‖2
!2(Ω) ≤

∫
Ω

����∑
8∈�G
∇E8(G)

����
2

dG ≤
∫
Ω

#�G
∑
8∈�G
|∇E8(G)|2 dG

≤ �ovrl
∑
8∈�
‖∇E8 ‖2!2(l8)

= �ovrl
∑
8∈�
‖ℓ‖2

�−1(lI ),

where we denote the set of active indices in G ∈ Ω by �G := {8 ∈ � | l8 3 G}.
Inserting this in∑

8∈�
‖ℓ‖2

�−1(lI ) =
∑
8∈�
〈ℓ, E8〉 = 〈ℓ, E〉 ≤ ‖ℓ‖�−1(lI )‖∇E‖!2(Ω)

establishes the desired inequality.

Thanks to the partial orthogonality (4.4) and the properties of the star covering
lI , I ∈ V , we readily obtain the following statement.

Corollary 4.6 (star localization of residual norm). The �−1-norm of the resid-
ual can be split into local contributions on stars:

1
3 + 1

∑
I∈V
‖'T ‖2�−1(lI ) ≤ ‖'T ‖2�−1(Ω) ≤ (3 + 1)�loc

∑
I∈V
‖'T ‖2�−1(lI ),

where �loc depends only on 3 and the shape regularity coefficient f.

The upper bound of the global residual norm in Corollary 4.6 employs the stars
lI , I ∈ V , as local domains. The next remark assesses this choice by discussing
conceivable alternatives in terms of elements and domains of the type

l� :=
⋃
) ∈T�

) with T� := {) ∈ T | ) ⊃ �}, (4.7)

where � ∈ F is an interior face of T .

Remark 4.7 (star localization is minimal for 3 ≥ 2). The use of stars in the loc-
alization of the global residual norm is a sort of minimal choice, except for the
special case 3 = 1 where elements can be used.

• If 3 = 1, point values are defined for functions in �1(Ω). This allows an
upper bound with elements instead of stars as local domains. In fact, choosing
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2I = F(I) for all interval endpoints, the function
∑
I∈V 2IqI amounts to the

Lagrange interpolant �T F ∈ S1,0
T ∩�1

0(Ω), and we have (F − �T F)|� ∈ �1
0(�)

with ‖∇(F − �T F)‖!2(� ) . ‖∇F‖!2(� ) for any interval � of the mesh T .
Arguing as in the proof of Lemma 4.5(i) then gives

‖'‖2
�−1(Ω) .

∑
� ∈T
‖'‖2

�−1(� ).

• Anupper boundwhere the stars are replaced by elements) ∈ T cannot hold in
general because it does not account for face-supported residual contributions.
For example, consider our setting with

3 ≥ 2, G = O, 2 = 0, 〈 5 , F〉 =
∫
�
@F, F ∈ �1

0(Ω),

where � ∈ F and @ ≠ 0 is !2-orthogonal to P=(�). Then we have D ≠ 0 = DT
and therefore ‖'T ‖�−1(Ω) > 0 but ‖'T ‖�−1() ) = 0 for any ) ∈ T .

• An upper bound with pairsl� , � ∈ F , instead of stars cannot hold in general.
This can be shown by considering our setting with

3 = 2, G = O, 2 = 0, 〈 5Y , F〉 = 1
cY2

∫
�Y(I)

F, F ∈ �1
0(Ω),

where I ∈ V is a vertex of a suitable triangulation T , for Y ↘ 0. The
limiting right-hand side is the Dirac measure in I, which, formally, is not
seen by any ‖ · ‖�−1(l� ), � ∈ F . We thus have ‖'T ‖�−1(Ω) → ∞ but∑
� ∈F ‖'T ‖�−1(l� ) . 1; see Tantardini, Veeser and Verfürth (2024).

The bisection method for mesh refinement is element-oriented. It is therefore
advantageous to dispose of an element-indexed reformulation of the localization in
Corollary 4.6. For that purpose, we recall the notion of patches,

l) ≔
⋃
) ′∈T
) ′∩) ≠∅

) ′, (4.8)

and may use the following equivalence.

Lemma 4.8 (localization re-indexing). For any functional ℓ ∈ �−1(Ω), we have∑
I∈V
‖ℓ‖2

�−1(lI ) ≈
∑
) ∈T
‖ℓ‖2

�−1(l) ),

where the hidden constants depend on 3 and the shape regularity coefficient f.

Note that, in contrast to the localization itself, its re-indexing does not require
any orthogonality such as 〈ℓ, qI〉 = 0 for all I ∈ V ∩Ω.
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Proof. For any vertex I ∈ V , there is an element ) ∈ T containing I. Then the
inclusion lI ⊂ l) yields the inequality ‖ℓ‖�−1(lI ) ≤ ‖ℓ‖�−1(l) ). Hence∑

I∈V
‖ℓ‖2

�−1(lI ) ≤
∑
) ∈T
‖ℓ‖2

�−1(l) ).

To show the converse inequality, let) ∈ T be any element and F ∈ �1
0(l) ). Given

any vertex I ∈ V ∩ l) , Lemma 2.2 (first Poincaré inequality) on l) implies the
stability bound

‖∇(FqI)‖!2(lI∩l) ) ≤ ‖qI∇F‖!2(lI∩l) ) + ‖F∇qI ‖!2(lI∩l) )

≤ ‖∇F‖!2(lI∩l) ) + �(3, f) max
) ⊂lI∩l)

ℎ−1
) ‖F‖!2(l) )

. ‖∇F‖!2(l) ).

We thus derive

〈ℓ, F〉 =
∑

I∈V∩l)
〈ℓ, FqI〉

≤
∑

I∈V∩l)
‖ℓ‖�−1(lI∩l) )‖∇(FqI)‖!2(lI∩l) )

.

( ∑
I∈V∩l)

‖ℓ‖�−1(lI )

)
‖∇F‖!2(l) )

and, since #(V ∩ l) ) is bounded in terms of the shape regularity coefficient f,

‖ℓ‖2
�−1(l) ) .

∑
I∈V∩l)

‖ℓ‖2
�−1(lI ).

Summing over ) ∈ T , and taking into account that #{) ∈ T | l) 3 I} is again
bounded in terms of f, concludes the proof.

4.2. Standard residual estimator and its flaws

Exploiting the results of Section 4.1, we derive an a posteriori upper bound of the
error in terms of the standard residual estimator and discuss its flawed sharpness.
This discussion will serve as the starting point for an improved a posteriori analysis
in the following sections.
The standard residual estimator needs the additional regularity

5 ∈ !2(Ω) and G ∈ ,1
∞(Ω;R3×3) (4.9)

for the data in our model problem (2.5). Given the Galerkin approximation DT
from (4.1), it may be defined as follows (see e.g. Verfürth 2013):

E std
T := E std

T (DT ,D) :=
(∑
) ∈T

E std
T (DT ,D, ))2

)1/2
(4.10a)
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with the local indicators

E std
T (DT ,D, ))2 := ℎ) ‖ 9(DT )‖2

!2(m) \mΩ) + ℎ2
) ‖A(DT )‖2

!2() ), (4.10b)

where

• the scaling factor ℎ) = |) |1/3 measures the size of the element ) ∈ T ,

• 9(E) = 9T (E) is the jump residual given face-wise for E ∈ VT by

9(E)|� := ([[G∇E]] · n)1)|� := ((G∇E)|)1 − (G∇E)|)2) · n)1

= (G∇E)|)1 · n)1 + (G∇E)|)2 · n)2 ,

where � ∈ F , )1, )2 ∈ T are such that � = )1 ∩ )2, n)8 denotes the outer
normal of m)8 , 8 = 1, 2, and

• A(E) = AT (E) is the element residual, a function given for E ∈ VT by

A(E)|) := ( 5 − 2E + div(G∇E))|)
on any element ) ∈ T .

Note that the definition itself already uses the extra regularity (4.9). For notational
simplicity, we shall write 9 and A instead of 9(DT ) and A(DT ) for the rest of this
section. Also, for any interior face � ∈ F , we have � = )1 ∩ )2 with )1, )2 ∈ T .
If n)8 denotes the outer normal of m)8 , 8 = 1, 2, we set n� = n)1 . This particular
choice of n� is irrelevant as it does not affect the following definition of normal
jump of any vector-valued field g with well-defined trace on �:

[[g]] · n� ≔ g |)1 · n)1 + g |)2 · n)2 .

Theorem 4.9 (upper bound with standard residual estimator). Suppose the ad-
ditional regularity (4.9) holds. Then the error is bounded by the standard residual
estimator:

‖∇(D − DT )‖!2(Ω) . E std
T ,

where the hidden constant depends on the coefficients (G, 2), the shape regularity
coefficient f, and 3.

Proof. As Lemma 4.1 (error and residual) and Corollary 4.6 (star localization of
residual norm) imply

‖∇(D − DT )‖2
!2(Ω) . ‖'T ‖2�−1(Ω) .

∑
I∈V
‖'T ‖2�−1(lI )

and #{I ∈ V | lI ⊃ )} = 3 + 1, it suffices to establish

‖'T ‖2�−1(lI ) .
∑
) ⊂lI

E std
T (DT , 5 , ))2 (4.11)
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for any vertex I ∈ V . To this end, let F ∈ �1
0(lI). The extra regularity 5 ∈ !2(Ω)

and G ∈ ,1∞(Ω;R3×3) allows for piecewise integration by parts, which leads to the
following !2-representation of the residual:

〈'T , F〉 =
∑
� 3I

∫
�
9F +

∑
) 3I

∫
)
AF.

In order to bound the right-hand side suitably, we use the scaled trace theorem

‖F‖2
!2(� ) ≤

|� |
|) | ‖F‖

2
!2() ) +

2
3

|� | diam)

|) | ‖F‖!2() )‖∇F‖!2() ) (4.12)

for any face � ⊂ m) (see e.g. Veeser and Verfürth 2009, Corollary 4.5), the
inequality

‖F‖!2(lI ) ≤ diamlI ‖∇F‖!2(lI )

from Lemma 2.2 (first Poincaré inequality), and the two geometric relationships

diamlI . ℎ) whenever ) ⊂ lI , |� | diam) . |) | for � ⊂ m) .
We thus obtain

|〈'T , F〉| .
(∑
) 3I

ℎ) ‖A ‖!2() ) + ℎ1/2
)

∑
� 3I,� ⊆)

‖ 9 ‖!2(� )

)
‖∇F‖!2(lI ).

As the number of faces and elements in the star lI is bounded in terms of the
shape regularity coefficient f, we arrive at the desired bound (4.11), and the proof
is finished.

Remark 4.10 (alternative derivation of upper bound). The upper bound for the
standard residual estimator in Theorem 4.9 is often derived with a suitable inter-
polation operator, bypassing the localization of the �−1-norm in Lemma 4.5. That
approach is useful for the proof of Theorem 4.48 below and is presented therein.
Here we opted for using the localization of the �−1-norm in order to facilitate
the comparison with the following subsections. The approach at hand is also
convenient to keep the ensuing constants small; see Veeser and Verfürth (2009).

An important question is the sharpness of the upper bound in Theorem 4.9. The
so-called a posteriori lower bounds provide some answer by trying to bound the
estimator in terms of the error. For many estimators, however, there arise additional
terms of an oscillatory nature. The following remark justifies the presence of such
terms for the case at hand.

Remark 4.11 (non-asymptotic overestimation). The lower bound

E std
T . ‖∇(D − DT )‖!2(Ω),

which would imply equivalence of error and estimator, cannot hold in general for
the following reason.
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Fix amesh T and a functional 5 ∈ �−1(Ω)\!2(Ω) and consider a sequence ( 5=)=
of functions in !2(Ω) with lim=→∞ ‖ 5 − 5=‖�−1(Ω) = 0. Then the sequences (D=)=
and (DT ,=)= of exact and Galerkin solutions on a fixed mesh T remain bounded.
The error sequence

(‖∇(D= − DT ,=)‖!2(Ω)
)
=
is therefore also bounded, while the

standard residual estimator E std
T (DT ,=, 5=)→ ∞ becomes unbounded. Note that in

the special case 5 = − div(G∇E) + 2E with E ∈ VT , we even have for the error
lim=→∞ ‖∇(D= − DT ,=)‖!2(Ω) = 0.
In other words, in certain cases, the standard residual estimator bounds almost

0 by almost ∞ and a lower bound has to involve an additional term that cannot be
bounded by the error in general.

We shall define these additional terms with the help of the following local best
approximations. Let be an element or face of T and< ∈ N0 a polynomial degree.
Given E ∈ !2( ), let Π E := Π< E denote the best approximation in P<( ) with
respect to the norm ‖ · ‖!2( ). It is convenient to allow also for < = −1 with
P−1( ) = {0} and Π(−1)

 E = 0. Writing D = (G, 2, 5 ) for the data in problem (2.5),
the (<1, <2)-oscillation for the standard residual estimator is then given by

oscstd
T (DT ,D)2 :=

∑
) ∈T

oscstd
T (DT ,D, ))2, (4.13a)

with the local indicators

oscstd
T (DT ,D, ))2 := ℎ2

) ‖A −Π<2
) A ‖2

!2() ) + ℎ)
∑

� ⊂m) \mΩ
‖ 9 −Π<1

� 9 ‖2
!2(� ). (4.13b)

Proposition 4.12 (partial lower bound). If 5 ∈ !2(Ω) and G ∈ ,1∞(Ω;R3×3),
the standard residual estimator is bounded by error and oscillation:

E std
T . ‖∇(D − DT )‖!2(Ω) + oscstd

T (DT ,D),

where the hidden constant depends on 3, the coefficients G and 2, the shape
regularity coefficient f as well as the oscillation degrees (<1, <2).

Proof. In light of Lemma 4.1 (error and residual) and Corollary 4.6 (star local-
ization of residual norm), we may establish the claimed bound by bounding each
indicator with a corresponding local residual norm. To this end, we shall consider
here only the case of the oscillation degrees (<1, <2) = (0, 0). The general case
can be verified along the same lines with additional technicalities, and is treated in
the proof of Lemma 4.28 below in a slightly different context.

1 We start by bounding an arbitrary element residual ℎ) ‖A ‖!2() ), ) ∈ T , in terms
of some local residual norm. To this end, we may try to invert the following
consequence of Lemma 2.2 (first Poincaré inequality):

‖'T ‖�−1() ) = sup
F ∈� 1

0 () )

|〈'T , F〉|
‖∇F‖!2() )

= sup
F ∈� 1

0 () )

∫
)
AF

‖∇F‖!2() )
. ℎ) ‖A ‖!2() ),
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the residual norm of which avoids involving the jump residual. We thus actually
ask for an equivalence of two different smoothness norms. Such an equivalence
can hold only for special A , e.g. from a finite-dimensional space. Furthermore,
writing ‖A ‖2

!2() ) =
∫
)
A(A j) ) suggests the choice F = A j) , which, however, is

not admissible for the residual 'T as neither A nor the characteristic function j)
belong to �1

0(Ω). We shall overcome these issues by replacing A with its mean
value Π0

) A and j) with the element bubble

q) := (3 + 1)(3+1)
∏
I∈V∩)

qI . (4.14)

Thanks to
∫
)
q) = �3 |) | and the inverse estimate ‖∇F‖!2() ) . ℎ

−1
) ‖F‖!2() ) for

F = (Π0
) A)q) ∈ �1

0()) ∩ P3+1()), we derive

‖Π0
) A ‖!2() ) .

∫
)

(Π0
) A)F ≤ ‖(Π0

) A)j) ‖�−1() )‖∇F‖!2() )

. ℎ−1
) ‖(Π0

) A)j) ‖�−1() )‖F‖!2() )

≤ ℎ−1
) ‖(Π0

) A)j) ‖�−1() )‖Π0
) A ‖!2() ),

whence
ℎ) ‖Π0

) A ‖!2() ) . ‖(Π0
) A)j) ‖�−1() ). (4.15)

This implies the desired partial lower bound for the element residual by a perturb-
ation argument and the inequality ‖A − Π0

) A ‖�−1() ) . ℎ) ‖A − Π0
) A ‖!2() ), which

follows from another application of Lemma 2.2 (first Poincaré inequality):

ℎ) ‖A ‖!2() ) ≤ ℎ) ‖Π0
) A ‖!2() ) + ℎ) ‖A − Π0

) A ‖!2() )

. ‖(Π0
) A)j) ‖�−1() ) + ℎ) ‖A − Π0

) A ‖!2() )

. ‖A j) ‖�−1() ) + ℎ) ‖A − Π0
) A ‖!2() )

= ‖'T ‖�−1() ) + ℎ) ‖A − Π0
) A ‖!2() ). (4.16)

2 We bound an arbitrary jump residual ‖ 9 ‖!2(� ), � ∈ F , in a similar manner.
Note that here an interference of the element residual is unavoidable because the
support of non-trivial test functions has non-empty interior. We thus may try to
insert

‖'T ‖�−1(l� ) = sup
F ∈� 1

0 (l� )

∫
�
9F +

∫
l�
AF

‖∇F‖!2(l� )
. ℎ1/2

� ‖ 9 ‖!2(� ) +
∑
) ⊂l�

ℎ) ‖A ‖!2() ),

where the scaled trace theorem (4.12) is also used. To this end, we write X� for the
Dirac measure of the face �,

q� := 33
∏
I∈V∩�

qI (4.17)

for the face bubble of �, and choose the test function F = (Π0
� 9)q� ∈ �1

0(l� ).
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Using in addition ‖F‖!2(l� ) . ℎ
1/2
� ‖F‖!2(� ) and (4.15), we deduce

‖Π0
� 9 ‖2!2(� ) .

∫
�

(Π0
� 9)F +

∑
) ⊂l�

∫
)

(Π0
) A)F −

∑
) ⊂l�

∫
)

(Π0
) A)F

≤




(Π0

� 9)X� +
∑
) ⊂l�

(Π0
) A)j)






�−1(l� )

‖∇F‖!2(l� )

+
∑
) ⊂l�

‖Π0
�A ‖!2() )‖F‖!2() )

.





(Π0
� 9)X� +

∑
) ⊂l�

(Π0
) A)j)






�−1(l� )

ℎ−1/2
� ‖Π0

� 9 ‖!2(� ),

whence

ℎ1/2
� ‖Π0

� 9 ‖2!2(� ) .





(Π0
� 9)X� +

∑
) ⊂l�

(Π0
) A)j)






�−1(l� )

. (4.18)

Passing to the proper jump residual 9 , we arrive at the partial lower bound for the
jump residual:

ℎ1/2
� ‖Π0

� 9 ‖!2(� ) . ‖'T ‖�−1(l� )

+ ℎ1/2
� ‖ 9 − Π0

� 9 ‖!2(� ) +
∑
) ⊂l�

ℎ) ‖A − Π0
) A ‖!2() ). (4.19)

3 We square the bounds (4.16) and (4.19) from the previous steps and sum them,
respectively, over all elements and faces to conclude the claimed partial lower
bound with the help of Lemma 4.5(ii) (localization of �−1-norm) and Lemma 4.1
(error and residual).

The significance of Proposition 4.12 (partial lower bound) strongly depends on
the choice of the polynomial degrees (<1, <2) in the oscillation from (4.13). The
following two remarks address this important aspect.

Remark 4.13 (oscillation degrees: asymptotics). It is desirable that, under re-
finement, the oscillation in Proposition 4.12 (partial lower bound) converges to 0
at least as fast as the error. The maximal convergence order of the error under
uniform refinement is ‖∇(D − DT )‖!2(Ω) = $(ℎ=) as ℎ→ 0. In view of the scaling
factors and derivative orders appearing in jump and element residual, we are thus
led to require

<1 ≥ = − 1 and <2 ≥ = − 2.

One might hope that strict inequalities lead to higher order. Note, however, that
since oscstd involves in general both discrete solution DT and dataD = (G, 2, 5 ), this
will not be guaranteed without additional assumptions. Furthermore, increasing
<1 and <2 entails bigger hidden constants in the lower bounds (4.15) and (4.18),
as these bounds cannot hold for arbitrary !2-functions. Consequently, a potentially
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higher asymptotic speed of the oscillation oscstd comes with a bigger constant in
front of it and therefore with diminished non-asymptotic significance.

Remark 4.14 (oscillation degrees: data oscillation reduction). In the particu-
lar case of the Poisson equation, i.e. G = O and 2 = 0, and linear elements,
i.e. = = 1, the oscillation with the degrees (<1, <2) = (0, 0) reduces to the data
oscillation

oscstd
T (DT ,D)2 =

∑
) ∈T

ℎ2
) ‖ 5 − Π0

) 5 ‖2!2() );

it depends only on the data, here the right-hand side 5 . Note also that here the
regularity of 5 is determined by the regularity of the exact solution D.
For elements with degree = ≥ 2, the choices (<1, <2) = (=−1, =−2) ensure that

for � ∈ F ,
Π=−1
� ([[∇DT ]] |� · n� ) = [[∇DT ]] |� · n� and Π=−2

) (ΔDT |) ) = ΔDT |) , (4.20)

and so, again, oscillation reduces to data oscillation in 5 :

oscstd
T (DT ,D)2 =

∑
) ∈T

ℎ2
) ‖ 5 − Π=−2

) 5 ‖2
!2() ).

If we add a reaction term, i.e. we consider G = O and 2 = 1, we can again obtain
the reduction to data oscillation by increasing <2 to =.

For a more general operator with piecewise polynomial coefficients

G ∈ (S=G,−1
T

)3×3 and 2 ∈ S=2 ,−1
T ,

the choice
(<1, <2) = (=� + = − 1,max{=2 + =, =� + = − 2}) (4.21)

again reduces oscstd to data oscillation in 5 .
Finally, for a general operator without piecewise polynomial coefficients (G, 2),

a reduction to data oscillation with piecewise polynomial best approximations as
before is not possible. The argument in Remark 4.13 suggests approximating the
general coefficients with piecewise polynomial coefficients satisfying

=G = = − 1 and =2 = = − 1.

As we shall see below in Section 4.8, the choice (4.21) with these values allows us
to bound oscstd in terms of ‖∇DT ‖!2(Ω), which is controlled by stability, and data
oscillation terms involving 5 and the coefficients G and 2. Note, however, that the
nature of these data oscillation terms differs from the preceding reductions: for
example, the regularity of the coefficients G and 2 is not determined by the exact
solution D.

In light of Remark 4.13 (oscillation degrees: asymptotics), one might hope
that the overestimation described in Remark 4.11 (non-asymptotic overestimation)
disappears under refinement. This can be ensured under suitable regularity as-
sumption but is not guaranteed in general, as the following remark reveals.
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Remark 4.15 (asymptotic overestimation). Considering a variant of the stand-
ard residual estimator that allows for 5 ∈ �−1(Ω) and adaptive refinement, Cohen,
DeVore and Nochetto (2012, Section 6.4) give an example where the error con-
verges asymptotically faster than the estimator; see also Kreuzer and Veeser (2021,
Lemma 21).

Having recognized the above flaws of the standard residual estimator, let us
conclude with an observation that will be the departure point of an improved
analysis.

Corollary 4.16 (equivalence for discrete data). Suppose all data D = (G, 5 , 2)
of problem (2.5) are piecewise polynomial, that is, there are =G, =2 , = 5 ∈ N0 such
that

G ∈ (S=G,−1
T

)3×3
, 2 ∈ S=2 ,−1

T and 5 ∈ S= 5 ,−1
T .

Then error and standard residual estimator are equivalent:

‖∇(D − DT )‖!2(Ω) ≈ E std
T ,

where the hidden constants depend only on 3, the coefficients G and 2, the shape
regularity coefficient f, and the degrees =G, =2 and = 5 .

Proof. The upper bound follows from Theorem 4.9 (upper bound with standard
residual estimator), while Proposition 4.12 (partial lower bound) with

(<1, <2) = (=G + = − 1,max{=G + = − 2, =2 + =, = 5 })
yields the lower bound.

Motivated by the above discussion, one may define a variant of the standard
residual estimator, characterized by a splitting into two different parts. More
precisely, choosing (<1, <2) according to Remark 4.14 (oscillation degrees: data
oscillation reduction), one may replace the local indicators in (4.10b) with

E std
T (DT , 5 , ))2 := [std

T (DT , ))2 + oscstd
T (DT ,D, ))2, (4.22a)

where the first part, the so-called PDE indicator, is given by

[std
T (DT , ))2 := ℎ2

) ‖Π<2
) A ‖2

!2() ) + ℎ)
∑

� ⊂m) \mΩ
‖Π<1

� 9 ‖2
!2(� ), (4.22b)

while the second part corresponds to the local oscillation from (4.13b); compare
with Verfürth (2013, Theorems 1.5 and 4.7). In this way,

• the PDE indicators are computable (in terms of the Galerkin approximation
DT and the local projections),
• the oscillation indicators typically have to be approximated by numerical
quadrature,
• both types of indicators are, in general, not dominated by the error.
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4.3. Discrete functionals and a posteriori error analysis

This section introduces the notion of discrete functionals and individuates prop-
erties in their approximation that are useful in a posteriori error analysis. The
realization of these properties distinguishes the subsequent approach, which is
adapted from Kreuzer and Veeser (2021) and Kreuzer et al. (2024).

The notion of discrete functionals and its local counterparts are of interest for at
least two reasons. Thefirst one is that their�−1-normcan be rather easily quantified,
as we shall see in Corollary 4.30 below. This property is related to Corollary 4.16
(equivalence for discrete data), which can be read in the followingway: the standard
residual estimator is equivalent to the error whenever the residual is a discrete
functional. The second reason lies in the observation that an important part of the
residual, namely the application of the differential operator to a discrete function, is
itself of discrete nature. This feature is partially captured by the following definition
of discrete functionals with polynomial densities and is discussed in Remark 4.18.

Definition 4.17 (discrete functionals and meshed subdomains). For <1 ∈ N0,
<2 ∈ N0 ∪ {−1}, let FT := F(T ) := F<1,<2(T ) denote the subspace{

ℓ ∈ �−1(Ω) | for all F ∈ �1
0(Ω), 〈ℓ, F〉 =

∑
� ∈F

∫
�
@�F +

∑
) ∈T

∫
)
@)F

with fixed @� ∈ P<1(�), @) ∈ P<2())
}

of discrete functionals, i.e. functionals that are given by piecewise polynomial
densities over elements and interior faces. We call (<1, <2) the degrees of the
discrete functionals.
A set l is a T -meshed subdomain if it is a subdomain of Ω and it is triangulated

by a submesh Tl ⊂ T , that is, we have l = ∪) ∈Tl) . A functional ℓ ∈ �−1(Ω)
is then discrete in the meshed subdomain l whenever ℓ |� 1

0 (l) ∈ F(Tl). Here the
faces

Fl ≔ {� ∈ F | � ∩ l ≠ ∅, � ⊄ ml}
involved in F(Tl) are interior to l; for example, the subspaces F({)}), ) ∈ T , do
not involve any faces. In accordance with (4.5), we use the abbreviations TI and
FI for TlI and FlI .

Alternatively, the local space F(Tl) can be obtained from the global space F(T )
by restriction:

F(Tl) = F(T )|� 1
0 (l) :=

{
ℓ |� 1

0 (l) | ℓ ∈ F(T )
}
. (4.23)

Remark 4.18 (differential operator and discrete functionals). The image of the
finite element space VT under the linear differential operator − div(G∇·) + 2·
is again a finite-dimensional space. For differential operators with piecewise
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polynomial coefficients G and 2, the above notion captures this by the property
that the application of such operators to discrete functions E ∈ VT yields discrete
functionals. Indeed, if

G ∈ (S=G,−1
T

)3×3 and 2 ∈ S=2 ,−1
T

with =G, =2 ∈ N0, piecewise integration by parts gives the representation∫
Ω
G∇E · ∇F + 2EF =

∑
� ∈F

∫
�
[[G∇E]] · n�F +

∑
) ∈T

∫
)

(2E − div(G∇E))F,

(4.24)

where, for any interior face � ∈ F and any element ) ∈ T ,

[[G∇E]] · n� ∈ P<1(�), 2E − div(G∇E) ∈ P<2())

with <1 = =G + = − 1 and <2 = max{=G + = − 2, =2 + =}. Note, however, that not
every functional in F<1,<2(T ) can be written in the form of (4.24). In fact, as the
representation of a discrete functional is made up of !2-scalar products on domains
that are mutually disjoint or of different dimension, we have

dimF<1,<2(T ) = #F dimP<1 + #T dimP<2 , (4.25)

which is strictly greater than dimVT . This enlargement, which is implicitly used
in the proof of Proposition 4.12 (partial lower bound), turns out to be convenient
also in the constructive approximation of discrete functionals.

In view of the aforementioned properties of discrete functionals, we may split
the residual into a discrete and a non-discrete part. Splitting the standard residual
estimator in the alternative local indicators (4.22) is in a similar spirit. To see this,
we introduce ΠT ℓ ∈ �−1(Ω) given by

〈ΠT ℓ, F〉 :=
∑
� ∈F

∫
�

(
Π<1
� 6

)
F +

∑
) ∈T

∫
)

(
Π<2
) 5

)
F, F ∈ �1

0(Ω), (4.26)

for all ℓ ∈ �−1(Ω) admitting the representation

〈ℓ, F〉 =
∑
� ∈F

∫
�
6F +

∑
) ∈T

∫
)
5 F, F ∈ �1

0(Ω),

with suitable density functions 6 and 5 . Then the splitting of the alternative
indicators (4.22) corresponds to writing

'T = ΠT 'T + (� − ΠT )'T . (4.27)

Moreover, Remark 4.14 (oscillation degrees: data oscillation reduction) discusses
conditions for the identity

(� − ΠT )'T = 5 − ΠT 5 , (4.28)
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which follows from the property thatΠT reproduces the functionals in Remark 4.18
(differential operator and discrete functionals); comparewith (4.20), which in terms
of ΠT reads ΠT (ΔDT ) = ΔDT , where Δ is now the distributional Laplacian.
The fact that the definition of ΠT requires the extra regularity 5 ∈ !2(Ω) and

G ∈ ,1∞(Ω;R3×3) not only excludes applications but, in light of Remark 4.11
(non-asymptotic overestimation), entails overestimation. To circumvent this flaw,
we therefore aim to construct a new approximation operator %T that is defined for
all functionals ℓ ∈ �−1(Ω). Furthermore, we want this operator to be a projection
onto FT so that the counterpart

(� − %T )'T = 5 − %T 5
of (4.28) holds under the same conditions.
To summarize, our plan is to develop a quasi-optimal a posteriori error analysis

by constructing a locally computable linear projection

%T : �−1(Ω)→ FT ⊂ �−1(Ω)

onto the discrete functionals that induces a splitting

'T = %T 'T + (� − %T )'T (4.29)

of the residual into a discretized residual %T 'T , which can be easily quantified,
as well as an oscillatory residual (� − %T )'T , which under the conditions of
Remark 4.18 (differential operator and discrete functionals) reduces to an oscillation
of the right-hand side 5 .
The proof of an upper bound of the error will then involve a triangle inequality

applied to the right-hand side of (4.29). The following remark provides criteria to
prevent overestimation in such a context, and is followed by a comparison of the
two approaches represented by (4.27) and (4.29).

Remark 4.19 (avoiding overestimation). Overestimation can often be avoided
by ensuring two relatively simple conditions. In order to discuss them informally,
consider the model inequality

| · | ≤ | · |1 + | · |2, (4.30)

where | · |, | · |8 , 8 = 1, 2, are seminorms and denote the domain and kernel of | · |,
respectively, by dom | · | and ker | · |, etc.
The first condition, the kernel condition, is that zero is not overestimated:

ker | · | ⊂ ker | · |1 ∩ ker | · |2. (4.31a)

The second condition, the domain condition, is that a finite value is never bounded
by ∞, or in other words, still informal, if the evaluation of the left-hand side is (or
can be uniquely defined to be) a finite value, the same holds for the right-hand side:

dom | · | ⊂ dom | · |1 ∩ dom | · |2. (4.31b)

Kreuzer et al. (2024) provide a precise version of the domain condition (4.31b),
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showing that, given inequality (4.30), the two conditions (4.31) are also sufficient
for equivalence, and discuss further applications of this viewpoint.

In order to illustrate the application of Remark 4.19, let us consider only the
special case of the Poisson equation, i.e. G = O, 2 = 0, and linear elements, i.e.
= = 1. We start with the upper bound in terms of the standard residual estimator in
Theorem 4.9 and view it as a function of the right-hand side 5 . Then the domain
condition is violated as the left-hand side is defined for any 5 ∈ �−1(Ω), while
the right-hand side is defined only for 5 ∈ !2(Ω). Also, the kernel condition is
not verified: the left-hand side vanishes whenever 5 = −ΔE for some E ∈ VT ,
while the right-hand side vanishes only for 5 = 0. The splitting in the alternative
local indicators (4.22) does not worsen this situation, that is, it does not add
further instances in which kernel and domain condition are missed. Note, however,
that the oscillation indicators alone are in conflict with the domain condition and
therefore another PDE indicator cannot cure the overestimation. Finally, for the
outlined approach, the splitting (4.29) and the required properties for the operator
%T ensure both kernel and domain condition.

4.4. Testing discrete functionals

The �−1-projection %T onto the discrete functionals FT will be defined by means
of a Petrov–Galerkin-type approach. This section prepares its definition by in-
dividuating a suitable test space V+T . The key property of V+T is that the dual
pairing 〈·, ·〉 in �−1(Ω) is non-degenerate on the product FT × V+T . Doing so, the
degrees (<1, <2) of the discrete functionals will be parameters that are omitted in
the notation. The construction of the test spaceV+T proceeds in two steps. First, we
locally associate to the degrees of freedom in FT certain functions on Ω. For the
degrees of freedom on the skeleton, this will involve a suitable extension operator.
Second, we turn the ensuing functions into admissible test functions with the help
of a cut-off.

The degrees of freedom in FT are given by density polynomials over element
and faces. For an element ) ∈ T , if we extend such a density polynomial @) by
0 off ) , it is already a function on Ω. For a polynomial @� associated with a face
� ∈ F , we employ the following extension operator �� mapping a function E on
� to a function on l� , the union of all elements ) containing �.
Given such an element ) ⊂ l� , write I0, . . . , I3 for its vertices, I3 being the

one opposite to �, let

1� :=
1
3

3−1∑
8=0

I8

denote the barycentre of �, and set

(��E)(G) := E
(
q3(G)1� +

3−1∑
8=0

qI8 (G)I8
)
, G ∈ ),
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and extend by 0 off l� . Note that the definition of �� is affine-invariant and does
not depend on the enumeration of the vertices of �. The next lemma collects two
useful properties of this extension operator.

Lemma 4.20 (extending from faces). Let � ∈ F be a face. For any function
E ∈ !2(�), we have

‖��E‖!2(l� ) . ℎ
1/2
� ‖E‖!2(� ),

where ℎ� stands for the diameter of � and the hidden constant depends only on
3 and the shape regularity coefficient f. Furthermore, if E is a polynomial, then
��E is a continuous piecewise polynomial of the same degree.

Proof. 1 In view of (��E)2 = �� (E2), we may show the inequality by verifying∫
l�

��F . ℎ�

∫
�
F (4.32)

for any positive function F : � → R, which amounts to !1-stability. To this end,
we shall use a standard argument involving the following reference situation, which
slightly differs from the common one with

)3 =

{
G = (G1, . . . , G3) ∈ R3 | 0 ≤ G8 ≤ 1,

3∑
8=1

G8 ≤ 1
}

and 13 := (3+1)−1(1, . . . , 1) ∈ R3 . Let the reference face �̂ := )3−1−13−1 ⊂ R3−1

be a translation of )3−1 and let the reference simplex )̂ ⊂ R3 be the convex hull of
�̂ × {0} and the canonical basis vector 43 = (0, . . . , 0, 1) ∈ R3 . The barycentre of
�̂ × {0} is then the origin in R3 and the barycentric coordinate of the vertex 43 of
)̂ is G3 . Fixing an element ) with ) ⊂ l� , let �) : )̂ → ) denote a bi-affine map
sending vertices of �̂ × {0} into vertices of � and 43 into the vertex of ) opposite
to �, and write �� : �̂ × {0} → � for the restriction �) |�̂×{0}. The pullbacks of
��F and F satisfy

�∗) (��F)(G ′, G3) = �∗�F(G ′, 0)

for all G = (G ′, G3) ∈ )̂ = {H = (H′, H3) ∈ �̂ ×R | 0 ≤ H3 ≤ 1− |H′ + 13−1 |1}, where
|I′ |1 =

∑3−1
8=1 |I′8 | stands for the ℓ1-norm in R3−1. Consequently, the transformation

rule, the fact that the Jacobians of �) and �� are constant, the Fubini theorem,
F ≥ 0, and |�̂ |/|)̂ | = |)3−1 |/|)3 | = 3 yield∫

)
��F =

|) |
|)̂ |

∫
)̂
�∗) (��F) =

|) |
|)̂ |

∫
�̂

∫ 1−|G′+13−1 |1

0
�∗�F(G ′, 0) dG3 dG ′

≤ |) |
|)̂ |

∫
�̂
�∗�F(·, 0) =

|) | |�̂ |
|)̂ | |� |

∫
�
F = 3

|) |
|� |

∫
�
F.
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Since the hidden constant in |) |/|� | . ℎ� depends only on the shape regularity
coefficient f, this implies the !1-stability bound (4.32) and so also the claimed
!2-stability is proved.

2 The second statement for polynomial arguments of �� is a direct consequence
of its definition.

In view of the above different treatment of elements and faces, we need two types
of cut-off functions: one for elements denoted by q) and another for faces denoted
by q� . Possible choices are the element and face bubbles from (4.14) and (4.17).
Since other choices will be useful in Section 4.8 below, we shall henceforth rely
only on the following properties.

Assumption 4.21 (abstract cut-off). The cut-off functions q) , ) ∈ T , and q� ,
� ∈ F , satisfy

supp q) = ), 0 ≤ q) ≤ 1, supp q� = l� , 0 ≤ q� ≤ 1,

and act in an affine-equivalent manner on the element level: there exists a finite-
dimensional linear spaceS+ ⊂ !∞()3) of functions defined on the reference element
)3 such that �∗) q) does not depend on ) , �∗�q� does not depend on �, and

for all ) ∈ T and @ ∈ P<2()), �∗) (@q) ) ∈ S+,
for all � ∈ F , @ ∈ P<1(�) and ) ∈ T , �∗) (((��@)q� )|) ) ∈ S+,

where �) is a bi-affine map from the reference element )3 to the generic element
) , and �∗) (E) = E ◦ �) denotes the pullback of a function E : ) → R via �) .

In the case of the bubble functions (4.14) and (4.17), Assumption 4.21 holds
with S+ = Pmax{<1+3−1,<2+3 }()3) as the extension operators �� , � ∈ F , preserve
the polynomial degree.

Lemma 4.22 (properties of cut-off). If the cut-off functions q) , ) ∈ T , and q� ,
� ∈ F , satisfy Assumption 4.21, then we have

‖@‖!2() ) . ‖@q1/2
) ‖!2() ) and ‖∇(@q) )‖!2() ) . ℎ

−1
) ‖@q) ‖!2() )

for all @ ∈ P<2()), as well as

‖@‖!2(� ) . ‖@q1/2
� ‖!2(� ) and ‖∇((��@)q� )‖!2(l� ) . ℎ

−1
� ‖(��@)q� ‖!2(l� )

for all @ ∈ P<1(�). The hidden constants depend only on 3, the shape regularity
coefficient f, the degrees (<1, <2) of the discrete functionals, and the space S+.

Proof. 1 To verify the first claimed inequality, we start by noting that, thanks to
supp q) = ) , we have q)3 := �∗) (q) ) > 0 in the interior of )3 . Hence ‖ · ‖!2()3)

and ‖ · q1/2
)3
‖!2()3) are norms on P<2()3) and, thanks to dimP<2()3) < ∞, are
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equivalent. A standard round trip to the reference element and �∗) @ �
∗
) q

1/2
) =

�∗) (@q1/2
) ) thus yields

‖@‖!2() ) . ℎ
3/2
) ‖�∗) @‖!2()3) . ℎ

3/2
) ‖�∗) @ �∗) q

1/2
) ‖!2()3)

. ‖@q1/2
) ‖!2() ),

and the first claimed inequality is established. The third one is proved along the
same lines, but with a round trip to the reference face.

2 For the other claimed inequalities, note that ‖∇ · ‖!2()3) and inf2∈R ‖ · −2‖!2()3)
are equivalent norms on the finite-dimensional quotient space S+/R. Consequently,
further round trips to the reference element give

‖∇(@q) )‖!2() ) . ℎ
−1+3/2
) ‖∇�∗) (@q) )‖!2()3) . ℎ

−1+3/2
) inf

2∈R
‖�∗) (@q) ) − 2‖!2()3)

. ℎ−1+3/2
) ‖�∗) (@q) )‖!2()3) . ℎ

−1
) ‖@q) ‖!2() )

and

‖∇(�� (@)q)
)‖2
!2(l� ) =

∑
) ⊂l�

‖∇(�� (@)q)
)‖2
!2() )

. ℎ−1
�

∑
) ⊂l�

‖�� (@)q) ‖2!2() ) = ℎ
−1
� ‖�� (@)q) ‖2!2(l� ),

and the proof is completed.

These preparations lead to the following test space for discrete functionals.

Definition 4.23 (test space for discrete functionals). Using the cut-off functions
from Assumption 4.21, we associate to the space FT of discrete functionals the
following test space:

V+T := V+(T ) := span
(
{@) q) | @) ∈ P<2()), ) ∈ T }⋃

{�� (@� )q� | @� ∈ P<1(�), � ∈ F }
)
.

If l is a subdomain of Ω meshed by Tl , then V+(Tl) is the test space for F(Tl).

Similarly as for the space FT of discrete functionals, the test space over a
subdomain l meshed by Tl can be obtained from the global test space, namely

V+(Tl) = V+(T ) ∩ �1
0(l). (4.33)

4.5. A projection onto discrete functionals

Having the test space V+T from Definition 4.23 at our disposal, we are now ready
to construct a �−1-projection %T , as suggested in Section 4.3. As in the pre-
vious section, the degrees (<1, <2) of the discrete functionals in FT are hidden
parameters.
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Definition 4.24 (projection onto discrete functionals). Given the discrete func-
tionals FT and the test space V+T , we define a projection %T : �−1(Ω)→ FT by

〈%T ℓ, F〉 = 〈ℓ, F〉 for all F ∈ V+T . (4.34)

The well-posedness of this definition and algebraic properties of %T are verified
in the following Lemma 4.25. Moreover, a representation of %T in the form of a
quasi-interpolation operator is given in Corollary 4.61 below.
The polynomial densities of %T ℓ are denoted by %) ℓ := %T ,) ℓ, ) ∈ T , and

%�ℓ := %T ,� , � ∈ F , so that

〈%T ℓ, F〉 =
∑
) ∈T

∫
)
%) ℓ F +

∑
� ∈F

∫
�
%�ℓ F. (4.35)

In the next lemma we show in particular that %T is a local operator. In order
to formulate this, we shall use T -meshed local subdomains, i.e. T -meshed sub-
domains l for which there exists a mesh element ) ∈ T with l ⊂ l) . For the
next lemma, addressing algebraic properties of the operator %T , recall the notation
l� = ∪) ∈T�) from (4.7) for an interior face � ∈ F .

Lemma 4.25 (algebraic properties). The operator %T is a local linear projec-
tion onto the subspace FT of discrete functionals. More precisely, for any local
subdomain l meshed by T , there is a linear projection %l : �−1(l) → F(Tl)
such that

%T ℓ |�−1(l) = %l
(
ℓ |� 1

0 (l)
) ∈ F(Tl)

for all ℓ ∈ �−1(Ω).

Proof. 1 We first show that the degrees of freedom in Definition 4.23 of V+T are
linearly independent. To this end, we fix an element) ∈ T , let �1, . . . , �;, ; ≤ 3+1
denote its faces that are in FT and write q0 := q) , q8 := q�8 and �8 := ��8 for
8 = 1, . . . , ;. We then claim that, for all @0 ∈ P<2())\{0} and all @8 ∈ P<1(�8)\{0},
8 = 1, . . . , ;, we have

U0@0q0 +
;∑
8=1

U8�8(@8)q8 = 0 in ) ⇒ U0 = · · · = U; = 0. (4.36)

In light of supp q) = ) and supp q� = l� , we observe q0 |m) = 0 and q8 |m) \�8 = 0
for 8 = 1, . . . , ;. We thus evaluate the hypothesis of (4.36) first on the faces
�1, . . . , �; and then in the element ) . This gives U8 = 0 for 8 = 0, . . . , ; and (4.36)
is verified.

2 Next, we discuss the well-posedness of (4.34). The linear independence (4.36)
and (4.25) lead to

dimV+T = #T dimP<2 + #F dimP<1 = dimFT . (4.37)
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Thus, it suffices to show the implication

ℓ ∈ FT : 〈ℓ, F〉 = 0 for all F ∈ V+T ⇒ ℓ = 0. (4.38)

For that purpose, let ℓ ∈ FT and let @) , ) ∈ T and @� , � ∈ F be the determining
polynomials. For any element ) ∈ T , the choice F = @) q) ∈ �1

0()) implies

0 = 〈ℓ, F〉 =
∫
)

(@) )2q) , i.e. @) = 0.

Thus ℓ does not have contributions from elements. Regarding faces, any choice
F = (��@� )q� ∈ �1

0(l� ), � ∈ F , therefore gives

0 = 〈ℓ, F〉 =
∫
�

(@� )2q� , i.e. @� = 0,

and implication (4.38) is established. Combining (4.37) and (4.38), we have that
the dual pairing in �−1(Ω) is non-degenerate on FT × V+T , which in turn ensures
that %T is well-defined. The Petrov–Galerkin character of the definition (4.34) then
ensures that %T is a linear projection onto FT .

3 It remains to show that %T is a local operator. Given any local subdomain l
meshed by Tl , we can apply the preceding proof to Tl instead of T . This shows
that the dual pairing in �−1(l) is non-degenerate on F(Tl) ×V+(Tl) and ensures
a local projection operator %l : �−1(l)→ F(Tl). Taking into account (4.23) and
(4.33), we note that

%T |�−1(l) = %l ,

which completes the proof.

The verification of (4.38), which amounts to a proof of uniqueness, suggests the
following approach to computing %T ℓ, ℓ ∈ �−1(Ω).

Remark 4.26 (local computation). Let ℓ ∈ �−1(Ω). Recalling (4.35), the poly-
nomials %) ℓ, ) ∈ T , and %�ℓ, � ∈ F can be computed by solving first∫

)
%) ℓ @q) = 〈ℓ, @q) 〉 for all ) ∈ T , @ ∈ P<2()), (4.39)

and then∫
�
%�ℓ @q� = 〈ℓ, @q� 〉 −

∑
) ⊂l�

∫
)
%) ℓ @q� for all � ∈ F , @ ∈ P<1(�).

(4.40)
This amounts to two block diagonal linear systems with, respectively, #T blocks of
size dimP<2 and #F blocks of size dimP<1 . Each block and each corresponding
right-hand side arises from local computations.

Remark 4.27 (star localization vs. locality of %T ). StarslI , I ∈ V , are meshed
local subdomains. Lemma 4.25 thus shows that, for any vertex I ∈ V , there is a
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linear projection %I : �−1(lI)→ F(TI) such that
%T ℓ |�−1(lI ) = %I

(
ℓ |� 1

0 (lI )
) ∈ F(TI)

for all ℓ ∈ �−1(Ω). The stars also appear in the localizing upper bound of the
global residual norm in Corollary 4.6. As they are minimal subdomains therein
(see Remark 4.7), it may appear that a finer localization with smaller domains
cannot be exploited in a posteriori analysis. Although this is true in the context
of upper bounds, the increased locality of %T is useful in the context of lower
bounds; see the reduced lower bound (5.17), which follows from the interior vertex
property introduced in Definition 4.50, and is crucial for deriving the contraction
result (5.26).

We have already mentioned that we shall use %T to split the residual. In light
of the bounds for the residual norm in Corollary 4.6 (star localization of residual
norm), this should be done in a locally stable manner. In order to formulate and
employ the local stability properties of %T , the following notation is useful. Given
a local subdomain l meshed by Tl , we define the V+(Tl)-discrete dual norm by

‖ℓ‖V+(Tl)∗ := sup
F ∈V+(Tl), ‖∇F ‖

!2(l)=1
〈ℓ, F〉 ℓ ∈ �−1(l). (4.41)

In view of V+(Tl) ⊂ �1
0(l), we have ‖ℓ‖V+(Tl)∗ ≤ ‖ℓ‖�−1(l) for all ℓ ∈ �−1(l).

Lemma 4.28 (local �−1-stability). The projection %T is locally �−1-stable: for
any local subdomain l meshed by Tl , we have

‖%T ‖L(�−1(l)) = sup
ℓ∈F(Tl)

‖ℓ‖�−1(l)

‖ℓ‖V+(Tl)∗
≤ �lStb,

where�lStb = �lStb(3, f, <1, <2) depends only on 3, the shape regularity coefficient
f from (3.9), the degrees (<1, <2) of the discrete functionals and the space S+.

Proof. 1 We start by verifying the ‘≤’-part of the claimed identity for the operator
norm. The definition of the operator norm leads to

‖%l ‖L(�−1(l)) = sup
ℓ∈�−1(l)

‖%lℓ‖�−1(l)

‖ℓ‖�−1(l)
≤ sup
ℓ∈�−1(l)

‖%lℓ‖�−1(l)

‖ℓ‖V+(Tl)∗
.

We now notice that ‖ℓ‖V+(Tl)∗ = ‖%lℓ‖V+(Tl)∗ in view of (4.41) and (4.34). Hence

‖%l ‖L(�−1(l)) ≤ sup
ℓ∈�−1(l)

‖%lℓ‖�−1(l)

‖%lℓ‖V+(Tl)∗
= sup
ℓ∈F(Tl)

‖ℓ‖�−1(l)

‖ℓ‖V+(Tl)∗
,

because the projection %l is onto F(Tl).
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2 Next, we show that ‖%T ‖L(�−1(l)) is uniformly bounded. Let ℓ ∈ F(Tl) be a
discrete functional, namely

〈ℓ, F〉 =
∑
) ∈Tl

∫
)
@)F +

∑
� ∈Fl

∫
�
@�F for all F ∈ �1

0(l).

We proceed in two steps that are quite similar to the classical standard residual
estimates. Arguing as in (4.11), and using Lemma 2.2 (first Poincaré inequality) in
the domain l of diameter about ℎ) for F ∈ �1

0(l), we obtain

|〈ℓ, F〉| .
( ∑
) ∈Tl

ℎ2
) ‖@) ‖2!2() ) +

∑
� ∈Fl

ℎ� ‖@� ‖2!2(� )

)1/2
‖∇F‖!2(l),

whence
‖ℓ‖2

�−1(l) .
∑
) ∈Tl

ℎ2
) ‖@) ‖2!2() ) +

∑
� ∈Fl

ℎ� ‖@� ‖2!2(� ). (4.42)

Here we do not exploit the fact that ℓ is discrete in l; this will be crucial in
the second step, when we bound each term on the right-hand side, in a manner
recalling the derivation of classical lower bounds. For any ) ∈ Tl , we write
V+())∗ as shorthand for V+({)})∗, and exploit Lemma 4.22 (properties of cut-off)
to deduce

‖@) ‖2!2() ) .

∫
)

(@) )2q) = 〈ℓ, @) q) 〉 ≤ ‖ℓ‖V+() )∗ ‖∇(@) q) )‖!2() )

. ‖ℓ‖V+() )∗ℎ
−1
) ‖@) q) ‖!2() ) ≤ ‖ℓ‖V+() )∗ℎ

−1
) ‖@) ‖!2() ),

whence
ℎ) ‖@) ‖!2() ) . ‖ℓ‖V+() )∗ . (4.43)

For an interior face � ∈ Fl , we proceed similarly, also taking into account
Lemma 4.20 and that V+()) ⊂ V+(T� ) entails ‖ℓ‖V+() )∗ ≤ ‖ℓ‖V+(T� ) for ) ∈ T� .
We thus obtain

‖@� ‖2!2(� )

.

∫
�

(@� )2q� = 〈ℓ, (��@� )q� 〉 −
∑
) ⊂l�

∫
)
@) (��@� )q�

. ‖ℓ‖V+(T� )∗ ‖∇((��@� )q) )‖!2(l� ) +
∑
) ⊂l�

‖@) ‖!2() )‖(��@� )q) ‖!2() )

. ‖ℓ‖V+(T� )∗ℎ
−1
) ‖(��@� )q) ‖!2(l� ) . ‖ℓ‖V+(T� )∗ℎ

−1/2
) ‖@� ‖!2(� ),

that is,
ℎ1/2
� ‖@� ‖!2(� ) . ‖ℓ‖V+(T� )∗ . (4.44)

The number of elements and interior faces in the local subdomain l is uniformly
bounded by 3 and the shape regularity coefficient f. Hence inequalities (4.43) and

https://doi.org/10.1017/S0962492924000011 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000011


Adaptive finite element methods 243

(4.44) together with the inclusions V+()) ⊂ V+(Tl) for ) ∈ Tl and V+(T� ) ⊂
V+(Tl) for � ∈ Fl imply∑

) ∈Tl
ℎ2
) ‖@) ‖2!2() ) +

∑
� ∈Fl

ℎ� ‖@� ‖2!2(� ) . ‖ℓ‖2V+(Tl)∗ . (4.45)

Combining (4.42) and (4.45) shows that the ratio ‖ℓ‖�−1(l)/‖ℓ‖V+(Tl)∗ for ℓ ∈
F(Tl) is bounded by a universal constant depending on 3, f, <1, <2 and S+.

3 It remains to complete the proof of the claimed identity for the operator norm.
To this end, we first introduce an operator &l : �1

0(l)→ V+(Tl) by

〈ℓ, &lF〉 = 〈ℓ, F〉 for all ℓ ∈ F(Tl).

Like the one for %l , this definition is well-posed because the pair (F(Tl),V+(Tl))
is non-degenerate for the dual pairing of �−1(l); see (4.37) and (4.38) in the proof
of Lemma 4.25 (algebraic properties). By the Petrov–Galerkin character of the
definition, &l is a linear projection onto V+(Tl). Given arbitrary ℓ ∈ �−1(l) and
F ∈ �1

0(l), the definitions of &l and %l imply

〈%lℓ, F〉 = 〈%lℓ, &lF〉 = 〈ℓ, &lF〉,
that is, &l = %∗l is the (Hilbert) adjoint to %l . In other words, the adjoint %∗l
is a projection onto V+(Tl). With this, we can prove the missing inequality. Let
ℓ ∈ F(Tl) be discrete. In fact,

〈ℓ, F〉 = 〈%lℓ, F〉 = 〈ℓ, %∗lF〉 ⇒ ‖ℓ‖�−1(l) = sup
F ∈� 1

0 (l)

〈ℓ, %∗lF〉
‖∇F‖!2(l)

leads to

‖ℓ‖�−1(l) ≤ ‖ℓ‖V+(Tl)∗ ‖%∗l ‖L(� 1
0 (l)) = ‖ℓ‖V+(Tl)∗ ‖%l ‖L(�−1(l)).

This concludes the proof.

Remark 4.29 (failing global �−1-stability). For Lebesgue norms, local stability
of linear operators in terms of shape regularity entails that their respective global
stability is uniform under mesh refinement. The fact that part (i) of Lemma 4.5
(localization of �−1-norm) needs a condition to be true, may lead us to suspect that
this implication might not be true in general for the �−1-norm. This suspicion is
confirmed by Example 4.63 below, where we show that ‖%T ‖L(�−1(Ω)) can tend to
∞ under mesh refinement.

The proof of Lemma 4.28 provides all non-trivial ingredients to allow the ap-
proximate computation of ‖ℓ‖�−1(l) whenever ℓ ∈ �−1(Ω) is discrete in l.

Corollary 4.30 (quantifying �−1-norms of discrete functionals). Let l ⊂ Ω
be a local subdomain meshed by Tl and let ℓ ∈ �−1(Ω) be discrete in l, given by
the polynomials @) for ) ∈ Tl and @� for � ∈ Fl , where � ∈ Fl are the interior
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faces in l. We then have

‖ℓ‖2
�−1(l) ≈

∑
) ∈Tl

ℎ2
) ‖@) ‖2!2() ) +

∑
� ∈Fl

ℎ� ‖@� ‖2!2(� ),

where the hidden constants depend on 3, the shape regularity coefficient f, the
degrees (<1, <2) of the discrete functionals, and the space S+ appearing in As-
sumption 4.21.

Proof. This is a consequence of (4.42) and (4.45), the latter requiring ℓ to be
discrete, along with the fact that ‖ℓ‖V+(Tl)∗ ≤ ‖ℓ‖�−1l)∗ for any ℓ ∈ �−1(l).

Corollary 4.31 (local near-best approximation). The projection%T yields local
near-best approximations: for any functional ℓ ∈ �−1(Ω) and any local subdomain
l meshed by Tl , we have

‖ℓ − %T ℓ‖�−1(l) ≤ �lStb inf
j∈F(Tl)

‖ℓ − j‖�−1(l),

where �lStb is the constant of Lemma 4.28 (local �−1-stability).

Proof. Fix a local subdomain l meshed by Tl and let j ∈ F(Tl) be arbitrary.
Thanks to Lemma 4.25 (algebraic properties), we have %lj = j and

(ℓ − %T ℓ)|� 1
0 (l) = (� − %l)ℓ |� 1

0 (l) = (� − %l)(ℓ − j)|� 1
0 (l).

As %l is a non-trivial projection on the Hilbert space�−1(l), Szyld (2006) ensures

‖� − %l ‖L(�−1(l)) = ‖%l ‖L(�−1(l)) ≤ �lStb. (4.46)

Hence
‖ℓ − %T ℓ‖�−1(l) ≤ �lStb‖ℓ − j‖�−1(l)

concludes the proof because j ∈ F(Tl) is arbitrary.

We illustrate the approximation of possible parts of the residual with the projec-
tion %T in a series of three remarks. For that purpose, the approximation quality
is to be measured with a local �−1(l)-norm, and it is instructive to compare with
the operator ΠT from (4.26). Recall that the operator ΠT is used implicitly in the
standard approach (see Section 4.2) to approximate the discrete functionals FT .

Remark 4.32 (approximating functions). For functions, the local error with %T
is uniformly dominated by the one with ΠT . More precisely, if <2 ≥ 0 and
ℓ ∈ �−1(Ω) satisfies 〈ℓ, F〉 =

∫
Ω
5 F where 5 ∈ ! ?(Ω) with ? > 23/(2 + 3), then

Corollary 4.31 (local near-best approximation) and ΠT 5 =
∑
) ∈T (Π<2

) 5 )j) ∈
F(Tl) imply, for any local meshed subdomain l,

‖ℓ − %T ℓ‖�−1(l) . ‖ 5 − ΠT 5 ‖�−1(l).

Observe that although ℓ is a function, %T ℓ is typically not a function. This property
might look undesirable but it is crucial for an advantage of %T overΠT and closely
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related to the fact that the opposite inequality does not hold; see Remark 4.34 about
stability.
Furthermore, supposing 5 ∈ !2(Ω) and combining the preceding inequality with

Lemma 2.2 (first Poincaré inequality) gives

‖ℓ − %T ℓ‖2�−1(l) ) .
∑

) ′⊂l)
ℎ2
) ‖ 5 − Π<2

) ′ 5 ‖2!2(l) ′ )
, (4.47)

which establishes that the local %T -oscillation of functions is uniformly dominated
by its classical ΠT -counterpart but not vice versa.

In Section 7.3.1 this case is considered in the context of adaptive approximation.

Remark 4.33 (approximating admissible functionals). For functionals allow-
ing for the application ofΠT , the local error with %T is again uniformly dominated
by the onewithΠT . In view of the previous remark, let us consider only ℓ ∈ �−1(Ω)
such that 〈ℓ, F〉 =

∫
Σ
6F, where 6 ∈ ! ?(Σ) with Σ := ∪� ∈F� and ? > 2(3 − 1)/3.

Note that we again have ΠT ℓ ∈ F(Tl) as 〈ΠT ℓ, F〉 =
∑
� ∈F

∫
�

(Π<1
� 6)F for all

F ∈ �1
0(Ω). Corollary 4.31 (local near-best approximation) thus ensures, for any

local meshed subdomain l,

‖ℓ − %T ℓ‖�−1(l) . ‖ℓ − ΠT ℓ‖�−1(l).

Moreover, supposing 6 ∈ !2(Σ) and combining the scaled trace theorem (4.12)
with Lemma 2.2 (first Poincaré inequality) yields

‖ℓ − %T ℓ‖2�−1(l) ) .
∑

� ⊆l) ,�*ml)
ℎ� ‖6 − Π<1

� 6‖2!2(� ).

Also, this case will be revisited in the context of adaptive approximation, namely
in Section 7.3.3.

Remark 4.34 (stability of approximation). The error with %T is stable, while
the one with ΠT is not. To see this by example, we restrict to (<1, <2) = (0, 0), fix
some interior face � ∈ F and, for Y > 0 sufficiently small, consider

〈ℓY , F〉 :=
∫
Ω
5YF =

1
2Y

∫ Y

−Y

∫
�
F(H + Bn� ) dH dB, F ∈ �1

0(Ω),

where 5Y = (2Y)−1j�Y is amultiple of the characteristic function of �Y := {G+Bn� |
G ∈ �,−Y < B < Y}. As

〈ℓY − X� , F〉 = 1
2Y

∫ Y

−Y

∫
�

∫ B

0
mn�F(H + Cn� ) dC dH dB

≤ 1
2Y

∫ Y

−Y

∫
�Y

|∇F(G)| dG dB ≤ |�Y |1/2‖∇F‖!2(Ω),

the functions (ℓY)Y>0 tend to the proper functional X� :

ℓY → X� in �−1(Ω).

https://doi.org/10.1017/S0962492924000011 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000011


246 A. Bonito, C. Canuto, R. H. Nochetto and A. Veeser

Combining the convergence with the local stability of %T (see (4.46)) yields

|‖ℓY − %T ℓY ‖�−1(l� ) − ‖X� − %T X� ‖�−1(l� ) | ≤ ‖(� − %T )(ℓY − X� )‖�−1(l� )

. ‖ℓY − X� ‖�−1(l� ) → 0,

the stability of the error with %T . Furthermore, since %T X� = X� , the stability
entails here ‖ℓY − %T ℓY ‖�−1(l� ) → 0. For ΠT , however, the approximation on
the skeleton and in the volume are independent of each other. Hence, combining
ΠT X� = X� , which follows from (4.26), with limY→0Π0

) 5Y = |� |/(2|) |) for the
two elements ) ∈ T containing �, leads to

‖X� − ΠT X� ‖�−1(l� ) = 0 < lim
Y→0
‖ℓY − ΠT ℓY ‖�−1(l� ).

Measuring the error in weighted !2-norms instead of the �−1-norm results in a
more dramatic instability. Indeed, letting 1 and 0 denote the constant functions
on a simplex  equal to 1 or 0, the two sides translate to

ℎ1/2
� ‖1� − Π0

�1� ‖!2(� ) +
∑
) ∈T�

ℎ) ‖0) − Π0
) 0) ‖!2() ) = 0

and

lim
Y→0

(
ℎ1/2
� ‖0� − Π0

�0� ‖!2(� ) +
∑
) ∈T�

ℎ) ‖ 5Y − Π0
) 5Y ‖!2() )

)
= ∞.

Note that such a transformation of volume contributions into contributions on
the skeleton may occur by perturbation in the right-hand side or, in the opposite
direction, by an improvement of the Galerkin approximation thanks to refinement.
In view of this instability of ΠT , the inequalities in the preceding Remarks 4.32

and 4.33 cannot be reversed – a fact that can also be inferred from Remark 4.19.
The above perturbations of X� are in the domain of ΠT . For the functionals

〈ℓ̂Y , F〉 :=
∫
�
F(H + Yn� ) dH, F ∈ �1

0(Ω),

however, it is not clear how to directly apply ΠT for Y ≠ 0. To the contrary,
the approximations %T ℓ̂Y are defined and stable around 0. Notably, %T ℓ̂Y uses
volume contributions to compensate for the displacement in the representation of
the singular contribution.

4.6. Discretized and oscillatory residual

We now turn to the proper a posteriori analysis, that is, we shall derive upper and
lower bounds of the error, implementing the following plan, which is motivated
in Section 4.3. We use the projection %T onto discrete functionals FT to split
the residual into discretized and oscillatory parts. Then the quantification of the
oscillatory residual is reduced to data oscillation through suitable choices of the
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degrees (<1, <2) of the discrete functionals. The discretized residual can be
quantified in various ways; see Sections 4.2 and 4.9 below.
We start by introducing indicators reflecting the stated splitting of the residual

into discretized and oscillatory parts. They are vertex-indexed and, given I ∈ V ,
defined by

Eabs
T (I)2 := [abs

T (I)2 + oscT ('T , I)2 with
[abs
T (I) := ‖%T 'T ‖�−1(lI ) and oscT ('T , I) := ‖(� − %T )'T ‖�−1(lI ).

(4.48)
Note that these quantities are not proper indicators: they still need to be quantified
in a computable manner. By using ‘abs’ (shorthand for ‘abstract’), we hint at the
fact that [abs

T can be quantified by various approaches.

Lemma 4.35 (splitting of local residual norm). For any vertex I ∈ V , the local
residual norm is equivalent to the abstract indicator from (4.48):

1√
2�lStb

Eabs
T (I) ≤ ‖'T ‖�−1(lI ) ≤

√
2Eabs

T (I),

where �lStb is the constant of Lemma 4.28 (local �−1-stability).

Proof. As announced, we use the linear projection %T in order to split the residual
into a discretized and an oscillatory part:

'T = %T 'T + (� − %T )'T . (4.49)

The upper bound of the local residual norm then readily follows from the triangle
inequality:

‖'T ‖�−1(lI ) ≤ [abs
T (I) + oscT ('T , I) ≤

√
2Eabs

T (I).

To show the lower bound, we exploit the local stability of %T (see (4.46)) to obtain

[abs
T (I) = ‖%T 'T ‖�−1(lI ) ≤ �lStb‖'T ‖�−1(lI )

and
oscT ('T , I) = ‖(� − %T )'T ‖�−1(lI ) ≤ �lStb‖'T ‖�−1(lI ).

Squaring both inequalities, summing them, and then taking the square-root finishes
the proof.

Inmany a posteriori analyses, this lemma is replaced by steps breaking a possible
true equivalence between error and estimator. Therefore the following remark
points out the key ingredients.

Remark 4.36 (ensuring proper equivalence). The fact that the projection %T
and so also � − %T are linear and locally bounded operators precludes overestima-
tion; see also Remark 4.19. Comparing with Section 4.2 and ΠT in (4.27), we see
that the local stability in �−1 is crucial to that end and, in view of Remark 4.34,
requires discrete functionals with contributions on the skeleton.
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Next, we want to simplify the residual oscillations oscT ('T , I), I ∈ V , in the
spirit of Remark 4.14. This will be dependent on the coefficients G and 2 of the
differential operator and involve the following ‘polynomial degrees’:

=G := min
{
: ∈ N0 | G ∈

(
S:,−1
T

)3×3}
, (4.50a)

=2 := min
{
: ∈ N0 ∪ {−1} | 2 ∈ S:,−1

T
}
, (4.50b)

where we use the convention min ∅ = ∞. We shall say that the differential operator
− div(G∇·) + 2(·) in (2.5) has discrete coefficients whenever max{=G, =2} < ∞;
otherwise it has non-discrete coefficients.

Lemma 4.37 (data oscillation reduction for discrete coefficients). If the coef-
ficients � and 2 are discrete, the choices

<1 = =G + = − 1,

<2 = max{= − 2 + =G, <̃2} with <̃2 =

{
= + =2 , if 2 ≠ 0
0, otherwise

ensure that the oscillatory residual reduces to data oscillation of the right-hand
side:

(� − %T )'T = 5 − %T 5 .
Proof. The choices for <1 and <2 yield, for any face � ∈ F and any element
) ∈ T ,

[[G∇DT ]] · n� ∈ P<1(�) and div(G∇DT )|) ∈ P<2()).

Furthermore, if 2 ≠ 0, we also have 2DT |) ∈ P<2()), and the claimed identity
follows from − div(G∇DT ) + 2DT ∈ FT .
Remark 4.38 (Poisson equation with linear elements). In the case of the Pois-
son equation with linear elements, the choices in Lemma 4.37 lead to <1 = 0 and
<2 = 0. Alternatively, one may use <1 = 0 and <2 = −1 (recall we have set
P−1()) = {0}); see Diening, Kreuzer and Stevenson (2016) or Siebert and Veeser
(2007). The choice here leads to an oscillation for which the standard oscillation
indicators ℎ) ‖ 5 −Π) 5 ‖) , ) ∈ T , can be used as a surrogate; see also Remark 4.43
about surrogates.

If one of the coefficients, G or 2, is non-discrete, the range of the finite element
space VT under the differential operator − div(G∇·) + 2(·) consists of functionals
whose densities are not piecewise polynomial. Consequently, the oscillatory re-
sidual cannot be reduced to the oscillation 5 − %T 5 , or to any other oscillation
of 5 involving discrete functionals with piecewise polynomial densities. The next
result illustrates the idea of a non-perfect remedy, namely bounding the residual
oscillation defined in (4.48) in terms of data oscillation and discrete stability. For
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its formulation, we define global �−1-oscillations by

oscT (ℓ)2 :=
∑
I∈V

oscT (ℓ, I)2, ℓ ∈ �−1(Ω), (4.51)

which, in contrast to ‖(� − %T )ℓ‖�−1(Ω), is bounded in terms of ℓ; see Remark 4.29
(failing global �−1-stability).

Lemma 4.39 (surrogate data oscillation reduction). Let<G := min{=G, =−1}
and <2 := min{=2 , = − 1}, and define <1 and <2 as in Lemma 4.37, but replacing
=G and =2 , respectively, with <G and <2 . Given any approximations

Ĝ ∈ (S<G,−1
T

)3×3 and 2̂ ∈ S<2 ,−1
T ,

we then have, for all vertices I ∈ V ,
oscT ('T , I) ≤ oscT ( 5 , I) + �lStb�(3, f)‖G − Ĝ‖!∞(lI )‖∇DT ‖!2(lI )

+ �lStb�(3, f)‖ℎ(2 − 2̂)‖!∞(lI )‖DT ‖!2(lI ),

and thus

oscT ('T )2 ≤ 3 oscT ( 5 )2

+ 3(3 + 1)
U2 ‖ 5 ‖2

�−1(Ω)
(‖G − Ĝ‖2!∞(Ω) + �2

%�(3, f)‖ℎ(2 − 2̂)‖2!∞(Ω)
)

where �lStb is the constant from Lemma 4.28 (local �−1-stability), ℎ is the mesh
size function defined by ℎ|) = ℎ) for all ) ∈ T , U is the coercivity constant from
(2.29), and �% is the constant in Lemma 2.2 (first Poincaré inequality).

The bounds of Lemma 4.39 are obviously not convenient if G or 2 are not
continuous. We therefore implement the underlying idea in Section 5.4 differently.

Proof. 1 To verify the local bound, let I ∈ V be any vertex. By linearity of %T ,
we obtain

oscT ('T , I) ≤ oscT ( 5 , I)
+ ‖(� − %T )(− div(G∇DT ))‖�−1(lI ) + ‖(� − %T )(2DT )‖�−1(lI )

and it remains to bound appropriately the two terms involving the coefficients G

and 2. As the definitions of <1 and <2 ensure − div(Ĝ∇DT ) ∈ FT , Corollary 4.31
(local near-best approximation), the scaled trace theorem (4.12) and Lemma 2.2
(first Poincaré inequality) give

‖(� − %T )(− div(G∇DT ))‖�−1(lI ) ≤ �lStb‖ − div ((G − Ĝ)∇DT )‖�−1(lI )

≤ ��lStb‖G − Ĝ‖!∞(lI )‖∇DT ‖!2(lI ).

As 2̂DT ∈ FT thanks to the definition of <2, a similar argument again using
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Lemma 2.2 (first Poincaré inequality) and diamlI ≤ �ℎI on lI provides
‖(� − %T )(2DT )‖�−1(lI ) ≤ �lStb‖(2 − 2̂)DT ‖�−1(lI )

≤ ��lStb‖ℎ(2 − 2̂)‖!∞(lI )‖DT ‖!2(lI ),

and the local bound is verified.
2 To show the global bound, we square the local bound and sum it over all vertices
I ∈ V to obtain

oscT ('T )2 ≤ 3
∑
I∈V

oscT ( 5 , I)2 + 3(3 + 1)�‖G − Ĝ‖2!∞(Ω)‖∇DT ‖2!2(Ω)

+ 3(3 + 1)�‖ℎ(2 − 2̂)‖2!∞(Ω)‖DT ‖2!2(Ω).

Hence Lemma 2.2 (first Poincaré inequality) on Ω and discrete stability,

‖DT ‖!2(Ω) ≤ �% ‖∇DT ‖!2(Ω) ≤
�%
U
‖ 5 ‖�−1(Ω),

finish the proof.

The following remarks set Lemma 4.35 (splitting of local residual norm) and
the accompanying results Lemma 4.37 and Lemma 4.39 on the reduction to data
oscillation in the context of adaptive algorithms.

Remark 4.40 (structure of splitting). CombiningLemma4.35 (splitting of local
residual norm) with Lemma 4.37 or Lemma 4.39 about reduction to data oscillation
thus provides an abstract estimator with the following two global parts:

[abs
T (DT )2 :=

∑
I∈V

[abs
T (DT , I)2

and, writing D = (G, 2, 5 ) for the data of the partial differential equation,

oscabs
T (D)2 := oscT ( 5 )2,

oscabs
T (D)2 := oscT ( 5 )2 + �1 max

I∈V
‖G − Ĝ‖2!∞(lI ) + �2 max

I∈V
‖ℎ(2 − 2̂)‖2!∞(lI ),

the latter provided (G, 2) are not discrete. It is important to note the different nature
of these two parts. The first part [abs

T (DT ), the abstract PDE indicator,

• is strictly related to the structure of the underlying PDE,
• involves only discrete functionals from FI , and
• the evaluation of its local indicators [abs

T (DT , I) requires the global computa-
tion of the discrete solution DT .

In contrast, the second part oscabs
T (D), the oscillation (indicator),

• depends only on the data D of the differential operator,
• involves non-discrete functionals, and
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• the evaluation of its local indicators oscT ( 5 , I), ‖G − Ĝ‖!∞(lI ), ‖ℎ(2 −
2̂)‖!∞(lI ), I ∈ V , is completely local.

The respective properties ‘discrete nature’ and ‘local dependence’ of the two parts
are the key advantage over the whole local residual indicators ‖'T ‖�−1(lI ), I ∈ V ,
and will be instrumental to the algorithmic design in Sections 5 and 6 below.

Remark 4.41 (minimal regularity and regularizing %T ). It isworth noting that
the results in this section do not involve any regularity beyond (4.2) and that the
projection %T has a regularizing effect. In particular, we have

Im %T = FT ⊂ �−1/2−Y(Ω) for any small Y > 0,

thanks to the trace theorem in fractional Sobolev spaces. As a consequence, most
techniques for a posteriori error estimation can be directly applied to the discret-
ized residual %T 'T , without any special twisting and under natural regularity
assumptions.

Remark 4.42 (reduction vs. surrogate reduction). The kernel condition of Re-
mark 4.19 (avoiding overestimation) is not verified for the bounds in Lemma 4.39
(surrogate data oscillation reduction). These bounds may thus exhibit overestim-
ation and cannot be reversed. If we use the right-hand side of an overestimating
bound as a part of an estimator, we shall call that part a surrogate. This label
marks a crucial difference between the cases represented by Lemma 4.39 (sur-
rogate data oscillation reduction) and Lemma 4.37 (data oscillation reduction for
discrete coefficients), which is free of any overestimation.

Remark 4.43 (surrogate data oscillation). Surrogates for data oscillation indic-
ators can be useful for providing more direct access for computation. For example,
if 5 ∈ !2(Ω), the bound (4.47) by the classicalΠT -oscillation can be approximated
by numerical integration. In such a context, it is useful to take the following points
into account.

• Computable surrogates, i.e. computable upper bounds, for data oscillation
indicators are in general impossible. In fact, generic data from an infinite-
dimensional space will not be completely seen by the finite information avail-
able at any stage of a computation; see also Kreuzer and Veeser (2021,
Lemma 2 and Corollary 5) illustrating this fact for oscT ( 5 ) with the help of
orthogonality. Hence computable surrogates will hinge on additional a priori
information on the given data. We postpone a discussion of examples to
Section 7.3.

• As a general rule, surrogates should be applied last. This avoids other parts of
the estimators being affected by overestimation; see Remark 4.46 (modified
vs. standard residual estimator) below.
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4.7. Modified residual estimation

In view of the splitting into PDE and oscillation indicators and the discussion of
the computability of the latter, it remains to quantify the abstract PDE indicators
[abs
T (DT , I), I ∈ V . To this end, we can employ Corollary 4.30 (quantifying
�−1-norms of discrete functionals), resulting in a modification of the standard
residual estimator E std

T (DT ,D) from Section 4.2. Alternative quantifications by
other techniques of a posteriori error estimation are discussed in Section 4.9 below.
In so doing, for simplicity, we consider only the case given by the following
assumption.

Assumption 4.44 (discrete coefficients and discrete functionals). Suppose that
the coefficients G and 2 in (2.5) are discrete, and choose the degrees (<1, <2)
of the discrete functionals in FT according to Lemma 4.37 (data oscillation reduc-
tion for discrete coefficients).

For non-discrete coefficients, we essentially have to invoke Lemma 4.39 (sur-
rogate data oscillation reduction) instead of Lemma 4.37 in order to reduce to data
oscillation.
We shall employ the bisection method in order to refine the mesh. Since this

method is based upon the subdivision of elements, it is convenient to split the
estimator into contributions associated with elements and not with vertices as in
Section 4.6.
To define the modified residual estimator, we recall the representation (4.35)

of the �−1-projection %T , and we use Assumption 4.44 (discrete coefficients and
discrete functionals) to set

E2
T :=

∑
) ∈T

ET ())2 with

ET ())2 := ET (DT , 5 , ))2 := [T (DT , ))2 + oscT ( 5 , ))2,

[T (DT , ))2 := ℎ)
∑

� ⊂m) \mΩ
‖ [[G∇DT ]] · n� − %� 5 ‖2!2(� )

+ ℎ2
) ‖%) 5 − 2DT + div(G∇DT )‖2

!2() ),

oscT ( 5 , ))2 := ‖ 5 − %T 5 ‖2�−1(l) ).

(4.52)

Clearly, this is a variant of the standard residual estimator in (4.10), where the
main differences are given by the corrections %� 5 , � ∈ F , of the jump residual
and the replacement of 5 |) by %) 5 , ) ∈ T , in the PDE indicator. As shown
by the following theorem and remarks, the modification leads to more accurate
a posteriori bounds.

Theorem 4.45 (modified residual estimator). UnderAssumption 4.44, themod-
ified residual estimator (4.52) is equivalent to the error: more precisely, we have

�!ET ≤ ‖∇(D − DT )‖!2(Ω) ≤ �*ET ,

https://doi.org/10.1017/S0962492924000011 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000011


Adaptive finite element methods 253

where the constants�* ≥ �! > 0 depend only on the coefficients (G, 2), the shape
regularity coefficient f from (3.9), the polynomial degree =, and 3.

Proof. To derive the upper bound, we use those of Lemma 4.1 (error and residual),
Corollary 4.6 (star localization of residual norm), Lemma 4.35 (splitting of local
residual norm) and Corollary 4.30 (quantifying �−1-norms of discrete functionals)
with stars, and obtain

‖∇(D − DT )‖2
!2(Ω) . ‖'T ‖2�−1(Ω) .

∑
I∈V
‖'T ‖2�−1(lI )

.
∑
I∈V

Eabs
T (I)2 =

∑
I∈V

[abs
T (DT , I)2 +

∑
I∈V

oscT ( 5 , I)2

.
∑
I∈V

∑
) ∈TI

[T (DT , ))2 +
∑
I∈V

oscT ( 5 , I)2,

with TI = {) ∈ T | ) 3 I}. As a given mesh element appears in the star meshes
TI for at most 3 + 1 vertices, we have∑

I∈V

∑
) ∈TI

[T (DT , ))2 ≤ (3 + 1)
∑
) ∈T

[T (DT , ))2

for the first sum, and Lemma 4.8 (localization re-indexing) yields∑
I∈V

oscT ( 5 , I)2 .
∑
) ∈T

oscT ( 5 , ))2

for the second sum. Inserting the last two inequalities in the previous one, we
conclude the upper bound:

‖∇(D − DT )‖2
!2(Ω) .

∑
) ∈T

[T (DT , ))2 +
∑
) ∈T

oscT ( 5 , ))2 =
∑
) ∈T

ET ())2.

To show the lower bound, fix a mesh element ) ∈ T . Applying the local lower
bounds in Corollary 4.30, Lemma 4.28 (local �−1-stability) and Lemma 4.1 on the
local meshed subdomain l̃) defined in (3.12) yields for the PDE indicator

[T (DT , )) . ‖%T 'T ‖�−1(l̃) ) . ‖'T ‖�−1(l̃) ). (4.53)

In the case of the oscillation indicator, we exploit −2DT + div(G∇DT ) ∈ FT with
the help of Lemma 4.25 (algebraic properties) and apply Lemma 4.28 on the local
meshed subdomain l) :

oscT ( 5 , )) = ‖ 5 − %T 5 ‖�−1(l) ) = ‖(� − %T )'T ‖�−1(l) ) . ‖'T ‖�−1(l) ).

Thanks to l̃) ⊂ l) , combining the last two inequalities gives the desired local
lower bound:

ET ())2 = [T (DT , ))2 + oscT ( 5 , ))2

. ‖'T ‖�−1(l̃) ) + ‖'T ‖�−1(l) ) . ‖'T ‖�−1(l) ). (4.54)
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As the number of patchesl) ,) ∈ T , containing a givenmesh element is uniformly
bounded by 3 and the shape regularity coefficient f, summing this bound over all
mesh elements yields the global lower bound∑

) ∈T
ET ())2 .

∑
) ∈T
‖'T ‖2�−1(l) ) . ‖∇(D − DT )‖2

!2(Ω),

with the help of Lemma 4.5 (localization of �−1-norm) and Lemma 4.1. Thus the
equivalence of error and estimator is established.

A detailed comparison of the modified residual estimator with the standard
estimator is in order.

Remark 4.46 (modified vs. standard residual estimator). Wecompare themod-
ified residual estimator (4.52) with the standard one given by (4.10a) and the local
split indicators (4.22). As a common characterizing feature, both residual estimat-
ors use properly scaled !2-norms of jump and element residual, ready for numerical
integration. However, we observe the following differences.
• While the modified estimator ET is defined under the natural regularity as-
sumptions (4.2), the standard estimator E std

T requires G ∈ ,1∞(Ω;R3×3) and
5 ∈ !2(Ω) in addition.

• While the modified estimator ET is truly equivalent to the error, the standard
estimator E std

T may overestimate it, limited, however, by Proposition 4.12
(partial lower bound).

By the domain test in Remark 4.19 (avoiding overestimation), we know that these
two points are interrelated. However, the kernel test is also at play in the overes-
timation. Indeed, revisiting the proof of Theorem 4.9 (upper bound with standard
residual estimator), we can replace the scaled !2-norms of the element residuals on
a star lI with ‖A ‖�−1(lI ), and the resulting vertex-oriented variant of the residual
estimator with unsplit local indicators is defined for all 5 ∈ �−1(Ω). Overestim-
ation can, however, still occur non-asymptotically as well as asymptotically; see
Cohen et al. (2012). Indeed, in the case of the Poisson equation and linear finite
elements, the kernel test is obviously not satisfied. This shows that the splitting
in jump and element residual is quite delicate and highlights the crucial role of
the modifications of the standard residual estimator: not only do they allow for
stability in line with Remark 4.34 (stability of approximation) but they also imply
the kernel test.

To conclude this comparison, let us illustrate the second point of Remark 4.43
(surrogate data oscillation), namely that surrogates should be applied last. Using
(4.47) in Remark 4.32 (approximating functions), in themodified residual estimator
we may replace the �−1-oscillation oscT ( 5 ) with the standard oscillation oscstd

T ( 5 ),
which can be readily approximated with numerical integration. In so doing, we
first split the residual with %T and then apply ΠT to obtain the surrogate. Note,
however, that if we apply ΠT earlier to split the residual, the crucial modifications
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will not appear and, therefore, the PDE indicator of the standard residual estimator
also exhibits overestimation.

4.8. Bounds for corrections and reduction of PDE estimator

In the following sectionswe shall use themodified residual estimator ET from (4.52)
in adaptive algorithms. In their convergence analyses, not only is its relationship
with the error important, but also its relationship with the norm ‖∇(DT∗ −DT )‖!2(Ω)
of (possible) corrections, where DT∗ is the Galerkin approximation to D over some
refinementT∗ ofT . This section establishes corresponding upper and lower bounds,
as well as related results about the global PDE indicator

[T (DT , 5 )2 :=
∑
) ∈T

[T (DT , ))2 (4.55)

and the global oscillation

oscT ( 5 )2 :=
∑
) ∈T

oscT ( 5 , ))2. (4.56)

When it is important to indicate that the oscillations are measured in �−1, we use
the notation

oscT ( 5 )−1 and oscT ( 5 , ))−1.

Let T∗ be a conforming mesh that is a refinement of T , that is, for any element
) ∈ T , there exists a submesh T∗,) of T∗ such that ) = ∪{)∗ | )∗ ∈ T∗,) }. The
Galerkin approximation in VT∗ is characterized by

DT∗ ∈ VT∗ : B[DT∗ , F] = 〈 5 , F〉 for all F ∈ VT∗ .

Hence the discrete solution DT on the original mesh T is not only a Galerkin
approximation to the exact solution D satisfying (2.7) but also to DT∗ . The norm
‖∇(DT∗ − DT )‖!2(Ω) of the correction therefore can be viewed as the error in ap-
proximating DT∗ on the mesh T . This viewpoint suggests considering the variant

〈'T , F〉 = B[DT∗ − DT , F] for all F ∈ VT∗ (4.57)

of the error–residual identity (4.3) and introducing the discrete dual norm

‖'T ‖(VT∗ )∗ := sup
F ∈VT∗

〈'T , F〉
‖∇F‖!2(Ω)

(4.58)

of the residual as a counterpart of ‖'T ‖�−1(Ω). Arguing as in the proof of
Lemma 4.1 (error and residual), we thus readily obtain the following quantitat-
ive relationship between the correction and the residual.

Lemma 4.47 (correction and residual). If T∗ is a refinement of the mesh T , the
norm of the correction DT∗ − DT is equivalent to the discrete residual norm. More
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precisely,

1
‖B‖ ‖'T ‖(VT∗ )∗ ≤ ‖∇(DT∗ − DT )‖!2(Ω) ≤

1
U
‖'T ‖(VT∗ )∗ ,

where ‖B‖ ≥ U > 0, are, respectively, the continuity and coercivity constant of the
bilinear form B.

We first exploit the upper bound in Lemma 4.47. As the inclusion VT∗ ⊂ �1
0(Ω)

implies
‖'T ‖(VT∗ )∗ ≤ ‖'T ‖�−1(Ω), (4.59)

Theorem 4.45 (modified residual estimator) immediately yields the upper bound

‖∇(DT∗ − DT )‖!2(Ω) ≤ �*ET (DT , 5 ). (4.60)

This bound, however, appears not to be accurate in view of the use of (4.59). We
will sharpen it by following the lines of its proof but exploiting the full orthogonality

〈'T , F〉 = 0 for all F ∈ VT , (4.61)

with suitably tuned Scott–Zhang interpolation (Scott and Zhang 1990).
In order to prepare the use of this interpolation, let N denote the Lagrange

nodes of order = of the mesh T and let F and F∗, respectively, denote the (3 − 1)-
dimensional faces of T and T∗, including boundary faces. Given a node I ∈ N , fix
a face �I ∈ F such that �I contains I and the following conditions are met:

I ∈ mΩ ⇒ �I ⊂ mΩ,
{� ∈ F ∩ F∗ | � 3 I} ≠ ∅ ⇒ �I ∈ F∗.

Furthermore, let k∗I denote the polynomial in P=(�I) satisfying∫
�I

k∗IkH = XHI for all H ∈ N ,

where {kH}H∈N is the Lagrange basis of S=,0T , and define

�T F =
∑
I∈N

(∫
�I

k∗IF
)
kI . (4.62)

The two conditions on the fixed face �I then ensure, respectively,

F ∈ �1
0(Ω) ⇒ �T F ∈ VT , (4.63a)

F ∈ VT∗ and ) ∈ T ∩ T∗ ⇒ �T F = F on ) . (4.63b)

In particular, ifF ∈ VT∗ , its approximation �T F ∈ VT is an admissible test function
and coincides with F whenever possible. Finally, �T has the following stability and
approximation properties, where the hidden constants depend only on 3, = and the
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shape regularity coefficient f: for any element ) ∈ T and any face � ∈ F ,

‖∇�T F‖!2() ) . ‖∇F‖!2(l) ), (4.64a)
‖F − �T F‖!2() ) . ℎ) ‖∇F‖!2(l) ), (4.64b)

‖F − �T F‖!2(� ) . ℎ
1/2
� ‖∇F‖!2(l� ). (4.64c)

The sharpening of the simple upper bound (4.60) lies in the fact that only a part
of the estimator in (4.52) will be invoked. To formulate this, we define

ET (DT , 5 , T̃ ) :=
(∑
) ∈T̃

ET (DT , 5 , ))2
)1/2

, (4.65)

where T̃ ⊂ T is a subset of elements in T . In the same vein, we shall denote
[T (DT , 5 , T̃ ) and oscT ( 5 , T̃ ).

Theorem 4.48 (upper bound for corrections). Let Assumption 4.44 hold and
let T∗ be a refinement of the mesh T . The correction DT∗ − DT is bounded in terms
of the indicators of the refined elements T \ T∗:

‖∇(DT − DT∗)‖!2(Ω) ≤ �̃*ET (DT , 5 , T \ T∗),
where the constant �̃* > 0 depends only on the dimension 3, the coefficients G
and 2, the polynomial degree =, and the shape regularity coefficient f from (3.9).

Proof. 1 Localization and splitting of the residual norm. In light of Lemma 4.47,
it suffices to bound the discrete residual norm ‖'T ‖(VT∗ )∗ . Given F ∈ VT∗ , we
prepare the localization of the residual by full orthogonality (4.61) and split it with
help of the projection %T on discrete functionals:

|〈'T , F〉| = |〈'T , F − �T F〉|
≤ |〈%T 'T , F − �T F〉| + |〈 5 − %T 5 , F − �T F〉|,

where we used the identity ' − %T ' = 5 − %T 5 in the last step. In light of
ET (DT , 5 , T \ T∗)2 = [T (DT , 5 , T \ T∗)2 + oscT ( 5 , T \ T∗)2,

it remains to bound the two termswith discretized residual %T 'T and the oscillation
of 5 appropriately.

2 Bounding the discretized residual. We adopt the notation (4.35) for the densities
of %T , and exploit the piecewise nature of the discretized residual and the local
invariance (4.63b) of �T to deduce

〈%T 'T , F − �T F〉

=
∑

) ∈T \T∗

(∫
)

(%) 'T )(F − �T F) + 1
2

∑
� ⊂m) \mΩ

∫
�

(%�'T )(F − �T F)
)
.
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Invoking the local approximation properties (4.64b) and (4.64c) of �T leads to the
desired bound for the discretized residual:

|〈%T 'T , F − �T F〉| .
∑

) ∈T \T∗
[T (DT , 5 , )) ‖∇F‖!2(l) )

. [T
(
DT , 5 , T \ T∗

) ‖∇F‖!2(Ω).

3 Bounding the oscillation. We need to split the oscillation into suitable local
contributions and first proceed similarly to the proof of Lemma 4.5(i) (localization
of �−1-norm). Writing

F − �T F =
∑
I∈V

(F − �T F)qI and Ω0 :=
⋃

) ∈T \T∗
),

we have (F − �T F)qI ∈ �1
0(lI ∩Ω0) thanks to (4.63b) and, for any ) ⊂ lI ∩Ω0,

‖∇((F − �T F)qI)‖!2() ) ≤ ‖qI∇(F − �T F)‖!2() ) + ‖(F − �T F)∇qI ‖!2() )

≤ ‖∇(F − �T F)‖!2() ) + �(3)f‖∇F‖!2(l) )

. ‖∇F‖!2(l) )

by means of 0 ≤ qI ≤ 1, |∇qI | ≤ �(3)fℎ−1
) , (4.64a) and (4.64b). Hence we get

|〈 5 − %T 5 , F − �T F〉|
≤

∑
I∈V
|〈 5 − %T 5 , (F − �T F)qI〉|

≤
∑
I∈V
‖ 5 − %T 5 ‖�−1(lI∩Ω0)‖∇((F − �T F)qI)‖!2(lI∩Ω0)

.
∑
I∈V
‖ 5 − %T 5 ‖�−1(lI∩Ω0)‖∇F‖!2(∪) ⊆lI∩Ω0l) )

.

(∑
I∈V
‖ 5 − %T 5 ‖2�−1(lI∩Ω0)

)1/2
‖∇F‖!2(Ω).

Since ∑
I∈V
‖ 5 − %T 5 ‖2�−1(lI∩Ω0) ≤

∑
) ∈T \T∗

‖ 5 − %T 5 ‖2�−1(l) ),

the oscillation of 5 is therefore bounded by

|〈 5 − %T 5 , F − �T F〉| ≤ oscT ( 5 , T \ T∗)‖∇F‖!2(Ω)

and the proof is complete.

Proposition 4.12 (partial lower bound) as well as Lemma 4.35 (splitting of local
residual norm) illustrate that the test spaceV+T is closely related to lower bounds for
the error. This observation suggests establishing lower bounds for the correction
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‖∇(DT − DT∗)‖!2(Ω) by ensuring conditions such as

V+(Tl) ⊂ V(T∗),
where l is a T -mesh subdomain. Inspecting the construction of V+T , we realize
that such conditions can be achieved if max{<1, <2} ≤ = − 1 and the cut-off is
implemented with hat functions of a virtual refinement of T .

Lemma 4.49 (cut-off by refined hat functions). Let T+ be theminimal bisection
refinement of T such that the relative interior of each element ) ∈ T and each face
� ∈ F of the original mesh T contains at least one vertex from T+. Then there exist
hat functions q) , ) ∈ T , and q� , � ∈ F , in S1,0(T+) satisfying Assumption 4.21 if
max{<1, <2} ≤ = − 1.

Proof. The details of the proof depend on bisection and we therefore restrict to
the case 3 = 2; for 3 > 2, the following reference situation used to define the hat
functions is replaced by several ones with ‘tagged’ reference simplices. Let )̂ = )2
be the reference element in R2 with the standard enumeration of its vertices Î0 = 0,
Î1 = 41 and Î2 = 42. Furthermore, let T̂+ be the mesh obtained by applying five
bisections so that vertices in the interiors of )̂ and of its faces are generated. Let
q̂)̂ , q̂� ′, �

′ ⊂ )̂ denote the four hat functions in S1,0(T̂+) associated with these
generated vertices. Given an arbitrary element ) ∈ T , let �) denote the bi-affine
map ) → )̂ preserving the numbering of the vertices for bisection, and define the
pullbacks

q) := �∗) (q̂)̂ ), q� |) := �∗) (q̂�) (� )), � ⊂ ),
and extend by 0 off) orl� . As the extension operators �� preserve the polynomial
degree (see Lemma 4.20 (extending from faces)), max{<1, <2} ≤ = − 1, and

{�−1
) ()̂+) | )̂+ ∈ T̂+} = {)+ ∈ T+ | )+ ⊂ )},

the hat functions q) , ) ∈ T , and q� , � ∈ F , then satisfy Assumption 4.21 with
�) = �−1

) and S+ = S=,0(T̂+).
Definition 4.50 (interior vertex property). A mesh element ) ∈ T satisfies the
interior vertex property with respect to T∗ ≥ T whenever each interior face � ⊂
m) \ mΩ of ) and each element in l̃) (defined in (3.12)) have in their relative
interiors at least one vertex from T∗.
A set M ⊂ T satisfies the interior vertex property with respect to a refinement

T∗ ≥ T if each element ) ∈M satisfies the interior vertex property.

The interior vertex property is valid upon enforcing a fixed number 1 of bisections
(1 = 3, 6 for 3 = 2, 3). An immediate consequence is the following lower bound
for corrections.

Theorem 4.51 (lower bound for corrections). Suppose G is piecewise constant
over T and 2 = 0, define %T with the help of the cut-off functions in Lemma 4.49,
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and letM denote the subset of elements in T satisfying the interior vertex property
with respect to T∗. Then∑

) ∈M
ET (DT , 5 , ))2 ≤ �‖∇(DT − DT∗)‖2!2(Ω) +

∑
) ∈M

‖ 5 − %T 5 ‖2�−1(l) ),

where � depends on 3, the shape regularity coefficient f, the coefficients (G, 2),
and the polynomial degree =.

Proof. 1 We first show a local bound with the PDE indicator [T (DT , )). In view
of G ∈ S0,−1

T and 2 = 0, we choose <1 = = − 1 and <2 = = − 2 as the degrees for
the discrete functionals. We can thus apply Lemma 4.49 and construct %T with
the refined hat functions. Let ) ∈ M and so, using the interior vertex property
and the notation associated with l̃) in (3.12), we deduce V+(T̃) ) ⊂ V(T∗, )) :=
V(T∗) ∩ �1

0(l̃) ), where T̃) = {) ∈ T | ) ⊆ l̃) }. Combining this with inequality
(4.45) and Definition 4.24 (projection onto discrete functionals), we conclude

[T (DT , )) . ‖%T 'T ‖V+(T̃) )∗ = ‖'T ‖V+(T̃) )∗ ≤ ‖'T ‖V(T∗,) )∗ .

2 To collect the local bounds of the first step, we first show that, for any ℓ ∈ V(T∗)∗,∑
) ∈T
‖ℓ‖2

V(T∗ ,) )∗ ≤ (3 + 2)‖ℓ‖2V(T∗)∗ .

To this end, we just repeat the proof of Lemma 4.5 (localization of �−1-norm),
replacing the spaces �1

0(l8) and �1
0(Ω), respectively, with V(T∗, )) and V(T∗).

Hence, squaring and summing the bound of the first step as well as using Lemma 4.1
(error and residual) yield∑

) ∈M
[T (DT , ))2 .

∑
) ∈M

‖'T ‖2V(T∗,) )∗ . ‖∇(DT∗ − DT )‖2
!2(Ω). (4.66)

3 We finally prove the claimed bound by simply inserting (4.66):∑
) ∈M

ET (DT , 5 , ))2 =
∑
) ∈M

(
[T (DT , ))2 + oscT ( 5 , ))2)

≤ �‖∇(DT∗ − DT )‖2
!2(Ω) +

∑
) ∈M

oscT ( 5 , ))2,

and the proof is finished.

Remark 4.52 (oscillation and correction). In general, by first fixing the finer
meshT∗, it is impossible to bound oscillation indicators oscT ( 5 , )) by some suitable
correction. Indeed, these indicators can contain contributions to 5 and so to 'T of
‘arbitrarily high frequency’, while the correction can control only contributions of
the residual 'T with frequencies representable over T∗; see (4.58).

Monotonicity properties of the error |D − DT |� 1
0 (Ω) = ‖∇(D − DT )‖!2(Ω) and the

PDE error estimator [T (DT ) = [T (DT , 5 ) with respect to T would be useful but fail
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to hold. To investigate this issue, we consider two admissible meshes T , T∗ ∈ T,
the latter being a refinement of the former T∗ ≥ T , and a third admissible mesh
T̂ ≤ T . We further assume that data D = (G, 2, 5 ) is discrete over T̂ in the sense
that D ∈ DT̂ , where

DT̂ ≔
[
S=−1,−1
T̂

]3×3 × S=−1,−1
T̂

× FT̂
and D does not change in the transition from T to T∗ irrespective of the degree of
local refinement; in particular, 5 = %T̂ 5 ∈ FT̂ . We will later denote discrete data
as D̂ = (Ĝ, 2̂, 5̂ ) to distinguish it from exact dataD, and to study their discrepancy,
but we prefer to keep the simple notationD = D̂ now because there is no reason for
confusion. In particular, this implies that the bilinear form in (2.8) and the forcing
function are the same for both Galerkin solutions DT ∈ VT and DT∗ ∈ VT∗ , whence
the energy errors are monotone according to (3.8),

|||D − DT∗ |||Ω ≤ |||D − DT |||Ω,
but not |D − DT |� 1

0 (Ω). Moreover, [T (DT ) is not monotone because the discrete
solution DT ∈ VT changes with the mesh. It is thus useful to quantify the behaviour
of [T (DT ) in terms of T and DT following Cascón et al. (2008); see also Morin,
Siebert and Veeser (2008). We do this next.
The first lemma exploits the structure of the PDE residual estimator, namely the

presence of a positive power of the local mesh size, and expresses the reduction
of [T∗(E, 5 ) relative to [T (E, 5 ) for fixed functions E ∈ VT and 5 ∈ FT . This
quantitative property is instrumental in studying convergence ofAFEMs for coercive
problems in Section 6 as well as discontinuous Galerkin methods in Section 9 and
inf-sup stable problems in Section 10.

Lemma 4.53 (reduction property of the estimator). If the elements ofM ⊂ T
are bisected at least 1 ≥ 1 times to refine T into T∗, and _ = 1 − 2−1/3 , then

[T∗(E, 5 , T∗)2 ≤ [T (E, 5 , T )2 − _ [T (E, 5 ,M)2 for all E ∈ VT , 5 ∈ FT . (4.67)

Proof. Given ) ∈ T , we rewrite (4.52) as follows:

[T (E, ))2 = ℎ) 9T (E, ))2 + ℎ2
) AT (E, ))2,

with [T (E, )) = [T (E, 5 , )) and

9T (E, ))2 = 9T (E, 5 , ))2 =
∑
� ∈F
� ⊂m)

‖ [[G∇E]] · n� − %T 5 ‖2!2(� ),

AT (E, )) = AT (E, 5 , )) = ‖%T 5 + div(G∇E) − 2E‖!2() ),

where 5 = %T 5 = %T∗ 5 ∈ FT does not change from T to T∗. We readily have∑
)∗∈T∗,)∗⊆)

[T∗(E, )∗)
2 ≤ [T (E, ))2,
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because ℎ)∗ ≤ ℎ) for all )∗ ⊂ ) and )∗ ∈ T∗. If, in addition, ) is bisected at least
1 times, then any such )∗ satisfies ℎ)∗ ≤ 2−1/3ℎ) , whence∑

)∗∈T∗,)∗⊆)
[T∗(E, )∗)

2 ≤ 2−1/3[T (E, ))2.

Therefore, adding over ) ∈ T , we obtain

[T∗(E)2 =
∑
) ∈T

∑
)∗∈T∗,)∗⊂)

[T∗(E, ))2 ≤ 2−1/3
∑
) ∈M

[T (E, ))2 +
∑

) ∈T \M
[T (E, ))2,

which implies the assertion (4.67).

The next result complements Lemma 4.53 in that it expresses the Lipschitz
continuity of [T (E, 5 ) with respect to the argument E ∈ VT for fixed T and
5 ∈ FT .
Lemma 4.54 (Lipschitz property of the estimator). LetT and 5 ∈ FT be fixed.
There exists a constant �Lip proportional to ‖�‖!∞(Ω) + ‖2‖!∞(Ω) such that

|[T (E, 5 ) − [T (F, 5 )| ≤ �Lip |E − F |� 1
0 (Ω) for all E, F ∈ VT . (4.68)

Proof. Since [T (E) = [T (E, 5 ) is the ℓ2-norm of the vector ([T (E, )))) ∈T ∈ R#T ,
applying the triangle inequality gives

|[T (E) − [T (F)|2 ≤
∑
) ∈T
|[T (E, )) − [T (F,))|2

≤
∑
) ∈T

ℎ) | 9T (E, )) − 9T (F,))|2 + ℎ2
) |AT (E, )) − AT (F,))|2.

We first consider the jump terms and again apply the triangle inequality followed
by an inverse estimate to find that

| 9T (E, )) − 9T (F,))|2 ≤
∑
� ∈F
� ⊂m)

‖ [[G∇(E − F)]] · n� ‖2!2(� )

. ℎ−1
) ‖G‖2!∞(Ω)‖∇(E − F)‖2

!2(l) ),

where l) is the patch of ) . A similar reasoning for the element residuals yields

|AT (E, )) − AT (F,))|2 . ‖2(E − F)‖2
!2() ) + ‖ div(G∇(E − F))‖2

!2() )

. ‖2‖2!∞(Ω)‖(E − F)‖2
!2() ) + ℎ−2

) ‖G‖2!∞(Ω)‖∇(E − F)‖2
!2() ),

because � is piecewise polynomial. Finally, adding over ) ∈ T and applying
Lemma 2.2 (first Poincaré inequality) concludes the proof.

Since the estimator [T (E, 5 ) depends explicitly on %T 5 , and %T 5 may change
with T , it is crucial to account for the variations of [T (E, 5 ) while keeping T and
E ∈ VT fixed. This is the purpose of our next result.
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Lemma 4.55 (estimator dependence on discrete forcing). Let T and E ∈ VT
be fixed. Then there exists a constant �Lip such that

|[T (E, 5 )−[T (E, 6)| ≤ �Lip

(∑
) ∈T
‖ 5 −6‖2

�−1(l) )

)1/2
for all 5 , 6 ∈ FT . (4.69)

Proof. We proceed elementwise, as in Lemma 4.54, except that after applying the
triangle inequality we end up with the weighted !2-norms

ℎ2
) ‖ 5 − 6‖2!2() ) + ℎ) ‖ 5 − 6‖2!2(m) ) for all ) ∈ T .

Extending these norms to patches l) and its interior faces f) , and appealing to
Corollary 4.30 (quantifying �−1-norms of discrete functionals), we deduce

ℎ2
) ‖ 5 − 6‖2!2(l) ) + ℎ) ‖ 5 − 6‖2!2(f) ) ≈ ‖ 5 − 6‖2�−1(l) ).

Adding over ) ∈ T finishes the proof.

In the subsequent applications of Lemma 4.54 the discrete coefficients (G, 2)
may change with the change of the supporting mesh T̂ , but they will always be
uniformly bounded in !∞(Ω); hence the constant �Lip is uniformly bounded as
well. Upon combining Lemmas 4.53, 4.54 and 4.55, we obtain the following
crucial property.

Proposition 4.56 (estimator reduction). Given T ∈ T and a subset M ⊂ T of
elements marked for refinement, let REFINE be the procedure discussed in Sec-
tion 3.5 that bisects the elements ofM at least 1 times, and let T∗ = REFINE(T ,M)
be the resulting conforming mesh. Let the coefficients (G, 2) be discrete and fixed.
Then, for _ = 1−2−1/3 , for all E ∈ VT , E∗ ∈ VT∗ , 5 ∈ FT , 5∗ ∈ FT∗ , and any X > 0,

[T∗(E∗, 5∗, T∗)2 ≤ (1 + X)
(
[T (E, 5 , T )2 − _ [T (E, 5 ,M)2)

+ 2(1 + X−1)�2
Lip

(
|E∗ − E |2� 1

0 (Ω) +
∑
)∗∈T∗

‖ 5∗ − 5 ‖2�−1(l)∗ )

)
,

where �Lip is the constant in Lemmas 4.54 and 4.55.

Proof. For any X > 0, write

[T∗(E∗, 5∗, T∗)2 ≤ (1 + X)[T∗(E, 5 , T∗)2 + (1 + X−1)([T∗(E∗, 5∗, T∗) − [T∗(E, 5 , T∗))2

and apply Lemma 4.53 to the first term and Lemmas 4.54 and 4.55 to the second
term combined with a triangle inequality.

We finish this section by investigating the behaviour of the global oscillation
under refinement.

Lemma 4.57 (quasi-monotonicity of oscillation). If 5 ∈ �−1(Ω) and T , T∗ ∈ T
with T∗ ≥ T , then

oscT∗( 5 ) ≤ �osc oscT ( 5 ),
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where �osc depends only on the shape regularity coefficient f and 3.

Proof. Given ) ∈ T , let )∗ ∈ T∗ such that )∗ ⊂ ) . Since T∗ is a refinement of T ,
this implies that the patch lT∗()∗) in T∗ around )∗ is contained in the patch lT ())
in T around ) . Thanks to Lemma 4.31 (local near-best approximation), we derive

oscT∗( 5 , )∗)
2 = ‖(� − %T∗) 5 ‖2�−1(lT∗ ()∗))

≤ �2
lStb‖(� − %T ) 5 ‖2

�−1(lT∗ ()∗))

and therefore, with the help of (ii) of Lemma 4.5 (localization of �−1-norm),∑
)∗⊂)

oscT∗( 5 , )∗)
2 ≤ �2

lStb�ovrl‖(� − %T ) 5 ‖2
�−1(lT () )) = �

2
lStb�ovrl oscT ( 5 , ))2,

where �ovrl is bounded in terms of the shape regularity coefficient f and 3. Hence
summing over ) ∈ T yields

oscT∗( 5 )
2 =

∑
) ∈T

∑
)∗⊂)

oscT∗( 5 , )∗)
2 ≤ �2

lStb�ovrl oscT ( 5 )2,

and the proof is finished.

4.9. Alternative estimators

In Section 4.7 we used the �−1-projection %T to derive a posteriori bounds for the
error in the spirit of the standard residual estimator. The goal of this section is to
illustrate that the approach with %T can also be combined with other techniques of
a posteriori error estimation, generalizing and expanding the discussion in Kreuzer
and Veeser (2021, Section 4) with the �−1-projection %T .
Alternative techniques have been developed with the desire to reduce or even

circumvent the fact that constants spoil the relationship between error and estimator.
In the framework of the aforementioned approach, we shall see that the various
techniques based upon

• local (discrete) problems,
• hierarchy,
• flux equilibration

amount to different ways of quantifying a local norm of the discretized residual
%T 'T . This observation is useful for comparing the techniques and for a common
treatment in the following sections about adaptive algorithms.
As in Section 4.7 on modified residual estimation, we shall consider only the

case given by Assumption 4.44 (discrete coefficients and discrete functionals). For
the hidden constants in the results of this section, it is useful to keep in mind
Remark 4.4 (constants in error–residual relationship).
Theorem 4.45 (modified residual estimator) analysed an element-indexed version

of the residual estimator. For the sake of simplicity, we shall refrain here from
such an element-indexed setting and remain in the vertex-indexed setting of the
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abstract analysis of Section 4.6. In order to facilitate the comparison with the other
estimators below, we offer the following vertex-indexed variant of Theorem 4.45.
For I ∈ V , we set FI ≔ {� ∈ F | I ∈ �} and TI ≔ {) ∈ T | I ∈ )}. Given the
Galerkin approximation DT from (4.1), define the PDE indicator by

[res
T (DT ) :=

∑
I∈V

[res
T (DT , I)2 with

[res
T (DT , I)2 :=

∑
� ∈FI

ℎ� ‖%�'T ‖2!2(� ) +
∑
) ∈TI

ℎ2
) ‖%) 'T ‖2!2() ),

(4.70a)

where 'T = 5 + div(G∇DT ) − 2DT ∈ �−1(Ω) is the residual and %� , � ∈ F
and %) , ) ∈ T yield the polynomial densities of %T ; see Definition 4.24. The
vertex-indexed modified residual estimator is then

E res
T := E res

T (DT , 5 )2 := [res
T (DT )2 + oscT ( 5 )2. (4.70b)

Theorem 4.58 (vertex-indexed modified residual estimator). SupposeAssump-
tion 4.44. The modified residual estimator (4.70b) is equivalent to the error:

min{1, �!,res}
�★lStb�3

E res
T . ‖∇(D − DT )‖!2(Ω) . max{1, �*,res}�3�locE res

T ,

while its PDE indicator (4.70a) is locally equivalent to the discretized residual: for
all vertices I ∈ V ,

�!,res[
res
T (DT , I) ≤ ‖%T 'T ‖�−1(lI ) ≤ �*,res[

res
T (DT , I).

Here, �!,res and �*,res are the hidden constants of Corollary 4.30 on stars, �★lStb
is the stability constant of %T on stars from Lemma 4.28, �loc is the constant
from Corollary 4.6, �3 =

√
2(3 + 1), and the hidden constants depend only on the

error–residual relationship in Lemma 4.1.

Proof. Local equivalence is a reformulation of Corollary 4.30 (quantifying �−1-
norms of discrete functionals) on stars. The global bounds follow by combining
local equivalence with Lemma 4.1 (error and residual), Corollary 4.6 (star loc-
alization of residual norm) and Lemma 4.35 (splitting of local residual norm).

Adjoint projection
The projection %T relates residual 'T and discretized residual %T 'T . In order to
exploit this relationship on the test space �1

0(Ω), we shall need the adjoint %∗T to
the projection %T . Curiously, operators employed in this vein appeared first; see
e.g. Morin, Nochetto and Siebert (2003) and Veeser (2002).
Given F ∈ �1

0(Ω), the function %∗T F can be directly defined by requiring

%∗T F ∈ V+T : 〈ℓ, %∗T F〉 = 〈ℓ, F〉 for all ℓ ∈ FT . (4.71)

This definition is well-posed thanks to Lemma 3.1 (discrete inf-sup condition)
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and Lemma 4.25 (algebraic properties), especially (4.37) and (4.38). Clearly,
%∗T is a linear projection onto the finite-dimensional subspace V+T ⊂ �1

0(Ω). A
representation as interpolation operator will be derived in Corollary 4.61 below.
Using both definitions of %T and %∗T , we see that they are actually adjoint:

〈%T ℓ, F〉 = 〈%T ℓ, %∗T F〉 = 〈ℓ, %∗T F〉 for all ℓ ∈ �−1(Ω), F ∈ �1
0(Ω). (4.72)

Consequently, Lemmas 4.25 and 4.28 (local �−1-stability) show that %∗T is a local
operator with

‖%∗T ‖L(� 1
0 (l)) = ‖%T ‖L(�−1(l)) ≤ �lStb. (4.73)

The choice ℓ = 'T in (4.72) leads to

〈%T 'T , F〉 = 〈%T 'T , %∗T F〉 = 〈'T , %∗T F〉 for all F ∈ �1
0(Ω),

where the two identities show that the discretized residual %T 'T can be analysed
with discrete test functions in V+T only; see the norm equivalence in Lemma 4.28.
Restricting to discrete test functions in V+T = Im %∗T , we find the definition of %T :

〈%T 'T , F〉 = 〈'T , F〉 for all F ∈ V+T . (4.74)

An estimator based upon local problems
Local dual norms can be quantified by solving local problems. Requiring com-
putability of these solutions leads to finite-dimensional or discrete local problems.
In other words, we lift the residual to local and finite-dimensional extensions of
the finite element space. Starting with Babuška and Rheinboldt (1978), this idea
was used to soften the impact of constants in the relationship between error and
estimator; see Verfürth (2013, Remark 1.22) for more references.
Within the approach of Sections 4.1 and 4.6, we can use local discrete problems

to quantify the local �−1-norms of the discretized residual %T 'T . In this manner,
constants arise only due to the localization of the residual norm and to the splitting
into discretized and oscillatory residual by the �−1-projection %T .
We start by introducing the vertex-oriented PDE indicator. Given the Galerkin

approximation DT from (4.1), set

[
lpb
T (DT ) :=

∑
I∈V

[
lpb
T (DT , I)2 with [

lpb
T (DT , I) := ‖∇EI ‖!2(lI ), (4.75a)

where EI ∈ V+(TI) is the solution of the local problem∫
lI

∇EI · ∇F = 〈'T , F〉 for all F ∈ V+(TI). (4.75b)

Note that this problem is discrete for dimV+(TI) < ∞ and can therefore be solved
up to machine precision. The resulting estimator is then

E lpb
T := E lpb

T (DT , 5 )2 := [lpb
T (DT )2 + oscT ( 5 )2. (4.75c)
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Theorem 4.59 (estimator based on local problems). UnderAssumption 4.44 the
estimator (4.75) based on local problems is equivalent to the error, while its PDE
indicator is locally equivalent to the discretized residual with constant 1 in the
lower bound, so that

1
�★lStb�3

E lpb
T . ‖∇(D − DT )‖!2(Ω) . �

★
lStb�3�locE lpb

T ,

and, for all vertices I ∈ V ,
[

lpb
T (DT , I) ≤ ‖%T 'T ‖�−1(lI ) ≤ �★lStb[

lpb
T (DT , I)

where �★lStb is the stability constant of %T on stars from Lemma 4.28, �loc from
Corollary 4.6, �3 =

√
2(3 + 1) and the hidden constants depend only on the error–

residual relationship in Lemma 4.1.

Proof. It suffices to show the local equivalence for the PDE indicator; see The-
orem 4.58 (vertex-indexed modified residual estimator) and note that �★lStb ≥ 1.
Let I ∈ V be any vertex. In view of (4.74), the definition of EI ∈ V+(T ) readily
implies

[
lpb
T (DT , I) = ‖∇EI ‖!2(lI ) = ‖%T 'T ‖V+(T )∗ .

Hence Lemma 4.28 on the local �−1-stability of %T yields the asserted local
equivalence of PDE indicator and discretized residual %T 'T .

A stable biorthogonal system for FT × V+T
Stable biorthogonal systems induce linear bounded projections, which enjoy near-
best approximation thanks to the Lebesgue lemma. Supposing Assumption 4.21
(abstract cut-off), we now outline the construction of such a system for the finite-
dimensional product FT ×V+T . The constructed systemwill induce both projections
%T and its adjoint %∗T . This generalizes the bi-orthogonal system in Kreuzer and
Veeser (2021, Section 3.4) to arbitrary degrees of the discrete functionals and
provides an alternative approach to %T , its local stability as well as its computation.
Furthermore, we use it for devising a hierarchical estimator.
The construction is implemented in an affine equivalent manner and our first step

consists in setting up a suitable reference biorthogonal system. Let )̂ := )3 be the
reference element, let �̂ := )3−1 × {0} ⊂ )̂ be the reference face, and denote the
polynomial degrees in FT by <1 ∈ N0 and <2 ∈ N0. Writing

 1 := dimP<1(�̂),  2 := dimP<2()̂),

assume that we are given orthonormal bases @(�̂ ,1), . . . , @(�̂ , 1) ∈ P<1(�̂) and
@()̂ ,1), . . . , @()̂ , 2) ∈ P<2()̂) in the sense that∫

�̂
@(�̂ ,:)@(�̂ ,;)q�̂ = X:; ,

∫
)̂
@()̂ ,:)@()̂ ,;)q)̂ = X:; . (4.76)
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for all admissible :, ;, i.e. :, ; ∈ {1, . . . ,  1} or {1, . . . ,  2} depending on the
underlying domain. These bases induce the reference functionals

ℓ̂(�̂ ,:)(F) :=
∫
�̂
@(�̂ ,:)F, ℓ̂()̂ ,:)(F) :=

∫
)̂
@()̂ ,:)F,

on �1()̂), which in turn span the reference space F̂. In order to define comple-
mentary test functions, let �̂ be the extension operator (4.4) associated with the
reference face �̂ adapted to the current situation with the only element )̂ , and,
given some E ∈ !2()̂), define &̂E ∈ P<2 by∫

)̂
@
(
&̂E

)
q)̂ =

∫
)̂
@E for all @ ∈ P<2 . (4.77)

We thus define the reference test functions
F̂()̂ ,:) := @()̂ ,:)q)̂ , : = 1, . . . ,  2,

F̂(�̂ ,:) := Ê(�̂ ,:) −
(
&̂Ê(�̂ ,:)

)
q)̂ , : = 1, . . . ,  1,

(4.78)

with Ê(�̂ ,:) := (�̂@(�̂ ,:))q�̂ . Note that F̂(�̂ ,:) ≠ 0. Writing

�̂ := {(�̂, :) | : = 1, . . . ,  1} ∪ {()̂ , :) | : = 1, . . . ,  2},
we then have

F̂8 ∈ V̂+ := {(�̂@1)q�̂ + @2q)̂ | @1 ∈ P<1 , @2 ∈ P<2} for all 8 ∈ �̂
and the biorthogonality

〈ℓ̂8 , F̂ 9〉 = X8 9 for all 8, 9 ∈ �̂ , (4.79)

thanks to (4.76) and (4.77). We thus dispose of a biorthogonal system in the
reference product F̂ × V̂+.

Using pullbacks with some minor tweaks, this reference biorthogonal system
induces a global biorthogonal system. To this end, we employ bi-affine maps �� ,
�) , and �() ,� ). Here, for example, given a pair (), �) ∈ T × F with � ⊂ ) , the
map�() ,� ) is bi-affine and sends vertices into vertices such that�() ,� )()̂) = ) and
�() ,� )(�̂) = �. The fact that these maps are only unique up to some renumbering
of the vertices is irrelevant, as all objects in the reference situation on ()̂ , �̂) are
invariant under such renumberings. We denote the respective inverse maps of �� ,
�) and �() ,� ) by �� , �) and �() ,� ). Motivated by the transformation rule, we
introduce the scaled pullbacks, for � ∈ F , ) ∈ T , : admissible,

@(�,:) :=
( |�̂ |
|� |

)1/2
�∗�@(�̂ ,:), @() ,:) :=

( |)̂ |
|) |

)1/2
�∗) @()̂ ,:), (4.80)

of the reference orthonormal bases in (4.76). These lead to the basis

ℓ(�,:)(F) :=
∫
�
@(�,:)F, ℓ() ,:)(F) :=

∫
)
@() ,:)F (4.81)
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of FT , while the associated test functions are again given via pullbacks:

F() .:) :=
( |)̂ |
|) |

)1/2
�∗) F̂()̂ ,:), F(�.:) |) :=

( |�̂ |
|� |

)1/2
�∗() ,� )F̂(�̂ ,:) (4.82)

for all ) ∈ T , � ∈ F with � ⊂ ) and all admissible : . Note that F(�.:) ∈ �1
0(Ω).

Finally, we introduce the index set

� := (F × {1, . . . ,  1}) ∪ (T × {1, . . . ,  2}),
and observe that F8 ∈ V+T for all 8 ∈ �.

Lemma 4.60 (biorthogonal system). The pairs (ℓ8 , F8), 8 ∈ �, provide a stable
biorthogonal system of the product FT ×V+T : indeed, 〈ℓ8 , F 9〉 = X8 9 for all 8, 9 ∈ �
and, writing �I := {((, :) ∈ � | ( 3 I} for all I ∈ V ,∑

8∈�I
‖ℓ8 ‖�−1(lI )‖∇F8 ‖!2(lI ) ≤ �★bOS,

where the constant �★bOS depends only on 3, <1, <2 and the shape regularity
coefficient f from (3.9).

Proof. 1 We first establish the biorthogonality. Thanks to the transformation
rule, the scaled pullbacks (4.80) indeed form local orthonormal bases of %<1(�),
� ∈ F , and %<2()), ) ∈ T :∫

�
@(�,:)@(�,;)q� =

∫
�̂
@(�̂ ,:)@(�̂ ,;)q�̂ = X:; ,

∫
)
@() ,:)@() ,;)q) = X:; (4.83)

for all admissible : and ;. This orthonormality, combined with the local supports
of the pairs (ℓ8 , F8), 8 ∈ �, shows the biorthogonality, except for the cases when
(), �) ∈ T × F with � ⊂ ) and :, ; are admissible. Here the transformation rule
and the definition of &̂ imply

〈ℓ() ,:), F(�,;)〉 =
∫
)
@() ,:)F(�,;) =

( |) | |�̂ |
|)̂ | |� |

)1/2 ∫
)̂
@()̂ ,:)F̂(�̂ ,;)

=

( |) | |�̂ |
|)̂ | |� |

)1/2 ∫
)̂
@()̂ ,:)

(
Ê(�̂ ,;) −

(
&̂Ê(�̂ ,;)

)
q)̂

)
= 0,

and biorthogonality is verified.

2 It remains to show the stability bound for any vertex I ∈ V . Given 8 ∈ �I , we
have either 8 = (), :) with ) ∈ T or 8 = (�, :) with � ∈ F . On the one hand, the
functional ℓ8 satisfies

‖ℓ() ,:)‖�−1(lI ) . ℎ) or ‖ℓ(�,:)‖�−1(lI ) . ℎ
1/2
�
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since, by passing to the reference element and using orthonormality (4.83), (a vari-
ant of the) Poincaré inequality (2.2) and the trace inequality on )̂ , we have

〈ℓ() ,:), F〉 =
∫
)
@() ,:)F =

( |) |
|)̂ |

)1/2 ∫
)̂
@()̂ ,:)�

∗
)F

≤
( |) |
|)̂ |

)1/2
‖@()̂ ,:)‖!2()̂ )‖�∗)F‖!2()̂ )

.

( |) |
|)̂ |

)1/2(∫
)̂
|@()̂ ,:) |2q)̂

)
‖∇(�∗)F)‖!2()̂ ) . ℎ) ‖∇F‖!2() )

or, with ) ∈ T such that ) ⊃ �,

〈ℓ(�,:), F〉 =
∫
�
@(�,:)F =

( |� |
|�̂ |

)1/2 ∫
�̂
@(�̂ ,:)�

∗
() ,� )F

≤
( |� |
|�̂ |

)1/2
‖@(�̂ ,:)‖!2(�̂ )‖�∗() ,� )F‖!2(�̂ )

.

( |� |
|�̂ |

)1/2(∫
�̂
|@(�̂ ,:) |2q�̂

)
‖∇(�∗() ,� )F

)‖!2()̂ )

.

( |� | |)̂ |
|�̂ | |) |

)1/2
ℎ) ‖∇F‖!2() ) . ℎ

1/2
� ‖∇F‖!2() ).

On the other hand, we obtain that the function F8 verifies

‖∇F() ,:)‖!2() ) =

( |)̂ |
|) |

)1/2
‖∇(�∗) F̂()̂ ,:)

)‖!2() ) . ℎ
−1
) ‖F̂()̂ ,:)‖!2()̂ ) . ℎ

−1
)

or

‖∇F(�,:)‖!2() ) =

( |�̂ |
|� |

)1/2
‖∇(�∗() ,� )F̂()̂ ,:)

)‖!2() )

. ℎ−1
)

( |) |
|� |

)1/2
‖F̂()̂ ,:)‖!2()̂ ) . ℎ

−1/2
� .

Using these inequalities to bound ‖ℓ8 ‖�−1(lI )‖∇F8 ‖!2(lI ), summing over all 8 ∈ �I
then establishes the stability bound as the cardinality #�I is uniformly bounded in
terms of the shape regularity coefficient f.

Corollary 4.61 (projections as interpolation operators). The biorthogonal sys-
tem (ℓ8 , F8), 8 ∈ �, induces the �−1-projection %T from Definition 4.24 and its
adjoint %∗T . Indeed, we have

%T ℓ =
∑
8∈�
〈ℓ, F8〉ℓ8 and %∗T F =

∑
8∈�
〈ℓ8 , F〉F8

for all ℓ ∈ �−1(Ω) and F ∈ �1
0(Ω). The stability of the biorthogonal system then
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provides an alternative proof of the �−1-stability on stars of both projection %T
and %∗T , entailing �

★
lStb ≤ �★bOS.

Proof. 1 We only show the identity for %T ; the one for %∗T can be verified along
the same lines. The biorthogonality in Lemma 4.60 readily implies〈∑

8∈�
〈ℓ, F8〉ℓ8 , F 9

〉
=

∑
8∈�
〈ℓ, F8〉〈ℓ8 , F 9〉 = 〈ℓ, F 9〉 for all 9 ∈ � .

As F 9 , 9 ∈ �, is a basis of V+T , we conclude the claimed identity for %T .

2 To verify the stability statement, we again restrict ourselves to the case of the
projection %T . Observe first that the proof of the stability of the biorthogonal
system does invoke the local stability of %T . Thanks to the representation of %T
and the stability of the biorthogonal system in Lemma 4.60, we have

〈%T ℓ, F〉 =
∑
8∈�I
〈ℓ, F8〉〈ℓ8 , F〉 ≤ �★bOS‖ℓ‖�−1(lI )‖∇F‖!2(lI )

for any F ∈ �1
0(FI), I ∈ V , and the proof is finished.

The following two remarks illustrate the practical and theoretical usefulness of
the representation formulae.

Remark 4.62 (alternative computation of %T ). A by-product of Corollary 4.61
is a way of computing %T ℓ for a given functional ℓ ∈ �−1(Ω) that ‘diagonalizes’
the approach in Remark 4.26. In fact, given reference orthonormal bases as in
(4.76), we can compute the functionals ℓ8 , 8 ∈ �, and test functions F8 , 8 ∈ �, by
means of the formulae (4.78), (4.80), (4.81) and (4.82), whence, evaluating 〈ℓ, F8〉,
8 ∈ �, everything in the representation of %T ℓ in Corollary 4.61 is at our disposal.
Example 4.63 (global instability of %T and %∗T ). While the projections %T and
%∗T are locally stable, bothmay become globally unbounded undermesh refinement.
To see this, recall (4.73), note that ‖%T ‖L(�−1(Ω)) = ‖%∗T ‖L(� 1

0 (Ω)) and, following
the spirit of an example in Tantardini et al. (2024), consider

F :=
∑
I∈V∩Ω

qI ∈ �1
0(Ω).

Then, for all quasi-uniform meshes T with shape regularity coefficient f, there is
a constant � depending on f and quasi-uniformity such that

‖%∗T ‖2L(� 1
0 (Ω)) ≥

‖∇(%∗T F)‖2
!2(Ω)

‖∇F‖2
!2(Ω)

≥ � #{) ∈ T | ) ∩ mΩ = ∅}
#{) ∈ T | ) ∩ mΩ ≠ ∅} . (4.84)

Obviously, the last term tends to∞ under uniform refinement.
To prove (4.84), we proceed in several steps, mostly hiding constants depending

on quasi-uniformity of T and, as usual, the shape regularity coefficient f and 3.
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1 We first bound ‖∇F‖!2(Ω) from above. Noting that

F = 1 on
⋃

)∩mΩ=∅
),

the bound ‖∇qI ‖!∞() ) . ℎ
−1
) readily implies

‖∇F‖2
!2(Ω) =

∑
)∩mΩ≠∅

‖∇F‖2
!2() ) . #{) ∈ T | ) ∩ mΩ ≠ ∅} ℎ3−2

T , (4.85)

where ℎT stands for the mesh size of T .
2 The lower bound for ‖∇(%∗T F)‖!2(Ω) is more involved. We start by showing the
following representation for any ) ∈ T with ) ∩ mΩ = ∅:

%∗T F |) = �∗) Ê (4.86)

with the fixed function

Ê :=
∑

()̂ ,:)∈ �̂

(∫
)̂
@()̂ ,:)

)
F̂()̂ ,:) +

∑
(� ′,:)

( |� ′ |
|�̂ |

)1/2(∫
�̂
@(�̂ ,:)

)
F̂(� ′,:) ∉ P0,

where the indices of the second sum vary according to � ′ ⊂ )̂ , : = 1, . . . ,  1 and
F̂(� ′,:) is given by (4.82) with the transformation �()̂ ,� ′). Note first that, thanks to
F = 1 on ) and (4.80), the coefficients in the expansion of %∗T F |) satisfy

〈ℓ() ,:), F〉 =
∫
)
@() ,:) =

( |) |
|)̂ |

)1/2 ∫
)̂
@()̂ ,:)

and, for any � ⊂ ) ,

〈ℓ(�,:), F〉 =
∫
�
@(�,:) =

( |� |
|�̂ |

)1/2 ∫
�̂
@(�̂ ,:).

Combining these identities with (4.82) yields the claimed identity (4.86), and it
remains to verify Ê ∉ P0. Suppose Ê = 2 ∈ R. As a consequence, for any face
� ′ ⊂ )̂ and : ∈ {1, . . . ,  1}, we have

2 = F̂(� ′,:) = |�̂ |1/2 |� ′ |−1/2F̂(�̂ ,:) = |�̂ |1/2 |� ′ |−1/22.

As not all faces of the reference simplex have the same volume, this yields 2 = 0.
From (4.78) and (4.76), we infer that the coefficients in the definition of Ê vanish.
In particular,

∫
)̂
@()̂ ,:) = 0 for all : = 1, . . . ,  2 means &̂1 = 0, where &̂ is the

operator given in (4.77). This, however, is a contradiction because the restriction
of &̂ to P<2 is injective. Hence Ê ∉ P0 is proved.

3 We are ready to show the bound for ‖∇(%∗T F)‖!2(Ω). Given any element ) ∈ T
with ) ∩ mΩ = ∅, we pass to the reference element to exploit the previous step, and
obtain

‖∇(%∗T F)‖!2() ) = ‖∇(�∗) Ê)‖!2() ) & ℎ
3/2−1
) ‖∇Ê‖!2()̂ )
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with ‖∇Ê‖!2()̂ ) > 0 independent of ) . Consequently,

‖∇(%∗T F)‖2
!2(Ω) ≥

∑
)∩mΩ=∅

‖∇(%∗T F)‖2
!2() ) & #{) ∈ T | ) ∩ mΩ = ∅} ℎ3−2

T ,

because T is quasi-uniform. Combining this lower bound with the upper bound
(4.85) of the first step, we conclude (4.84).

A hierarchical estimator
Like estimators based upon local problems, hierarchical estimators aim at softening
the impact of constants in the lower bound, with the difference that they are explicit.
While global higher-order extensions were used originally, Bornemann, Erdmann
and Kornhuber (1996) use an extension tailored to the residual structure and derive
an upper bound with indicators testing the residual with a basis of the extension.
Onemay expect that such explicit indicators come at the price of increased constants
in the upper bound. For the following example, this expectation is confirmed by
the inequality �★lStb ≤ �★bOS.

Given the Galerkin approximation DT from (4.1), the hierarchical PDE indicator
is defined by

[hier
T (DT ) :=

∑
I∈V

[hier
T (DT , I)2 with [hier

T (DT , I) := max
8∈�I

|〈'T , F8〉|
‖∇F8 ‖!2(lI )

, (4.87a)

with � and �I as in Lemma 4.60 (biorthogonal system). Note that the test functions
F8 , 8 ∈ �, are available (see Remark 4.62), and therefore [hier

T (DT ) is explicit. The
resulting estimator is then

Ehier
T := Ehier

T (DT , 5 )2 := [hier
T (DT )2 + oscT ( 5 )2. (4.87b)

Theorem 4.64 (hierarchical estimator). Suppose the coefficients G and 2 are
discrete. The hierarchical estimator (4.87) is equivalent to the error, while its PDE
indicator is locally equivalent to the discretized residual with constant 1 in the
lower bound, so that

1
�★lStb�3

Ehier
T . ‖∇(D − DT )‖!2(Ω) . �

★
bOS�3�locEhier

T ,

and, for all vertices I ∈ V ,
[hier
T (DT , I) ≤ ‖%T 'T ‖�−1(lI ) ≤ �★bOS[

hier
T (DT , I),

where �★lStb is the stability constant of %T on stars from Lemma 4.5, �loc from
Corollary 4.6, �3 =

√
2(3 + 1), and the hidden constants depend only on the

error–residual relationship in Lemma 4.1.

Proof. It suffices to verify the local equivalence for the PDE indicator; see The-
orem 4.58 (vertex-indexed modified residual estimator). Its lower bound simply
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follows from (4.74): for all 8 ∈ �I , we have
|〈'T , F8〉| = |〈%T 'T , F8〉| ≤ ‖%T 'T ‖�−1(lI )‖∇F8 ‖!2(lI ).

To show its upper bound, let F ∈ �1
0(lI) and, with the help of Corollary 4.61

(projections as interpolation operators) and Lemma 4.60 (biorthogonal system),
we derive

〈%T 'T , F〉 =
∑
8∈�I
〈'T , F8〉〈ℓ8 , F〉

≤
∑
8∈�I

〈'T , F8〉
‖∇F8 ‖!2(lI )

‖∇F8 ‖!2(lI )‖ℓ8 ‖�−1(lI )‖∇F‖!2(lI )

≤ �★bOS [
hier
T (DT , I) ‖∇F‖!2(lI )

and the local equivalence is established.

Remark 4.65 (different test functions). The hierarchical estimator (4.87) does
not generalize the one in Bornemann et al. (1996) as it uses slightly different test
functions for edges. The given framework, however, applies to their variant too;
see Kreuzer and Veeser (2021, Section 4.1).

Alternative localization and residual splitting
Lemma 4.5 (localization of �−1-norm) is not well suited to reducing or avoiding
constants in the upper bounds. The following modification, however, allows this.
To this end, we replace the local spaces �1

0(lI), I ∈ V , with

WI :=

{{
F ∈ �1(lI) |

∫
lI
F = 0

}
, if I ∈ V ∩Ω,

{F ∈ �1(lI) | F = 0 on mlI ∩ mΩ}, if I ∈ V ∩ mΩ,
endow them with the norm ‖∇ · ‖!2(lI ), and let W∗I denote the respective dual
spaces endowed in turn with

‖ℓ‖W∗I := sup
{〈ℓ, F〉 | F ∈ WI , ‖∇F‖!2(lI ) ≤ 1

}
. (4.88)

Lemma 4.66 (alternative localization of �−1-norm). Let ℓ ∈ �−1(Ω) be any
linear functional.

(i) If 〈ℓ, qI〉 = 0 for all interior vertices I ∈ V ∩Ω, then
‖ℓ‖2

�−1(Ω) ≤ (3 + 1)
∑
I∈V
‖qIℓ‖2W∗I .

(ii) We have ∑
I∈V
‖qIℓ‖2W∗I ≤ (3 + 1)�2

loc‖ℓ‖2�−1(Ω),

where �loc is the constant in Lemma 4.5(i).
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Proof. The proof is essentially a regrouping of the arguments in Lemma 4.5,
where the constant �loc in the stability bound (4.6) now arises in the proof of the
lower bound from the following argument: we have

‖qIℓ‖W∗I ≤ �loc‖ℓ‖�−1(lI ), (4.89)

thanks to
〈qIℓ, F〉 = 〈ℓ, qIF〉 ≤ ‖ℓ‖�−1(lI )‖∇(FqI)‖!2(lI )

≤ �loc‖ℓ‖�−1(lI )‖∇F‖!2(lI )

for all F ∈ WI .

The question arises whether the inequality (4.89) between the two local dual
norms can be reversed. The following lemma reveals that this is only partially
possible, covering discrete functionals as arguments.

Lemma 4.67 (partial equivalence for local dual norms). If I ∈ V ∩ Ω is an
interior vertex, the functional ℓ = q−1

I satisfies

‖qIℓ‖W∗I = 0 and ‖ℓ‖�−1(lI ) > 0.

Furthermore, for any vertex I ∈ V ,
‖ℓ‖�−1(lI ) ≤ �F‖qIℓ‖W∗I for all ℓ ∈ F(TI),

where the constant �F depends only on 3, the shape regularity coefficient f, and
the degrees <1 and <2 of the discrete functionals.

Proof. 1 We show the claims on the functional ℓ = q−1
I for an interior vertex

I ∈ V ∩Ω. By the definition ofWI , we have, for all F ∈ WI ,

〈qIℓ, F〉 =
∫
lI

F = 0,

whence qIℓ ∈ W∗I with ‖qIℓ‖W∗I = 0.
To verify that ℓ = q−1

I ∈ �−1(lI), we write 3I := dist(·, mlI) for the distance
function of the star boundary and shall use the weighted Poincaré inequality

‖F3−1
I ‖!2(lI ) . ‖∇F‖!2(lI ) for all F ∈ �1

0(lI),

which follows from theHardy inequality; see Sacchi andVeeser (2006, Lemma3.6).
Consequently, exploiting 3I ≤ qI on lI as well, we obtain, for all F ∈ �1

0(Ω),

〈ℓ, F〉 =
∫
lI

(q−1
I 3I)(F3−1

I ) ≤ |lI |1/2‖F3−1
I ‖!2(lI ) . |lI |1/2‖∇F‖!2(lI ).

This and 〈ℓ, qI〉 = |lI | ensure ℓ ∈ �−1(lI) with ‖ℓ‖�−1(lI ) > 0.

2 We start the proof of the asserted inequality by checking that ‖ · ‖�−1(lI ) is a
norm on F(TI). To this end, consider @� ∈ P<1(�), � ∈ FI and @) ∈ P<2()),
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) ∈ TI such that, for all F ∈ �1
0(lI),

0 = 〈ℓ, F〉 :=
∑
� ∈FI

∫
�
@�F +

∑
) ∈TI

∫
)
@)F.

We need to show ℓ = 0. Testing with F ∈ �1
0()), ) ∈ TI , the fundamental lemma

of the calculus of variations yields @) = 0 for all ) ∈ TI . Similarly, now testing
with F ∈ �1

0(l� ), � ∈ FI , gives @� = 0 for all � ∈ TI . Thus ℓ = 0 holds.

3 Next, we check that ‖qI · ‖W∗I is also a norm on F(TI). This time, consider
@� ∈ P<1(�), � ∈ FI and @) ∈ P<2()), ) ∈ TI such that, for all F ∈ WI ,

0 = 〈qIℓ, F〉 :=
∑
� ∈FI

∫
�
qI@�F +

∑
) ∈TI

∫
)
qI@)F,

and again, we need to conclude ℓ = 0. If I ∈ V ∩ mΩ is a boundary node, we
obtain ℓ = 0 by the arguments of the previous step. We are thus left with the
case I ∈ V ∩ Ω of interior nodes. Given F ∈ �1(lI), we set 2F :=

⨏
lI
F and

2ℓ = |lI |−1〈qIℓ, 1〉, and observe
0 = 〈qIℓ, F − 2F 〉 = 〈qIℓ − 2ℓ , F − 2F 〉 = 〈qIℓ − 2ℓ , F〉.

Hence, testing with F ∈ �1
0()), ) ∈ TI , we deduce qI@) = 2ℓ on each ) ∈ TI .

However, this is only possible if 2ℓ = 0 and @) = 0 for all ) ∈ TI . Therefore,
testing with F ∈ �1

0(l� ), � ∈ FI , yields @� = 0 for all � ∈ FI , and ℓ = 0 is
established in general.

4 To conclude the asserted inequality, note that F(TI) has finite dimension and,
for fixed polynomial degrees <1 and <2, is invariant under continuous piecewise
affine transformations. Furthermore, both norms scale in the same manner. We
can therefore pass to reference stars and use the equivalence of norms in finite-
dimensional spaces. Transforming the inequality back from the reference star then
finishes the proof.

The alternative localization entails that we need to adapt Lemma 4.35 (splitting
of local residual norm). Relying on the local �−1-stability of %T , Lemma 4.67
(partial equivalence for local dual norms) reveals that the adaptation has to be
global.

Lemma 4.68 (alternative splitting). Using the local norms ‖ · ‖W∗I , I ∈ V , the
residual can be split into discretized and oscillatory residuals:

1(
�★lStb

)
2�2
3�

2
loc

∑
I∈V

(‖qI%T 'T ‖2W∗I + ‖qI(� − %T )'T ‖2W∗I
)

≤ ‖'T ‖2�−1(Ω) ≤ �2
3

∑
I∈V

(‖qI%T 'T ‖2W∗I + ‖qI(� − %T )'T ‖2W∗I
)
,
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where �★lStb is the stability constant of %T on stars from Lemma 4.28, and �3 =√
2(3 + 1).

Proof. Combine the localization in Lemma 4.66 with the proof of Lemma 4.35,
replacing the local norm ‖ · ‖�−1(lI ) in most places, but apply (4.89) before using
the local �−1-stability of %T .

An estimator based on flux equilibration
Estimators based on flux equilibration have been designed with the goal to obtain
constant 1 in the upper bound. The principal obstruction that computation can
access only a finite-dimensional part of infinite-dimensional objects such as the
residual norm is overcome by means of the Prager–Synge theorem. Realizations
of this approach can be found, for example, in Ainsworth (2010), Braess, Pillwein
and Schöberl (2009), Ern, Smears and Vohralík (2017) and Luce and Wohlmuth
(2004).
The definition of the PDE indicator needs some preparation. Let 3 ∈ {2, 3},

as in the aforementioned works, and let I ∈ V be a vertex. Given the operator
cI : {qIℓ | ℓ ∈ �−1(Ω)} →W∗I defined by

cI(qIℓ) :=


qIℓ − 〈ℓ, qI〉|lI | , if I ∈ V ∩Ω,
qIℓ, if I ∈ V ∩ mΩ,

and

WI :=

{
mlI , if I ∈ V ∩Ω,
mlI \ mΩ, if I ∈ V ∩ mΩ,

we introduce the local space DI ≠ ∅,
DI := {/ ∈ !2(lI ;R3) | div / = cI(qI%T 'T ) and / · n� = 0 on � for all � ⊆ WI},
and its discretization

DI(T ) := {/ ∈ DI | / ∈ RTN<()) for all ) ∈ TI},
with the Raviart–Thomas–Nédélec elements

RTN<()) = {/ : ) → R3 | /(G) = q(G) + @(G)G with q ∈ (P<)3 , @ ∈ P<}
of order < := max{<1, <2} + 1. Given the Galerkin approximation DT from (4.1),
the PDE indicator is then given by

[
feq
T (DT )2 :=

∑
I∈V

[
feq
T (DT )2 with [

feq
T (DT ) := min

/∈DI (T )
‖/‖!2(lI ) (4.90a)

and the total estimator by

E feq
T := E feq

T (DT , 5 )2 := [feq
T (DT )2 + ‖qI( 5 − %T 5 )‖2W∗I . (4.90b)
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Note that the local PDE indicators [feq
T (DT , I) are computable up to machine preci-

sion.

Theorem 4.69 (estimator based on flux equilibration). Suppose that the coef-
ficients G and 2 are discrete and that 3 ∈ {2, 3}. The estimator (4.90) based on flux
equilibration is equivalent to the error, while its PDE indicator is locally equivalent
to the discretized residual with constant 1 in the upper bound for the ‖ · ‖W∗I -norm,
so that

�D
�★lStb�3�loc

E feq
T . ‖∇(D − DT )‖!2(Ω) . �3E feq

T ,

and, for all vertices I ∈ V ,
�D[

feq
T (DT , I) ≤ ‖qI%T 'T ‖W∗I ≤ [feq

T (DT , I)

as well as
�D
�loc

[
feq
T (DT , I) ≤ ‖%T 'T ‖�−1(lI ) ≤ �F [feq

T (DT , I),

where �D depends on 3 and the shape regularity coefficient f, �★lStb is the stability
constant of %T on stars from Lemma 4.28, �loc comes from Lemma 4.5, �3 =√

2(3 + 1), �F comes from Lemma 4.67, and the hidden constants depend only on
the error–residual relationship in Lemma 4.1.

Proof. 1 We start by verifying the local equivalence for the ‖ · ‖W∗I -norm. Let
I ∈ V be any vertex. The Prager–Synge theorem on the star lI implies

‖qI%T 'T ‖W∗I = ‖cI(qI%T 'T )‖W∗I = min
/∈DI
‖/‖!2(lI );

see e.g. Verfürth (2013, Proposition 1.40). Hence the upper bound with constant 1
readily follows the inclusion DI(T ) ⊂ DI , while the lower bound is a consequence
of the non-trivial inequality

�D min
/∈DI (T )

‖/‖!2(lI ) ≤ min
/∈DI
‖/‖!2(lI ),

where �D depends only on 3 and the shape regularity coefficient f; see e.g. Braess
et al. (2009, Theorem 7) and Ern et al. (2017, Theorem 1.1).

2 We verify the local equivalence for the ‖ · ‖�−1(lI )-norm. On the one hand,
combining the first equivalence with (4.89), we obtain

�D[
feq
T (DT , I) ≤ ‖qI%T 'T ‖W∗I ≤ �loc‖%T 'T ‖�−1(lI ).

On the other hand, using Lemma 4.67 instead of (4.89) yields

‖%T 'T ‖�−1(lI ) ≤ �F‖qI%T 'T ‖W∗I ≤ �F[feq
T (DT , I),

and the equivalence for the ‖ · ‖�−1(lI ) is verified, too.
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3 The global bounds follow by combining Lemmas 4.1 (error and residual), 4.68
(alternative splitting) and 4.37 (data oscillation reduction for discrete coefficients),
as well as the first local equivalence.

Remark 4.70 (improved upper bound). Applying the Prager–Synge theoremon
Ω, we can improve the upper bound in Theorem 4.69 to

‖∇(D − DT )‖!2(Ω) . ‖/Ω‖!2(Ω) +
√
3 + 1

(∑
I∈V
‖cI(qI(%T 5 − 5 ))‖2W∗I

)1/2
, (4.91)

with /Ω :=
∑
I∈V /I , where /I := arg minb ∈DI (T ) ‖/‖!2(lI ) are the minimizing

vector fields associated with the PDE indicators, extended by 0 off lI .
To see this, we derive, thanks to the partial orthogonality (4.4) of the residual

and Lemma 4.37 (data oscillation reduction for discrete coefficients),

div /Ω =
∑
I∈V

cI(qI%T 'T ) =
∑
I∈V

cI(qI'T ) +
∑
I∈V

cI(qI(%T 'T − 'T ))

=
∑
I∈V

qI'T +
∑
I∈V

cI(qI(%T 5 − 5 )) = 'T + XT ,

with XT :=
∑
I∈V cI(qI(%T 5 − 5 )). Hence

‖∇(D − DT )‖!2(Ω) . ‖'T ‖�−1(Ω) ≤ ‖'T + XT ‖�−1(Ω) + ‖XT ‖�−1(Ω),

inserting /Ω in the Prager–Synge theorem on Ω and Lemma 4.66 (alternative
localization of �−1-norm) establish the claimed bound.
In view of the bound (4.91), the alternative local PDE indicators ‖q1/2

I /Ω‖!2(lI ),
I ∈ V , may be used in an adaptive context. Note, however, that this alternative
does not necessarily strengthen the link with the local residual, as the definition of
/Ω suggests an increased overlapping in the lower bound.

4.10. Other boundary conditions

This section illustrates that the preceding analysis of homogeneous Dirichlet con-
ditions can be adapted to other boundary conditions. In particular, we discuss

• Robin and Neumann boundary conditions, as an example for variationally
formulated boundary conditions,
• the pure Neumann problem, with its global solvability constraint,
• non-homogeneous Dirichlet boundary conditions, formulated in an essential
manner.

Mixed boundary conditions, suitably discretized, give rise to a posteriori error
estimators combining in a straightforward manner the indicators of, for instance,
the first and third of the above groups. We therefore omit further details of such a
setting.
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Robin and Neumann boundary conditions
The Robin bilinear form in (2.13) is coercive and continuous in V ≔ �1(Ω)
provided its coefficient ? ≥ ?0 on an open subset of mΩ for some constant ?0 > 0,
according to the norm equivalence (2.31). Consequently, (2.12) admits a unique
solution D ∈ V. If VT = S=,0T is the subspace of V of continuous piecewise
polynomial functions of degree ≤ =, then the Galerkin counterpart of (4.1) reads

DT ∈ VT : B[DT , E] = ℓ(E) for all E ∈ VT ,

with ℓ = 5 + 6XmΩ ∈ V∗; see (2.13). Its residual 'T ∈ V∗ is defined as

〈'T , F〉 ≔ ℓ(F) − B[DT , F], F ∈ V,

and ‖'T ‖V∗ is equivalent to the error ‖D − DT ‖� 1(Ω) due to Lemma 4.1 (error and
residual), whose proof easily extends to V.

The global norm ‖'T ‖V∗ also localizes to all stars lI because Galerkin or-
thogonality 〈'T , qI〉 = 0 is now valid also for boundary vertices I ∈ V ∩ mΩ.
Indeed, the proof of Lemma 4.5 (localization of �−1-norm) extends with minor
modifications, where the local spaces for boundary vertices I ∈ V ∩ mΩ are
now {E ∈ �1(lI) | E = 0 on mlI \ mΩ}. Also, the proof of Lemma 4.66
(alternative localization of �−1-norm) is easily modified, using the local space{
E ∈ �1(lI) |

∫
lI
E = 0

}
at the boundary, too.

The next key step is the construction of a projection %T : V∗ → FT that mimics
the projection operator %T of Section 4.4. For that purpose, the space of discrete
functionals FT has to include boundary face Dirac masses @�X� with densities
@� ∈ P<1(�) for � ⊂ mΩ. Consequently, 6 can be approximated on mΩ similarly
to the forcing 5 in Ω, while the coefficient ? is at play like the coefficient 2.
Indeed, considering for simplicity only the case of discrete coefficients (G, 2, ?),
the condition <1 ≥ =? + = arises in addition to those in Remark 4.14. With these
caveats, the tools developed in Sections 4.3, 4.4 and 4.5 give rise to a suitably
adapted projection %T to split the residual 'T into a discretized residual %T 'T
and an oscillatory residual ( 5 −%T 5 )+(6XmΩ−%T (6XmΩ)). Here 6XmΩ−%T (6XmΩ)
is supported only on mΩ and therefore contributes only to the oscillation indicators
based upon the aforementioned new local spaces for boundary stars. This modified
oscillation oscRob

T (D) with D = (G, 2, ?, 5 , 6) can be combined with any of the
presented PDE indicators, but we focus on residual estimation. In fact, the new
discrete residual %T 'T leads to a definition of the PDE estimator [Rob

T (DT ) as in
(4.52), but with additional contributions related to the boundary faces. Given any
boundary face � of T , such a contribution reads

ℎ� ‖ [[G∇T DT ]] · n� + ? DT − %�6‖2!2(� )

andmeasures the discretizedRobin residual. Combining as usual the PDE estimator
[Rob
T (DT ) and oscillation oscRob

T (ℓ) yields the total estimator ERob
T (DT , ℓ), whence
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the following variant of Theorem 4.45 (modified residual estimator) follows: for
discrete coefficients (G, 2, ?), the �1-error and ERob

T (DT , ℓ) are equivalent, that is,

�!ERob
T (DT , ℓ) ≤ ‖D − DT ‖� 1(Ω) ≤ �*ERob

T (DT , ℓ).

The estimates in Section 4.8 for corrections and estimator reduction extend as well.

Pure Neumann problem
Neumann conditions are already covered by the previous section, except for the
case of the pure Neumann problem with ? = 0 on mΩ in (2.12) requiring, as key
novelty, the solvability constraint ℓ(1Ω) = 0, that is, the right-hand side applied
to the constant function equal to 1 gives 0. For such problems, unique exact and
discrete solutions exist provided we choose V to be the subspace of �1(Ω) of
functions with zero mean value, and VT to be its natural finite element counterpart
of degree =.
The residual 'T is defined on all �1(Ω) and satisfies 〈'T , 1Ω〉 = 0. Combining

this fact with Lemma 2.3 (second Poincaré inequality) and inf2∈R ‖E − 2‖!2(Ω) =
‖F‖!2(Ω) with F = E −

⨏
Ω E ∈ V, we derive

‖'T ‖V∗ = sup
F ∈V

〈'T , F〉
‖∇F‖!2(Ω)

≈ sup
F ∈V

〈'T , F〉
‖F‖� 1(Ω)

= sup
E∈� 1(Ω)

〈'T , E〉
‖E‖� 1(Ω)

= ‖'T ‖� 1(Ω)∗ .

Consequently, localizing ‖'T ‖� 1(Ω)∗ as in the previous section, we can derive
a posteriori error estimators with suitable contributions from the boundary mΩ.
However, the projection %T from the previous section cannot be used to gen-

erate discrete data in some auxiliary problem because 〈ℓ, 1Ω〉 = 0 does not
imply 〈%T ℓ, 1Ω〉 = 0 in general. Further, a simple modification like %T ℓ −
〈%T ℓ, 1Ω〉〈1Ω, 1Ω〉−11Ω with a global correction destroys the crucial local approx-
imation properties.
To address this issue, we modify the projection %T such that the new projection

%̃T enforces locally 〈%̃T ℓ, 1Ω〉 = 〈ℓ, 1Ω〉 in the spirit of the construction of the
Lagrange multiplier in Fierro and Veeser (2003). To this end, recall that %T is
now defined on �1(Ω), and its range, the discrete functionals F(T ), also includes
boundary face Dirac masses, and that the first localization involves the local spaces
VI := {E ∈ �1(lI) | E = 0 on mlI \ mΩ}, I ∈ V . Given ℓ ∈ �1(Ω)∗, set

%̃T ℓ :=
∑
I∈V

qI %̃Iℓ with %̃Iℓ := %T ℓ − 〈%T ℓ − ℓ, qI〉∫
lI
qI

1lI . (4.92)

Lemma 4.71 (new projection). The operator (4.92) is linear, local, and satisfies

〈%̃Iℓ, qI〉 = 〈ℓ, qI〉 for all I ∈ V and 〈%̃T ℓ, 1〉 = 〈ℓ, 1〉.
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Furthermore, %̃I provides near-best approximation in F(T )|VI and

‖ℓ − %̃T ℓ‖2� 1(Ω)∗ ≤ �loc
∑
I∈V
‖ℓ − %̃Iℓ‖2V∗I .

Proof. 1 We start with the algebraic properties. By the definition of %̃I , we have
the local relationships 〈ℓ − %̃Iℓ, qI〉 = 0, i.e. 〈qI(ℓ − %̃Iℓ), 1〉 = 0 for all vertices
I ∈ V . Summing over all vertices immediately yields the global 〈ℓ − %̃T ℓ, 1〉 = 0.

2 To show that %̃I is near-best approximating in F(T )|VI , we bound its error in
terms of that of %T . The triangle inequality readily gives

‖ℓ − %̃Iℓ‖V∗I ≤ ‖ℓ − %T ℓ‖V∗I +




 〈%T ℓ − ℓ, qI〉∫

l
qI

1lI






V∗I
,

while a variant of Lemma 2.2 (first Poincaré inequality) and the properties of qI
deliver 



 〈%T ℓ − ℓ, qI〉∫

l
qI

1lI






V∗I
. |lI |−1ℎI ‖〈%T ℓ − ℓ, qI〉1lI ‖!2(lI )

. |lI |−1/2ℎI ‖ℓ − %T ℓ‖V∗I ‖∇qI ‖!2(lI )

. ‖ℓ − %T ℓ‖V∗I .

Hence the error of %̃I is dominated by that of %T ,

‖ℓ − %̃Iℓ‖V∗I . ‖ℓ − %T ℓ‖V∗I , (4.93)

and the near-best approximation of %̃I follows from Corollary 4.31 (local near-best
approximation), adapted to the setting at hand.

3 It remains to prove the claimed inequality. Given F ∈ �1(Ω), the definition of
%̃T and the first step yield the following identity:

〈ℓ − %̃T ℓ, F〉 =
∑
I∈V
〈ℓ, FqI〉 − 〈qI %̃Iℓ, F〉

=
∑
I∈V
〈ℓ − %̃Iℓ, FqI〉 =

∑
I∈V
〈ℓ − %̃Iℓ, (F − 2I)qI〉,

with 2I =
⨏
lI
F. Proceeding as in Lemma 4.5 (localization of �−1-norm) estab-

lishes the desired inequality and concludes the proof.

The operator %̃T possesses additional enhanced global properties, which are not
needed here. Lemma 4.71 and (4.93) allow us to solve auxiliary pure Neumann
problems with discrete data %̃T ℓ, with the option of replacing the restrictions of
%T in the local indicators with %̃I .
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Non-homogeneous Dirichlet boundary conditions
Let V ≔ �1(Ω) and VT := S=,0T be the subspace of V of continuous piecewise
polynomials of degree ≤ =. Given Dirichlet boundary data 6 ∈ �1/2(Γ), where
Γ ≔ mΩ for simplicity, recall that D ∈ V(6) = {E ∈ V | E = 6 on Γ} satisfies (2.10).
Let 6T ∈ S=,0T be a continuous finite element approximation of 6 on Γ and let
VT (6T ) be the subspace of VT of discrete functions with trace 6T . The Galerkin
approximation of D satisfies

DT ∈ VT (6T ) : B[DT , E] = 〈 5 , E〉 for all E ∈ VT (0).

The error 4T = D − DT obviously satisfies Galerkin orthogonality

B[4T , E] = 0 for all E ∈ VT (0),

but in general 4T = 6−6T ≠ 0 on Γ. We follow Sacchi and Veeser (2006) to derive
a posteriori bounds of ‖4T ‖� 1(Ω) using minimal regularity 6 ∈ �1/2(Γ).
We start with an orthogonal decomposition of the error 4T arising from the two

equations of the problem. Let '� = '�(DT , 5 ) ∈ �−1(Ω) be the Galerkin residual
already introduced in Section 4.1, namely

〈'� , E〉 = 〈 5 , E〉 − B[DT , E] for all E ∈ V(0) = �1
0(Ω),

and define the Galerkin error 4� as its representation in �1
0(Ω):

4� ∈ �1
0(Ω) : B[4� , E] = 〈'� , E〉 for all E ∈ V(0).

Furthermore, let '� = '�(6) = 6 − 6T ∈ �1/2(Γ) be the Dirichlet residual,
represented by the Dirichlet error 4� defined by

4� ∈ V(6 − �T 6) : B[4� , E] = 0 for all E ∈ V(0).

Then 4T = 4� + 4� and the orthogonality B[4� , 4�] = 0 yields

|||4T |||2Ω = |||4� |||2Ω + |||4� |||2Ω,
while the derivation for homogeneous Dirichlet conditions readily provides

|||4� |||Ω ≈ ‖∇4� ‖!2(Ω) ≈ ET (DT , 5 ),

where the Galerkin estimator ET (DT , 5 ) is defined by (4.52), or any other estimator
from Section 4.9. It thus remains to clarify whether |||4T |||Ω is definite in the sense
of |||4T |||Ω = 0⇒ 4T = 0 and to derive suitable lower and upper bounds for |||4� |||Ω.
To this end, we need to be more specific about the choice of 6T . Let 6T = �T 6

be the Scott–Zhang quasi-interpolant of 6, which is defined locally using boundary
values of 6 exclusively (Scott and Zhang 1990, Brenner and Scott 2008) and
satisfies

E ∈ VT |Γ ⇒ �T E = E on Γ, (invariance) (4.94a)
‖�T E‖!2(Γ) . ‖E‖!2(Γ) for all E ∈ V. (stability) (4.94b)
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These two properties ensure a variant of the equivalence ‖ · ‖� 1(Ω) ≈ ‖∇ · ‖!2(Ω)
for functions with zero trace on Γ.

Lemma 4.72 (equivalence for vanishing discretized trace). There exists a con-
stant � depending only on the shape regularity of T and Ω such that

‖E‖� 1(Ω) ≤ �‖∇E‖!2(Ω) for all E ∈ V with �T E = 0 on Γ.

Proof. Note that the core of the claimed inequality amounts to a variant of the
first Poincaré inequality. In view of the norm equivalence (2.31), it suffices to
prove that ‖E‖!2(Γ) . ‖∇E‖!2(Ω). Letting ĒΩ :=

⨏
Ω E, and using (4.94a) yields

E = E − �T E = (E − ĒΩ) − �T (E − ĒΩ) on Γ. Consequently, (4.94b) implies

‖E‖!2(Γ) . ‖E − ĒΩ‖!2(Γ) . ‖E − ĒΩ‖� 1(Ω) . ‖∇E‖!2(Ω), (4.95)

because of Lemma 2.4 (traces) and Lemma 2.3 (second Poincaré inequality).

Observing �T 4T = �T 6 − �2
T 6 = 0 on Γ, we can apply Lemma 4.72 to get

‖4T ‖� 1(Ω) ≤ �‖∇4T ‖!2(Ω) ≤
�

U1
|||4T |||Ω ≤

�max{U2, ‖2‖!∞(Ω)}
U1

‖4T ‖� 1(Ω),

establishing in particular that |||4T |||Ω is definite. In the same vein, we derive

|||4� |||Ω ≈ ‖4� ‖� 1(Ω) ≈ ‖∇4� ‖!2(Ω)

for the Dirichlet error.
With the intent to achieve directly computable bounds for the Dirichlet error, we

next establish the equivalence ‖4� ‖� 1(Ω) ≈ ‖6 − �T 6‖� 1/2(Γ), where the intrinsic
�1/2-norm combines the !2(Γ)-norm with the seminorm

|E |2
� 1/2(Γ) =

∫
Γ

∫
Γ

|E(G) − E(H)|2
|G − H |3 dG dH.

This equivalence follows with the help of the trace and extension theorems for
�1/2(Γ); see e.g. Hackbusch (1992, Theorem 6.2.40). In fact, on the one hand,
that trace theorem immediately gives ‖6 − �T 6‖� 1/2(Γ) . ‖4� ‖� 1(Ω). On the other
hand, let j ∈ �1(Ω) denote the extension of 6 − �T 6 from Hackbusch (1992,
Theorem 6.2.40). Then

‖4� ‖� 1(Ω) . |||4� |||Ω ≤ |||j |||Ω . ‖j‖� 1(Ω) . ‖6 − �T 6‖� 1/2(Γ),

where the second inequality is thanks to B[4� , 4� − j] = 0.
We are left with the issue that the �1/2(Γ)-seminorm is non-local. To handle this

delicate matter, we invoke its localization due to Faermann (2000, 2002), that is,

|E |2
� 1/2(Γ) ≤

∑
� ∈FΓ

(∫
�

∫
l�

|E(G) − E(H)|2
|G − H |3 dG dH + �

ℎ�
‖E‖2

!2(� )

)
,

where � ∈ FΓ is a generic face of T lying on Γ and l� is the patch on Γ associated
with �. The last term seems problematic. However, applied to E = 6− �T 6, we can
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mimic the steps of (4.95) with local variants of (4.94), but using in the last step the
second Poincaré inequality in �1/2 (see e.g. Sacchi and Veeser 2006, Lemma 3.2):

‖E‖2
!2(� ) = ‖E − �T E‖2!2(� ) . ‖E − Ē� ‖2!2(l� ) . ℎ� |E |2� 1/2(l� ),

where Ē� is the mean value of E on l� . Note that this bound also means that the
!2-part in ‖6− �T 6‖� 1/2(Γ) is (locally) controlled by its seminorm. Altogether, this
leads to defining the Dirichlet oscillation with the following local indicators:

oscT (6)2
1/2 :=

∑
� ∈FΓ

oscT (6, �)2
1/2,

oscT (6, �)2
1/2 :=

∫
l�

∫
l�

|(6 − �T 6)(G) − (6 − �T 6)(H)|2
|G − H |3 dG dH.

(4.96)

We observe that oscT (6, �) is a double singular integral but computationally ac-
cessible, for instance, by using suitable quadrature provided 6 is continuous (Sacchi
and Veeser 2006, Section 4.1).

Proposition 4.73 (Dirichlet oscillation). There exist constants �1 ≥ �2 > 0
depending on the shape regularity of T and geometry of Γ, such that

�2 oscT (6)1/2 ≤ ‖∇4� ‖!2(Ω) ≤ �1 oscT (6)1/2.

Proof. The preceding derivation verifies the upper bound. For the lower bound,
note that for any E ∈ �1(Ω) such that E = 6 − �T 6 on Γ

oscT (6)2
1/2 =

∑
� ∈FΓ

oscT (6, �)2
1/2

≤
∑
� ∈FΓ

∫
l�

∫
Γ

|E(G) − E(H)|2
|G − H |3 dG dH

.

∫
Γ

∫
Γ

|E(G) − E(H)|2
|G − H |3 dG dH = |E |2

� 1/2(Γ),

because the patches l� , � ∈ FΓ, possess a uniform overlapping property due to
shape regularity of T. Applying this to E = 4� finishes the proof.

For suitable settings, local lower a posteriori estimates for the Dirichlet error 4�
can be derived; see Sacchi and Veeser (2006, Theorem 3.2).
Combining the Dirichlet oscillation with some Galerkin estimator ET (DT , 5 ) by

EDir
T (DT , 5 , 6)2 := ET (DT , 5 )2 + oscT (6)2

1/2,

the preceding discussion is summarized by the following result.

Theorem 4.74 (estimators for general Dirichlet condition). If Assumption 4.44
(discrete coefficients and discrete functionals) is valid, then there exist constants
�! ≤ �* depending on (G, 2), Ω, Γ, and the shape regularity of T such that

�!EDir
T (DT , 5 , 6) ≤ ‖∇(D − DT )‖!2(Ω) ≤ �*EDir

T (DT , 5 , 6).
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5. Convergence of AFEM for coercive problems
In this section we consider the coercive problem (2.5) with the intent to design and
analyse threeAFEMs in increasing order of complexity and applicability, depending
on properties of data D. Our basic regularity assumption on data reads D =
(G, 2, 5 ) ∈ D, where

D ≔ !∞(Ω;R3×3) × !∞(Ω) × �−1(Ω). (5.1)

We approximate D with discrete data D̂ = (Ĝ, 2̂, 5̂ ) ∈ DT̂ , where

DT̂ ≔
[
S=−1,−1
T̂

]3×3 × S=−1,−1
T̂

× FT̂ (5.2)

is subordinate to a partition T̂ ∈ T. We will often assume that data is discrete,
meaning precisely that D = D̂.
We start with the one-step AFEM, hereafter called GALERKIN, which is the

standard SEMR loop

SOLVE −→ ESTIMATE −→ MARK −→ REFINE

introduced byDörfler (1996) and further developed byMorin, Nochetto and Siebert
(2000, 2002) and Cascón et al. (2008). This is the simplest algorithm in that it
requires data D = (G, 2, 5 ) to be discrete, but it is a building block for the other
two methods. After reviewing a few crucial properties of error and estimator in
Section 5.1, we fully discuss GALERKIN in Section 5.2.

The second algorithm is the one-step AFEM with switch, which still assumes the
coefficients (G, 2) to be discrete but allows for general forcing 5 ∈ �−1(Ω). This
is a new contribution of this survey that, similarly to Kreuzer et al. (2024), exploits
the structure of the error estimator ET (DT , 5 ) of Section 4,

ET (DT , 5 )2 = [T (DT )2 + oscT ( 5 )2
−1,

and its equivalence to the energy error. The PDE estimator [T (DT ) relies on the
discrete forcing %T 5 ∈ FT and is fully computable, whereas the data oscillation
oscT ( 5 )−1 encodes the infinite-dimensional nature of 5 and could be estimated in
important cases of practical interest further discussed in Section 7.3. The quantity
oscT ( 5 )−1 measures the deviation of 5 from being discrete and may dictate the
pre-asymptotic regime of AFEM. Therefore oscT ( 5 )−1 must be handled separately
from [T (DT ); hence the name of the new method, hereafter called AFEM-SW.
Assuming that oscT ( 5 )−1 is computable, the module

[T̂ ] = DATA(T , 5 , g)

deals with oscT ( 5 )−1 whenever it is large relative to ET (DT , 5 ). In fact, it creates
an admissible refinement T̂ of the input mesh T such that oscT̂ ( 5 )−1 is below the
desired tolerance g, i.e. oscT̂ ( 5 )−1 ≤ g. We explain the role of data oscillation for
error analysis, design AFEM-SW and prove its linear convergence in Section 5.3.
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The third algorithm deals with variable dataD and various degrees of regularity
of D, and is able to handle discontinuous coefficients (G, 2) not aligned with
admissiblemeshesT ∈ T emanating fromT0. To handle themultiplicative structure
of (G, 2) in the model problem (2.5), we consider the following two-step AFEM.

Algorithm 5.1 (AFEM-TS). Given an initial mesh T0, an initial tolerance Y0, and
a parameter l sufficiently small to be determined later, iterate

AFEM-TS(T0, Y0, l)
: = 0
[T̂: , D̂:] = DATA(T: ,D, l Y:)
[T:+1, D:+1] = GALERKIN(T̂: , D̂: , Y:)
Y:+1 = 1

2Y: ; : ← : + 1

This structure was first proposed by Stevenson (2008) and further explored by
Bonito et al. (2013b), Cohen et al. (2012), Bonito et al. (2016), Bonito, Cascón,
Morin andNochetto (2013a) andBonito andDevaud (2015). The three components
of data D = (G, 2, 5 ) ∈ D are first approximated by discrete data D̂ = (Ĝ, 2̂, 5̂ ) ∈
DT̂ , as defined in (5.1) and (5.2), within the module

[T̂ , D̂] = DATA(T ,D, g)

to accuracy g = lY significantly smaller than Y. This is achieved by an algorithm
similar to Algorithm 3.18 (greedy algorithm), which is fully discussed along with
applications to D in Section 7. The resulting admissible refinement T̂ of T and
discrete data D̂ over T̂ are next taken by GALERKIN to reduce the PDE error to the
desired tolerance Y, namely the module

[T , DT ] = GALERKIN(T̂ , D̂, Y)

constructs a refinement T of T̂ with discrete data D̂ over T̂ such that [T (DT ) ≤ Y.
We point out that if the data is discrete, i.e. D = D̂, then DATA is skipped and
AFEM-TS reduces to GALERKIN. We tackle AFEM-TS in Section 5.4, where
we prove a perturbation estimate with respect to D and next discuss convergence
properties of AFEM-TS. We will extend this approach to discontinuous FEMs
in Section 9 and to mixed FEMs for (2.5) as well as the Stokes system (2.14) in
Section 10.

5.1. Properties of error and estimator

We follow Cascón, Kreuzer, Nochetto and Siebert (2008) and summarize some
basic properties of GALERKIN that emanate from the symmetry of the differential
operator (i.e. of G) and features of the modules. In doing this, any explicit constant
or hidden constant in . will depend only on the uniform shape regularity of T, the
dimension 3, the polynomial degree = and the (global) eigenvalues of G, but not
on a specific grid T ∈ T, unless explicitly stated.
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We recall that the bilinear form B in (2.8) with continuous coefficients (G, 2)
is symmetric, coercive and continuous in the space �1

0(Ω) (see (2.30)), namely
|||E |||Ω = B[E, E]1/2 is a norm equivalent to |E |� 1

0 (Ω) with equivalence constants
0 < 2B ≤ �B

2B |E |2� 1
0 (Ω) ≤ |||E |||

2
Ω ≤ �B |E |2� 1

0 (Ω) for all E ∈ �1
0(Ω). (5.3)

The module DATA approximates (G, 2) over a mesh T by piecewise polynomial
coefficients (Ĝ, 2̂) obeying side constraints so that the corresponding perturbed
bilinear form �̂ still defines a uniform scalar product in �1

0(Ω),

|||E |||Ω = B̂[E, E]1/2 for all E ∈ �1
0(Ω), (5.4)

which satisfies (5.3) with constants 0 < 2B̂ ≤ �B̂ independent of T . We hope
this slight abuse of notation will not create confusion because we will always refer
to the energy norm in (5.4) when dealing with B̂. We let D̂ = D(D̂) ∈ �1

0(Ω)
denote the solution of (2.7) with coefficients (Ĝ, 2̂) and forcing function either
5̂ = 5 ∈ �−1(Ω) or its projection 5̂ = %T 5 ∈ FT defined in (4.35), namely

B̂[D̂, E] = 〈 5̂ , E〉 for all E ∈ �1
0(Ω). (5.5)

In what follows, we will often compare discrete functions on different meshes.
Given T ∈ T, we let T∗ ∈ T denote an admissible refinement of T , and write

T ≤ T∗ ⇔ T(T ) ⊂ T(T∗), (5.6)

in the sense that the supporting tree of T is contained in the tree of T∗. For any
T∗ ≥ T , we have the following crucial property.

Lemma 5.2 (Pythagoras). Let T∗ ≥ T ≥ T̂ and let D̂ ∈ �1
0(Ω) be the solution of

(5.5)with discrete coefficients (Ĝ, 2̂) over T̂ . The correspondingGalerkin solutions
DT ∈ VT and DT∗ ∈ VT∗ with coefficients (Ĝ, 2̂) and forcing 5 ∈ �−1(Ω) satisfy
the orthogonality property

|||D̂ − ET |||2Ω = |||D̂ − DT∗ |||2Ω + |||DT∗ − ET |||2Ω for all ET ∈ VT . (5.7)

Proof. Exploit the nestedness propertyVT ⊂ VT∗ and the Galerkin orthogonality
property B̂[D̂ − DT∗ , ET − DT∗] = 0 in VT∗ for the scalar product induced by B̂.

Property (5.7) is very restrictive: it relies on space nestedness and is valid
exclusively for the energy norm. However, it is instrumental to the subsequent
analysis in the energy norm or the equivalent norm | · |� 1

0 (Ω), but it does not extend
to other, perhaps more practical, norms such as the maximum norm. This is an
important open problem and a serious limitation of this theory.
We recall that the residual a posteriori error analysis of Section 4 relies on

the projection operator %T : �−1(Ω) → FT , with element and face components
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%T 5 |) = %) 5 for ) ∈ T and %T 5 |� = %� 5 . The full local error indicator
ET (DT , 5 , ))2 = [T (DT , ))2 + oscT ( 5 , ))2

−1

splits into a computable PDE error indicator with discrete coefficients (Ĝ, 2̂),

[T (E, ))2 = ℎ2
) ‖A(E)‖2) + ℎ) ‖ 9(E)‖2m) for all ) ∈ T , (5.8)

where the interior and jump residuals are given by

A(E)|) = %) 5 + div(Ĝ∇E) − 2̂E for all ) ∈ T ,
9(E)|� = [ Ĝ∇E] · n |� − %� 5 for all � ∈ F ,

(5.9)

and 9(E)|� = 0 for boundary faces �, and data oscillation

oscT ( 5 , ))2
−1 = ‖ 5 − %T 5 ‖2�−1(l) ) for all ) ∈ T , (5.10)

where l) is the patch associated with ) . The corresponding global quantities are

ET (DT , 5 )2 =
∑
) ∈T

E(DT , 5 , ))2,

[T (DT )2 =
∑
) ∈T

[T (DT , ))2, oscT ( 5 )2
−1 =

∑
) ∈T

oscT ( 5 , ))2
−1,

(5.11)

and have the following a posteriori error estimates proved in Theorem 4.45 (mod-
ified residual estimator) for the �1

0-norm.

Proposition 5.3 (a posteriori error estimates). Let D̂ ∈ �1
0(Ω) be the solution of

(5.5) with discrete coefficients (Ĝ, 2̂) over T ∈ T but general forcing 5 ∈ �−1(Ω).
Then there exist constants 0 < �! ≤ �* , depending on the shape regularity of T,
such that the Galerkin solution DT ∈ VT satisfies

�! ET (DT , 5 ) ≤ |D̂ − DT |� 1
0 (Ω) ≤ �* ET (DT , 5 ). (5.12)

Moreover, if ||| · |||Ω stands for the energy norm in (5.4) with equivalence constants
2B̂ ≤ �B̂ satisfying (5.3), then (5.12) yields

�2 ET (DT , 5 ) ≤ |||D̂ − DT |||Ω ≤ �1 ET (DT , 5 ), (5.13)

with �1 =
√
�B̂�* and �2 =

√
2B̂�! .

There is a fundamental difference between (5.12) and earlier versions of a pos-
teriori error estimates, going back to the seminal paper of Babuška and Miller
(1987); see also Ainsworth and Oden (2000), Braess (2007), Nochetto et al. (2009)
and Verfürth (2013). It is about the role of data oscillation oscT ( 5 )−1, which is
now dominated by the error |D̂ − DT |� 1

0 (Ω) and does not spoil the lower bound.
This is due to the fact that oscT ( 5 )−1 is evaluated in the natural space �−1(Ω) and
quantifies the discrepancy between 5 and a suitable projection %T 5 which gives
rise to a quasi-best local approximation of 5 . We refer to Nochetto et al. (2009)
and Kreuzer and Veeser (2021) for a discussion of data oscillation.
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Suppose now that we have two conforming meshes T , T∗ ∈ T with T∗ ≥ T . Let

R ≔ RT→T∗ ≔ T \T∗ (5.14)

be the subset of refined elements of T , namely those elements in T that are no
longer in T∗. We stress that the upper bound in (5.12) cannot be local due to the
non-local nature of the error |D̂ − DT |� 1

0 (Ω). However, in view of Theorem 4.48
(upper bound for corrections), the following remarkable local upper bound for
Galerkin solutions DT ∈ +T , DT∗ ∈ +T∗ holds:

|||DT − DT∗ |||Ω ≤ �1ET (DT , 5 ,R), (5.15)

where for S ⊂ T ,

ET (DT , 5 ,S) ≔
(∑
) ∈S

ET (DT , 5 , ))2
)1/2

is the error estimator restricted to S. Consequently, only the elements where T
and T∗ differ, namely the set R, account for the discrepancy between DT and DT∗ .
This turns out to be consistent with (5.13) because T has to be refined everywhere
to get to D̂, whenceR = T .

In contrast to the upper bound in (5.12), the corresponding lower bound is local
according to Theorem 4.45 (modified residual estimator). This is due to the local
nature of the PDE (2.5). However, when comparing DT and DT∗ , this bound is
not valid unless the interior vertex property (given in Definition 4.50) is satisfied
(Morin et al. 2000); in fact, we present a counterexample later in Example 5.7 taken
from Morin et al. (2000).
The interior vertex property is valid upon enforcing a fixed number 1 of bisections

(1 = 3, 6 for 3 = 2, 3). An immediate consequence, proved in Theorem 4.51 (lower
bound for corrections), is the discrete lower a posteriori bound for piecewise
constant diffusion coefficient G and reaction coefficient 2 = 0 on T0,

�!,1 ET (DT , 5 ,M) ≤ |||DT − DT∗ |||Ω + �!,2 oscT ( 5 , l(M))−1, (5.16)

where l(M) ≔ ∪{l) | ) ∈M} is the union of all patches of elements inM and
oscT ( 5 , l(M))2

−1 =
∑
) ∈l(M) oscT ( 5 , ))2

−1; we refer to Morin et al. (2000, 2002).
We stress that if 5 = %T 5 is discrete, then oscT ( 5 )−1 = 0 and (5.16) reduces to

�2 [T (DT ,M) ≤ |||DT − DT∗ |||Ω. (5.17)

One serious difficulty in dealing with AFEM is that we have access to the energy
error |||D̂ − DT |||Ω, or equivalently to |D̂ − DT |� 1

0 (Ω), only through the full error
estimator ET (DT , 5 ). Lemma 5.2 (Pythagoras) implies monotonicity of the energy
error with respect to T , namely, for T∗ ≥ T ,

|||D̂ − DT∗ |||Ω ≤ |||D̂ − DT |||Ω.
However, the PDE estimator [T (DT ) fails to be monotone for fixed discrete coeffi-
cients (Ĝ, 2̂) because it depends on the discrete solution DT ∈ VT that changes with
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the mesh. The following estimate, proved in Proposition 4.56 (estimator reduction),
quantifies the deviation of [T (DT ) from monotonicity: there exists _ > 0 such that
for any X > 0, E ∈ VT and E∗ ∈ VT∗ ,

[T∗(E∗, T∗)2 ≤ (1 + X)
(
[T (E, T )2 − _ [T (E,M)2)

+ 2(1 + X−1)�Lip

(
|||E∗ − E |||2Ω +

∑
) ∈T∗
‖%T 5 − %T∗ 5 ‖2�−1(l) )

)
,

where �Lip depends on (G, 2) and the shape regularity constant of T. We refer to
Cascón et al. (2008) andMorin et al. (2008) for the case %T 5 = %T∗ 5 = 5 ∈ !2(Ω).

5.2. Convergence for discrete data: one-step AFEM

We now present the four basic modules of GALERKIN, the one-step AFEM within
Algorithm 5.1 (AFEM-TS), namely

SOLVE −→ ESTIMATE −→ MARK −→ REFINE, (5.18)

discuss their main properties, and prove a contraction property between consecutive
iterates of GALERKIN. According to Algorithm 5.1, given discrete data D̂ over a
conforming mesh T̂ , created by DATA, and a desired tolerance Y > 0, the module

[T , DT ] = GALERKIN(T̂ , D̂, Y) (5.19)

stops the loop (5.18) as soon as the error tolerance Y is reached, i.e. as soon as

[T (DT ) ≤ Y. (5.20)

Since the data never changeswithinGALERKIN and is always discrete, we assume
in this section that D ∈ DT and do not use the hat symbol to indicate quantities
defined using the (discrete) data.

5.2.1. Modules of GALERKIN
Module SOLVE. If T ∈ T is a conforming refinement of T0, and VT is the finite
element space of �0 piecewise polynomials of degree ≤ =, then

[DT ] = SOLVE(T )

determines the Galerkin FEM solution exactly, namely without algebraic error,

DT ∈ VT : B[DT , E] =
∫
Ω
∇E · G∇DT + 2ED = 〈 5 , E〉, (5.21)

where 5 ∈ �−1(Ω). However, if 5 ∈ FT is discrete as defined in (4.35), then

〈 5 , E〉 =
∑
) ∈T

∫
)
@) E +

∑
� ∈F

∫
�
@�E for all E ∈ VT .

The assumption of exact solvability is made for simplicity. The algebraic error
committed in solving (5.21) by iterative solvers can be accommodated within the
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forthcoming theory. We refer to Stevenson (2007) and Daniel and Vohralík (2023)
for details about how to relate the algebraic and PDE errors.

Module ESTIMATE. Given a conforming mesh T ∈ T and the Galerkin solution
DT ∈ VT , the output of

[{[T (DT , )), oscT ( 5 , ))−1}) ∈T ] = ESTIMATE(DT , T ,D)

gives the element error indicators [T (DT , )) defined in (5.8) with the discrete data
D, namely

[T (DT , ))2 = ℎ2
) ‖A(DT )‖2) + ℎ) ‖ 9(DT )‖2m) , ) ∈ T ,

and element data oscillation oscT ( 5 , ))−1 defined in (5.10), namely

oscT ( 5 , ))−1 = ‖ 5 − %T 5 ‖�−1(l) ).

We observe that for discrete forcing 5 = %T 5 , global data oscillation vanishes,
that is,

oscT ( 5 )−1 = ‖ 5 − %T 5 ‖�−1(Ω) = 0; (5.22)

this property is always valid within GALERKIN. In this case, the output of
ESTIMATE reduces to just the PDE error indicators. Given S ⊂ T , we denote

[T (E,S)2 ≔
∑
) ∈S

[T (E, ))2, [T (E) = [T (E, T ), E ∈ VT .

Module MARK. Given T ∈ T, the Galerkin solution DT ∈ VT , and element error
indicators {[T (DT , ))}) ∈T , the module MARK selects elements for refinement
usingDörfler marking (or bulk chasing) (Dörfler 1996, Morin et al. 2000, Nochetto
et al. 2009, Nochetto and Veeser 2012), that is, given a parameter \ ∈ (0, 1], the
output M of

[M] = MARK({[T (DT , ))}) ∈T , T , \)

satisfies
[T (DT ,M) ≥ \ [T (DT , T ). (5.23)

This marking guarantees that M contains a substantial part of the total (or bulk)
error, hence its name. The choice of M does not have to be minimal at this stage,
that is, the marked elements ) ∈M do not necessarily have to be those with largest
indicators.

Module REFINE. Let 1 ∈ N be the number of desired bisections per marked
element. Given T ∈ T and a subset M of marked elements, the output T∗ ∈ T of

[T∗] = REFINE(T , M)

is the smallest admissible refinement T∗ of T such that all elements of M are
bisected at least 1 times. Therefore we have ℎT∗ ≤ ℎT and the strict reduction
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property
ℎT∗ |) ≤ 2−1/3ℎT |) for all ) ∈M, (5.24)

where ℎT : Ω→ R+ is a piecewise constant mesh size function that coincides with
ℎ) = |) |1/3 on every ) ∈ T . We finally let

R ≔ RT→T∗ ≔ T \T∗
be the subset of refined elements of T and note thatM ⊆ R.
Concatenating these four modules, we get the standard SEMR one-step AFEM.

Algorithm 5.4 (GALERKIN). Let T ≥ T0 be a conforming refinement of a suit-
able initial mesh T0. Let dataD = (G, 2, 5 ) ∈ �T be discrete on T and let Y > 0 be
a stopping tolerance. The following one-step AFEM creates a conforming refine-
ment T∗ ≥ T and Galerkin solution DT∗ ∈ VT∗ for data D such that [T∗(DT∗) ≤ Y:
[T∗, DT∗] = GALERKIN(T ,D, Y)

set 9 = 0, T0 = T
do
[D 9] = SOLVE(T 9)
[{[ 9(D 9 , ))}) ∈T 9 ] = ESTIMATE(D 9 , T 9 ,D)
if [ 9(D 9) ≤ Y

return T 9 , D 9
[M 9] = MARK({[ 9(D 9 , ))}) ∈T 9 , T 9 , \)
[T 9+1] = REFINE(T 9 ,M 9)
9 ← 9 + 1

while true

5.2.2. Contraction property of GALERKIN
Akey question to ask is what is (are) the quantity(ies) thatGALERKINmay contract.
In light of (5.7), an obvious candidate is the energy error |||D − D 9 |||Ω, where D 9 ∈
V 9 = VT 9 solves the problem

B[D 9 , F] = 〈 5 , F〉 for all F ∈ V 9 . (5.25)

We now show that this is in fact the case for discrete data D ∈ DT provided the
discrete local estimate (5.17) holds. The latter is a consequence of the interior
vertex property of Definition 4.50 whenever G is piecewise constant, 2 = 0 in T ,
and data oscillation vanishes, i.e. oscT ( 5 )−1 = 0 (Morin et al. 2000, 2002).

Lemma 5.5 (contraction property with discrete lower bound). Let data D ∈
DT be discrete and let D = D(D) ∈ �1

0(Ω) be the corresponding exact solution.
If the subset M 9 ⊂ T 9 of elements marked by MARK satisfies the discrete local
estimate (5.17) with respect to T 9+1 ≥ T 9 , then for

U ≔

(
1 −

(
\
�2
�1

)2)1/2
< 1,
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the Galerkin solutions D 9 ∈ V 9 , D 9+1 ∈ V 9+1 of (5.25) satisfy
|||D − D 9+1 |||Ω ≤ U |||D − D 9 |||Ω, (5.26)

where 0 < \ < 1 is the parameter in (5.23) and �1 ≥ �2 are the constants in (5.13)
and (5.17) respectively.

Proof. For convenience, we use the notation

4 9 = |||D − D 9 |||Ω, � 9 = |||D 9+1 − D 9 |||Ω, [ 9 = [ 9(D 9 , T 9), [ 9(M 9) = [ 9(D 9 ,M 9)

and recall that ET 9 (D 9 , 5 ) = [ 9 because oscT 9 ( 5 )−1 = 0. The key idea is to use the
Pythagoras equality (5.7), namely 42

9+1 = 4
2
9 − �2

9 , and show that � 9 is a significant
portion of 4 9 . Since (5.17) implies

�2[ 9(M 9) ≤ � 9 ,
applying Dörfler marking (5.23) and the upper bound in (5.13), we deduce

�2
9 ≥ �2

2\
2[2
9 ≥

(
\
�2
�1

)2
42
9 .

This is the desired property of � 9 and leads to (5.26).

The contraction property (5.26) is very special and only valid for the energy
norm. For the �1

0-norm we have the following simple but useful consequence.

Corollary 5.6 (linear convergence). If 2B ≤ �B are the constants in (5.3), then

|D − D: |� 1
0 (Ω) ≤

√
�B
2B

U:− 9 |D − D 9 |� 1
0 (Ω), : ≥ 9 ≥ 0.

We wonder whether or not the interior vertex property is necessary for (5.17),
and thus for (5.26). We present an example, introduced by Morin et al. (2000,
2002) to justify such a property for constant data and = = 1.

Example 5.7 (lack of strict error monotonicity). LetΩ = (0, 1)2, G = O, 2 = 0,
5 = 1 (constant data), and consider the sequences of meshes depicted in Figure 5.1.
If q0 denotes the basis function associated with the only interior vertex of the initial
mesh T0, then D0 = D1 = 1

12 q0 and D2 ≠ D1.
The mesh T1 ≥ T0 is produced by a standard two-step bisection (1 = 2) in two

dimensions. Since D0 = D1, we conclude that the energy error does not change
|||D − D0 |||Ω = |||D − D1 |||Ω, whence (5.17) fails, between two consecutive steps of
GALERKIN for 1 = 3 = 2. This is no longer true provided an interior vertex in
each marked element is created, because then Lemma 5.5 (contraction property
with discrete lower bound) holds.

Circumventing the discrete lower bound. Enforcing (5.17) requires aminimal num-
ber 1∗ of bisections, say 1∗ = 3, 6 for 3 = 2, 3, to guarantee the interior vertex
property. This can be quite taxing, especially for 3 = 3, and relies on the strong

https://doi.org/10.1017/S0962492924000011 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000011


Adaptive finite element methods 295

Figure 5.1. Grids T0, T1 and T2 of Example 5.7. The mesh T1 has nodes in the
middle of edges of T0, but only T2 has nodes in the interior of elements of T0.
Hence T2 satisfies the interior vertex property of Definition 4.50 with respect to T0
whereas T1 does not.

assumption of G being piecewise constant and 2 = 0 on T . It is clear from the
preceding discussion that the energy error alone cannot be expected to contract
between consecutive iterates. We explore next what quantity to monitor instead
of the energy error in the analysis, with the aim of avoiding (5.17) and building
a theory applicable to general discrete coefficients (G, 2). This exploits the spe-
cial structure of residual estimators and does not directly extend to non-residual
estimators.

Heuristics. According to (5.7), the energy error is monotone |||D − D 9+1 |||Ω ≤
|||D − D 9 |||Ω, but the previous example shows that strict inequality may fail. However,
if D 9+1 = D 9 , estimate (4.67) reveals a strict estimator reduction [ 9+1(D 9+1) < [ 9(D 9).
We thus expect that, for a suitable scaling factor W > 0, the so-called quasi-error

Z2
9 (D 9) ≔ |||D − D 9 |||2Ω + W [2

9(D 9) (5.27)

may contract. This heuristic illustrates a distinct aspect of AFEM theory, the
interplay between continuous quantities, such as the energy error |||D − D 9 |||Ω, and
discrete quantities, such as the estimator [ 9(D 9): neither one alone has the requisite
properties to yield a contraction between consecutive adaptive steps. This result
was originally proved by Cascón et al. (2008).

Theorem 5.8 (general contraction property). LetD ∈ DT be discrete data. Let
\ ∈ (0, 1] be the Dörfler marking parameter, and let {T 9 ,V 9 , D 9}∞9=0 be a sequence
of conforming meshes, finite element spaces and discrete solutions D 9 ∈ V 9 created
by GALERKIN for the model problem (5.25). If D = D(D) ∈ �1

0(Ω) is the exact
solution of (5.5), then there exist constants W > 0 and 0 < U < 1, additionally
depending on the number 1 ≥ 1 of bisections and \, such that for all 9 ≥ 0

|||D − D 9+1 |||2Ω + W [2
9+1(D 9+1) ≤ U2 (|||D − D 9 |||2Ω + W [2

9(D 9)
)
. (5.28)

Proof. We split the proof into four steps and use the notation in Lemma 5.5
(contraction property with discrete lower bound).
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1 The error orthogonality (5.7) reads

42
9+1 = 4

2
9 − �2

9 . (5.29)

Employing Proposition 4.56 (estimator reduction) with T = T 9 , T∗ = T 9+1, E = D 9 ,
E∗ = D 9+1 and 5 = 5∗ ∈ F 9 gives

[2
9+1 ≤ (1 + X)

(
[2
9 − _ [2

9(M 9)
) + (1 + X−1)�2

Lip �
2
9 . (5.30)

After multiplying (5.30) by W > 0, to be determined later, we add (5.29) and (5.30)
to obtain

42
9+1 + W [2

9+1 ≤ 42
9 +

(
W (1 + X−1)�2

Lip − 1
)
�2
9 + W (1 + X)

(
[2
9 − _ [2

9(M 9)
)
.

2 We now choose the parameters X, W: let X satisfy

(1 + X)(1 − _\2) = 1 − _\
2

2
,

and let W verify
W (1 + X−1)�2

Lip = 1.

Note that this choice of W yields

42
9+1 + W [2

9+1 ≤ 42
9 + W (1 + X)

(
[2
9 − _ [2

9(M 9)
)
. (5.31)

3 We next employ Dörfler marking (5.23), namely [ 9(M 9) ≥ \[ 9 , to deduce
42
9+1 + W [2

9+1 ≤ 42
9 + W(1 + X)(1 − _\2)[2

9 .

This, in conjunction with the choice of X, gives

42
9+1 + W [2

9+1 ≤ 42
9 + W

(
1 − _\

2

2

)
[2
9 , (5.32)

which we write as

42
9+1 + W [2

9+1 ≤ 42
9 −

W_\2

4
[2
9 + W

(
1 − _\

2

4

)
[2
9 .

4 Finally, the upper bound in (5.13), namely 4 9 ≤ �1 [ 9 , implies that

42
9+1 + W [2

9+1 ≤
(

1 − W_\
2

4�2
1

)
42
9 + W

(
1 − _\

2

4

)
[2
9 .

This in turn leads to
42
9+1 + W [2

9+1 ≤ U2(42
9 + W [2

9

)
,

with

U2 := max
{
1 − W_\

2

4�2
1
, 1 − _\

2

4

}
< 1,

and thus concludes the proof of the theorem.

https://doi.org/10.1017/S0962492924000011 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000011


Adaptive finite element methods 297

Remark 5.9 (basic ingredients). This proof solely uses Dörfler marking (5.23),
the Pythagoras identity (5.7), the a posteriori upper bound in (5.13), and Proposi-
tion 4.56 (estimator reduction). The proof altogether circumvents use of the lower
bound in (5.13) and the discrete lower bound (5.17).

The contraction property (5.28) is valid for a suitable combination of the energy
norm |||D − D 9 |||Ω and the PDE estimator [ 9(D 9). We cannot expect this type of
result for the underlying space norm |D − D 9 |� 1

0 (Ω). We instead have the following
statement, whose structure reflects the possible stagnation of |D − D 9 |� 1

0 (Ω) during
the refinement process, as documented in Example 5.7.

Corollary 5.10 (linear convergence of error). If the assumptions of Theorem5.8
are valid, and 0 < U < 1, W > 0 are the constants in (5.28), then

|D − D: |� 1
0 (Ω) ≤ �∗U:− 9 |D − D 9 |� 1

0 (Ω) for all : ≥ 9 ≥ 0, (5.33)

with

�∗ =
(
�B
2B

(
1 + W

�2
2

))1/2
> 1

and constants �B ≥ 2B > 0 and �2 > 0 given in (5.3) and (5.13) respectively.

Proof. Simply concatenate (5.3), (5.28) and (5.13) to obtain

2B |D − D: |2� 1
0 (Ω) ≤ |||D − D: |||

2
Ω + W [:(D:)2

≤ U2(:− 9)(|||D − D 9 |||2Ω + W [ 9(D 9)2)
≤ U2(:− 9)

(
�B

(
1 + W

�2
2

))
|D − D 9 |2� 1

0 (Ω).

This implies (5.33) and concludes the proof.

We stress that, in contrast to (5.28), (5.33) relies on the lower bound in (5.13).
This is not the case if we express linear convergence in terms of the PDE estimator.
The proof is similar to the preceding one and is omitted.

Corollary 5.11 (linear convergence of estimator). If the assumptions of The-
orem 5.8 are valid, and 0 < U < 1, W > 0 are the constants in (5.28), then

[:(D:) ≤ �#U
:− 9[ 9(D 9) for all : ≥ 9 ≥ 0, (5.34)

with �# = (1 + �2
1/W)1/2 > 1 and �1 given in (5.13).

Remark 5.12 (stopping). In view of (5.34), (5.12), we realize that GALERKIN
requires 9 ≤ � iterations until the stopping criterion [ 9 ≤ Y is satisfied and delivers
the error |D − D 9 |� 1

0 (Ω) ≤ �*Y, where

� ≤ 1 + log (Y/(�#[0))
logU

.

https://doi.org/10.1017/S0962492924000011 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000011


298 A. Bonito, C. Canuto, R. H. Nochetto and A. Veeser

(a)

|D −DT |�1
0 (Ω)

[T (DT )
(#T )−1/2

#T
(b)

Figure 5.2. Discontinuous coefficients in a checkerboard pattern: (a) graph of
the discrete solution D, which is D ≈ A0.1, and underlying strongly graded grid T
towards the origin (notice the steep gradient of D at the origin); (b) estimate and
true error in terms of #T (the optimal decay for piecewise linear elements in two
dimensions is indicated by the green line with slope −1/2).

5.2.3. Discontinuous coefficients: Kellogg’s example
We examine a simple yet quite demanding example with piecewise constant coeffi-
cients in a checkerboard pattern for 3 = 2 due to Kellogg (1974/75), and used
by Morin et al. (2000, 2002) as a benchmark for GALERKIN. We consider
Ω = (−1, 1)2, G = 01O in the first and third quadrants, and G = 02O in the second
and fourth quadrants. This checkerboard pattern is the worst for the regularity of
the solution D at the origin. For 5 = 2 = 0, a function of the form D(A, \) = AW`(\)
in polar coordinates solves (2.5) with non-vanishing Dirichlet condition for suit-
able 0 < W < 2 and ` (Morin et al. 2000, 2002, Nochetto et al. 2009). We choose
W = 0.1, which leads to D ∈ �B(Ω) for 1 ≤ B < 1.1 and piecewise in,2

? for some
? > 1. This corresponds to diffusion coefficients 01 ≈ 161.44 and 02 = 1, which
can be computed via Newton’s method; the closer W is to 0, the larger is the ratio
01/02. The solution D and a sample mesh are depicted in Figure 5.2(a).
Figure 5.2(b) documents the optimal performance ofGALERKIN: both the energy

error and estimator exhibit optimal decay (#T )−1/2 in terms of the cardinality #T
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(a) (b) (c) (d)

Figure 5.3. Discontinuous coefficients in a checkerboard pattern: (a) final grid
T highly graded towards the origin with cardinality #T ≈ 2000; (b) zoom to
(−10−3, 10−3)2; (c) zoom to (−10−6, 10−6)2; (d) zoom to (−10−9, 10−9)2. For a
similar resolution, a uniform grid T would require cardinality #T ≈ 1020.

of the underlying mesh T for piecewise linear finite elements. On the other hand,
Figure 5.3 displays a strongly graded mesh T towards the origin generated by
GALERKIN using bisection, and three zooms which reveal a self-similar structure.
It is worth stressing that the mesh size is of order 10−10 at the origin and that
#T ≈ 2 × 103, whereas to reach a similar resolution with a uniform mesh T we
would need #T ≈ 1020. This example clearly reveals that adaptivity can restore
optimal performance even with modest computational resources.
Classical FEMs with quasi-uniform meshes T require regularity D ∈ �2(Ω) to

deliver an optimal convergence rate (#T )−1/2 with polynomial degree = = 1. Since
D ∉ �B(Ω) for any B > 1.1, this is not possible for the example above. However, the
problem is not quite the lack of second derivatives, but rather the fact that they are
not square integrable. In fact, the function D is in,2

? for ? > 1 in each quadrant,
and so over the initial mesh T0, namely D ∈ ,2

?(Ω; T0). The computational rate
of convergence (#T )−1/2 is consistent with Corollary 3.20. We will prove that
GALERKIN delivers this rate in Section 6.

5.3. Data oscillation: one-step AFEM with switch

In Section 5.2 we assumed that the full data D = (G, 2, 5 ) ∈ DT is discrete,
and in particular 5 = %T 5 ∈ FT . The finite-dimensional nature of D̂ allowed
us to develop a rather simple theory of convergence for GALERKIN, the one-step
AFEM, that hinges exclusively on the PDE local error indicator [T (DT , )) defined
in (5.8). We now keep (G, 2) discrete, whence the elliptic operator in (2.5) includes
the Laplacian, but explore the role of a general forcing 5 ≠ %T 5 . Therefore, in
contrast to (5.22), we now investigate the effect of data oscillation (5.11),

oscT ( 5 )2
−1 =

∑
) ∈T
‖ 5 − %T 5 ‖2�−1(l) )

for any T ∈ T, and present a linear convergence theory. We recall from The-
orem 4.45 (modified residual estimator) that the total error estimator ET (DT , 5 )2 =
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Figure 5.4. Representation of the checkerboard function 5 of Example 5.13 for
< = 3 (a), and grids T: for : = 0, 1, 2 (b).

[T (DT )2 + oscT ( 5 )2
−1 is equivalent to the �

1-error, namely

�!ET (DT , 5 ) ≤ ‖∇(D − DT )‖!2(Ω) ≤ �*ET (DT , 5 ). (5.35)

As in the previous section, to simplify notation we do not use the hat symbol to
indicate quantities defined with the discrete data (G, 2).

5.3.1. Role of data oscillation
At first sight, it might seem that Example 5.7 (lack of strict error monotonicity) is
very special and can only occur at the beginning of the refinement process. We
now show that this situation can happen at any stage and that even an interior vertex
property may not guarantee error or data oscillation decrease.

Example 5.13 (interior vertex). Let the polynomial degree be = = 1, fix < ∈ N
and consider (5.21) with G = O the identity matrix, 2 = 0, Ω = (0, 1)2 and
checkerboard 5 given by the following expression and depicted in Figure 5.4(a):

5 (G) =

{
1, if G ∈ (8 2−<, (8 + 1) 2−<) × ( 9 2−<, ( 9 + 1) 2−<) and 8 + 9 odd,
−1, otherwise.

We start with the samemesh T0 with four elements as in Example 5.7, and construct
recursively grids T:+1 ∈ T, : ≥ 0, as a conforming refinement of T: ∈ T via two
newest-vertex bisections of every triangle of T: ; see Figure 5.4(b). Since 5 is
!2-orthogonal to every piecewise linear basis function of the space VT: = S

1,0
T: for

0 ≤ : ≤ < − 1, we deduce that DT: = 0 and the energy error does not change

|||D − DT: |||Ω = |||D − DT0 |||Ω, 0 ≤ : ≤ < − 1. (5.36)

We see that this procedure creates three interior vertices in every triangle of T:
after two refinement steps, namely in T:+2 as long as : + 2 ≤ <. Since the error
does not change, we conclude that the interior vertex property is necessary for error
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reduction but is not sufficient in the presence of data oscillation oscT: ( 5 )−1 ≠ 0.
We conclude that

Data oscillation oscT ( 5 )−1 is not generally of higher order than
the error, especially in the early stages of the adaptive process. (5.37)

On the other hand, for : = < the discrete solution DT< no longer vanishes globally,
but is still zero along the lines where 5 changes sign due to the symmetry of the
problem, and the same happens with DT<+1 . Therefore the behaviour of DT < and
DT<+1 in a fixed square, where 5 is constant, is exactly the same as in Example 5.7.
This implies that DT< = DT<+1 , and illustrates that the rather special situation of
Example 5.7 can occur at any stage of the refinement process.

Example 5.14 (vanishing of %T 5 for = = 1). Since %T 5 is constructed locally
upon testing 5 against cubic and quadratic bubbles (see Remark 4.26 (local compu-
tation)), and 5 of Example 5.13 is highly oscillatory, we realize that %T: 5 is rather
small relative to 5 in �−1(Ω), but it is not zero. This is due to the lack of complete
symmetry of the checkerboard pattern and the triangular grid. Suppose that each
square of Figure 5.4, where 5 = ±1, is further split across the diagonals into four
triangles, and that 5 is assigned the alternating values ±1 and ∓1 in each triangle
depending on whether 5 was originally 1 or −1 in that square; this configuration is
displayed in Figure 5.5. Suppose further that the coefficients (G, 2) of the operator
(2.5) are piecewise constant, as happens for the Laplacian, the polynomial degree
is = = 1, and the definition (4.39) of %) over a triangle ) ∈ T uses @ ∈ P0 rather
than P1. In light of (4.39) and (4.40), symmetry yields, for all ) ∈ T and � ∈ F ,∫

)
5 q) = 0 ⇒ %) 5 = 0,

∫
�
5 q� = 0 ⇒ %� 5 = 0, (5.38)

whence %T 5 = 0. Since also DT = 0 because 5 is orthogonal to all basis
functions of VT , we deduce ET (DT , 5 ) = 0, and all the information about the
error |||D − DT |||Ω ≠ 0 resides in the data oscillation oscT ( 5 )−1 ≠ 0. Moreover,
the fact that %T 5 = 0 for several iterations reveals the important property that
oscT ( 5 )−1 may not change upon refinement because

oscT ( 5 )2
−1 =

∑
) ∈T
‖ 5 ‖2

�−1(l) ). (5.39)

Since |||D − DT |||Ω ≈ oscT ( 5 )−1, according to (4.45), special care must be exer-
cised to reduce data oscillation when it dominates. This justifies the structure of
Algorithm 5.16 (AFEM-SW) below.

Example 5.15 (vanishing of %T 5 for = > 1). Given = ≥ 1 a polynomial degree
and T: , : = 1, . . . , <, uniform refinements of T0, there are finitely many conditions
to verify for 5 ∈ �−1(Ω) to be orthogonal to VT: and to FT: . Since dim�−1(Ω) =
dim !2(Ω) = ∞, there are infinitely many loads 5 ∈ �−1(Ω) as well as in !2(Ω)
that yield DT: = %T: 5 = 0, which implies (5.36). Moreover, [T: (D:) = 0 and
ET: (DT: ) = oscT: ( 5 )−1 satisfies (5.39). One explicit example is as follows.
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Figure 5.5. Refinement of the shaded area according to the process described in
Example 5.14.

Given an initial mesh T0, suppose that 5 consists of line Dirac masses supported
on the skeleton of T0 with densities 6� on � ∈ FT0 made of piecewise polynomials
of degree 2= + 1. We further assume that the 6� are orthogonal to P2= over �
as well as over all sub-faces obtained from < ≥ 1 uniform refinements of T0; see
Figure 5.4. In such a situation, (5.38) applies and DT: = %T: 5 = 0, whence (5.36)
and (5.39) are valid for 0 ≤ : ≤ <.
These three examples reveal the following crucial and novel feature about the

interplay of the energy error |||D − DT |||Ω and data oscillation oscT ( 5 )−1:
Data oscillation oscT ( 5 )−1 may be responsible for the energy error
|||D − DT |||Ω to stagnate, even with the interior vertex property, and
may entirely dominate it relative to the error estimator ET (DT , 5 )
over many mesh refinements unless it is reduced.

(5.40)

5.3.2. Reducing data oscillation
The PDE error estimator [T (DT ) in (5.8) is fully discrete and thus computable. In
contrast, the computation, or rather estimation, of oscT ( 5 )−1 hinges on a priori
knowledge of 5 and cannot be assessed in general. Assuming that the local
indicators introduced in Lemma 4.8 (localization re-indexing),

oscT ( 5 , ))−1 = ‖ 5 − %T 5 ‖�−1(l) ), ) ∈ T , (5.41)

are computable without further regularity than 5 ∈ �−1(Ω), it is natural to think
of tree approximation as the algorithm of choice to reduce oscT ( 5 )−1 (Binev and
DeVore 2004, Binev, Fierro and Veeser 2023, Binev 2018). However, this optimal
algorithm is not readily applicable because of the lack of a suitable sub-additivity
property.
On the other hand, greedy algorithms, such as that in Section 3.6 (constructive

approximation), do not work under minimal regularity. In Section 7.3 we present
practical examples of rough 5 for which oscT ( 5 )−1 can be replaced by a larger com-
putable surrogate estimator õscT ( 5 )−1. The latter splits into element contributions
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and is amenable to a greedy strategy. Since this is specialized and technical, we
prefer to postpone the full discussion to Section 7.3 and now assume the existence
of a module DATA with the following property: given a tolerance g > 0 and a
conforming mesh T ∈ T, DATA constructs a conforming refinement T∗ ∈ T,

[T∗] = DATA(T , 5 , g),

such that oscT∗( 5 )−1 ≤ g. The complexity of DATA depends on the decay rate of
the best approximation error minT ∈T# õscT ( 5 )−1 of 5 with # degrees of freedom.
We address this important issue in Section 7.3 for each example separately.

5.3.3. Linear convergence
The following algorithm, AFEM-SW, a one-step AFEM with switch, is a minor, but
essential, modification of GALERKIN in that the call to the modules MARK and
REFINE is conditional on the size of oscT ( 5 )−1 relative to ET (DT , 5 ). This structure
is consistent with the heuristic discussion by Cascón et al. (2008, Section 6) to avoid
separate marking. A similar algorithm is being developed in Kreuzer et al. (2024).

Algorithm 5.16 (AFEM-SW). Let T0 be a suitable initial mesh, let the coefficients
(G, 2) be discrete over T0, and let Y > 0 be a stopping tolerance. Given parameters
0 < \, l, b < 1, AFEM-SW iterates the following loop until ET (DT , 5 ) ≤ Y:
[T , DT ] = AFEM-SW(T0,D, Y)

set 9 = 0
do
[DT 9 ] = SOLVE(T 9)
[[T 9 (DT 9 ), oscT 9 ( 5 )−1] = ESTIMATE(DT 9 , T 9 ,D)
if ET 9 (DT 9 , 5 ) ≤ Y

return T 9 , DT 9
else if oscT 9 ( 5 )−1 ≤ f9 ≔ lET 9 (DT 9 , 5 )
[M 9] = MARK({[T 9 (DT 9 , ))}) ∈T 9 , T 9 , \)
[T 9+1] = REFINE(T 9 ,M 9)

else
[T 9+1] = DATA(T 9 , 5 , bf9)

9 ← 9 + 1
while true

Note that SOLVE computes the Galerkin approximation using the exact right-
hand side 5 ∈ �−1(Ω) (not necessarily in FT 9 ), thereby preserving the Galerkin
orthogonality property. Moreover, ESTIMATE is now responsible for computing
the PDE estimator

[T 9 (DT 9 ) = [T 9 (DT 9 , 5 , T 9)
using %T 9 5 ∈ FT 9 , as well as data oscillation oscT 9 ( 5 )−1, which together give

ET 9 (DT 9 , 5 ) =
(
[T 9 (DT 9 )

2 + oscT 9 ( 5 )
2
−1
)1/2

,
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and MARK consists of Dörfler marking (5.23) with parameter \.

We proceed as in Section 5.2.2 to prove linear convergence of AFEM-SW. We
first show a contraction property for the quasi-error, which instead of (5.27) reads

ZT 9 (DT 9 , 5 )
2 ≔ |||D − DT 9 |||2Ω + W[T 9 (DT 9 )2 + oscT 9 ( 5 )

2
−1, (5.42)

where D = D(G, 2, 5 ) is the Galerkin solution with (G, 2) discrete but 5 exact and
the scaling parameter satisfies 0 < W ≤ 1.

Theorem 5.17 (contraction property of AFEM-SW). Let (G, 2)be discrete coef-
ficients over T0 and let 5 ∈ �−1(Ω). Let \ ∈ (0, 1] be the Dörfler parameter and
let (T 9 ,V 9 , D 9) be the sequence of conforming meshes T 9 , finite element spaces V 9 ,
and Galerkin solutions D 9 ∈ V 9 produced by AFEM-SW. There exist parameters
0 < l0 < 1 sufficiently small and 0 < W ≤ 1 and 0 < U < 1 such that for any
l ≤ l0 and b ≤ 1/2, the quasi-error ZT 9 in (5.42) contracts

ZT 9+1(DT 9+1 , 5 ) ≤ UZT 9 (DT 9 , 5 ), 9 ≥ 0. (5.43)

Proof. We argue as in Theorem 5.8 (general contraction property) upon distin-
guishing the two possible cases within Algorithm 5.16. But first we must account
for a crucial difference: the discrete forcing function %T 9 5 used in the definition of
the estimator ET 9 (DT 9 , 5 ) changes in each iteration. We use the same notation as in
Theorem 5.8 along with osc 9 ≔ oscT 9 ( 5 )−1, E2

9 ≔ [2
9 + osc2

9 and % 9 ≔ %T 9 .

1 Estimator reduction property. In view of Proposition 4.56 (estimator reduction),
we need to estimate the discrepancy between discrete forcing functions∑
) ∈T 9+1

‖% 9+1 5 − % 9 5 ‖2�−1(l) )≤ 2
∑

) ∈T 9+1

(‖ 5 − % 9+1 5 ‖2�−1(l) )+ ‖ 5 − % 9 5 ‖2�−1(l) )
)
.

For the first termwe recall Lemma 4.57 (quasi-monotonicity of oscillation) to write∑
) ∈T 9+1

‖ 5 − % 9+1 5 ‖2�−1(l) ) = osc2
9+1 ≤ �2

osc osc2
9 .

For the second term, instead, we combine the projection property % 9+1(% 9 5 ) = % 9 5
with Lemma 4.5 (localization of �−1-norm) and Corollary 4.31 (local near-best
approximation), and the fact that T 9+1 is a refinement of T 9 , to see that∑
) ′⊂l)

‖ 5 − % 9+1(% 9 5 )‖2�−1(l) ′ )
≤ �2

lStb

∑
) ′⊂l)

‖ 5 − % 9 5 ‖2�−1(l) ′ )

≤ �2
lStb�

2
ovrl oscT 9 ( 5 , l) )2

−1 for all ) ∈ T 9 .
Adding over ) and recalling Proposition 4.56, we end up with

[T 9+1(D 9+1, 5 , T 9+1)2 ≤ (1 + X)
(
[T 9 (D 9 , 5 , T 9)2 − _ [T 9 (D 9 , 5 ,M 9)2)

+ (1 + X−1)�2
Lip

(|D 9 − D 9+1 |2� 1
0 (Ω) + osc2

9

)
, (5.44)
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for a constant �Lip large enough to absorb all preceding constants, and any X > 0.

2 Case osc 9 ≤ lE 9 . We first observe that [2
9 ≥ (1 − l2)E2

9 and osc2
9 ≤ l2(1 −

l2)−1[2
9 . We then proceed as in Theorem 5.8 with the quantity 42

9 + W[2
9 , and

observe that the choices of X and W,

X ≤ −1 + 1 − _\2/2
1 − _\2 =

_\2

2(1 − _\2)
, W ≤ X

4�2
Lip
≤ 1

2(1 + X−1)�2
Lip
, (5.45)

imply W(1 + X−1)�2
Lip ≤ 1/2. This, together with (5.7) and (5.44), leads to

42
9+1 + W[2

9+1 ≤ 42
9 + W

(
1 − _\

2

2

)
[2
9 +

1
2

osc2
9 ;

compare with (5.32). We invoke the upper bound in (5.13) to write

[2
9 ≥ (1 − l2)E2

9 ≥ (1 − l2)
42
9

�2
1
≥

42
9

2�2
1

provided l2 ≤ 1/2, whence

42
9+1 + W[2

9+1 ≤
(

1 − W_\
2

8�2
1

)
42
9 + W

(
1 − _\

2

8

)
[2
9 −

W_\2

8
[2
9 +

1
2

osc2
9 .

We next consider the data oscillation, for which we invoke Lemma 4.57 (quasi-
monotonicity of oscillation):

osc 9+1 ≤ �osc osc 9 , osc2
9 ≤ �2

osc
l2

1 − l2 [
2
9 ≤ 2�2

oscl
2[2
9 .

Adding the two preceding inequalities yields

Z2
9+1 = 4

2
9+1 + W[2

9+1 + osc2
9+1 ≤

(
1 − W_\

2

8�2
1

)
42
9

+
(

1 − _\
2

8

)(
W[2

9 + osc2
9

)
+

[
−W_\

2

8
+ 2

(
�2
osc − 1 + _\

2

8
+ 1

2

)
l2

]
[2
9 .

We drop the term −1/2+_\2/8 ≤ 0 and let W = X/(4�2
Lip), which is consistent with

(5.45). We seek conditions on l that make the factor of [2
9 non-positive. Imposing

l2 ≤ W_\2

16�2
osc

=
_\2

64�2
osc�

2
Lip
X (5.46)

yields
Z2
9+1 ≤ U2

1Z
2
9 ,
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with

U2
1 ≔ max

{
1 − X_\2

32�2
1�

2
Lip
, 1 − _\

2

8

}
< 1.

3 Case osc 9 > lE 9 . The module DATA with input parameter b ≤ 1/2 gives

osc 9+1 ≤ blE 9 < b osc 9 .

We now exploit the contraction of osc 9 to compensate the moderate increase of [2
9

and presence of osc2
9 , both governed by (5.44). In fact, W(1+ X−1)�2

Lip ≤ 1/2 yields

42
9+1 + W[2

9+1 ≤ 42
9 + W(1 + X)[2

9 +
1
2

osc2
9 .

We add osc2
9+1 to both sides and rewrite the right-hand side to arrive at

Z2
9+1 = 4

2
9+1 + W[2

9+1 + osc2
9+1 ≤ 42

9 −
1 − 2b2

8
osc2

9

+ (1 − X)W[2
9 +

(
1 + 2b2

4
+ 1

2

)
osc2

9

+ 2XW[2
9 −

1 − 2b2

8
osc2

9 .

Our next task is to find conditions on l for the last line to be non-positive. To this
end, we resort to the upper bound [2

9 < l
−2 osc2

9 and b ≤ 1/2 to obtain

2XW[2
9 −

1 − 2b2

8
osc2

9 <

(
2XW
l2 −

1
16

)
osc2

9 ≤ 0

provided we impose the relation

l2 ≥ 32XW =
8
�2

Lip
X2. (5.47)

We next use the upper bound 4 9 ≤ �1E 9 ≤ �1l
−1 osc 9 to write

42
9 −

1 − 2b2

8
osc2

9 ≤
(

1 − l2

16�2
1

)
42
9 ,

whence we end up with
Z2
9+1 ≤ U2

2Z
2
9

provided we define

U2
2 ≔ max

{
1 − l2

16�2
1
, 1 − X, 3 + 2b2

4

}
< 1.
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4 Choosing the parameters. We see that the asserted estimate (5.43) is valid with
U = max{U1, U2} < 1 provided the constraints (5.46) and (5.47) are compatible,
that is,

8
�Lip

X2 ≤ l2 ≤ _\2

64�2
osc�

2
Lip
X.

We choose

X0 =
_\2

512�2
osc�Lip

and l0 =
_\2

128�2
osc�Lip

√
2�Lip

.

Then, for all l ≤ l0, there exists X ≤ X0 that satisfies the previous inequalities as
well as W = X/(4�2

Lip) ≤ 1, perhaps upon reducing X0. This completes the proof of
Theorem 5.43.

Note that we could replace the conditional oscT 9 ( 5 )−1 ≤ l ET 9 (DT 9 , 5 ) with
oscT 9 ( 5 )−1 ≤ l [T 9 (DT 9 ), but the tolerance g of DATA cannot be

g = b l [T 9 (DT 9 )

because the algorithm might not terminate when [T 9 (DT 9 ) = 0; see e.g. Ex-
amples 5.13–5.15. In fact, the tolerance g = blET 9 (DT 9 , 5 ) is dynamic and relative
to ET 9 (DT 9 , 5 ). This avoids separate marking, which was shown by Cascón et al.
(2008, Section 6) to give non-optimal convergence rates. In contrast, we will prove
in Section 6 that Algorithm 5.16 is rate-optimal.

It turns out that Theorem 5.17 yields linear convergence of error and estimator.

Corollary 5.18 (linear convergence of error). For 0 < U < 1 and 0 < l ≤ l0,
b ≤ 1/2 as in Theorem 5.17, and �∗ =

(
1 + �−1

2
)1/2 with �2 as in (5.13), we have

|D − DT: |� 1
0 (Ω) ≤ �∗ U:− 9 |D − DT 9 |� 1

0 (Ω) for all : ≥ 9 ≥ 0.

Proof. We again use the same notation as in Lemma 5.5 and Theorem 5.17. In
view of the definition (5.42) of quasi-error Z 9 ≔ ZT 9 (DT 9 , 5 ), we thus have 4 9 ≤ Z 9
and

Z2
9 ≤ 42

9 + [2
9 + osc2

9 ≤
(
1 + �−1

2
)
42
9

because �2E 9 ≤ 4 9 from (5.13). This implies

4 9 ≤ Z 9 ≤ �∗4 9 for all 9 ≥ 0,

and invoking Theorem 5.17 (contraction property for AFEM-SW),

42
: ≤ Z2

: ≤ U2(:− 9)Z2
9 ≤ U2(:− 9)�2

∗ 4 9

gives the desired estimate.

We stress that Corollary 5.18 relies on the lower bound in (5.13) whereas Corol-
lary 5.19 uses only the upper bound. Its proof is similar and is thus omitted.
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Corollary 5.19 (linear convergence of estimator). For 0 < U < 1 and 0 < l ≤
l0, b ≤ 1/2 as in Theorem 5.17, and �# =

((
1 + �2

1
)
W−1)1/2 with �1 as in (5.13),

we have
ET: (DT: , 5 ) ≤ �# U

:− 9 ET 9 (DT 9 , 5 ) for all : ≥ 9 ≥ 0.

5.4. Convergence for general data: two-step AFEM

We now remove the restriction of Sections 5.2 and 5.3 to discrete data and allow
for general data D = (G, 2, 5 ) ∈ D as defined in (5.2). The current goal is to study
Algorithm 5.1 (AFEM-TS), which concatenates the modules DATA and GALERKIN.
We start with the study of continuous dependence with respect to data D. We next
discuss the approximation of D within the module DATA, the computational cost
of GALERKIN, and eventually the convergence of Algorithm 5.1.

5.4.1. Perturbation theory
We start with a brief discussion of data perturbation. Given constants 0 < U1 ≤ U2
and 0 ≤ 21 ≤ 22, we define the constrained spaces for the diffusion and reaction
coefficients by

"(U1, U2) ≔
{
G ∈ !∞(Ω;R3×3sym

) | 0 < U1 ≤ _ 9(G(G)) ≤ U2

for a.e. G ∈ Ω, 1 ≤ 9 ≤ 3}, (5.48)

where _ 9(G(G)) denotes the 9 th eigenvalue of G at G ∈ Ω and

'(21, 22) ≔ {2 ∈ !∞(Ω) | 21 ≤ 2(G) ≤ 22 for a.e. G ∈ Ω}. (5.49)

The coefficients (G, 2) are assumed to satisfy the structural assumption

G ∈ "(U1, U2), 2 ∈ '(21, 22); (5.50)

see (2.6). This guarantees coercivity and continuity of the bilinear form B in (2.8),
and thus unique solvability of (2.7).
Regarding the discrete coefficients, (Ĝ, 2̂) will ultimately be piecewise poly-

nomials in a grid T̂ ∈ T. The side constraints in (5.48) and (5.49) are generally
violated by any linear projection onto piecewise polynomials of degree = − 1 ≥ 1,
e.g. the !2-projection, and require a nonlinear correction maintaining high-order
accuracy. This is a crucial but delicate matter addressed later in Section 7.2. For
the moment, we simply assume that the discrete coefficients (Ĝ, 2̂) satisfy

Ĝ ∈ "(Û1, Û2), 2̂ ∈ '(2̂1, 2̂2), (5.51)

with
U1
2
≤ Û1 ≤ Û2 ≤ �ctrU2, − U1

4�2
%

≤ 2̂1 ≤ 2̂2 ≤ �ctr(U1 + 22), (5.52)

where�% > 0 is the Poincaré constant in (2.2) and�ctr ≥ 1 is a constant; see (7.21)
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and (7.23). This implies coercivity and continuity of the perturbed bilinear form

B̂[E, F] ≔
∫
Ω
∇E · Ĝ∇F + 2̂EF, for all E, F ∈ �1

0(Ω), (5.53)

because for all E, F ∈ �1
0(Ω)

B̂[E, E] ≥ Û1

∫
Ω
|∇E |2 − U1

4�2
%

∫
Ω
|E |2 ≥ U1

4
|E |2
� 1

0 (Ω)

and

|B̂[E, F] | ≤
∫
Ω
Û2 |∇E | |∇F | + 2̂2 |E | |F | ≤

(
Û2 + 2̂2�

2
%

)|E |� 1
0 (Ω) |F |� 1

0 (Ω).

Therefore the energy norm |||E |||2Ω = B̂[E, E] is equivalent to the �1
0-seminorm

2B̂ |E |2� 1
0 (Ω) ≤ |||E |||

2
Ω ≤ �B̂ |E |2� 1

0 (Ω), (5.54)

where 2B̂ = U1/4 and�B̂ = Û2+2̂2�
2
%. Hence theLax–Milgram theoremguarantees

the existence of a unique solution D̂ = D(D̂) ∈ �1
0(Ω) of the perturbed problem

(5.5) defined using the discrete data D̂ = (Ĝ, 2̂, 5̂ ).
We now quantify the effect of perturbing data from D to D̂ in the space

�̂(Ω) ≔ !A (Ω;R3×3) ×,−B@ (Ω) × �−1(Ω), (5.55)

where 2 ≤ A ≤ ∞ and 0 ≤ B ≤ 1, 3/(2 − B) < @ ≤ ∞;,−B@ (Ω) is the dual of, B
@∗(Ω)

with @∗ = @/(@ − 1). The use of A = ∞ for G entails the further assumption

G is piecewise uniformly continuous over a generic mesh T ∈ T, (5.56)

which turns out to be rather restrictive but customary in the theory of AFEM. Our
present approach allows for A < ∞ and thus for discontinuous coefficients (G, 2) not
aligned with T , which is important in practice. However, it requires the following
slightly stronger regularity property of the solution D ∈ �1

0(Ω) of (2.7):

‖∇D‖!?(Ω) ≤ �? ‖ 5 ‖, −1
? (Ω), 2 < ? ≤ ?0. (5.57)

We refer to Lemma 2.13 (,1
?-regularity), which shows the existence of �? > 0

and ?0 > 2 that depend only on Ω, U1, U2 and 22.

Lemma 5.20 (continuous dependence on data). Let D = (G, 2, 5 ) ∈ D be such
that G ∈ "(U1, U2) and 2 ∈ '(21, 22). Let D̂ = (Ĝ, 2̂, 5̂ ) ∈ D be an approximation
of D such that Ĝ ∈ "(Û1, Û2) and 2̂ ∈ '(2̂1, 2̂2). Let 2 ≤ A ≤ ∞, 2 ≤ A∗ =
2A/(A − 2) ≤ ?0 be such that 5 ∈ ,−1

A∗ (Ω). If D = D(D), D̂ = D(D̂) ∈ �1
0(Ω) are the

solutions of (2.7) and (5.5) with dataD, D̂, respectively, and D satisfies (5.57) with
? = A∗ for A < ∞, then for any 0 ≤ B ≤ 1 and 3/(2 − B) < @ ≤ ∞ we have

‖∇(D − D̂)‖!2(Ω) ≤ �(D,Ω) ‖D − D̂‖�̂(Ω), (5.58)
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where the constant �(D,Ω) depends on D, Ω, ?0, @ and B, and blows up as
@ → 3/(2 − B) for 3 = 2 while it remains bounded for 3 > 2.

Proof. Subtracting the weak formulations (2.7) for D and (5.5) for D̂, and reorder-
ing, we easily obtain for any E ∈ �1

0(Ω)∫
Ω
∇E · Ĝ∇(D − D̂) + 2̂E(D − D̂) =

∫
Ω
∇E · (Ĝ − G)∇D + (2̂ − 2)ED + 〈 5 − 5̂ , E〉.

We choose E = D − D̂ ∈ �1
0(Ω) and invoke (5.54) to deduce

2B̂‖∇E‖2!2(Ω) ≤
∫
Ω
∇E · (Ĝ − G)∇D + (2̂ − 2)ED + 〈 5 − 5̂ , E〉.

We estimate each term separately, starting with the first and last terms∫
Ω
∇E · (Ĝ − G)∇D ≤ ‖ Ĝ − G‖!A (Ω)‖∇D‖!A∗ (Ω)‖∇E‖!2(Ω) (5.59)

with 2 ≤ A∗ = 2A/(A − 2) ≤ ?0, as well as

〈 5 − 5̂ , E〉 ≤ ‖ 5 − 5̂ ‖�−1(Ω)‖∇E‖� 1(Ω).

For the reaction term, which is more delicate, we invoke the duality pairing , B
@′–

,−B@ for any 0 ≤ B ≤ 1 and @′ = @/(@ − 1) ≥ 1, to obtain∫
Ω

(2̂ − 2)ED ≤ ‖2̂ − 2‖, −B@ (Ω) |ED |, B
@′ (Ω).

We now estimate |ED |, B
@′ (Ω) . |ED |, 1

?′ (Ω), where 1/?′ = min{1, (1 − B)/3 + 1/@′}
guarantees that ,1

?′(Ω) ⊂ , B
@′(Ω) (Leoni 2009, Theorem 14.32). Recalling that

@ > 3/(2 − B), we deduce
1 − B
3
+ 1
@′
=

1 − B
3
+ 1 − 1

@
>
3 − 1
3
≥ 1

2
,

whence 1/?′ > 1/2, and there exists C < ∞ satisfying 1/C + 1/2 = 1/?′ and
|ED |, B

@′ (Ω) . ‖∇E‖!2(Ω)‖D‖!C (Ω) + ‖E‖!C (Ω)‖∇D‖!2(Ω).

Using the definition of ?′, we obtain the explicit expression C = max{2, C0}, where

C0 =
23@

@(2(1 − B) + 3) − 23
.

Moreover, for the Sobolev embedding �1(Ω) ↩→ !C (Ω), we require

1 − 3
(

1
2
− 1
C

)
> 0 ⇒ @ >

3

2 − B ,

which is our assumption on @. Therefore, as @ → 3/(2 − B), we see that C0 →
23/(3 − 2), and the limit is infinite for 3 = 2 but finite and larger than 2 for
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3 > 2. Sobolev embedding together with the first Poincaré inequality (2.2) gives
the estimate

‖ED‖, B
@′ (Ω) ≤ �(Ω, C)‖∇E‖!2(Ω)‖∇D‖!2(Ω),

where �(Ω, C) is proportional to C for 3 = 2.
We finally observe that the factors ‖∇D‖!A∗ (Ω) and ‖∇D‖!2(Ω) appear in the

estimates of the coefficients G and 2, thereby reflecting the multiplicative nature of
these terms. Since 2 ≤ A∗ ≤ ?0, they can be further bounded in terms of ‖ 5 ‖, −1

A∗ (Ω)
according to (5.57). This in conjunction with the preceding estimates yields the
assertion (5.58).

A natural and rather popular choice of parameters (A, @, B) in Lemma 5.20 (con-
tinuous dependence on data) is A = @ = ∞ and B = 0, but this would prevent the
coefficients (G, 2) from being discontinuous within elements; see (5.56). We will
explore this matter further in Section 7 (data approximation).

Remark 5.21 (!2-approximation of G). It is appealing to estimate the distortion
G − Ĝ in !2(Ω) rather than in !A (Ω) because it is a simpler norm to deal with.
Since ‖G‖!∞(Ω) ≤ U2, ‖ Ĝ‖!∞(Ω) ≤ Û2 and 2 ≤ A ≤ ∞, we deduce

‖G − Ĝ‖!A (Ω) ≤ ‖G − Ĝ‖1−2/A
!∞(Ω)‖G − Ĝ‖2/A

!2(Ω) . ‖G − Ĝ‖2/A
!2(Ω).

However, this may be sub-optimal in general. One important situation where this is
sharp corresponds to G being piecewise constant with jump discontinuities across
a Lipschitz hypersurface W and Ĝ = G on every element ) ∈ T not intersecting W.
In that case, the equivalence

‖G − Ĝ‖!?(Ω) ≈ |{G ∈ Ω | G(G) ≠ Ĝ(G)}|1/?

is valid for 1 ≤ ? ≤ ∞, whence
‖G − Ĝ‖!A (Ω) ≈ ‖G − Ĝ‖2/A

!2(Ω).

5.4.2. Approximation of D: module DATA
In this section we briefly discuss the structure of DATA, which is the module of
Algorithm 5.1 (AFEM-TS) responsible for data approximation.
Henceforth we will no longer rely on the Banach space �̂(Ω) defined in (5.55)

and used in Lemma 5.20 (continuous dependence on data). Instead we restrict the
error notion to the following stronger Banach space:

�(Ω) ≔ !A (Ω;R3×3) × !@(Ω) × �−1(Ω), (5.60)

where @ = 2 for 3 < 4 or @ > 3/2 for 3 ≥ 4; we justify the choice of @ below. Let
D and DT be the spaces defined in (5.1) and (5.2) for a conforming mesh T ∈ T.
Given D = (G, 2, 5 ) ∈ D, let XT (D) be the best approximation error of D within
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DT measured in the space �(Ω), namely

XT (D) ≔ inf
DT ∈DT

‖D −DT ‖�(Ω). (5.61)

This quantity characterizes the approximation quality of DT , thereby having the-
oretical value. Since XT (D) is hard to access in view of the norms involved in the
definition of �(Ω), the module DATA computes the surrogate quantity

oscT (D) ≔ ‖D − D̂‖�(Ω)

for some approximation D̂ ∈ DT to be specified below.

Assumption 5.22 (properties of DATA). Given a conforming mesh T ∈ T and a
tolerance g > 0, the call

[T̂ , D̂] = DATA(T ,D, g) (5.62)

creates an admissible refinement T̂ of T and discrete data D̂ = DT̂ ∈ DT̂ such that
for a constant �data,

oscT̂ (D) ≔ ‖D − D̂‖�(Ω) ≤ �datag, (5.63)

as well as the structural conditions (5.51), are achieved in a finite number of
iterations that depends on the regularity of D, and such that

oscT̂ (D) ≤ Λdata XT̂ (D), (5.64)

with Λdata ≥ 1 depending only on the shape regularity of T, the polynomial degree
= and the Lebesgue exponents in the space �(Ω).

In view of Lemma 5.20 (continuous dependence on data), there exists a constant
�� > 0 depending on D,Ω, and the shape regularity of T, such that the exact
solutions D = D(D) and D̂ = D(D̂) of (2.5) and (5.5), corresponding to data D and
D̂ respectively, satisfy the error estimate

|D − D̂ |� 1
0 (Ω) ≤ ��g. (5.65)

A brief discussion follows about computing oscT̂ (D), where T̂ remains fixed
and is replaced by T to simplify the notation. Specific details are given later in
Assumptions 6.10 and 6.11 of Section 6.10 and especially in Section 7.

Approximating the coefficients. We now construct approximations (Ĝ, 2̂) using
local !2-projections, and emphasize that this does not enforce the side constraints
in the structural assumption (5.51). In Section 7 we propose a nonlinear correction
satisfying the side constraints without sacrificing the accuracy.
Given ) ∈ T , and E ∈ ! ?()) with 1 ≤ ? ≤ ∞, we let Π) E ≔ Π=−1

) E denote the
!2-projection of E onto the space P=−1 of polynomials of degree ≤ = − 1, namely

Π) E ∈ P=−1 :
∫
)
Π) E F =

∫
)
E F for all F ∈ P=−1. (5.66)
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Lemma 5.23 (! ?-stability of Π) ). For every 1 ≤ ? ≤ ∞ and E ∈ ! ?()), there
exists a constant � depending on ?, = and the shape regularity of T such that

‖Π) E‖!?() ) ≤ �‖E‖!?() ) for all ) ∈ T . (5.67)

Proof. It is trivial to see that ‖Π) E‖!2() ) ≤ ‖E‖!2() ). Let 2 < ? ≤ ∞ and
combine an inverse estimate with a Hölder inequality to write

‖Π) E‖!?() ) ≤ �ℎ3/?−3/2) ‖Π) E‖!2() ) ≤ �ℎ3/?−3/2) ‖E‖!2() ) ≤ �‖E‖!?() ).

For 1 ≤ ? < 2 we proceed by duality. Let i ∈ !@()) with @ = ?/(? − 1). Then∫
)
Π) Ei =

∫
)
EΠ) i ≤ ‖E‖!?() )‖Π) i‖!@() ) ≤ �‖E‖!?() )‖i‖!@() ),

which implies (5.67) and concludes the proof.

We immediately have the following simple consequence of Lemma 5.23.

Corollary 5.24 (best approximation of Π) ). For every 1 ≤ ? ≤ ∞ and E ∈
! ?()), there exists a constant �BA ≥ 1 depending on ?, = and the shape regularity
of T such that

‖E − Π) E‖!?() ) ≤ �BA inf
F ∈P=−1

‖E − F‖!?() ). (5.68)

Proof. We combine the invariance of Π) on P=−1, i.e. Π)F = F for F ∈ P=−1,
with (5.67) to see that

‖E − Π) E‖!?() ) = ‖(E − F) − Π) (E − F)‖!?() ) ≤ �‖E − F‖!?() ).

This implies (5.68) as asserted.

The !2-projection is easily computable because it entails solving the linear sys-
tem (5.66). However, this flexibility comes at the expense of a best approximation
constant �BA > 1 in (5.68) for ? ≠ 2. The best ! ?-approximation of E in ) is also
computable, because it boils down to a convex minimization problem, and would
result in�BA = 1. This excellent property is superseded by the simplicity of (5.66),
which makes Π) E the approximation of choice.

Corollary 5.25 (quasi-monotonicity of Π) ). Let T , T∗ ∈ T be such that T ≤ T∗,
and let ) ∈ T , )∗ ∈ T∗ satisfy )∗ ⊂ ) . If �BA is the constant in (5.68), then

‖E − Π)∗E‖!?()∗) ≤ �BA‖E − Π) E‖!?() ) (5.69)

for all 1 ≤ ? ≤ ∞, and �BA = 1 for ? = 2.

Proof. Simply use (5.68) to write

‖E − Π)∗E‖!?()∗) ≤ �BA‖E − Π) E‖!?()∗) ≤ �BA‖E − Π) E‖!?() ).

This is the desired bound.
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We are now ready to define the discontinuous P=−1-approximation Ê of E ∈
! ?(Ω). Inequality (5.69) with�BA > 1 is fine for most instances except Lemma 7.5
below. Therefore we introduce a nonlinear modification of the obvious choice Ê
for ) ∈ T , namely Ê = Π) E. We give a recursive (and computable) definition
as follows: if ) ∈ T0, then Ê |) ≔ Π) E; if ) ∈ T , let Ê |%() ) ∈ P=−1 be the
approximation of E in the parent element %()) of ) , and set

Ê |) ≔
{
Π) E, if ‖E − Π) E‖!?() ) ≤ ‖E − Ê |%() )‖!?() ),

Ê |%() ), if ‖E − Π) E‖!?() ) > ‖E − Ê |%() )‖!?() ).
(5.70)

We then define

oscT (E, ))? ≔ ‖E − Ê‖!?() ) for all ) ∈ T . (5.71)

Since the chain of elements emanating from T0 and culminating with ) is unique,
the notion oscT (E, ))? is well-defined and independent of T . The following result
is an immediate consequence of (5.70).

Lemma 5.26 (monotonicity of oscillation). For all 1 ≤ ? ≤ ∞, T , T∗ ∈ T with
T ≤ T∗, and )∗ ∈ T∗, ) ∈ T so that )∗ ⊂ ) , we have

oscT∗(E, )∗)? ≤ oscT (E, ))? . (5.72)

Consequently, for any = ≥ 1 and ) ∈ T , let

Ĝ ∈ [
S=−1,−1
T

]3×3
, 2̂ ∈ S=−1,−1

T

be defined locally via (5.70), and let the surrogate element error indicators of (G, 2)
be given by

oscT (G, ))A ≔ ‖G − Ĝ‖!A () ), oscT (2, ))@ ≔ ‖2 − 2̂‖!@() ), (5.73)

for some 2 ≤ A ≤ ∞ and 3/2 < @ ≤ ∞ according to (5.58) for B = 0. The simplest
choice @ = 2 yields 2̂) = Π) 2 in (5.70), but requires the restriction 3 < 4, which
is fine in practice.
For = = 1 the situation is a bit special on two counts. First, Π) E reduces to mean

values of E, namely

Π) G ≔
1
|) |

∫
)
G, Π) 2 ≔

1
|) |

∫
)
2 for all ) ∈ T . (5.74)

for G ∈ "(U1, U2), 2 ∈ '(21, 22) defined in (5.50). Hence Ĝ ∈ "(Û1, Û2) with
Û1 = U1, Û2 = U2 and 2̂ ∈ '(2̂1, 2̂2)with 2̂1 = 21, 2̂2 = 22, that is, the !2-projections
(5.74) on piecewise constants over T as well as Ĝ and 2̂ satisfy the side conditions
in (5.51) without changing the original range of parameters. In addition, instead
of (5.73), we can exploit superconvergence in ,−1

@ (Ω) with @ > 3/(2 − B) = 3 in
(5.58). In fact we utilize the orthogonality of Π) in conjunction with (5.68) and
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(3.16), to obtain, for an arbitrary function F ∈ ,1
@∗(Ω) and @∗ = @/(@ − 1),∫

)
(2 − Π) 2)F =

∫
)

(2 − Π) 2)(F − Π)F) . ℎC) ‖2 − Π) 2‖!A () ) |F |, 1
@∗ (l) ),

where C = 1 − 3/@∗ + 3/A∗ = 1 + 3/@ − 3/A > 0 and A∗ = A/(A − 1). We consider
two cases: A = 2,∞. If A = 2 and B = 1, then @ > 3 results in 0 < C < 2 − 3/2 and
entails the restriction 3 < 4. This implies ‖2 − 2̂‖, −1

@ (Ω) . oscT (2)2, where

oscT (2, ))2 ≔ ℎC) ‖2 − Π) 2‖!2() ). (5.75)

If A = ∞ and B = 1, then @ = ∞ yields C = 1 and ‖2 − 2̂‖, −1
@ (Ω) . oscT (2)∞, where

oscT (2, ))∞ ≔ ℎ) ‖2 − Π) 2‖!∞() ). (5.76)

Approximating the load. Dealing with 5 ∈ �−1(Ω) is trickier for several reasons.
First, the norm in �−1(Ω) is non-local, so its localization is non-obvious. We recall
the definition (4.52) of local oscillation oscT ( 5 , ))−1 for ) ∈ T and Corollary 4.31
(local near-best approximation), to deduce

oscT ( 5 , ))−1 ≔ ‖ 5 − %T 5 ‖�−1(l) ) ≤ �lStb inf
j∈FTl)

‖ 5 − j‖�−1(l) ), (5.77)

where �lStb is the constant in Lemma 4.28 (local �−1-stability); equivalently,
oscT ( 5 , ))−1 delivers a near-best approximation of 5 in �−1(l) ). The second
issue at stake is that without further assumptions on 5 , it is not possible to evaluate
or bound the left-hand side of (5.77). In Section 7 we will consider several classes
of loads amenable to computation and yet relevant in practice.
A popular variant of this approach for 5 ∈ !2(Ω) replaces j in (5.77) with the

!2-projection ΠT onto discontinuous piecewise polynomials of degree = − 1, and
sets 5̂ = ΠT 5 . This leads to the standard local weighted !2-element error indicator

õscT ( 5 , ))−1 ≔ ℎ) ‖ 5 − 5̂ ‖!2() ) for all ) ∈ T . (5.78)

Data error estimators. They are the following quantities for the coefficients (G, 2):

oscT (G)A ≔
(∑
) ∈T

oscT (G, ))AA
)1/A

,

oscT (2)@ ≔
(∑
) ∈T

oscT (2, ))@@
)1/@

,

(5.79)

which accumulate in ℓA and ℓ@ for 2 ≤ A ≤ ∞ and 3/2 < @; recall that @ = 2 is an
admissible choice provided 3 < 4. In contrast, the global error estimator for 5 ,

oscT ( 5 )−1 ≔

(∑
) ∈T

oscT ( 5 , ))2
−1

)1/2
, (5.80)
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accumulates in ℓ2. The total data error estimator satisfies (5.64) and reads

oscT (D) ≔ oscT (G)A + oscT (2)@ + oscT ( 5 )−1. (5.81)

The module DATA. This module reduces the oscillation of data D = (G, 2, 5 ) se-
quentially. It consists of a linear approximation followed by a nonlinear correction.
Given a coefficient E = G, 2, a mesh T ∈ T, a tolerance g, an accumulation index

1 ≤ ? ≤ ∞, and a number of bisections 1 ≥ 1 per marked element, the call

[T̃ , Ẽ] = GREEDY(E, T , g, ?, 1)

returns a conforming refinement T̃ of T and a piecewise polynomial approximation
Ẽ of E over T̃ such that the oscillation computed with E − Ẽ satisfies

oscT̃ (E)? ≤ g.
For the load function 5 , since the computation of oscT ( 5 )−1 is impossible without
further assumptions on 5 , we will consider three surrogate estimators õscT ( 5 )−1
in Section 7.3 that also accumulate in ℓ? such that, for all T ∈ T,

oscT ( 5 )−1 ≤ �dataõscT ( 5 )−1,

where �data ≥ 1. GREEDY applied to the surrogate estimator constructs T̃ ≥ T
satisfying

õscT̃ ( 5 )−1 ≤ g ⇒ oscT̃ ( 5 )−1 ≤ �datag. (5.82)

In all cases, the routine GREEDY is similar to that in Algorithm 3.18 (greedy algo-
rithm) with several important distinctions: it accumulates the local error indicators
in the ℓ?-norm and starts from any mesh T ≥ T0 to save computational work.
Finally, the structure of the module DATA is as follows: it concatenates GREEDY

with CONSTRAINT-A and CONSTRAINT-c in order to satisfy Assumption 5.22
(properties of DATA). The routine GREEDY deals with pure approximation without
constraints: called with tolerance g/3, it sequentially reduces the oscillation for
G, 2, 5 with the most recent updated mesh to reduce their errors so that

oscT̂ (G)A ≤ g/3, oscT̂ (2)@ ≤ g/3, õscT̂ ( 5 )−1 ≤ g/3
on a conforming refinement T̂ ≥ T . This is discussed in detail in Section 7.1.

From (5.82) we get oscT̂ ( 5 )−1 ≤ �datag/3. On the other hand, the resulting
coefficients (G̃, 2̃) most likely do not satisfy the constraints (5.51) for = > 1. This
requires a further nonlinear correction

[ Ĝ] = CONSTRAINT-A(T̂ , G̃), [2̂] = CONSTRAINT-c(T̂ , 2̃),
that enforces (5.51) on the same grid T̂ without compromising the accuracy gain
produced by GREEDY: there exists a constant ≥ 1, still denoted by �data for
simplicity, such that

oscT̂ (Ĝ)A ≤ �datag/3, oscT̂ (2̂)@ ≤ �datag/3 ⇒ oscT̂ (D) ≤ �datag.

https://doi.org/10.1017/S0962492924000011 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000011


Adaptive finite element methods 317

For instance, for a fixed parameter ! ≥ 2, we get Û1 = 1
2U1 and Û2 = (1+4!)(U2/2)

for the parameters in (5.51). We give details in Sections 7.2, 7.3 and 7.4.
The optimality properties of DATA hinge on the performance of GREEDY and the

regularity ofD. Since this is not necessary for the present convergence assessment,
we discuss it later in Section 7.

5.4.3. Computational cost of GALERKIN
The output pair (T̂ , D̂) of DATA is next taken by GALERKIN, the one-step AFEM
of Algorithm 5.4 in Section 5.2.1, to run an inner loop of the form (5.18) with
fixed discrete data D̂ and initial mesh T̂ . The call (5.19) of GALERKIN stops as
soon as the error tolerance Y is reached, which takes a finite number of iterations
because GALERKIN is a contraction between consecutive iterates, and creates the
next mesh-solution pair (T , DT ). It is worth noticing that, in the absence of this
stopping test, the Galerkin solution DT would converge to the solution D̂ = D(D̂) of
(5.5), which is not the desired solution D = D(D) of (2.5).
We stress that, in view of (5.63) and (5.65), the relative resolution of the modules

DATA andGALERKIN is critical for the discrepancy between the exact and perturbed
solutions D and D̂. This is ultimately responsible for the performance of AFEM-TS
and is studied in Section 6.
We now investigate the number of iterations within GALERKIN, which dictate

its computational cost. We point out that at iteration : − 1 ≥ 0 of AFEM-TS, the
output (T: , D:) of GALERKIN, and thus of AFEM-TS, satisfies

[:(D:) = [T: (D:) ≤ Y:−1 ⇒ |D: − D̂:−1 |� 1
0 (Ω) ≤ �*Y:−1 (5.83)

according to (5.12). We recall that D̂:−1 = D̂:−1(D̂:−1) ∈ �1
0(Ω) is the exact

solution with discrete data D̂:−1, and that ET: (D: , 5 ) is defined with discrete data
D̂:−1 and satisfies ET: (D: , 5 ) = [T: (D:) because data oscillation oscT: ( 5 )−1 = 0.
The next iteration : of AFEM-TS calls DATA, which in turn refines the mesh T:
to T̂: and updates the data approximation from D̂:−1 to D̂: over T̂: . The pair
(T̂: , D̂:) determines the first Galerkin solution D:,0 ∈ V:,0 = VT̂: of GALERKIN
and corresponding estimator [:,0(D:,0) with T:,0 = T̂: , which must satisfy

[:,0(D:,0) > Y: (5.84)

for GALERKIN to be executed. The reduction of [T:, 9 (D:, 9) for 9 ≥ 1 dictates the
number of iterations of GALERKIN. We examine this next.

Proposition 5.27 (computational cost of GALERKIN). If the assumptions of The-
orem 5.8 are valid, then for any : ∈ N, the number of subiterations �: inside a call
to GALERKIN at iteration : of AFEM-TS is bounded independently of : .

Proof. The 9 th error 4:, 9 ≔ |D̂:−D:, 9 |� 1
0 (Ω) withinGALERKIN converges linearly

in view of Corollary 5.10 (linear convergence of error) because the discrete data D̂:
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is fixed in these inner iterations. Exploiting the lower bound �![:, 9(D:, 9) ≤ 4:, 9
stated in (5.12), we thus deduce

[:, 9(D:, 9) ≤ �−1
! 4:, 9 ≤ �−1

! �∗U
9−84:,8, 9 ≥ 8 ≥ 0,

whence [:, 9(D:, 9) ≤ �#U
94:,0 with �# ≔ �−1

! �∗. The number of iterations
of GALERKIN depends on the size of [:,0(D:,0) relative to Y: . We assume that
[:,0(D:,0) > Y: according to (5.84). We first prove that [:,0(D:,0) . Y: , and next
argue that �: is bounded uniformly in : . We proceed in two steps.

1 Bound on |D̂: − D:,0 |� 1
0 (Ω). Since D: ∈ V: ⊂ V:,0 = VT̂: , and the Galerkin

solution D:,0 ∈ V:,0 minimizes the error |||D:,0 − D̂: |||Ω in V:,0, relative to the
energy norm induced by the bilinear form B̂ with discrete data D̂: , we deduce

|||D:,0 − D̂: |||Ω ≤ |||D: − D̂: |||Ω ≤
√
�B̂

(|D: − D̂:−1 |� 1
0 (Ω) + |D̂:−1 − D̂: |� 1

0 (Ω)
)
,

where the last inequality uses (5.3) for B̂. Invoking the a posteriori upper bound
(5.13) and the termination condition of GALERKIN at step : − 1, we obtain

|D: − D̂:−1 |� 1
0 (Ω) ≤ �*ET: (D: , 5 ) = �*[:(D:) ≤ �*Y:−1 = 2�*Y: .

On the other hand, using (5.65) with g = lY: and 0 < l ≤ 1, we arrive at

|D − D̂: |� 1
0 (Ω) ≤ �1Y: ,

with �1 = l�� . The triangle inequality thus yields

|D̂:−1 − D̂: |� 1
0 (Ω) ≤ |D − D̂:−1 |� 1

0 (Ω) + |D − D̂: |� 1
0 (Ω) ≤ �1(Y:−1 + Y:) = 3�1Y: ,

whence

4:,0 = |D:,0 − D̂: |� 1
0 (Ω) ≤

√
�B̂
2B̂

(2�* + 3�1)Y: ≕ �2Y: .

2 Bound on �: . We observe that GALERKIN stops once [:, 9(D:, 9) ≤ Y: . Since
the smallest such 9 is �: , we see that

Y: < [:,�:−1(D:,�:−1) ≤ �#U
�:−14:,0 ≤ �#�2Y:U

�:−1.

This implies the asserted bound

�: ≤ 1 + log(�#�2)
logU−1

uniform in : .

5.4.4. Realization of AFEM-TS
We now make the two-step AFEM algorithm precise.
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Algorithm 5.28 (AFEM-TS). Given an initial tolerance Y0 > 0, a target tolerance
tol and initial mesh T0, as well as a safety parameter l ∈ (0, 1], AFEM consists
of the two-step algorithm:

[T , DT ] = AFEM-TS(T0, Y0, l, tol)
set : = 0 and do
[T̂: , D̂:] = DATA(T: ,D, l Y:)
[T:+1, D:+1] = GALERKIN(T̂: , D̂: , Y:)
Y:+1 = 1

2Y:
: ← : + 1

while Y:−1 > tol
return T: , D:

Proposition 5.29 (convergence of AFEM-TS). For each : ≥ 0, the modules
DATA and GALERKIN converge in a finite number of iterations, the latter inde-
pendent of : . Moreover, there exists a constant �∗ depending on T0,Ω, 3, =, the
Lebesgue exponents A, @ in �(Ω), the parameters U1, U2, 21, 22 in (5.48) and (5.49),
and the shape regularity constant of T, such that the output of the (: + 1)th itera-
tion [T:+1, D:+1] = GALERKIN(T̂: , D̂: , Y:) satisfies |D − D:+1 |� 1

0 (Ω) ≤ �∗Y: for all
: ≥ 0. Therefore AFEM-TS stops after

 < 2 + log(Y0/tol)
log 2

iterations and delivers
|D − D |� 1

0 (Ω) ≤ �∗ tol .
Proof. In view ofAssumption 5.22 (properties ofDATA), themoduleDATA iterates
a finite number of steps to reach tolerance g = lY: for every : ≥ 0. Moreover,
the number of iterations of GALERKIN is independent of : due to Proposition 5.27
(computational cost of GALERKIN), whence we deduce that each loop of AFEM-TS
requires finite iterations. Thus, the output D:+1 of the (: + 1)th loop satisfies

|D − D:+1 |� 1
0 (Ω) ≤ |D − D̂: |� 1

0 (Ω) + |D̂: − D:+1 |� 1
0 (Ω) ≤ (l�� + �* )Y: = �∗Y: ,

according to (5.65) with g ≤ lY: and (5.83) for all : ≥ 0. Finally, AFEM-TS
terminates after  loops, where  satisfies 1

2 tol < Y −1 ≤ tol, and the asserted
estimate holds.

This elementary proof gives no insight into whether the �1
0-error decays op-

timally in terms of degrees of freedom. We assess this fundamental question in
Sections 6 and 7, but investigate it computationally in Section 5.4.5.
A two-step algorithm similar to AFEM-TS was first proposed by Stevenson

(2008), and further explored by Bonito et al. (2013b) and Cohen et al. (2012).
Note that other quantities, such as the number of degrees of freedom, could be
employed to stop AFEM-TS instead. It is also worth realizing that the structure of
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the algorithm is independent of the size of tolerance tol. In this vein, a user could
take Y0 = tol, provided tol is affordable by the computational resources at hand.
With such a choice, the modules DATA and GALERKIN run only once, in sequence:
data are approximated to the desired accuracy in one shot, then fed to the PDE
solver which produces the approximate solution. Since the quasi-optimality theory
in Section 6 would also hold for this choice of Y0, one might wonder why we do
not use this simpler strategy. We stress that iterating over Y: has the following
advantages.
• Restarts. Dynamical shrinking of tol, for instance to account for the user
decision to improve the accuracy, does not entail a restart of AFEM-TS but
rather a continuation from the previous computed solution. In this sense, the
resulting iteration would be similar to the proposed structure of AFEM-TS.
• Computational resources. AFEM-TS allows for ‘balanced investment’ of
computational resources between the modules DATA and GALERKIN. If
the stopping criterion, either accuracy or number of degrees of freedom, is
unrealistic for the problem at hand, AFEM-TS would still produce a discrete
solution with equilibrated data and solution errors.
• Nonlinear problems. The interleaving approach of AFEM-TS appears to be
better suited to treating nonlinear problems for which data D may depend
on the solution. Therefore a call to GALERKIN, and corresponding solution
update, must precede a call to DATA.
• Iterative solvers. If an efficient iterative solver is adopted within SOLVE, then
the previous discrete solution of GALERKIN could be taken as initial iterate,
thereby making SOLVE fast because n:+1/n: = 1/2. If instead we compute
with DATA alone until the fixed tolerance tol is reached, then GALERKIN
would work directly on fine meshes, which are not adapted to the geometric
domain singularities, and without a good initial guess. This would lead to
fewer but heavier iterations of GALERKIN, which is detrimental from a linear
algebra perspective.

5.4.5. Computational assessment of AFEM-TS
In this section we explore computationally the relative performance of GALERKIN
and DATA, for the two-step AFEM, and elucidate the behaviour of data and coef-
ficient oscillations within DATA. Our observations motivate the rigorous study of
Section 6, which provides theoretical support to our experiments. The numerical
computations are made with the help of Funken, Praetorius and Wissgott (2011).

We consider problem (2.5) in the L-shaped domain Ω = (−1, 1)2 \ ([0, 1] ×
[−1, 0]), with diffusion term G = 0O, where

0(G, H) = 1 + exp(−50((G + 0.5)2 + (H + 0.5)2)) + exp(−50((G + 0.5)2 + (H − 0.5)2))

and reaction term

2(G, H) = 1 + exp(−50((G + 0.5)2 + H2)) + exp(−50(G2 + (H − 0.5)2));
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Figure 5.6. (a) Estimator [T (DT ), data error oscT̂ (D), and relative �1-error
obtainedwith the algorithmAFEM performing 1 = 3 bisections permarked element.
The optimal decay is indicated by the dashed line with slope −0.5. (b) Diffusion
error oscT̂ (G), reaction error oscT̂ (2), load error oscT̂ ( 5 )−1, obtained with the
algorithm AFEM.

note that the Gaussians in the definition of 0 and 2 have the same intensity but are
located in different places within Ω. The load term 5 and the Dirichlet boundary
conditions are chosen in accordance with the analytical solution

D(G, H) = A2/3 sin(2U/3) + exp(−1000((G − 0.5)2 + (H − 0.5)2)),

where (A, U) are the polar coordinates around the origin. Notice that the exact
solution D is singular at the re-entrant corner: it belongs to the Sobolev spaces
�(Ω)5/3−Y with Y > 0 and ,2

?(Ω) with ? > 1. It also exhibits a rapid transition
of order 10−3/2 around the point (0.5, 0.5) due to the presence of a very narrow
Gaussian. The Gaussians are meant to test the performance of the module DATA,
while in addition the corner singularity of the solution tests the execution of the
module GALERKIN.
We utilize the following parameters in the numerical test:

\ = 0.5, l = 1, tol = 2−4, ℎ0 = 0.125, Y0 = 1.

Notice that the number of iterations of the algorithm AFEM is  = log2(n0/tol) =
4. We compute the relative �1-error between the exact solution D and the FEM
solution DT and notice that its decay rate is (#T )−1/2 in Figure 5.6(a). This rate
is consistent with that of the PDE estimator [T (DT ) and data estimator oscT (D).
In Figure 5.6(b) we display the component of the data error oscT̂ (G), oscT̂ (2),
oscT̂ ( 5 )−1 defined in (5.79) and (5.80) with local contributions defined in (5.73)
for G with A = ∞, in (5.76) for 2 with C = 1 and (5.78) for 5 . Recall that at each
iteration : , DATA circles through oscT̂ (G), oscT̂ (2), and oscT̂ ( 5 )−1, reducing each
of these oscillations to 1

3 of the iteration tolerance Y: = 2−: . The presence of the
weight ℎC in oscT̂ (2) considerably reduces the influence of the approximation of 2,
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Table 5.1. Number of marked elements to reduce the data and Galerkin errors at
each iteration : = 1, 2, 3, 4 ofAFEM-TSwhenusing 1 = 1 and 1 = 3 refinements per
marked element. Regardless of the value used for 1, the reduction of the Galerkin
error is driving most of the refinements followed by the error in the approximation
of the diffusion coefficient G. The approximation of 5 is subordinate to the
approximation of D and G arising earlier in the adaptive loop, and thus does not
generate any refinement except during the first iteration, when the Galerkin error
has not yet been tackled by the algorithm. The approximation of 2 is below the
final tolerance from the start and does not generate any refinement.

:
oscT̂ (G) oscT̂ (2) oscT̂ ( 5 )−1 [T (DT )

1=1 1=3 1=1 1=3 1=1 1=3 1=1 1=3

1 32 16 0 0 26 13 363 308
2 16 16 0 0 0 0 1 636 1 138
3 120 43 0 0 0 0 7 447 4 227
4 123 62 0 0 0 0 42 792 15 268
5 82 138 0 0 0 0 144 345 102 350

which is below threshold from the start and thus never generates any refinement
(see Table 5.1). The local oscillation for 5 also includes a weight vanishing as
ℎ → 0 but oscT̂ ( 5 )−1 is above the desired tolerance, which would in principle
generate refinements. However, since at each iteration DATA considers oscT̂ (G)
first and the regions refined to reduce oscT̂ ( 5 )−1 are included in the regions needed
to be refined to reduce [T (DT ) and oscT̂ (G), theGREEDY routine applied to 5 does
not refine any element except during the first iteration, when the Galerkin error has
not yet been reduced by the algorithm. Overall, the reduction of the Galerkin error
is driving most of the refinements. The number of marked elements to reduce the
approximation errors of G, 2, 5 and the residual estimator are reported in Table 5.1
along with those when 1 = 1 refinement is used per marked element. In Figure 5.7
we provide the resulting meshes after the first iteration of DATA and GALERKIN.

5.5. Convergence for other boundary conditions

Firstwe consider the variational problem (2.13)withRobin boundary condition. We
approximate dataD = (G, 2, ?, 5 , 6) by piecewise polynomials D̂ = (Ĝ, 2̂, ?̂, 5̂ , 6̂),
The only difference with respect to (5.2) is that the new functions (?, 6) are approx-
imated on mΩ by discontinuous polynomials (?̂, 6̂) of degree =− 1 and 2=− 1. The
projection operator %T approximates 6XmΩ by 6̂XmΩ = %T (6XmΩ) without compon-
ent in the bulk because 6XmΩ is a line Dirac mass aligned with the mesh. Discrete
functions (?̂, 6̂) must be produced by DATA, subject to a sign constraint on ?. The
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(a) (b)

Figure 5.7. Resulting meshes after the first iteration of DATA (a) and after the
first iteration of GALERKIN (b). DATA marked 29 elements for refinement while
GALERKIN marked 308 elements. Refer to Table 5.1 for more details.

approximate bilinear form B̂ and linear functional ℓ̂ read

B̂[F, E] ≔
∫
Ω
∇E · Ĝ∇F + 2̂EF +

∫
mΩ
?̂EF, ℓ̂(E) ≔ 〈 5̂ , E〉 +

∫
mΩ
6̂ E. (5.85)

The a posteriori error estimates of Section 4 extend to this pair (B̂, ℓ̂). The
algorithms GALERKIN, AFEM-SW and AFEM-TS are similar to those above and
possess a similar supporting convergence theory. TheNeumann boundary condition
is a particular case with ? = 0. We do not pursue this any further.

However, the pure Neumann boundary condition is special because of the global
compatibility condition ℓ̂(1) = 〈ℓ̂, 1〉 = 0. In Section 4.10 we introduce a new
projection operator %̃T , a modification of %T , with the requisite properties of local
approximation and global compatibility 〈%̃T ℓ, 1〉 = 0 provided ℓ ∈ �1(Ω)∗ satisfies
〈ℓ, 1〉 = 0. We thus set ℓ̃ = %̃T ℓ to solve the Galerkin problems and use %̃I in the
local indicators. We do not explore this matter further.
For a non-homogeneous Dirichlet boundary data 6 ∈ �1/2(mΩ), DATA must

produce a continuous piecewise polynomial approximation 6̂ of degree =, thereby
consistent with the Galerkin solution DT . The Dirichlet oscillation oscT (6)1/2 is
defined in (4.96) and is locally computable. Data oscillation now becomes

oscT (ℓ) = oscT ( 5 )−1 + oscT (6)1/2,

and added to the PDE estimator [T (DT ) for 6 = 0 gives a full estimator equivalent to
the error, according to Theorem 4.74 (estimators for general Dirichlet conditions).
With these minor modifications, the convergence theory forGALERKIN, AFEM-SW
and AFEM-TS extends to this case. We do not provide any further details.
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5.6. Convergence for alternative estimators

Wehave so far developed a convergence theory for the residual estimator ET (DT , 5 ).
The purpose of this section is to extend this theory to the three alternative estimators
discussed in Section 4.9, namely

• E lpb
T (DT , 5 )2 = [lpb

T (DT )2 + oscT ( 5 )2
−1: estimator based on local problems,

• Ehier
T (DT , 5 )2 = [hier

T (DT )2 + oscT ( 5 )2
−1: hierarchical estimator,

• E feq
T (DT , 5 )2 = [feq

T (DT )2 + oscT ( 5 )2
−1 : estimator based on flux equilibration.

They are all computed on stars lI with I ∈ V and possess a similar structure. The
first term is the PDE estimator, from now on called ZT (DT ) to refer to any of them,
and is locally equivalent to the discrete residual %T 'T

ZT (DT , I) ≈ ‖%T 'T ‖�−1(lI ) for all I ∈ V; (5.86)

see Theorems 4.59, 4.64 and 4.69. In fact they are all different mechanisms to
extract information from %T 'T . Since the vertex-indexed residual PDE indicator
[T (DT , I) ≔ [res

T (DT , I), defined in (4.70a), is also proved to be equivalent to
‖%T 'T ‖�−1(lI ) in Theorem 4.58 (vertex-indexed modified residual estimator), we
deduce the existence of two equivalence constants �eq

! ≤ �
eq
* such that

�
eq
! [T (DT , I) ≤ ZT (DT , I) ≤ �eq

* [T (DT , I) for all I ∈ V . (5.87)

Following Kreuzer and Siebert (2011), we will exploit this property to prove
convergence of AFEM driven by ZT (DT ). An obstruction to a direct convergence
theory is that our preceding results rely heavily on Lemma 4.53 (reduction property
of the estimator), which is not necessarily valid for any of the alternative estimators.
We refer to Cascón and Nochetto (2012), who present a direct approach based on
the local lower bound for discrete solutions of Theorem 4.51 (lower bound for
corrections). The latter is guaranteed by Definition 4.50 (interior vertex property)
for operators with coefficients G piecewise constant and 2 = 0, and any polynomial
degree = ≥ 1, but we do not know its validity for more general coefficients (G, 2).
The key for convergence is imposing a Dörfler marking. We say that a set of

verticesMV satisfies a Dörfler property with parameter \ ≤ 1 if

ZT (DT ,MV )2 ≔
∑
I∈MV

ZT (DT , I)2 ≥ \2
∑
I∈V

ZT (DT , I)2 ≕ ZT (DT )2. (5.88)

LetM be the collection of elements contained in the stars lI with I ∈MV . Then
MARK marks all elements inM, and REFINE bisects them 1 ≥ 1 times. This gives
rise to a star-driven GALERKIN procedure.

Lemma 5.30 (Dörfler property). If the set of vertices MV satisfies a Dörfler
property with parameter \ for ZT (DT ), then M satisfies a Dörfler property with
parameter \ = (�eq

! /�
eq
* )\ for [T (DT ).

Proof. Simply use (5.87) to derive (5.88) for [T (DT ) with parameter \.
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Hence, star-driven procedures for ZT (DT ) lead to the corresponding counterparts
for [T (DT ). It turns out that algorithms GALERKIN, AFEM-SW and AFEM-TS can
be reformulated for vertex-indexed indicators {[T (DT , I)}I∈V as defined in (4.70a),
without changing their essential properties. Wemay thus wonder about them driven
by {ZT (DT , I)}I∈V instead. Since these algorithms hinge on the Dörfler property
(5.88), Lemma 5.30 gives rise to similar convergence properties for ZT (DT )-driven
algorithms provided (5.88) is enforced. We state this next without proof.

Corollary 5.31 (convergence of GALERKIN). If the coefficients (G, 2, 5 ) ∈ DT ,
then there exist 0 < U < 1 and �∗, �# > 0 such that the solution–estimator pairs
(D 9 , Z 9(D 9)) of GALERKIN converge linearly, namely, for all : ≥ 9 ≥ 0,

|D − D: |� 1
0 (Ω) ≤ �∗ U:− 9 |D − D 9 |� 1

0 (Ω), Z:(D:) ≤ �# U
:− 9Z 9(D 9).

Corollary 5.32 (convergence of AFEM-SW). If the coefficients (G, 2) are dis-
crete and 5 ∈ �−1(Ω), then for 0 < l ≤ l0, b ≤ 1

2 as in Theorem 5.17, there exist
0 < U < 1 and �∗, �# > 0 such that the solution–estimator pairs (D 9 , E 9(D 9 , 5 ))
of AFEM-SW, where E 9(D 9 , 5 )2 = Z 9(D 9)2 + osc 9( 5 )2

−1, converge linearly: for all
: ≥ 9 ≥ 0,

|D − D: |� 1
0 (Ω) ≤ �∗ U:− 9 |D − D 9 |� 1

0 (Ω), E:(D: , 5 ) ≤ �# U
:− 9E 9(D 9 , 5 ).

Both GALERKIN and AFEM-SW converge under restrictions on D = (G, 2, 5 ).
For arbitrary dataD, AFEM-TS concatenates GALERKIN and DATA, the latter being
unrelated to ZT (DT ). ThereforeCorollary 5.31 and Proposition 5.27 (computational
cost of GALERKIN) yield the following extension of Proposition 5.29 (convergence
of AFEM-TS).

Corollary 5.33 (convergence of AFEM-TS). The algorithm AFEM-TS driven by
ZT (DT ) stops after

 < 2 + log(Y0/tol)
log 2

iterations and delivers the error

|D − D |� 1
0 (Ω) ≤ �∗ tol .

The number of iterations of GALERKIN is bounded uniformly for all outer loops.

6. Convergence rates of AFEM for coercive problems
The ultimate goal of AFEM is to produce a quasi-best approximation DT ∈ VT to
the solution D ∈ V of (2.7) with error measured inV = �1

0(Ω). The performance of
AFEM is measured by the size of the error |D − DT |� 1

0 (Ω) relative to the cardinality
#T of T . The latter usually reflects the total computational cost of implementing
AFEM. As a benchmark, it is useful to compare the performance of AFEM with
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the best approximation of D ∈ V and D = (G, 2, 5 ) ∈ D, provided we have full
knowledge of them. This is the main purpose of this section.
Under suitable assumptions on the solution D and dataD, we prove the existence

of constants �(D,D) > 0 and B ∈ (0, =/3] such that
|D − DT: |� 1

0 (Ω) ≤ �(D,D) (#T:)−B, (6.1)

provided B is the best decay rate with meshes in T with a comparable number
of degrees of freedom. The upper bound =/3 of B is dictated by the best decay
rate with polynomials of degree = ≥ 1 in dimension 3 unless D is degenerate (for
instance, D belongs to a finite element space VT with T ∈ T). The dependence on
D of the constant�(D,D) accounts for the multiplicative structure of the interaction
between the coefficients (G, 2) and D, and cannot be avoided in general.
A crucial insight for the simplest scenario, the Laplacian and piecewise constant

forcing 5 , is due to Stevenson (2007). It has been extended to operators with
variable coefficients by Cascón et al. (2008) and later expressed in terms of the
estimator by Carstensen et al. (2014). It reads as follows:

If a marking strategy reduces the PDE estimator [T (DT ) to a fraction
of its current value, then the refined set of elementsR inherits an error
indicator [T (DT ,R) comparable to [T (DT ), hence a Dörfler marking.

(6.2)

This allows us to compare meshes produced by AFEM with optimal meshes and
to conclude a quasi-optimal error decay. To this end, in Section 6.1 we introduce
approximation classes for functions in V and D, tailored to the decomposition
of Ω into conforming refinements of an initial conforming partition T0, the root
of T. We will assume that D = D(D) ∈ V and D = (G, 2, 5 ) ∈ D belong to
these classes which, however, are not characterized in terms of regularity of D and
D. In Section 6.2, we investigate the approximability properties of perturbations
D̂ = D(D̂) of the exact solution D, namely exact solutions of (5.5) with perturbed
data D̂. Next, in Section 6.3, we consider a conforming refinement T∗ ∈ T of
a partition T ∈ T, and give conditions under which an optimal Dörfler marking
property holds. We first apply this in Section 6.4 to study and derive rate-optimality
of GALERKIN and AFEM-SW, the one-step AFEMs. We then combine the quasi-
optimal performances of GALERKIN and DATA to prove rate-optimality of the
two-step AFEM in Section 6.5. We conclude in Section 6.8 upon bridging the gap
between appproximation and regularity classes. In particular, we give sufficient
conditions for functions in Besov, Sobolev and Lipschitz spaces to belong to the
approximation classes.

6.1. Nonlinear approximation classes

In Section 6.1.1 we discuss approximation classes for functions in V, which are
applicable to the solution D of (2.7). In Section 6.1.2 we turn our attention to
approximation classes for functions in D, which are in turn applicable to data D.
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We refer to DeVore (1998), as well as DeVore and Lorentz (1993) and Binev et al.
(2002), for a discussion within nonlinear approximation theory.

6.1.1. Nonlinear approximation classes for functions in V
For any # ∈ N, # ≥ #T0, we define the following collection of partitions within T:

T# = {T | T ∈ T satisfies #T ≤ #}.
This is the set of conforming meshes generated from T0 with at most # − #T0
bisections. Given E ∈ V, we let f# (E) be the smallest approximation �1

0-error
incurred on E with continuous piecewise polynomial functions of degree ≤ = over
meshes T# :

f# (E) ≔ inf
T ∈T#

inf
ET ∈VT

|E − ET |� 1
0 (Ω). (6.3)

This is a theoretical measure of performance, in that finding a mesh T ∈ T#
that realizes f# (E) has exponential complexity. Proving a bound |E − ET |1,Ω ≤
�1f�2# (E) for T ∈ T# with�2 ≤ 1 ≤ �1 independent of # , the so-called instance
optimality, is rather difficult and beyond the scope of this survey. In fact, a function
E ∈ VT with T ∈ T# could be the solution of our model problem (2.7), because
we allow forcing 5 ∈ �−1(Ω). Hence we see that f# (E) = 0, and AFEM should
then capture E exactly on a finer mesh T ∈ T�−1

2 # . We refer to Diening et al.
(2016) for a proof of instance optimality for a forcing 5 ∈ !2(Ω) and the Laplace
operator, namely for coefficients G = O and 2 = 0.

We will instead be able to prove that the error |E − ET |� 1
0 (Ω) for the Galerkin

solution ET for T ∈ T# decays in terms of # with the same rate #−B as f# (E); we
thus say that AFEM is rate-optimal. We first note that for E ∈ �=+1(Ω) and T ∈ T#
quasi-uniform, we expect to have

inf
ET ∈VT

|E − ET |� 1
0 (Ω) . #

−=/3 |E |�=+1(Ω) (6.4)

because the global mesh size ℎ and # satisfy ℎ ≈ #−1/3 . This error estimate within
the linear Sobolev scale provides the largest possible decay rate −=/3.
Definition 6.1 (approximation class of D). Given 0 < B ≤ =/3, the class AB ≔
AB(�1

0(Ω); T0), relative to the partition T0 and approximation in the �1
0-norm by

continuous piecewise polynomials of degree ≤ = on the forest T emanating from
T0, is the set of functions E ∈ V = �1

0(Ω) such that

|E |AB ≔ sup
# ≥#T0

(#Bf# (E)) < ∞, (6.5a)

whence
f# (E) ≤ |E |AB#−B for all # ≥ #T0. (6.5b)

We also write AB = A0
B to emphasize continuity of the discrete functions in VT =

S=,0T ∩ V with T ∈ T. The quantity |E |AB is a quasi seminorm in AB, which is not
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a linear space but rather a nonlinear class of functions. Notice that as B increases,
the cost of membership to be in AB increases, namely AB1 ⊂ AB2 for B1 ≥ B2.

We may as well consider approximating E ∈ V with discontinuous piecewise
polynomials S=,−1

T of degree ≤ =, which is a richer space than S=,0T . We can likewise
define the corresponding modulus of approximation

f(−1)
# (E) ≔ inf

T ∈T#
inf

ET ∈S=,−1
T

|E − ET |� 1
0 (Ω;T ) (6.6)

and approximation class A−1
B ≔ A−1

B (�1
0(Ω); T0) of functions E ∈ �1

0(Ω) such that

|E |A−1
B
≔ sup

# ≥#T0

(
#Bf(−1)

# (E)
)
< ∞ ⇒ f(−1)

# (E) ≤ |E |A−1
B
#−B . (6.7)

It is obvious that f(−1)
# (E) ≤ f# (E) for all E ∈ �1

0(Ω) because S=,0T ⊂ S=,−1
T .

However, we have the following equivalence result taken from Veeser (2016).
The original proof, although more complicated and for a different notion of error
relevant to discontinuous Galerkin approximations, can be traced back to Bonito
and Nochetto (2010, Proposition 5.2); see Proposition 9.4.

Proposition 6.2 (equivalence of classes). Assume that all stars of meshes T ∈ T
are (3 − 1)-face-connected. Then, there exists a constant �dG that depends on the
shape regularity of T, the dimension 3 and the polynomial degree = ≥ 1, such that

f# (E) ≤ �dG f
(−1)
# (E) for all E ∈ �1

0(Ω), # ≥ #T0.

Moreover, the approximation classes coincide, i.e. A0
B = A

−1
B .

Proof. We simply resort to (3.19) of Proposition 3.9 (approximation of gradients),
namely, for E ∈ �1

0(Ω),

1 ≤
minF ∈S=,0T

|E − F |� 1
0 (Ω)

minF ∈S=,−1
T
|E − F |� 1

0 (Ω;T )
≤ �dG,

and use the definitions (6.3) and (6.6). This completes the proof.

In the rest of the paper we will make the following approximability assumption.

Assumption 6.3 (approximability of D). The exact solution D ∈ �1
0(Ω) of prob-

lem (2.5) belongs to the approximation classAB(�1
0(Ω); T0) with B = BD ∈ (0, =/3].

The following condition (6.8) is simpler to handle in practice than (6.5).

Lemma 6.4 (membership of AB). Let E ∈ AB and Y0 ≔ infET0 ∈VT0
|E−ET0 |� 1

0 (Ω).
Then, for all 0 < Y ≤ Y0, there exist TY ∈ T and EY ∈ VTY such that

|E − EY |� 1
0 (Ω) ≤ Y, #TY ≤ 1 + |E |1/B

AB
Y−1/B . (6.8)
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Proof. Given 0 < Y ≤ Y0, let TY ∈ T be a conforming refinement of T0 with
minimal cardinality and EY ∈ VTY such that

|E − EY |� 1
0 (Ω) ≤ Y.

Therefore, if Y < Y0, we deduce from the minimal property of TY that

inf
ET ∈VT

|E − ET |� 1
0 (Ω) > Y for all T ∈ T such that #T ≤ #TY − 1.

If # ≔ #TY − 1, definition (6.5) implies

Y < inf
T ∈T#

inf
ET ∈VT

|E − ET |� 1
0 (Ω) = f# (E) ≤ |E |AB#−B,

whence
#TY = 1 + # ≤ 1 + |E |1/B

AB
Y−1/B,

as asserted in (6.8). On the other hand, if Y = Y0 we see that

Y0 ≤ |E |AB (#T0)−B ⇒ #T0 ≤ |E |1/BAB Y
−1/B
0 < 1 + |E |1/B

AB
Y−1/B

0 .

This completes the proof.

Remark 6.5. If 3 = 2 and = = 1, then Corollary 3.20 (optimal �1-convergence
rate) shows that ,2

?(Ω) ⊂ A1/2 for ? > 1. The space ,2
?(Ω) is much larger than

�2(Ω), fits within the nonlinear Sobolev scale, and delivers the same decay rate as
(6.4). We will investigate the connection between approximation classes AB and
regularity classes in any dimension 3 and for any polynomial degree = ≥ 1 later in
Section 6.8.

6.1.2. Nonlinear approximation classes for data in D
Given data D = (G, 2, 5 ) ∈ D and a mesh T ∈ T, we consider the best approxim-
ation of D by discrete (piecewise polynomial) data D̂ = (Ĝ, 2̂, 5̂ ) ∈ DT , where D
and DT are defined in (5.1) and (5.2). We measure the error in the space �(Ω)
defined in (5.60) with @ = 2 for 3 < 4 or @ > 3/2 for 3 ≥ 4. We now discuss the
best approximation errors for the components of data in �(Ω), which are used to
define the corresponding approximation classes. For the coefficients (G, 2), they
are characterized by the quantities

XT (G)A ≔ inf
Ĝ∈[S=−1,−1

T ]3×3
‖G − Ĝ‖!A (Ω), XT (2)@ ≔ inf

2̂∈S=−1,−1
T

‖2 − 2̂‖!@(Ω) (6.9)

for A, @ ∈ [2,∞] as above. Note that Ĝ and 2̂ in (6.9) are unconstrained in the
sense that they do not necessarily satisfy the structural assumption (5.51) and are
thus not suited to the perturbed problem (5.5). We define the best constrained
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approximation errors for G ∈ "(U1, U2) and 2 ∈ '(21, 22) by

X̃T (G)A ≔ inf
Ĝ∈[S=−1,−1

T ]3×3∩" (Û1, Û2)
‖G − Ĝ‖!A (Ω),

X̃T (2)@ ≔ inf
2̂∈S=−1,−1

T ∩'(2̂1,2̂2)
‖2 − 2̂‖!@(Ω),

(6.10)

where in view of (5.52)

Û1 =
U1
2
, Û2 = �ctrU2, 2̂1 = − U1

4�2
%

, 2̂2 = �ctr(U1 + 21). (6.11)

We mention in anticipation that in Section 7.4 we prove the equivalences

XT (G)A ≤ X̃T (G)A ≤ �dataXT (G)A , XT (2)@ ≤ X̃T (2)@ ≤ �dataXT (2)@ (6.12)

for all G ∈ "(U1, U2) and 2 ∈ '(21, 22); see Remarks 7.13 and 7.17. For the load
function 5 , the definition (4.56) of oscT ( 5 )−1 suggests considering

XT ( 5 )−1 ≔

(∑
) ∈T

inf
5̂ ∈FTl)

‖ 5 − 5̂ ‖2
�−1(l) )

)1/2
.

All these best approximation errors are hard to evaluate and are thus replaced
by the computable oscillations defined in (5.79) and (5.80) in practice. We recall
that they rely on the local !2-projection operator ΠT for (G, 2) and the local
�−1-projection operator %T for 5 to compute linear approximations D̃ of D to a
desired accuracy. These projections are later modified nonlinearly to give rise to
D̂ satisfying the side constraints (5.51) without compromising accuracy. We recall
that the DATA module is assumed to construct approximations so that

oscT (G)A ≤ ΛdataXT (G)A , oscT (2)@ ≤ ΛdataXT (2)@, oscT ( 5 )−1 ≤ ΛdataXT ( 5 )−1

with a mesh independent constant Λdata; see Assumption 5.22. In Section 5.4.2 we
discuss practical realizations of DATA.
For the purpose of assessing the cardinality of AFEM, we do not need the

specific form of D̂ but rather the decay of the best approximation errors in terms
of degrees of freedom. Therefore we postpone to Section 7 the construction of
D̂ for = ≥ 1, and to Section 6.8 the discussion of regularity properties of D that
guarantee membership of the following approximation classes.

Definition 6.6 (approximation classes of G). For 0 < U1 ≤ U2, 2 ≤ A ≤ ∞, let
MB ≔ MB(!A (Ω;R3×3); T0) be the set of matrix-valued functions G ∈ "(U1, U2)
satisfying

|G|MB ≔ sup
# ≥#T0

(
#B inf

T ∈T#
X̃T (G)A

)
< ∞ ⇒ inf

T ∈T#
X̃T (G)A ≤ |G|MB#−B . (6.13)
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Definition 6.7 (approximation classes of 2). The class CB ≔ CB(!@(Ω); T0) is
the set of functions 2 ∈ '(21, 22) such that

|2 |CB ≔ sup
# ≥#T0

(
#B inf

T ∈T#
X̃T (2)@

)
< ∞ ⇒ inf

T ∈T#
X̃T (2)@ ≤ |2 |CB#−B . (6.14)

Definition 6.8 (approximation classes of 5 ). The class FB ≔ FB(�−1(Ω); T0) is
the set of functions 5 ∈ �−1(Ω) such that

| 5 |FB ≔ sup
# ≥#T0

(
#B inf

T ∈T#
XT ( 5 )−1

)
< ∞ ⇒ inf

T ∈T#
XT ( 5 )−1 ≤ | 5 |FB#−B . (6.15)

Since the polynomial degree of discrete coefficients (Ĝ, 2̂) in definition (5.2) is
= − 1, we expect decay rates B�, B2 ≤ =/3 according to nonlinear approximation
theory. The specific values of (B�, B2) depend on the regularity of (G, 2), a delicate
topic that we further investigate in Sections 6.8 and 7. However, because D and
D = (G, 2, 5 ) satisfy the elliptic problem (2.5), the above approximation classes
are somewhat related. We now quantify this statement.

Lemma 6.9 (relation between approximation classes). Let 2 ≤ A, @ ≤ ∞ be
such that 3/2 < @. If D ∈ ABD (�1

0(Ω); T0), G ∈ MB�(!A (Ω;R3×3); T0) and
2 ∈ CB2 (!@(Ω); T0), with 0 < BD , B�, B2 ≤ =/3, then 5 ∈ FB 5 (�−1(Ω); T0) and

| 5 |FB 5 ≤ �
(|D |ABD + |G|MB� + |2 |CB2 ), B 5 = min{BD , B�, B2}, (6.16)

where the constant � > 0 depends on ‖D‖, 1
? (Ω), ? = 2A/(A − 2) and U1, U2, 21, 22.

In particular, if (G, 2) are discrete in T0, then

| 5 |FB 5 ≤ � |D |ABD , B 5 = BD . (6.17)

Proof. Let ! [D] ≔ − div(G∇D) + 2D be the operator in (2.5) and note that 5 =
! [D] ∈ �−1(Ω) can be approximated by 5̂ = − div(Ĝ∇Ê) + 2̂Ê ∈ FT , where the
discrete space FT is given in Definition 4.17 and Ê ∈ S=,0T , Ĝ ∈ (S=−1,−1

T )3×3 ,
2̂ ∈ S=−1,−1

T . Let us now express 5 − 5̂ as follows:

5 − 5̂ = − div((G − Ĝ)∇D) + (2 − 2̂)D − div(Ĝ∇(D − Ê)) + 2̂(D − Ê),

and recall that we have to estimate ‖ 5 − 5̂ ‖�−1(l) ) for every ) ∈ T , rather than a
global norm in �−1(Ω), to get an upper bound on XT ( 5 )−1. Therefore we proceed
as in the proof of Lemma 5.20 (continuous dependence on data), to obtain∑

) ∈T
‖ 5 − 5̂ ‖2

�−1(l) ) . ‖∇D‖2!?(Ω)‖G − Ĝ‖2!A (Ω) + ‖∇D‖2!2(Ω)‖2 − 2̂‖2!@(Ω)

+ ‖ Ĝ‖2!∞(Ω)‖∇(D − Ê)‖2
!2(Ω) + ‖2̂‖2!∞(Ω)‖D − Ê‖2!2(Ω),

where ? = 2A/(A − 1) and ‖∇D‖!?(Ω) < ∞ according to (2.41) and 3/2 < @ ≤ ∞.
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Note that thanks to (6.11), ‖ �̂‖!∞(Ω) ≤ Û2 = �ctrU2 and ‖2̂‖!∞(Ω) ≤ 2̂2 = �ctr(U1 +
22). Moreover, since Ê, Ĝ, 2̂ can be chosen separately, invoking (6.5), (6.13), (6.14)
and (6.15), we realize that

inf
T ∈T#

XT ( 5 )−1 . inf
T ∈T#

inf
Ê∈S=,0T

‖∇(D − Ê)‖!2(Ω)

+ inf
T ∈T#

inf
Ĝ∈[S=−1,−1

T ]3×3
‖G − Ĝ‖!A (Ω)

+ inf
T ∈T#

inf
2̂∈S=−1,−1

T

‖2 − 2̂‖!@(Ω)

≤ |D |ABD#−BD + |G|MB�#
−B� + |2 |CB2#−B2

gives (6.16) with B 5 = min{BD , B�, B2}; (6.17) is a trivial consequence.
Estimate (6.17) will be useful later in Theorem 6.20 (rate-optimality of one-step

AFEMs). It is important to realize that the multiplicative structure between solution
D and coefficients (G, 2) is hidden in the constants� in (6.16) and (6.17). Moreover,
these estimates are possible due to the fact that the space �−1(Ω) is the range of
the linear operator ! : �1

0(Ω)→ �−1(Ω) and that the discrete functions in FT are
images by ! of functions inVT . This would not be true for !2-weighted surrogates
of XT ( 5 )−1 that typically overestimate the error in �−1(Ω).

Assumption 6.10 (approximability of data). There exist B�, B2 , B 5 ∈ (0, =/3]
such that data D = (G, 2, 5 ) ∈ D satisfies G ∈ M B�, 2 ∈ CB2 , 5 ∈ FB 5 .

We recall that if oscT (D) = ‖D−D̂‖�(Ω) > �datag over a conforming refinement
T ∈ T of T0, then the call

[T̂ , D̂] = DATA(T ,D, g)

produces a conforming refinement T̂ of T and approximate data D̂ = (Ĝ, 2̂, 5̂ ) ∈
DT̂ over T̂ that satisfies oscT̂ (D) ≤ ΛdataXT̂ (D), and for A, @ ∈ [2,∞],

oscT̂ (D) = oscT̂ (G)A + oscT̂ (2)@ + oscT̂ ( 5 )−1 ≤ �datag,

as well as the constraints Ĝ ∈ "(Û1, Û2) and 2̂ ∈ '(2̂1, 2̂2) defined in (5.51).
We will show in Section 7 that the routine responsible for reducing oscillations,
namely GREEDY, exhibits optimal performance in the sense that the cardinalities
#T (G), #T (2), #T ( 5 ) of the sets of elements necessary to reduce the individual
oscillations of (G, 2, 5 ) below the threshold �data(g/3) starting from any T ≥ T0
satisfy

#T (G) . |G|1/B�M B�
g−1/B�, #T (2) . |2 |1/B2

CB2
g−1/B2 , #T ( 5 ) . | 5 |1/B 5FB 5

g−1/B 5 .
(6.18)

Therefore the cost of one call to DATA can be quantified by the total number #T (D)
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of elements marked, which obeys the relation

#T (D) = #T (G) + #T (2) + #T ( 5 )

. |G|1/B�M B�
g−1/B� + |2 |1/B2

CB2
g−1/B2 + | 5 |1/B 5FB 5

g−1/B 5

≤ |D |1/BD
AD

g−1/BD ,

with

BD ≔ min{B�, B2 , B 5 }, |D |AD ≔
(
|G|1/B�M B�

+ |2 |1/B2
CB2
+ | 5 |1/B 5FB 5

)BD
. (6.19)

It is thus natural to make the following assumption on DATA.

Assumption 6.11 (quasi-optimality of DATA). The call [T̂ , D̂] = DATA(T ,D, g),
from an arbitrary conforming refinement T of T0 with tolerance g, marks the
number of elements #T (D) to produce an approximation D̂ of D over T̂ so that

oscT̂ (D) = ‖D − D̂‖�(Ω) ≤ �datag, #T (D) . |D |1/BD
AD

g−1/BD . (6.20)

6.2. Y-approximation of order B

Inspection of the structure of algorithm AFEM-TS (Algorithm 5.28) reveals that
the approximate data D: is fixed inside GALERKIN. Therefore the performance of
GALERKIN is dictated by the regularity of the exact solution D̂: = D̂:(D:) ∈ �1

0(Ω)
with data D: , rather than the exact solution D = D(D) with data D. We know that
D ∈ AB, and wonder what regularity is inherited by D̂: . This leads to the following
concept introduced in Bonito et al. (2013b, Definition 3.1, Lemma 3.2).

Definition 6.12 (Y-approximation of order B). Given D ∈ AB(�1
0(Ω); T0) and

Y > 0, a function E ∈ �1
0(Ω) is said to be an Y-approximation of order B to D

if |D− E |� 1
0 (Ω) ≤ Y and there exists a constant � > 0 independent of Y, D and E such

that for all X ≥ Y there exists # ≥ #T0 satisfying

f# (E) ≤ X, # ≤ 1 + � |D |1/B
AB
X−1/B . (6.21)

Lemma 6.13 (Y-approximation of D of order B). Let D ∈ AB(�1
0(Ω); T0) and

E ∈ �1
0(Ω) satisfy |D − E |� 1

0 (Ω) ≤ Y for some 0 < Y ≤ Y0 with Y0 defined in
Lemma 6.4. Then E is a 2Y-approximation of order B to D.

Proof. Let X ≥ 2Y. By definition (6.3) of f# (E), it suffices to invoke the triangle
inequality to realize that

f# (E) ≤ |D − E |� 1
0 (Ω) + f# (D) ≤ X

2
+ f# (D).

Since D ∈ AB(�1
0(Ω)), in view of Lemma 6.4, there exist # ≥ #T0 and T ∈ T# :

f# (D) ≤ X
2
, # ≤ 1 + |D |1/B

AB

(
X

2

)−1/B
.
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The estimate (6.21) thus follows with constant � = 21/B.

This is a simple but crucial result for studyingAFEM-TS. It says that any function
E that is Y-close to a function D ∈ AB(-; T0) in the norm of the space - defining
the approximation class AB(-; T0) can be approximated with a decay rate similar
to D in - for as long as the desired accuracy does not exceed Y. In other words, the
approximability of D is inherited by E up to scale Y. However, beyond the scale Y,
the approximability of E may differ from that of D. Note that neither the definition
(6.3) of f# (E) nor Lemma 6.13 require - = �1

0(Ω).

6.3. Properties of Dörfler marking

We follow the ideas of Stevenson (2007), Cascón et al. (2008) and Carstensen et al.
(2014) to explore the insight (6.2) about Dörfler marking. Hereafter, we recall (5.6)
and consider two admissible partitions T , T∗ ∈ T such that T ≤ T∗, that is, the
latter is a refinement of the former obtained by applying (newest-vertex) bisection
to some of the elements of T .
In what follows, we let D = D̂ ∈ �1

0(Ω) be the exact solution with discrete
coefficients (Ĝ, 2̂) over a fixed mesh T̂ ≤ T and forcing function 5 that may or
may not be discrete. We rewrite the a posteriori error estimates (5.12),

�! ET (DT , 5 ) ≤ |D̂ − DT |� 1
0 (Ω) ≤ �* ET (DT , 5 ), (6.22)

where the total estimator ET (DT , 5 ) consists of the PDE estimator [T (DT , 5 ) and
the oscillation oscT ( 5 )−1 and reads, according to (5.11),

ET (DT , 5 )2 = [T (DT , 5 )2 + oscT ( 5 )2
−1.

We also recall that when 5 = %T 5 ∈ FT is discrete, oscT ( 5 )−1 = 0 and ET (DT , 5 )
reduces to [T (DT , 5 ), and that %T 5 is used within [T (DT , 5 ) rather than 5 . The
global nature of the elliptic boundary value problem (2.5) prevents upper a pos-
teriori energy error estimates such as (6.22) between the continuous and discrete
solution from being local. Remarkably, the situation for two Galerkin solutions
DT ∈ VT and DT∗ ∈ VT∗ is different, as stated in Theorem 4.48 (upper bound for
corrections):

|DT∗ − DT |� 1
0 (Ω) ≤ �̃* ET (DT , 5 ,R), (6.23)

where R = T \T∗ is the refined set defined in (5.14). It thus turns out that
|DT∗ − DT |� 1

0 (Ω) is controlled by the estimator ET (DT , 5 ,R) on the set of elements
R where themeshes differ. This crucial observation goes back to Stevenson (2007);
see also Cascón et al. (2008) and Nochetto et al. (2009).
Henceforth we will impose restrictions on the ranges of the Dörfler marking

parameter (5.23) and the threshold parameter l for GALERKIN and AFEM-SW.
We will impose a different restriction later on l for AFEM-TS.

Assumption 6.14 (marking parameter). Let \ satisfy \ ∈ (0, \0) with

\0 ≔ min
{
(2�Lip�̃* )−1, 1

}
,
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where �Lip, �̃* are the constants in (4.68) and (6.23) respectively.

Assumption 6.15 (restriction on l). We assume 0 ≤ l ≤ l0 < 1, with

l0 ≔

√√
\2

0 − \2

2 + \2
0 − \2

.

We are now ready to make Stevenson’s insight (6.2) precise.

Lemma 6.16 (Dörfler marking). Let Assumptions 6.14 and 6.15 hold and 0 <
` ≤ 1

2 . Let T ∈ T, and let T∗ ∈ T be a refinement of T with respective Galerkin
solutions DT ∈ VT and DT∗ ∈ VT∗; let R = T \ T∗ be the refined set. Assume that
the oscillation on T is dominated by the total estimator

oscT ( 5 )−1 ≤ l ET (DT , 5 ), (6.24)

and that
[T∗(DT∗ , 5 ) ≤ ` [T (DT , 5 ). (6.25)

Then Dörfler marking is valid for any 0 < \ < \0:

\ [T (DT , 5 ) ≤ [T (DT , 5 ,R). (6.26)

Proof. We invoke Proposition 4.56 (estimator reduction) with X = 1 along with
the localized upper bound (6.23) to write

[T (DT , 5 )2 ≤ 2 [T∗(DT∗ , 5 )
2 + 2�2

Lip
(
�̃2
*ET (DT , 5 ,R)2 + oscT ( 5 )2

−1
)
.

The last term accounts for the presence of %T 5 and %T∗ 5 in the definitions of
[T (DT , 5 ) and [T∗(DT∗ , 5 ). In view of (6.24) and the definition (5.11) of the total
estimator, we have

oscT ( 5 )−1 ≤ f [T (DT ), f2 ≔
l2

1 − l2

so that

[T (DT , 5 )2 ≤ 2[T∗(DT∗ , 5 )
2 + 2�2

Lip�̃
2
*

(
[T (DT , 5 ,R)2 + 2f2[T (DT , 5 )2).

Using (6.25) and rearranging the above expression, we obtain(
\2

0 − 2f2)[T (DT , 5 )2 ≤
(

1 − 2`2

2�2
Lip�̃

2
*

− 2f2
)
[T (DT , 5 )2 ≤ [T (DT , 5 ,R)2

provided 0 < ` ≤ 1
2 , because of the definition of \0 in Assumption 6.14. Finally,

for any \ < \0 we realize that l0 from Assumption 6.15 satisfies

f2
0 ≔

l2
0

1 − l2
0
=

1
2
(
\2

0 − \2) ⇒ \2 = \2
0 − 2f2

0 ≤ \2
0 − 2f2,

and Dörfler marking is valid forR with parameter \.
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We remark that Lemma 6.16 requires that the oscillation on T is dominated by
the total estimator to guarantee a Dörfler marking property. This is always the
case when 5 is discrete as in Algorithm 5.4 (GALERKIN), because in that case
oscT ( 5 )−1 = 0, or within Algorithm 5.16 (AFEM-SW), which marks elements for
refinement only if this property holds.
We also see that \0 in Assumption 6.14 corresponds to the choices ` = 1

2 and
X = 1. However, the proof reveals that for ` → 0 we could obtain the largest
possible value \0 = (�Lip�̃* )−1, thereby the less restrictive. Since this is just twice
the value of \0 in Assumption 6.14, the practical choice ` = 1

2 is justified.
Lemma 6.16 hinges on two ingredients: the Lipschitz property (4.68) and the

localized upper bound (6.23) of the estimator. In particular, it does not rely on the
lower a posteriori error estimate in (6.22), like the original proofs in Stevenson
(2007) and Cascón et al. (2008), and easily extends to discontinuous Galerkin
methods in Section 9 and inf-sup stable methods in Section 10. The original
statement is, however, a bit more insightful: if \2

0 = �
2
2/2�2

1 , then for all 0 < \ < \0,
l2 ≤ \2

0 − \2,

|||D − DT∗ |||Ω ≤ ` |||D − DT |||Ω ⇒ [T (DT ,R) ≥ \ [T (DT )

provided 0 < ` ≤ 2−1/2. We see that the threshold \0 is related to the gap between
reliability constant �1 and efficiency constant �2 in the a posteriori bounds (5.13)
in the energy norm; hence the ratio�2/�1 ≤ 1 is a quality measure of the estimator
[T (DT ). It is thus reasonable to be cautious aboutmarking decisions if the constants
�1 and �2 are very disparate, and thus the ratio �2/�1 is far from 1. This justifies
the constraint \ < \0.

6.4. Rate-optimality of one-step AFEMs

Recall that M 9 is the output of the module MARK and that T 9 , D 9 are the meshes
and associated Galerkin solutions generated within Algorithms 5.4 (GALERKIN)
and 5.16 (AFEM-SW). To express the cardinality # 9(D) of M 9 in terms of
|D − D 9 |� 1

0 (Ω), we must relate the performance of these one-step AFEMs with the
approximation classes AB = AB(�1

0(Ω); T0) for D and FB = FB(�−1(Ω); T0) for 5 ,
which are never used in the design of these algorithms. Even though this might ap-
pear infeasible, the key to unravel this connection is given by Lemma 6.16 (Dörfler
marking) and the following assumption.

Assumption 6.17 (cardinality ofM). The module MARK selects a set M in
(5.23) with minimal cardinality.

According to the equidistribution principle (3.24) and the local lower bound
(4.54) in the proof of Theorem 4.45 (modified residual estimator) for discrete
coefficients, that is,

�![T 9 (D 9 , )) ≤ �!ET 9 (D 9 , 5 , )) ≤ |D − D 9 |� 1(l) ),
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it is natural to mark elements with largest error indicators. This explains the choice
of a minimal setM in Assumption 6.17.

We are now ready to bound the cardinality ofM 9 in terms of |D − D 9 |� 1
0 (Ω).

Proposition 6.18 (cardinality ofM 9). Let Assumptions 6.14, 6.15 and 6.17 be
valid. If D ∈ AB and

oscT 9 ( 5 )−1 ≤ l ET 9 (D 9 , 5 ),
then the cardinality # 9(D) ofM 9 satisfies

# 9(D) . |D |1/B
AB
|D − D 9 |−1/B

� 1
0 (Ω)

for all 9 ≥ 0.

Proof. Let �Céa ≔
√
�B/2B be the quasi-monotonicity constant in (3.8). Let

X = `(�!/�Céa)[ 9(D 9) with ` ≤ 1
2 . We invoke (6.8) for D ∈ AB to find a mesh

TX ∈ T and a Galerkin solution DX ∈ VTX , so that

|D − DTX |� 1
0 (Ω) ≤ X, #TX . |D |1/BAB X

−1/B .

Since TX may be totally unrelated to T 9 , we introduce the overlay T∗ = T 9 ⊕ TX .
We exploit that T∗ ≥ TX , hence the space nestedness VTX ⊂ VT∗ , along with the
property that the Galerkin solution DT∗ ∈ VT∗ minimizes the energy error in VT∗ ,

[T∗(DT∗) ≤
1
�!
|D − DT∗ |� 1

0 (Ω) ≤
�Céa
�!
|D − DTX |� 1

0 (Ω) ≤
�Céa
�!

X = ` [ 9(D 9),

because of the lower bound in (5.12) and (3.8). Therefore Lemma 6.16 (Dörfler
marking) implies that the refined set R = T \T∗ satisfies Dörfler marking with
parameter \ < \0. Since MARK delivers a minimal set M 9 with this property,
according to Assumption 6.17, we deduce

# 9(D) = #M 9 ≤ #R ≤ #T∗ − #T ≤ #TY − #T0 . |D |1/BAB X
−1/B,

where we have used Lemma 3.17 (mesh overlay). The assertion follows from
osc 9( 5 )−1 ≤ lE 9(D 9 , 5 ) in Assumption 6.15 and the upper bound in (5.12),

|D − D 9 |� 1
0 (Ω) ≤ �*E 9(D 9 , 5 ) ≤

�*√
1 − l2

[ 9(D 9),

and completes the proof.

We next prove rate-optimality of the one-step AFEMs of Algorithm 5.4 and
Algorithm 5.16. To this end, we need an additional assumption.

Assumption 6.19 (initial labelling). If the initial mesh T0 is made of simplices,
then let the initial labelling (3.35) for 3 = 2, or that of Stevenson (2008, Section 4)
for 3 > 2, be valid.

This assumption ensures the validity of Theorem 3.16 (complexity of REFINE):
if M 9 ⊂ T 9 is a set of marked elements for a sequence {T 9}:−1

9=0 of consecutive
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refinements of T0, then the cardinality of the :th mesh satisfies

#T: − #T0 ≤ �
:−1∑
9=0

#M 9 , (6.27)

with a universal constant � depending only on T0 and 3. We always assume that
#T: ≥ 3

2 #T0, whence #T: − #T0 ≥ 1
3 #T: and, if �̃ = 3�, (6.27) instead reads

#T: ≤ �̃
:−1∑
9=0

#M 9 , (6.28)

Theorem 6.20 (rate-optimality of one-step AFEMs). For Algorithms 5.4 (with
T = T0) and 5.16, let Assumptions 6.14, 6.17 and 6.19 be valid, and in addition let
the parameter l > 0 satisfy Assumption 6.15 for Algorithm 5.16. If D ∈ AB, then
both one-step AFEMs give rise to sequences {T: ,V: , D: }∞:=0 such that

|D − D: |� 1
0 (Ω) . |D |AB (#T:)−B . (6.29)

Proof. We first consider Algorithm 5.4, for which the forcing 5 ∈ FT0 is discrete,
whence osc 9( 5 )−1 = 0 for all 9 ≥ 0 and l = f = 0 in Assumption 6.15. In view
of (6.28), we apply Proposition 6.18 (cardinality ofM 9) to infer that

#T: ≤ �̃
:−1∑
9=0

#M 9 . |D |1/BAB
:−1∑
9=0
|D − D 9 |−1/B

� 1
0 (Ω)

.

Wenow recall the inequality |D−D: |� 1
0 (Ω) ≤ �∗U:− 9 |D−D 9 |� 1

0 (Ω) fromCorollary 5.6
(linear convergence), and replace the sum above with

:−1∑
9=0
|D − D 9 |−1/B

� 1
0 (Ω)
≤ |D − D: |−1/B

� 1
0 (Ω)

:∑
9=0
U(:− 9)/B ≤ U1/B

1 − U1/B |D − D: |
−1/B
� 1

0 (Ω)
,

because 0 < U < 1 and the geometric series is summable.
WenowdealwithAlgorithm5.16. If the algorithmcallsMARK, then osc 9( 5 )−1 ≤

lE 9(D 9 , 5 ) and the number of marked elements # 9(D) obeys Proposition 6.18:

# 9(D) . |D |1/B
AB
|D − D 9 |−1/B

� 1
0 (Ω)

.

Instead, if the algorithm calls DATA, then osc 9( 5 )−1 > f9 = lE 9(D 9 , 5 ) and DATA
returns a mesh T 9+1 and reduces the oscillation osc 9+1( 5 )−1 ≤ f9 with optimal
complexity. To quantify the cost, we recall that D ∈ AB yields 5 ∈ FB according to
Lemma 6.9 (relation between approximation classes) and | 5 |FB . |D |AB . Therefore
the number of marked elements # 9( 5 ) to reduce osc 9( 5 )−1 to tolerance f9 satisfies

# 9( 5 ) . | 5 |1/BFB f
−1/B
9 . |D |1/B

AB
E 9(D 9 , 5 )−1/B . |D |1/B

AB
|D − D 9 |−1/B

� 1
0 (Ω)

,
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because of (5.12). It thus remains to sum over 9 , again apply (6.28),

#T: ≤ �̃
:−1∑
9=0

(# 9(D) + # 9( 5 )) . |D |1/BAB
:−1∑
9=0
|D − D 9 |−1/B

� 1
0 (Ω)

,

and finally argue as before with the help of Corollary 5.18 (linear convergence of
error).

6.5. Rate-optimality of two-step AFEM

The output of [T̂: , D̂:] = DATA(T: ,D, lY:), in the :-step of AFEM-TS (Algo-
rithm 5.28), is fed to [T:+1, D:+1] = GALERKIN(T̂: , D̂: , Y:), which in turn iterates
�: times. We let (T:, 9 ,M:, 9 , DT:, 9 ) denote the triplets of grids, marked sets and
discrete solutions computed within GALERKIN(T̂: , D̂: , Y:) for 0 ≤ 9 < �: . We
further assume that

Ŷ: ≔ [T:,0(DT:,0 , D̂:) > Y: ,

for otherwise the module GALERKIN is skipped. In view of the lower a posteriori
error estimate in (6.22) for discrete data D̂: , we infer that

|D̂: − DT:,0 |� 1
0 (Ω) ≥ �! Ŷ: > �!Y: ,

where D̂: ∈ �1
0(Ω) is the exact solution of (5.5) with approximate data D̂: . The

module DATA guarantees (5.63) and (5.65), namely

‖D − D̂: ‖�(Ω) ≤ �datalY: ⇒ |D − D̂: |� 1
0 (Ω) ≤ ��lY: , (6.30)

where D = D(D) ∈ �1
0(Ω) is the exact solution of (2.7). We see that the parameter

l controls the discrepancy between D and D̂: = D̂:(D:) relative to Y: . We now
make an assumption on the appropriate size of l, which replaces Assumption 6.15
for AFEM-SW.

Assumption 6.21 (size of l). The parameterl inAFEM-TS satisfiesl ∈ (0, l0],
where

l0 ≔
`�!

2���Céa

with �Céa as in (3.8) and the parameter 0 < ` ≤ 1
2 appears in Lemma 6.16 (Dörfler

marking).

Consequently, if Assumption 6.21 is valid then (6.30) yields for l ≤ l0

|D − D̂: |� 1
0 (Ω) ≤

`�!
2�Céa

Y: . (6.31)

Corollary 6.22 (cardinality of marked sets). Let Assumptions 6.14, 6.17 and
6.21 hold. If D ∈ AB(�1

0(Ω); T0) and Ŷ: > Y: , then GALERKIN is called and there
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exists a constant �0 such that, for all 0 ≤ 9 < �: ,
#M:, 9 ≤ �0 |D |1/BAB |D − DT:, 9 |

−1/B
� 1

0 (Ω)
(6.32)

and
#M:, 9 ≤ �0 |D |1/BAB Y

−1/B
: . (6.33)

Proof. We argue as in Proposition 6.18. Fix 0 ≤ 9 < �: and set

X ≔ `
�!
�Céa

[T:, 9 (DT:, 9 ) ⇒ X ≥ ` �!
�Céa

Y: .

Since |D − D̂: |� 1
0 (Ω) ≤ X/2, by virtue of (6.31), we deduce that D̂: is an X-

approximation of order B to D according to Lemma 6.13 (Y-approximation of D
of order B). Thus there exists an admissible mesh TX ∈ T such that

|D̂: − DTX |� 1
0 (Ω) ≤ X, #TX . |D |1/BAB X

−1/B,

and we proceed exactly as in Proposition 6.18, to show that

#M:, 9 . |D |1/BAB X
−1/B ≈ |D |1/B

AB
|D − DT:, 9 |−1/B

� 1
0 (Ω)
. |D |1/B

AB
Y−1/B
: .

This concludes the proof.

Corollary 6.23 (quasi-optimality of GALERKIN). Let Assumptions 6.3, 6.14,
6.17 and 6.21 be valid. Then the number of marked elements #:(D) within the
:th call to GALERKIN satisfies

#:(D) ≤ ��0 |D |1/BAB Y
−1/B
: ,

where � ≥ �: is a uniform upper bound for the number of iterations of GALERKIN.

Proof. Use #:(D) =
∑�:−1
9=0 #M:, 9 and combine Corollary 6.22 (cardinality of

marked sets) and Proposition 5.27 (computational cost of GALERKIN).

We finally address the rate-optimality of the two-step algorithm AFEM-TS, by
proving the stated bound (6.1).

Theorem 6.24 (rate-optimality of AFEM-TS). Let Assumptions 6.3 (approxim-
ability of D), 6.10 (approximability of data), 6.11 (quasi-optimality of DATA), 6.14
(marking parameter), 6.21 (size of l) and 6.19 (initial labelling) be valid. Then
AFEM-TS gives rise to a sequence (T: ,VT: , DT: ) :=0 such that

|D − D: |� 1
0 (Ω) ≤ �(D,D)(#T:)−B, 1 ≤ : ≤  ,

where 0 < B = min{BD , BD} = min{BD , B�, B2 , B 5 } ≤ =/3 and

�(D,D) = �∗
(|D |1/BD

ABD
+ |G|1/B�MB�

+ |2 |1/B2
CB2
+ | 5 |1/B 5FB 5

)B
,

with constant �∗ > 0 independent of D and D.
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Proof. In view of Assumption 6.3, Corollary 6.23 implies that the number of
marked elements #:(D) within the (: + 1)th call to GALERKIN satisfies

#:(D) ≤ �3 |D |1/BDABD
Y−1/BD
: ,

with BD ≤ =/3 and �3 > 0 a suitable constant. Moreover, by Assumption 6.11 the
number of marked elements #:(D) within the (: + 1)th call to DATA satisfies

#:(D) ≤ �3 |D |1/BDABD
Y−1/BD
: ,

with BD ≤ =/3. The total number of marked elements in the (: + 1)th loop of
AFEM-TS is thus

#:(D) + #:(D) ≤ �3
(|D |1/BD

ABD
+ |D |1/BD

ABD

)
Y−1/B
: .

Upon termination, DATA and GALERKIN give

|D − D̂: |� 1
0 (Ω) ≤

`�!
2�Céa

Y: ≤ �!
4�Céa

Y: ,

|D̂: − D:+1 |� 1
0 (Ω) ≤ �*[T:+1(D:+1, D̂:) ≤ �*Y: ,

because of (6.31), (6.22) and the fact that ` < 1
2 . This implies by the triangle

inequality

|D − D:+1 |� 1
0 (Ω) ≤

(
�!

4�Céa
+ �*

)
Y: = �4Y: .

Therefore, applying Theorem 3.16 (complexity of REFINE), the total amount of
elements created by : + 1 iterations within AFEM-TS, besides those in T0, obeys
the expression

#T:+1 ≤ �̃
:∑
9=0

(# 9(D) + # 9(D)) ≤ �̃�3
(|D |1/BD

ABD
+ |D |1/BD

ABD

) :∑
9=0
Y−1/B
9 .

according to (6.28). Since Y 9 = 2− 9Y0 and
:−1∑
9=0

(2−1/B) 9 ≤ 1
1 − 2−1/B ,

we obtain
#T:+1 ≤ �

(|D |1/BD
ABD
+ |D |1/BD

ABD

)
Y−1/B
: ,

with

� =
�̃�3Y0

1 − 2−1/B

provided #T:+1 ≥ 3
2 #T0. This together with |D − D:+1 |� 1

0 (Ω) ≤ �4Y: gives the
asserted estimate after 1 ≤ : + 1 ≤  loops.
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Remark 6.25. The thresholds \0, l0 play no role in Proposition 5.29 (conver-
gence of AFEM-TS) but are critical in Theorem 6.24 (rate-optimality of AFEM-TS).
The former takes care of the discrepancy between error and estimator (Steven-
son 2007, Cascón et al. 2008, Nochetto et al. 2009, Bonito and Nochetto 2010,
Nochetto and Veeser 2012). The latter guarantees that the perturbation error (6.30)
is much smaller than Y: and enables GALERKIN to learn the regularity of D from
D̂T̂: (Stevenson 2007, Bonito et al. 2013b).

Remark 6.26. We claim that the convergence rate B = min{BD , BD} cannot be
improved to BD (the optimal rate for approximations of D ∈ ABD (�1

0(Ω); T0)) when
BD < BD by any algorithm that uses approximations D̂ = (Ĝ, 2̂, 5̂ ) of data D =
(G, 2, 5 ). In fact, given any X > 0, consider the ball

�(D, X) ≔ {D̂ ∈ D | ‖D − D̂‖�(Ω) ≤ X}, (6.34)

where �(Ω) is defined in (5.60). If D, D̂ ∈ �1
0(Ω) are the exact solutions for data

D, D̂, then there are constants 0 < 2∗ ≤ �∗ such that
2∗X ≤ sup

D̂∈�(D, X)
|D − D̂ |� 1

0 (Ω) ≤ �∗X.

The rightmost inequality is a consequence of Lemma 5.20 (continuous depend-
ence on data). For the leftmost inequality, first consider a perturbation 5̂ = (1+ X) 5
of the source term with coefficients (Ĝ, 2̂) = (G, 2), whence ‖D − D̂‖�(Ω) = X.
Proceeding as in (2.30), the coercivity and continuity of the bilinear form B imply

2B |D − D̂ |� 1
0 (Ω) ≤ ‖ 5 − 5̂ ‖�−1(Ω) = X ≤ �B |D − D̂ |� 1

0 (Ω).

On the other hand, if 5̂ = 5 and (Ĝ, 2̂) = U−1(G, 2) with U = 1 + X/‖D‖�(Ω), then

‖D − D̂‖�(Ω) < X, |D − D̂ |� 1
0 (Ω) =

|D |� 1
0 (Ω)

‖D‖�(Ω)
X ≥ ‖ 5 ‖�−1(Ω)

�B ‖D‖�(Ω)
X.

This argument takes care of themultiplicative nature of (G, 2) in (2.5), whichmakes
D̂ = UD, and proves our claim.

6.6. Rate-optimality of AFEM with other boundary conditions

The key ingredient for rate-optimality of AFEM, regardless of boundary conditions,
is the validity of Lemma 6.16 (Dörfler marking). This lemma provides a bridge
between FEMmeshes and optimalmeshes and, in turn, hinges on three properties of
the PDE residual estimator [T (DT , 5 ): Theorem4.48 (upper bound for corrections),
Lemma 4.54 (Lipschitz property of the estimator) and Lemma 4.55 (estimator
dependence on discrete forcing) to account for the possible change in the discrete
forcing %T 5 . Since their proofs are insensitive to boundary conditions, because
they do not alter the structure of [T (DT , 5 ), we conclude their validity as well as
for Robin, Neumann and non-homogeneous Dirichlet conditions.
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Therefore our threeAFEMs based onDörflermarking deliver the same asymptotic
convergence rates associated with the approximations classes ABD for the solution
D ∈ �1(Ω) and ABD for data D = (G, 2, ?, ℓ) for Robin and Neumann boundary
conditions, and D = (G, 2, 5 , 6) for Dirichlet boundary conditions. We need three
new approximation classes for ? ∈ PB? (!∞(mΩ); T0), ℓ ∈ LBℓ (�1(Ω)∗; T0) for
Robin or Neumann conditions and 6 ∈ GB6 (�1/2(mΩ); T0).

If coefficients (G, 2, ?) are discrete for the Robin condition, then Lemma 6.9
(relation between approximation classes) extends and yields

〈ℓ − ℓ̂, E〉 = B[D − D̂, E] ⇒ ‖ℓ − ℓ̂‖V∗ ≤ �‖D − D̂‖V,
withV = �1(Ω) andB = B̂, ℓ̂ given in (5.85). This in turn implies |ℓ |LBℓ ≤ � |D |ABD ,
Bℓ = BD and the validity of Theorem 6.20 (rate-optimality of one-step AFEMs). In
AFEM-TS, DATA approximates ℓ along with the other data and Theorem 6.24 (rate-
optimality of AFEM-TS) is also valid for Robin and Neumann boundary conditions.
We do not explore this matter any further.
For non-homogeneous Dirichlet boundary conditions the analysis is simpler. If 6

is discrete, then there is no difference to 6 = 0. If not, we note that the solution map
6 ↦→ D (all other data being fixed) is affine and that the error and augmented total
estimator ET (DT , 5 , 6) ≔ ET (DT , 5 ) + oscT (6)1/2 are equivalent (Theorem 4.74).
This indicates that the role of 6 is similar to the role of 5 . Therefore it suffices to
replace ET (DT , 5 ) with ET (DT , 5 , 6) and oscT ( 5 )−1 with oscT ( 5 )−1 + oscT (6)1/2
in AFEM-SW. For AFEM-TS, the approximation of 6 is handled by DATA along
with the other data. Hence we again conclude that Theorems 6.20 and 6.24 extend
to non-vanishing Dirichlet conditions.

6.7. Rate-optimality of AFEM driven by alternative estimators

We recall the notation ZT (DT ) of Section 5.6 for any of the three alternative
estimators in Section 4.9 and the crucial local properties (5.86) and (5.87).
As already alluded to in Section 6.6, the key instrument for rate-optimality is

Lemma 6.16 (Dörfler marking). We now check the validity of its three main pillars:
Theorem4.48 (upper bound for corrections), Lemma4.54 (Lipschitz property of the
estimator) and Lemma 4.55 (estimator dependence on discrete forcing) to account
for possible change in the discrete forcing %T 5 . It turns out that if they were valid
for ZT (DT ) = ZT (DT , 5 ), then statements about rates of convergence similar to
those for [T (DT ) would follow for ZT (DT ).

Lemma 6.27 (localized discrete upper bound). Let T , T∗ ∈ T and T∗ be a re-
finement of T . Let the coefficients (Ĝ, 2̂) be discrete over T and 5 ∈ �−1(Ω). Then
the error between the corresponding Galerkin solutions DT ∈ VT and DT∗ ∈ VT∗
is bounded by the indicator in the refined setR plus data oscillation

|DT − DT∗ |� 1
0 (Ω) ≤ �*

((
�

eq
!

)−1
ZT (DT ,R)2 + oscT ( 5 )2

−1
)1/2

,
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where R ≔ {I ∈ V | ) ∈ T \T∗, ) ⊂ lI} collects all vertices whose associated
stars change from T to T∗.
Proof. It suffices to realize that T \T∗ ⊂

⋃{lI | I ∈ R} and appeal to The-
orem 4.48 and (5.87) to arrive at

|DT − DT∗ |2� 1
0 (Ω) ≤ �

2
*

(
[T (DT ,R)2 + oscT ( 5 ,R)2

−1
)

≤ �2
*

(
[T (DT ,R)2 + oscT ( 5 )2

−1
)

≤ �2
*

((
�

eq
!

)−2
ZT (DT ,R)2 + oscT ( 5 )2

−1
)
.

This is the desired estimate.

Lemma 6.28 (Lipschitz property of the estimator). Let the coefficients (Ĝ, 2̂)
be discrete over T . There exists �Lip such that

|ZT (E1) − ZT (E2)| ≤ �Lip |E1 − E2 |� 1
0 (Ω) for all E1, E2 ∈ VT .

Proof. We resort to the star equivalence (5.86) between discrete residual and
estimator. It thus suffices to derive the Lipschitz property for ‖%T 'T (E)‖�−1(lI )

with respect to E ∈ VT for all I ∈ V . Since %T 'T (E) = %T 5 − B̂[E, ·], we get

〈%T 'T (E1) − %T 'T (E2), F〉 =
∫
lI

∇F · Ĝ∇(E1 − E2) + 2̂(E1 − E2)F

for all F ∈ �1
0(lI). Therefore Lemma 2.2 (first Poincaré inequality) yields

‖%T 'T (E) − %T 'T (E2)‖�−1(lI ) ≤ �(Ĝ, 2̂)‖E1 − E2‖� 1(lI ),

where �(Ĝ, 2̂) depends on the !∞-norms of (Ĝ, 2̂). Finally, using the triangle
inequality to accumulate over I ∈ V together with (5.86) gives the assertion.

Lemmas 6.27 and 6.28 lead to Lemma 6.16 (Dörfler marking) for ZT (DT ). If
we further choose a minimal set M of vertices that satisfies Dörfler property
(5.88), then the previous rates of convergence for the three algorithms GALERKIN,
AFEM-SW and AFEM-TS but now driven by ZT (DT ) are valid provided D ∈ AB, the
approximation class in Definition 6.1. We do not restate these results.

6.8. Approximation vs. regularity classes

The purpose of this section is to reconcile the notion of approximation classes,
discussed above, with that of regularity classes. We recall the DeVore diagram of
Figure 2.1, which depicts the Sobolev line for the energy space �1

0(Ω), namely

sob(�1
0) = sob(, B

?) ⇒ B − 3
?
= 1 − 3

2
.

The differentiability B ≥ 1 is only limited by the polynomial degree =, so B ∈ [1, =+
1]. On the other hand, the integrability ? is not restricted to be ? ≥ 1 as is customary
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with Sobolev spaces. For example, for 3 = 2 and B = =+1, we get ? = 2/(= + 1) < 1
provided = ≥ 2. Therefore, to take full advantage of nonlinear approximation
theory, we need to abandon the framework of Sobolev spaces , B

?(Ω) and deal
with Besov spaces �B?,@(Ω) (frequently denoted by �B@(! ?(Ω)) or �B@(!?(Ω)) in
the literature) with integrability index ? ∈ (0,∞]. The second index @ ∈ (0,∞]
is useful in characterizing special limiting cases; below we will provide a few
interesting examples but take ? = @ most of the time. At this point, we only
mention that when B is non-integer and 1 ≤ ? ≤ ∞, �B?,?(Ω) = , B

?(Ω), while
when A is integer ,A

?(Ω) for ? ≠ 2 is not a Besov space but it is slightly smaller
than �A?,∞(Ω). The case ? = 2 is special since �B2,2(Ω) = �B(Ω) even when B is an
integer.
This section is devoted to the definition and properties of Besov and Lipschitz

spaces, including their close relation to approximation classes. Our presentation
closely follows Binev et al. (2002) for = = 1 and Gaspoz and Morin (2014, 2017)
for = ≥ 1, but it adds a few new ingredients. Since our results involve three different
type of spaces to account for the particular caseswhen the differentiability is integer,
it is pertinent to introduce the following abstract space -B?(Ω) with differentiability
index B ∈ (0, = + 1] and integrability index ? ∈ (0,∞]:

-B?(Ω) ≔



�B?,?(Ω), B ∈ (0, = + 1), ? ∈ (0,∞],
,=+1
? (Ω), B = = + 1, ? ∈ [1,∞],

Lip=+1? (Ω), B = = + 1, ? ∈ (0, 1).
(6.35)

Here LipB?(Ω) = Lip(B, ! ?(Ω)), B ∈ N, are the Lipschitz spaces; see (6.58) below.
For B ∈ N and 1 < ? < ∞ the Sobolev spaces coincide with the Lipschitz spaces
(Leoni 2009, Theorem 10.55), that is,

LipB?(Ω) = , B
?(Ω), B ∈ N, 1 < ? < ∞, (6.36)

while for ? = 1 we only have

, B
1 (Ω) ↩→ LipB1(Ω), B ∈ N. (6.37)

We use the following conventions: -B?(Ω) ≔ ! ?(Ω) for B = 0; -B?(Ω; T ) is the
space of functions with piecewise regularity -B? over T ∈ T; -B?(Ω;R<) is the
space -B?(Ω) of vector- or matrix-valued functions.
In Section 6.8.4 we will prove the following crucial approximation results for

functions in !@(Ω) by discontinuous piecewise polynomials S=,−1
T of degree = ≥ 1

over conforming refinements T of T0. It turns out that this will also allow us to
deal with approximations in �1

0(Ω) by continuous piecewise polynomials VT of
degree = ≥ 1.

Theorem 6.29 (regularity yields approximation). Let @ ∈ [1,∞], ? ∈ (0,∞],
B ∈ (0, = + 1] and a function 6 ∈ !@(Ω) satisfy 6 ∈ -B?(Ω) with B − 3/? + 3/@ > 0.
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Then there exists a constant � = �(?, @, B, C, 3,Ω, T0) such that

�=(6,Ω)@ ≔ inf
T ∈T#

inf
E∈S=,−1

T

|6 − E |!@(Ω) ≤ � |6 |-B?(Ω)#
−B/3 . (6.38)

Therefore 6 ∈ AB/3 = AB/3(!@(Ω); T0) and

|6 |AB/3 ≤ � |6 |-B?(Ω). (6.39)

We see that the decay rate B/3 in (6.38) is proportional to the difference of the
differentiability indices between the space -B?(Ω) and !@(Ω) provided the Sobolev
numbers satisfy the relation

sob(-B?(Ω)) > sob(!@(Ω)),

which implies that the embedding of -B?(Ω) into !@(Ω) is compact. The factor 3
in the denominator is a manifestation of the so-called curse of dimensionality. The
limiting case B = = + 1 entails dealing with Sobolev spaces , B

?(Ω) and Lipschitz
spaces LipB?(Ω) depending on whether ? ≥ 1 or ? < 1.

6.8.1. Modulus of smoothness
Difference operators. Since we intend to allow ? ∈ (0, 1), the underlying functions
in �B?,?(Ω) might not be locally integrable, whence they might not be distributions
in Ω. Therefore the notion of weak derivative does not apply, which in turn has the
disadvantage of being defined for integers and not for fractional numbers. This leads
to the most standard definition of Besov spaces �B?,@(Ω) using difference operators,
which only requires integrability in ! ?(Ω) and is valid for any B > 0, ?, @ ∈ (0,∞].
Other definitions, which provide equivalent results in the range 1 ≤ ?, @ ≤ ∞, can
be found in Adams and Fournier (2003) and Bergh and Löfström (1976).
Given a bounded Lipschitz domain Ω ⊂ R3 , and a vector ℎ ∈ R3 , we set

Ωℎ ≔ {G ∈ Ω | [G, G + ℎ] ⊂ Ω},
where [G, G + ℎ] denotes the closed segment connecting G and G + ℎ, and define the
first-order difference operator to be

Δ1
ℎ6(G) = Δ1

ℎ(6, G,Ω) ≔

{
6(G + ℎ) − 6(G), G ∈ Ωℎ,
0, otherwise.

(6.40)

For : ∈ N, : ≥ 1, we define the :th difference operator by iteration,

Δ:ℎ6(G) ≔ Δ1
ℎ

(
Δ:−1
ℎ

)
6(G), G ∈ Ω:ℎ, (6.41)

and observe that it has the explicit form

Δ:ℎ6(G) =




:∑
9=0

(−1):+ 9
(
:

9

)
6(G + 9 ℎ), [G, G + :ℎ] ⊂ Ω,

0, otherwise.
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Note the property

? ∈ P: ⇒ Δ:+1ℎ ? = 0 for all ℎ. (6.42)

Smoothness. Given ? ∈ (0,∞] and C > 0, we define the modulus of smoothness of
order : in ! ?(Ω) to be

l:(6, C)? = l:(6, C,Ω)? ≔ sup
|ℎ | ≤C
‖Δ:ℎ6‖!?(Ω). (6.43)

We note that if l:(6, C)? = >(C=+1) as C → 0, then 6 is a.e. a polynomial in P= and

6 ∉ P= ⇒ l:(6, C)? ≥ �C=+1, 0 < C ≤ 1, (6.44)

for some � > 0 (DeVore and Lorentz 1993, Proposition 7.4). We also observe that
the definition (6.43) only requires ! ?-integrability of 6 and leads to the following
celebrated Whitney estimate of the best approximation error

�=(6, �)? ≔ inf
E∈P=
‖6 − E‖!?(�)

of 6 by polynomials of degree ≤ = in � ⊂ Ω; see Binev et al. (2002), Dekel and
Leviatan (2004, Theorem 1.4) and Gaspoz and Morin (2014, 2017, Lemma 4.4).

Lemma 6.30 (Whitney’s lemma). Let T ∈ T be an admissible grid, and let
) ∈ T be a generic element. If 0 < ? ≤ ∞ and = ≥ 0, then

�=(6, ))? ≤ �l=+1(6, ℎ) , ))? for all 6 ∈ ! ?()),

where � = �(?, =, 3, T0) but is independent of 6 and the size of ) .

6.8.2. Besov spaces
Given B > 0 and 0 < ?, @ ≤ ∞, the Besov space �B?,@(Ω) is the set of all functions
E ∈ ! ?(Ω) such that the following quantity is finite:

|E |�B?,@(Ω) ≔




(∫ ∞

0

[
C−Bl:(E, C)?

]@ dC
C

)1/@
, 0 < @ < ∞,

supC>0
[
C−Bl:(E, C)?

]
, @ = ∞,

(6.45)

with : = [B] + 1 ∈ N and [B] stands for the integer part of B. If we split the integral
in (6.45) for 0 < @ < ∞ in dyadic intervals, we obtain the following equivalent
expression for |E |�B?,@(Ω):

|E |@
�B?,@(Ω) =

∑
<∈Z

∫ 2−<

2−<−1
C−B@l:(E, C)@?

dC
C
≈

∑
<∈Z

2<B@l:(E, 2−<)@? . (6.46)

Here we have used that both l:(E, C)? and C−B are monotone functions of C. The
hidden constants depend on B and @ but are otherwise independent of E, : and ?.
Note that with obvious changes, (6.46) is also valid for @ = ∞:

|E |�B?,∞(Ω) ≈ sup
<∈Z

2<Bl:(E, 2−<)? . (6.47)
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We point out that |E |�B?,@(Ω) is a seminorm for ?, @ ≥ 1 and is otherwise a semi-
(quasi-)norm in that the triangle inequality is valid up to a constant larger than 1;
note that |1|�B?,@(Ω) = 0. The quasi-norm of �B?,@(Ω) is defined to be

‖E‖�B?,@(Ω) ≔ ‖E‖!?(Ω) + |E |�B?,@(Ω).

If an integer : ′ > : is chosen in (6.45), then the ensuing quasi-norms ‖E‖�B?,@(Ω)
are equivalent. This hinges on the Marchaud inequality (see DeVore and Popov
1988, (2.6), and Ditzian 1988, Theorems 1 and 3)

l:(E, C)? ≤ �C:
(
‖E‖!?(Ω) +

(∫ ∞

C

(
I−:l:′(E, I)?

)? dI
I

)1/?)
. (6.48)

The following lemma characterizes the precise blow-up of |E |�B?,?(Ω) as B→ = + 1.

Lemma 6.31 (blow-up of |E |�B?,?(Ω)). Let B ∈ (0, = + 1), ? ∈ (0,∞]. Then
|E |�B?,?(Ω) ≤ (?(= + 1 − B))−1/? ‖E‖�=+1?,?(Ω) for all E ∈ �=+1?,?(Ω).

Proof. We take ? < ∞ and combine the definition (6.45) with (6.48), after
replacing the upper limit of integration with diam(Ω) ≈ 1, to write

|E |?
�B?,?(Ω) ≈

∫ 1

0

(
C−Bl=+1(E, C)?

)? dC
C
. � + II,

with

� =
∫ 1

0
C(=+1−B)?

∫ 1

C

(
I−(=+1)l=+2(E, I)?

)? dI
I

dC
C
, II =

∫ 1

0
C(=+1−B)? ‖E‖ ?!?(Ω)

dC
C
.

Exchanging the order of integration yields

� =
∫ 1

0

(
I−(=+1)l=+2(E, I)?

)?(∫ I

0
C(=+1−B)?−1 dC

)
dI
I

=
1

?(= + 1 − B)
∫ 1

0

(
I−Bl=+2(E, I)?

)? dI
I
≤ 1
?(= + 1 − B) |E |

?

�=+1?,?(Ω)
.

Since II = (?(= + 1 − B))−1‖E‖ ?!?(Ω), the proof is thus complete.

The following equivalence between Sobolev and Besov spaces is valid for frac-
tional differentiability B (Leoni 2009, Proposition 14.40) (see also Bergh and Löf-
ström 1976, Section 6.4.4, and Adams and Fournier 2003, Sections 7.33, 7.67): for
all B ≥ 0, B ∉ N and ? ∈ [1,∞],

�B?,?(Ω) = , B
?(Ω). (6.49)

However, if B ∈ N is an integer, then �B?,@(Ω) is defined using : = B+1 differences,
whereas, B

?(Ω) involves B weak derivatives in ! ?(Ω) provided ? ∈ [1,∞]. It turns
out that for integer values B ∈ N the spaces differ, that is,

�B?,?(Ω) ≠ , B
?(Ω), ? ≠ 2, (6.50)
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except for the exceptional case ? = 2 for which �B2,2(Ω) = �B(Ω) (DeVore 1998).
TheBesov seminorm is sub-additive in the following sense: if {)8}#8=1 is a disjoint

collection of elements )8 ∈ T and T ∈ T, ? ∈ (0,∞] and B > 0, then there exists a
constant � depending on ?, B, 3 and T0 but independent of # such that

#∑
8=1
|E |?
�B?,?()8)

≤ � |E |?
�B?,?(Ω) for all E ∈ �B?,?(Ω). (6.51)

The localization of Besov norms is more general than (6.51). In fact, if lT ())
denotes the patch of elements in T around ) ∈ T (first ring), then the following is
valid with equivalence constants depending on ?, B, 3 and T0 but independent of #
(Binev et al. 2002, Lemmas 4.3, 4.4):∑

) ∈T
|E |?
�B?,?(lT () )) ≈ � |E |

?
�B?,?(Ω) for all E ∈ �B?,?(Ω). (6.52)

The following statements about embeddings between Besov spaces on bounded
Lipschitz domainsΩwill turn out to be useful below (Triebel 2010, Sections 3.2.4,
3.3.1): if 0 < ? ≤ ∞, 0 < @1, @2 ≤ ∞ and B1, B2, B > 0, then

B1 > B2 ⇒ �B1?,@1(Ω) ↩→ �B2?,@1(Ω),
@1 < @2 ⇒ �B?,@1(Ω) ↩→ �B?,@2(Ω).

(6.53)

Because of the second relation in (6.53), statements valid for all second index @
are written for the largest space corresponding to @ = ∞. In addition, for all
0 < ?, @, A ≤ ∞ and B > 0, the discrepancy between the spaces �B?,A (Ω) and !@(Ω)
is the quantity

X ≔ B − 3
?
+ 3
@
. (6.54)

The discrepancy X governs the embedding between these two spaces (Leoni 2009,
Theorems 14.29, 14.32, DeVore 1998), namely

X > 0 ⇒ �B?,∞(Ω) ↩→ !@(Ω), X = 0 ⇒ �B?,?(Ω) ↩→ !@(Ω), @ ≠ ∞, (6.55)

and the embedding is compact when X > 0. Notice that X = 0 determines the
Sobolev embedding line of the DeVore diagram in Figure 2.1.
We stress that when X > 0, the third parameter A in �B?,A (Ω) plays no role in

(6.55) involving the largest space �B?,∞(Ω); see (6.53). However, it turns out to
be useful to quantify regularity in extreme cases. For instance, the characteristic
function j� of a smooth set � & Ω satisfies

j� ∈ �1/?
?,∞(Ω)\�1/?

?,A (Ω), 0 < ?, A < ∞.
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Moreover, the Lagrange basis functions {qI}I∈N of VT satisfy for any 0 < ? ≤ ∞
(Gaspoz and Morin 2014, Proposition 4.7)

l=+1(qI , C)? =

{
| supp qI |(3−1−?)/(3?)C1+1/?, 0 < C ≤ | supp qI |1/3 ,
| supp qI |, C > | supp qI |1/3 .

This readily implies that for all 0 < B < 1 + 1/? and 0 < @ < ∞,
VT ⊂ �B?,@(Ω), VT ⊂ �1+1/?

?,∞ (Ω). (6.56)

6.8.3. Local approximation
We are now in a position to prove a key approximation estimate. In finite element
theory it goes by the name of Bramble–Hilbert lemma, whereas in nonlinear
approximation theory it is called Jackson’s theorem. We distinguish between the
case 0 < B < = + 1 and the limit integral case B = = + 1.

Proposition 6.32 (Bramble–Hilbert for Besov spaces). Let T ∈ T and ) ∈ T .
Assume 0 < ?, @ ≤ ∞, 0 < B < = + 1, and either B − 3/? + 3/@ ≥ 0, @ < ∞ or
B > 3/?, @ = ∞. Set A = ∞ when B − 3/? + 3/@ > 0 and A = ? otherwise. Then
we have

inf
%∈P=
‖E − %‖!@() ) ≤ �ℎB−3/?+3/@) |E |�B?,A () ) for all E ∈ �B?,A ()), (6.57)

where the constant � = �(?, @, B, 3, =, T0) is independent of E and ) .

Proof. We first point out that we could use : = = + 1 ≥ [B] + 1 in the definition
of |E |�B?,A () ) according to (6.48). We next proceed in three steps.

1 Suppose first that ) is the master element, namely |) | ≈ 1. If % ∈ P= is an
arbitrary polynomial, using that the discrepancy X = B − 3/? + 3/@ ≥ 0 yields

�=(E, ))@ ≤ ‖E − %‖!@() ) . ‖E − %‖�B?,A () ) = ‖E − %‖!?() ) + |E − % |�B?,A () )

due to the embedding (6.55). Since the definition of l=+1(E, C)? involves = + 1
differences, we deduce Δ=+1ℎ % = 0 in view of (6.42), whence |E − % |�B?,A () ) =
|E |�B?,A () ). We now take % to be the best approximation of E in ! ?()), to derive

�=(E, ))@ . �=(E, ))? + |E |�B?,A () ).

2 We perform a scaling argument from the element ) ∈ T to the master element
)̂ . Let Ĝ = |) |−1/3G be the change of variables and note that

l=+1(E, C, ))? = sup
|ℎ | ≤C
‖Δ=+1ℎ E‖!?() )

= |) |1/? sup
|ℎ | ≤C
‖Δ=+1

ℎ |) |−1/3 Ê‖!?()̂ ) = |) |1/?l=+1(̂E, Ĉ, )̂)?,
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with Ĉ = C |) |−1/3 , whence

|E |A�B?,A () ) =
∫ ∞

0
(C−Bl=+1(E, C, ))?)A

dC
C

= |) |A/?−BA/3
∫ ∞

0
(̂C−Bl=+1(̂E, Ĉ, )̂)?)A

d̂C
Ĉ
= |) |A/?−BA/3 |Ê |A

�B?,A ()̂ )
.

Therefore, since �=(E, ))@ = |) |1/@�= (̂E, )̂)@, we obtain

�=(E, ))@ . |) |1/@−1/?�=(E, ))? + |) |B/3−1/?+1/@ |E |�B?,A () ).

3 It remains to estimate �=(E, ))? which, in view of Lemma 6.30 (Whitney’s
lemma), satisfies �=(E, ))? ≤ �l=+1(E, ℎ) , ))? with ℎ) ≈ |) |1/3 ≈ 2−< for some
< ∈ Z. Since : = = + 1 ≥ [B] + 1, invoking the equivalent definition (6.46) of
|E |�B?,A () ) yields

�=(E, ))A? . l=+1(E, 2−<, ))A? . ℎBA)
∑
<∈Z

2<BAl=+1(E, 2−<, ))A? = ℎBA) |E |A�B?,A () ).

Inserting this estimate into that of step 2 gives (6.57), as asserted.

We now consider the integer case B = =+1. The first thing to notice is that (6.57)
cannot possibly be valid: the definition (6.45) requires : = [B] + 1 = = + 2, whence
any polynomial 6 ∈ P=+1 \ P= satisfies �=(6, ))? > 0 as well as l=+2(6, ))? = 0
according to (6.42). Lemma 6.31 (blow-up of |E |�B?,?(Ω)) reveals that replacing the
seminorm |E |�B?,?(Ω) with the full norm ‖E‖�=+1?,?(Ω) is not a good idea either. To
overcome this problem, we now introduce the space LipB?(Ω) ≔ Lip(B, ! ?(Ω)) of
B-Lipschitz functions with values in ! ?(Ω), 0 < ? < ∞ (DeVore 1998, page 92):

|6 |LipB?(Ω) ≔ sup
C>0

(C−Bl=+1(6, C,Ω)?). (6.58)

Comparing with (6.45), we realize that LipB?(Ω) = �B?,∞(Ω) provided B ∉ N but
LipB?(Ω) ≠ �B?,∞(Ω) when B ∈ N. Moreover,

X = B − 3
?
+ 3
@
> 0, B ∈ N ⇒ LipB?(Ω) ↩→ !@(Ω), (6.59)

with compact embedding. If X = 0 and ? ≥ 1, @ ≠ ∞, the above embedding is
continuous in view of (6.36) and (6.55).

Proposition 6.33 (Bramble–Hilbert for Lipschitz spaces). Let T ∈ T and ) ∈
T . If ? ∈ (0,∞), @ ∈ (0,∞], : ≥ 0 integer, and : + 1 − 3/? + 3/@ ≥ 0, with strict
inequality when ? < 1 or @ = ∞, then we have

inf
%∈P:
‖E − %‖!@() ) ≤ �ℎ:+1−3/?+3/@) |E |Lip:+1? () ) for all E ∈ Lip:+1? ()), (6.60)

where the constant � = �(?, @, 3, :, T0) is independent of E and ) .
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Proof. In view of (6.59), we proceed as in the proof of Proposition 6.32, except
for the following change in step 3 . For ℎ) ≈ 2−<, we instead have

�:(E, ))? . l:+1(E, 2−<, ))?
. ℎ:+1) sup

<∈Z

(
2<(:+1)l:+1(E, 2−<, ))?

)
= ℎ:+1) |E |Lip:+1? () ).

This concludes the proof.

It is instructive to realize that Propositions 6.32 and 6.33 extend to Besov and
Lipschitz spaces the usual Bramble–Hilbert lemma for Sobolev spaces (Brenner
and Scott 2008, Lemma 4.3.8).

Proposition 6.34 (Bramble–Hilbert for Sobolev spaces). Let T ∈ T and ) ∈
T . For all 1 ≤ ?, @, ≤ ∞ and 0 < B ≤ = + 1 such that B− 3/? + 3/@ ≥ 0 with strict
inequality when @ = ∞, then

inf
%∈P=
‖E − %‖!@() ) ≤ �ℎB−3/?+3/@) |E |, B

? () ) for all E ∈ , B
?()), (6.61)

where the constant � = �(?, @, B, 3, =, T0) but is independent of E and ) .

Proof. When B is fractional, , B
?()) = �B?,?()) in view of (6.49) and the result

follows from Proposition 6.32. Instead, when B is integral, we invoke (6.36) and
(6.37) to deduce the result from Proposition 6.33.

6.8.4. Global approximation: direct estimates
We now collect local contributions from Propositions 6.32, 6.33 and 6.34, de-
pending on the range of parameters ?, @, B, to find global error estimates for the
solution D as well as the coefficients (G, 2) of (2.7). They are trivial consequences
of Theorem 6.29, which we prove first. The analysis of the forcing function 5 is
somewhat different, due to the non-locality of the corresponding norm �−1(Ω),
and is postponed to Section 7.3.

Proof of Theorem 6.29. Since the discrepancy X = B−3/?+3/@ > 0, the embedding
-B?(Ω) ↩→ !@(Ω) is compact according to (6.55) and (6.59). Given 6 ∈ -B?(Ω), we
consider the surrogate quantity 4T (6, )) ≔ �ℎX) |6 |-B?() ), which satisfies

�=(6, ))@ = inf
E∈P=
‖6 − E‖!@() ) ≤ 4T (6, )) for all ) ∈ T

by virtue of Bramble–Hilbert Propositions 6.32, 6.33 and 6.34. We finally combine
Proposition 3.19 (abstract greedy error) with the subadditivity property (6.51) to
deduce the desired estimate (6.3). The remaining estimate (6.39) follows from the
definition of |6 |AB/3 . This concludes the proof.
Inspection of this proof reveals that our estimate is stronger than (6.38). In fact,

we need the weaker regularity

|6 |?
-B?(Ω;T ) =

∑
) ∈T
|6 |?
-B?() ) < ∞,
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which allows for piecewise Besov smoothness of 6 very much in the spirit of (3.20).
This may accommodate singular behaviour of 6 aligned with the initial mesh T0.

Corollary 6.35 (approximation class of D). Let the solution D ∈ �1
0(Ω) of (2.7)

satisfy D ∈ -B?(Ω) with B ∈ (0, = + 1], ? ∈ (0,∞] and B − 1− 3/? + 3/2 > 0, where
-B?(Ω) is defined in (6.35). Then D ∈ A(B−1)/3

(
�1

0(Ω); T0
)
and

|D |A(B−1)/3 . |D |-B?(Ω). (6.62)

Equivalently, f# (D) defined in (6.3) satisfies

f# (D) . |D |-B?(Ω)#
−(B−1)/3 , # ≥ #T0. (6.63)

Proof. In view of (3.19) of Proposition 3.9 (approximation of gradients), namely

inf
E∈S=,0T

‖∇(D − E)‖!2(Ω) . inf
E∈S=,−1

T

‖∇(D − E)‖!2(Ω),

we realize that it suffices to bound the element errors for 6 = ∇D ∈ !2(Ω;R3) by
vector-valued discontinuous piecewise polynomials of degree ≤ = − 1. Therefore,
applying Theorem 6.29 (regularity yields approximation) with = replaced by = − 1
gives the desired estimates (6.62) and (6.63).

We now turn our attention to the coefficients (G, 2). Regarding G, Lemma 5.20
(continuous dependence on data) shows that the natural function space for G
is !∞(Ω,R3×3) provided D ∈ �1

0(Ω). However, Lemma 5.20 also allows for
G ∈ !A (Ω,R3×3), 2 ≤ A < ∞, provided D ∈ ,1

?(Ω) with 2 ≤ ? = 2A/(A − 2) < ?1,
which in turn is guaranteed by Lemma 2.13 (,1

?-regularity). The latter permits
discontinuities of G within elements, which is of practical importance. Therefore
we consider the most general situation 2 ≤ A ≤ ∞ below.

Corollary 6.36 (approximation class of G). For 0 < U1 ≤ U2 and 2 ≤ A ≤ ∞
let the diffusion coefficient G ∈ "(U1, U2) of (2.7) satisfy G ∈ -B?(Ω;R3×3)
with B ∈ (0, =], ? ∈ (0,∞] and B − 3/? + 3/A > 0. Then G ∈ MB/3 =
MB/3((!A (Ω))3×3; T0) and

|G|MB/3 . |G|-B?(Ω). (6.64)

Equivalently, X̃T (G)A defined in Section 6.1.2 satisfies

inf
T ∈T#

X̃T (G)A . |G|-B?(Ω)#
−B/3 for all T ∈ T# , # ≥ #T0, (6.65)

and this error decay is achieved by Algorithm 3.18 (greedy algorithm).

Proof. Simply recall the relation (6.12) between the best constrained and uncon-
strained approximation errors and apply Theorem 6.29 (regularity yields approx-
imation).

Consider the special case B = = and A = ∞ in Corollary 6.36. We readily see that
? > 3/= which might be less than 1 for = > 3, hence the need for Besov spaces.
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We finally deal with the reaction coefficient 2 ∈ !∞(Ω). Given Lemma 5.20
(continuous dependence on data) and the discussion in Section 5.4.2, a natural
space for 2 is !@(Ω) with 3/2 < @ ≤ ∞, B = 0; we could take @ = 2 for 3 < 4.
Section 5.4.2 also reveals that the case = = 1 is somewhat special in that we can
exploit superconvergence in,−1

@ (Ω) with @ > 3. In fact, combining the argument
following (5.75) with (5.68) yields

inf
2̂∈S=−1,−1

T

‖2 − 2̂‖2
, −1
@ (Ω) .

∑
) ∈T

ℎ2C
) ‖2 − Π) 2‖2!2() ) .

∑
) ∈T

ℎ2C
) XT (2, ))2

2 = oscT (2)2
2

with 0 < C = 1 − 3/2 + 3/@ < 2 − 3/2 provided 3 < 4. This gives the following
statement. We note that (5.76) could also be combined with (5.68) for = = 1 to
obtain a similar result for oscT (2)∞ with C = 1 and any 3 ≥ 2; however, we do not
elaborate further.

Corollary 6.37 (approximation class of 2). Let 0 ≤ 21 ≤ 22 and the reaction
coefficient 2 ∈ '(21, 22) satisfy 2 ∈ -B?(Ω) with B ∈ (0, =], ? ∈ (0,∞]. If = ≥ 1,
@ > 3/2, and B − 3/? + 3/@ > 0, then 2 ∈ CB/3 = CB/3(!@(Ω); T0) and

|2 |CB/3 . |2 |-B?(Ω). (6.66)

If instead = = 1, @ > 3, B − 3/? + 3/2 ≥ 0, 0 < C = 1 − 3/2 + 3/@ < 2 − 3/2 and
3 < 4, then 2 ∈ C(B+C)/3 = C(B+C)/3(!2(Ω); T0) and

|2 |C(B+C)/3 . |2 |-B?(Ω). (6.67)

Equivalently, for all = ≥ 1, X̃T (2)@ defined in Section 6.1.2 satisfies

inf
T ∈T#

X̃T (2)@ . |2 |-B?(Ω)#
−(B+C)/3 for all T ∈ T# , # ≥ #T0,

with C = 0 when = > 1. This error decay is achieved by Algorithm 3.18 (greedy
algorithm).

Proof. In view of (6.12), inequality (6.66) is a direct application of Theorem 6.29
(regularity yields approximation). The superconvergence rate in (6.67) is a con-
sequence of (6.12) and the proof of Proposition 3.19 (abstract greedy error) with B
replaced by B + C.
We finally go back to the abstract space -B?(Ω), defined in (6.35), and intro-

duce the corresponding abstract approximation class XB/3 = XB/3(!@(Ω); T0) of
functions E ∈ !@(Ω) such that

|E |XB/3 = sup
# ≥#T0

(
#B/3 inf

T ∈T#
oscT (E)@

)
< ∞ ⇒ inf

T ∈T#
oscT (E)@ ≤ |E |XB/3#−B/3 .

Consequently, Theorem 6.29 (regularity yields approximation) implies

-B?(Ω) ⊂ XB/3 , |E |XB/3 . |E |-B?(Ω). (6.68)

We will utilize this abstract notation and estimates in Section 7 while discussing
the approximation of data D = (G, 2, 5 ) by a greedy algorithm.
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6.8.5. Global approximation: inverse estimates
Theorem 6.29 gives sufficient regularity properties for a function 6 ∈ !@(Ω) to
belong to an approximation class AB/3(!@(Ω); T0); this is called direct estimate.
Such regularity is written in terms of a Besov space �B?,?(Ω), except in the limiting
case B = =+1. The converse statement is also true and is called an inverse estimate:
if 6 belongs to an approximation class AC/3(!@(Ω); T0), then it is a member of a
Besov space �̂B?,?(Ω) provided C > B and 0 < B < = + 1, B − 3/? + 3/@ = 0 (Binev
et al. 2002, Gaspoz and Morin 2014).
Several comments are in order. The Besov space �̂B?,?(Ω) is defined via a

multilevel decomposition of ! ?(Ω) and coincides with �B?,?(Ω) only when B <
1 + 1/?. This restriction of B is natural because VT ⊂ �̂B?,?(Ω) for all B, but
VT ⊂ �B?,?(Ω) requires B < 1+1/? according to (6.56). The discrepancy between
the spaces �̂B?,?(Ω) and !@(Ω) is X = B − 3/? + 3/@ = 0, but the decay rate
C/3 of AC/3(!@(Ω); T0) is larger than B/3. This accounts for the embedding of
AC/3(!@(Ω); T0), that is,∑

=∈N

(
f2=(6)2(B/3)=)? ≤ sup

=∈N

(
f2=(6)2(C/3)=)? ∑

=∈N
2((B−C)/3)?= . |6 |?

AC/3

into a space with decay B/3 and summability ℓ@ that in turn embeds into �̂B?,?(Ω)
(Binev et al. 2002, Gaspoz and Morin 2014). This reveals that there is no complete
characterization of the approximation class AB/3 in terms of Besov regularity.

7. Data approximation
This section focuses on the module DATA of Algorithms 5.1 (AFEM-TS) and 5.16
(AFEM-SW). According to Assumption 6.11 (quasi-optimality of DATA), the call

[T̂ , D̂] = DATA(T ,D, g) (7.1)

is meant to construct a quasi-optimal conforming refinement T̂ of T ∈ T and
approximate piecewise polynomial data D̂ = (Ĝ, 2̂, 5̂ ) ∈ DT̂ over T̂ that satisfies

‖D − D̂‖�(Ω) ≤ �datag (7.2)

as well as the constraints Ĝ ∈ "(Û1, Û2) and 2̂ ∈ '(2̂1, 2̂2) defined in (5.50).
Sections 7.2.2 and 7.2.3 are devoted to the construction of (Ĝ, 2̂). To approximate

the coefficients (G, 2), we proceed in two steps. First, we solve an unconstrained
approximation problem upon computing the !2-projection (G̃, 2̃) of (G, 2) onto the
space of discontinuous piecewise polynomials of degree ≤ =−1; this step is linear,
easily achieves the desired accuracy, but does not guarantee the monotonicity of
oscillations with respect to refinement (5.72) and violates the constraints in (5.50)
unless = = 1. Second, we resort to the nonlinear selection (5.70) of the local
!2 approximation to force the resulting oscillations to be monotone. Third, we
solve a constrained problem, which modifies (G̃, 2̃) locally into (Ĝ, 2̂) and restores
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(5.50) without accuracy degradation; this is a delicate nonlinear procedure executed
element by element, introduced and discussed in Section 7.2.
The approximation of the right-hand side 5 ∈ �−1(Ω) is a conceptually different

linear process. Without further structural assumptions on 5 it is not possible
to evaluate oscT ( 5 )−1 and reduce it. Hence we introduce surrogate estimators
õscT ( 5 )−1, which are larger than oscT ( 5 )−1, but computable, for several classes of
forcing functions 5 relevant in practice. We discuss this in Section 7.3.
We start in Section 7.1 with a presentation and assessment of quasi-optimal

GREEDY algorithms to reduce the data error. An important consideration is that
the local error estimators {oscT (E, ))}) ∈T may accumulate in ℓ∞ aswell as in ℓ@ for
@ < ∞. Both are handled via a GREEDY algorithm similar to Algorithm 3.18 but
with different stopping criteria when the local errors accumulate in ℓ@ with @ < ∞.
The module DATA combines both: its structure is displayed in Algorithm 7.23 and
its performance is elucidated in Corollary 7.24 below.

7.1. Quasi-optimal GREEDY algorithms for data reduction

Algorithm 3.18 (greedy algorithm) is well suited to dealing with local error estim-
ators oscT (E, ))@ that accumulate with respect to ) ∈ T in the space ℓ∞. This is
the framework for approximating coefficients E = G, 2 in !∞(Ω), in which case
the local error estimators oscT (E, ))∞ are defined in (5.73) for A = @ = ∞. This
requires E = G, 2 to be piecewise uniformly continuous on T for oscT (E;))∞ → 0
as ℎ) → 0. However, for discontinuous (G, 2) and the forcing function 5 , the
accumulation of oscT (E, ))@ for E = G, 2, 5 is in ℓ@ for @ < ∞. In this case, Algo-
rithm 3.18 does not provide a direct relation between a desired output tolerance g
for the total error

�T (E)@ ≔ ‖{oscT (E, ))@}) ∈T ‖ℓ@ =
(∑
) ∈T

oscT (E, ))@@
)1/@

and the threshold X; recall that oscT (E, ))@ ≔ ‖E − Ê‖!@() ) for ) ∈ T .
Another subtle difference from Algorithm 3.18 is that the algorithm GREEDY

below starts not from T0 but from any T ∈ T. Since DATA and thus GREEDY
are called repeatedly within AFEM, it seems advantageous to exploit the mesh
refinement already performed in the adaptive process rather than restart from
scratch; this then improves the computational efficiency.

Algorithm 7.1 (GREEDY). Given a tolerance g > 0, 0 < @ ≤ ∞, a number of
bisections 1 ≥ 1 performed per element to be refined, and an arbitrary conforming
grid T ∈ T, not necessarily T0, GREEDY finds a conforming refinement T̂ ≥ T of
T by bisection and Ê ∈ S=−1,−1

T such that �T (E)@ ≤ g:
[T̂ , Ê] = GREEDY(T , g, @, 1, E)
[Ê] = PROJECT(T , E)
while �T (E)@ > g
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[M] = arg max{oscT (E, ))@ : ) ∈ T }
[T ] = REFINE(T ,M, 1)
[Ê] = PROJECT(T , E)

return T , Ê
In GREEDY above, the element ) with largest error is refined as long as the total

error �T (E)@ exceeds the target tolerance g. When the largest error is achieved
by several elements, an ad hoc criterion such as lexical order is used to break
ties. We also recall that the routine REFINE bisects all the elements in M (in this
case only one) 1 times and performs additional refinements necessary to produce
a conforming subdivision. PROJECT computes the local approximations Ê of E
needed to evaluate oscT (E, ))@; refer to Section 5.4.2 and (5.70) for the definition
of Ê. The dependence on Ê in oscT (E, ))@ and �T (E) is not indicated.

To discuss the performances of the GREEDY algorithm, we recall that -B?(Ω; T0)
is the abstract space defined in (6.35), which satisfies∑

) ∈T
|E |?
-B?() ) . |E |

?
-B?(Ω;T0) (7.3)

for all T ∈ T and E ∈ -B?(Ω; T0).
The GREEDY algorithm analysed in Proposition 3.19 (abstract greedy error)

relies on the abstract assumptions (3.40), (3.41) and (3.42). With the aim of
reducing the data oscillations, we make these assumptions more concrete.

Assumption 7.2 (admissible set of parameters for GREEDY). We say that the
set of parameters (E, B, C, ?, @) is admissible for GREEDY with local oscillations
{oscT (E, ))@}) ∈T if 0 < ?, @ ≤ ∞, B, C ≥ 0 satisfy

(i) E ∈ -B?(Ω; T0),
(ii) C + B > 0, B − 3/? + 3/@ ≥ 0 with strict inequality when @ = ∞ or B = = + 1,

? < 1,
(iii) for A ≔ C + B − 3/? + 3/@ > 0,

oscT (E, ))@ . ℎA) |E |-B?() ) for all ) ∈ T , T ∈ T. (7.4)

When the local oscillations considered are clear from the context, we say that
(E, B, C, ?, @) is admissible for GREEDY.

Relation (7.4) replaces (3.41) and is a regularity assumption guaranteeing a
convergence rate when approximating E by Ê = PROJECT(T , E) (appearing in
the definition of oscT (E, ))@). We refer to Propositions 6.32, 6.33 and 6.34 for
examples where Assumption 7.2 holds. Note that in view of (6.55) and (6.59),
condition (ii) in Assumption 7.2 guarantees E ∈ -B?(Ω) ⊂ !@(Ω). The parameter
C ≥ 0 reflects a possible additional power of ℎ in the oscillation term; see e.g.
(5.75), (5.76) and (5.78). Furthermore, in view of (7.3), assumption (6.51) is
always satisfied by the -B?(Ω; T0) seminorms, and (3.28) is no longer needed.
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As alluded to above, the case @ < ∞ is more complex to analyse and cannot rely
solely on the decay property (7.4) as in the proof of Proposition 3.19. It requires
the local oscillations to be monotone with respect to refinements.

Assumption 7.3 (monotonicity of local oscillations). We say that for 0 < @ ≤
∞, the local errors satisfy the monotonicity property in ℓ@ if, for any E ∈ !@(Ω),
any T , T∗ ∈ T with T∗ ≥ T and any )∗ ∈ T∗, ) ∈ T with )∗ ⊂ ) , we have

oscT∗(E, )∗)@ ≤ oscT (E, ))@ . (7.5)

In view of Lemma 5.26 (monotonicity of oscillation), Assumption 7.3 holds for
the oscillations on G and 2 given in (5.73) and (5.75), but not for the oscillations
(5.77) of 5 . However, in Section 7.3 below we derive computable surrogates for
the local error oscT ( 5 , ))−1. These surrogates satisfy the monotonicity property
and are used in turn to drive the GREEDY algorithm. In passing, we note that we
refrain from using the right-hand side of inequality (7.4) as a surrogate for the local
oscillation. In fact it is monotone with respect to refinements but at the expense of
being difficult to evaluate because it involves the seminorm |E |-B?() ).
The following result is the counterpart of Proposition 3.19 (abstract greedy error)

for GREEDY with errors accumulating in ℓ@, 0 < @ ≤ ∞, and still starting from T0.
We address the case where T ≠ T0 in Lemma 7.5 below.

Proposition 7.4 (performance of GREEDY). Let the initial subdivision T0 of
Ω ⊂ R3 satisfy Assumption 6.19 (initial labelling). Let g > 0 be the target
tolerance and let 1 ≥ 1 be the number of bisections performed on each marked
element. Let (E, B, C, ?, @) satisfy Assumption 7.2 (admissible set of parameters for
GREEDY) with local errors {oscT (E, ))@}) ∈T which in turn verify Assumption 7.3
(monotonicity of local oscillations) in ℓ@. Then GREEDY(T0, g, @, 1, E) terminates
in a finite number of iterations and

�T (E)@ ≤ g ≤ � |E |-B?(Ω;T0)(#T )−(B+C)/3 , (7.6)

with a constant � = �(?, @, B, 1, 3,Ω, T0). Furthermore, E ∈ X(B+C)/3 and
|E |X(B+C)/3 . |E |-B?(Ω;T0). Moreover, the estimate (7.6) is valid for tensor-valued
functions E.

Proof. Since the proof is similar to that of Proposition 3.19 (abstract greedy error)
with 4T (E, ))@ = oscT (E, ))@, we only report the new ingredients. We recall that
we use the convention 1/∞ = 0. Let T1, . . . , T: be the sequence of refinements
produced by GREEDY, and let )1, . . . ): be the sequence of marked elements. We
need to estimate #M = : withM = {)1, . . . , ): }. Set

X8 ≔ oscT8 (E, )8)@ (1 ≤ 8 ≤ :) and X ≔ X:−1.

Then
�T: (E)@ ≤ g < �T:−1(E)@ ≤ X (#T:−1)1/@ ≤ X (#T:)1/@ . (7.7)
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On the other hand, as REFINE does not increase the element estimators oscT8 (E, )8)
thanks to (7.5), we have X8 ≥ X for any 8, whence

oscT8 (E, )8)@ = X8 ≥ X for all 1 ≤ 8 < :.
Let us now partitionM into disjoint subsets P 9 as in the proof of Proposition 3.19.
If )8 ∈ P 9 , (7.4) implies

X ≤ oscT8 (E, )8)@ . ℎ
A
) |E |-B?()8) ≤ 2− 9A/2 |E |-B?()8),

whence, exploiting the ℓ? summability (7.3) gives

#P 9 . X−?2− 9A ?/2 |E |?
-B?(Ω;T0).

which is similar to (3.45). Recalling (3.44), and proceeding as in the proof of
Proposition 3.19, yields

X . |E |-B?(Ω;T0) (#T: − #T0)−(B+C)/3−1/@ .

We conclude the proof using (7.7) and the bound #T: ≥ 20#T0 for 20 > 1.

In contrast to Section 3, and most of the existing literature, Algorithm 7.1 starts
from a refinement T of T0 rather than T0 and thus exploits the mesh refinement
already performed in the adaptive process. Wenowgive a simple argument, updated
from Bonito et al. (2013b), that shows that the number of elements #(T , g, 1, E)
marked by GREEDY starting from T with target tolerance g and refined 1 ≥ 1
times is dominated by #(T0, g, 1, E), namely

#(T , g, 1, E) ≤ #(T0, g, 1, E). (7.8)

Estimate (7.8) is crucial because it avoids studying the cardinality of GREEDY
starting from T ≠ T0 directly, and simplifies the analysis. Even though (7.8) is
plausible, the fact that the output of GREEDY(T0, g, @, 1, E) is unrelated to T makes
it non-obvious. In fact, note that we do not claim that #(T , g, 1, E) ≤ #(T0, g, 1, E),
which is unclear. The proof presented below hinges on the fact that all the elements
refined within GREEDY(T0, g, @, 1, E) are either refined because they are marked by
GREEDY (and thus of largest oscillation) or because their refinement is necessary to
guarantee conformity of the resulting subdivision. For our purposes, (7.8) suffices.

Lemma 7.5 (GREEDY starting from T ). Let g > 0 be a target tolerance and let
1 ≥ 1 be the number of bisections per marked element. Assume that the local errors
employed by GREEDY satisfy Assumption 7.3 (monotonicity of local oscillations)
in ℓ@. Then the number of elements #(T , g, 1, E) marked by GREEDY(T , g, @, 1, E)
satisfies (7.8) for any admissible refinement T ∈ T of T0.

Proof. We simply writeGREEDY(T0, g, 1) andGREEDY(T , g, 1) because E and @
are fixed. Let # ≔ #(T0, g, 1, E), and recall that the bisection rules define a unique
forest T emanating from T0 and a unique sequence of elements {)8}#8=1 marked by
GREEDY(T0, g, 1). We let {T 8}#8=1 denote the sequence of intermediate subdivi-
sions built within GREEDY(T0, g, 1) starting with T 0 = T0: )8 ∈ T 8−1 is bisected
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once by REFINE, which also produces the smallest conforming refinement T 8 of
T 8−1 containing the two children of)8 . We thus say that GREEDY(T0, g, 1) satisfies
the minimality property that all the elements refined are either marked elements
because their error is largest or necessary to guarantee conforming subdivisions.
Notice that this is not true for GREEDY(T0, g, 1) when 1 > 1.

For any T ∈ T, we let ΛT be the set of indices 9 ∈ {1, . . . , #} such that )9 is
never refined in the process to create T , that is, )9 is either an element of T or a
successor of an element of T . We show that

#(T , g, 1, E) ≤ #ΛT (7.9)

by induction on #ΛT . If #ΛT = 0 then T is a refinement of T # , whence the
monotonicity of the total error

�T (E)@ ≤ �T # (E)@ ≤ g,
guaranteed by (7.5), implies that #(T , g, 1, E) = 0; this satisfies (7.9) as desired.

We now assume that (7.9) is valid for any T ∈ T such that #ΛT ≤ : , a
non-negative integer, and deduce that it must also hold for any T ∈ T such that
#ΛT ≤ : + 1. Let T ∈ T be one such mesh, namely #ΛT = : + 1. If �T (E)@ ≤ g,
then #(T , g, 1, E) = 0 and #(T , g, 1, E) ≤ #ΛT holds trivially.
When instead �T (E)@ > g, we let 9 be the smallest index in ΛT and show

that )9 ∈ T using the minimality property of GREEDY(T0, g, 1). Assume by
contradiction that )9 ∉ T but )9 belongs to a refinement T̃ of T and is thus a
successor of an element ) ∈ T . Note that ) is refined by GREEDY(T0, g, 1) to
produce )9 but was not marked, because otherwise ) = )8 for some 8 < 9 and
8 ∈ ΛT , which would contradict the minimality of 9 . Hence ) must have been
refined by the REFINE routine to guarantee conformity when bisecting a marked
element )ℓ , ℓ < 9 . Invoking the minimality of 9 again yields that ℓ ∉ ΛT and
)ℓ cannot be in T because )ℓ has been refined to get to T by definition of ΛT .
Since REFINE refines the minimal number of non-marked elements to guarantee
conformity, and T is conforming, ) must have been refined as well when refining
)ℓ in the process of constructing T and therefore cannot be in T . This is a
contradiction and )9 ∈ T .
Therefore T is a refinement of T 9−1 because all the elements marked or refined

to ensure conformity by GREEDY(T0, g, 1) have been refined in the process of
creating T . Moreover, )9 ∈ T is the element with largest error oscT (E, )9) within
T (with ad hoc criteria to break ties), because oscT 9−1(E, )9) is largest in T 9−1 by
definition of )9 and monotonicity of the local error (7.5); hence )9 must be the first
element marked by GREEDY(T , g, 1). Let T ∗ be the subdivision obtained from
T upon bisecting 1 times )9 . Notice that ΛT ∗ is a strict subset of ΛT , because
9 ∉ ΛT ∗ , so that the induction assumption yields

#(T , g, 1, E) = 1 + #(T ∗, g, 1, E) ≤ 1 + #ΛT ∗ ≤ #ΛT .

This proves (7.9), and (7.8) follows immediately since #ΛT ≤ #(T0, g, 1, E).
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Estimate (7.8) is critical to analysing the performances of GREEDY starting from
any admissible subdivision T ∈ T. We emphasize that the complexity estimate
provided by Corollary 7.6 is expressed in terms of the number of marked elements
#(T , g, @, 1, E) and tolerance g instead of error and cardinality of T . This is why
GREEDY can start from any mesh T ∈ T.
Corollary 7.6 (performance of GREEDY). Let the initial subdivision T0 of Ω ⊂
R3 satisfy Assumption 6.19 (initial labelling) and let T ∈ T be any admiss-
ible refinement of T0. Let g > 0 be the target tolerance and let 1 ≥ 1 be
the number of bisections performed on each marked element. Let (E, B, C, ?, @)
satisfy Assumption 7.2 (admissible set of parameters for GREEDY) with local
errors {oscT (E, ))@}) ∈T which in turn verify Assumption 7.3 (monotonicity of
local oscillations) in ℓ@. The number of marked elements #(T , g, @, 1, E) by
GREEDY(T , g, @, 1, E) satisfies

#(T , g, @, 1, E) ≤ � |E |3/(B+C)-B?(Ω)g
−3/(B+C), (7.10)

with a constant � = �(?, @, B, 1, 3,Ω, T0). Moreover, the estimate (7.10) is valid
for tensor-valued functions E.

Proof. Invoking Proposition 7.4 (performance of GREEDY), which gives rise to
a mesh T̂ , and Lemma 7.5 (GREEDY starting from T ), we readily deduce

#(T , g, @, 1, E) ≤ #(T0, g, @, 1, E) ≤ #T̂ ≤ � |E |3/(B+C)-B?(Ω)g
−3/(B+C),

which is the desired inequality (7.10).

7.2. Constrained approximations

We discuss how the approximations produced by GREEDY (see Corollary 7.6) can
be modified to satisfy the structural assumption (5.51) without sacrificing their
accuracy.

7.2.1. Constrained approximations of scalar functions
The approximate data D̃ = (G̃, 2̃, 5̃ ) constructed in the previous sections using
the GREEDY algorithm are not guaranteed to satisfy the necessary conditions for
perturbed problem (5.5) with D̂ = D̃ to have a solution D̂ = D̂(D̂) ∈ �1

0(Ω). Recall
that the data D = (G, 2, 5 ) ∈ �(Ω) is assumed to satisfy the structural assumption
(5.50), i.e. G ∈ "(U1, U2) and 2 ∈ '(21, 22) with 0 < U1 ≤ U2 and 0 ≤ 21 ≤ 22.
It turns out that constructing approximate data D̂ with the same constraints is a
difficult task. We follow Bonito et al. (2013b) and modify the data D̃ to obtain
D̂ = (Ĝ, 2̂, 5̂ ) in such a way that the approximation property of D̃ is preserved,
that is,

‖D − D̂‖�(Ω) ≤ �data‖D − D̃‖�(Ω),
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while ensuring that

Ĝ ∈ "
(
U1
2
, �Û2

)
, 2̂ ∈ '

(
− U1

4�2
%

, �2̂2

)
. (7.11)

Here � is a constant independent of relevant quantities (we make this more precise
below). In particular, the data D̂ satisfies the structural assumption (7.11) which
guarantees that the perturbed problem (5.5) has a unique solution. Note that the
general case is more subtle than when the data are approximated by piecewise con-
stant approximations (5.74), which are directly satisfying the structural assumption
and used as motivation in Section 5.4.2.
We start by discussing a process modifying the approximation of a strictly

positive scalar function E ∈ !∞(Ω), i.e. E ∈ '(21, 22) for some 0 < 21 ≤ 22; see
(5.49). Because the polynomial degree used to approximate the data might differ
depending on the application, we use< ∈ N to denote a generic polynomial degree.
We think of Ẽ ∈ S<,−1

T as an approximation to E not necessarily strictly positive.
The following process modifies Ẽ locally to construct Ê ∈ S<,−1

T . It involves a
parameter ! > 2 responsible for the truncation of Ẽ whenever it is too large,
i.e. Ẽ ≥ !22. For ) ∈ T , we set Ê |) ≔ Ê) , where

Ê) ≔




22, when ‖Ẽ‖!∞() ) ≥ !22,

Ẽ |) −minG∈) Ẽ(G) + 21
2
, when otherwise minG∈) Ẽ(G) <

21
2
,

Ẽ |) , otherwise.

(7.12)

Corollary 7.9 below is in essence Proposition 3 of Bonito et al. (2013b), and
states that the constructed Ê satisfies

0 <
21
2
≤ Ê ≤

(
1
2
+ 2!

)
22 a.e. in Ω.

This is at the expense of inflating the approximation error in !@, 1 ≤ @ ≤ ∞, by
a multiplicative constant � depending only on 3, <, 22/21, @, ! and the shape
regularity of T,

‖E − Ê‖!@() ) ≤ �‖E − Ẽ‖!@() ).

In preparation for this result, we introduce the following notation. We let ��
denote the smallest constant such that for any) ∈ T and any polynomial % ∈ P<()),
we have the inverse inequality

‖∇%‖!∞() ) ≤ �� ‖%‖!∞() ) |) |−1/3 . (7.13)

The inverse inequality constant �� depends only on the shape regularity of T, <
and 3. Note that for such a polynomial % ∈ P<()), we have

|%(G) − %(H)| ≤ �� ‖%‖!∞() ) |) |−1/3 |G − H |, for all G, H ∈ ).
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Consequently, for any d > 0 and G ∈ ) , we define
)(G, d) ≔ ) ∩ �(G, d |) |1/3/�� ),

which is motivated by the fact that for G ∈ ) and H ∈ )(G, d) we have

|%(G) − %(H)| ≤ �� ‖%‖!∞() ) |) |−1/3 |G − H | ≤ d‖%‖!∞() ). (7.14)

Critical for the analysis below is the existence of a constant 0 < �((d) ≤ 1
depending on d but also on 3, < and the shape regularity of T, such that

|)(G, d)| ≥ �((d)|) | for all G ∈ ), ) ∈ T . (7.15)

This constant �((d) assesses the area of a subset of ) where the polynomial %
varies no more than d‖%‖!∞() ) away from %(G).
We are now in a position to analyse the effect of the nonlinear correction (7.12).

We proceed locally over each ) ∈ T and start with the case where ‖Ẽ‖!∞() ) is large
(Lemma 7.7). We then discuss the case where Ẽ(G) is small on ) (Lemma 7.8),
while for the remaining case the function Ẽ does not need to be modified on ) .
These three cases are collected in Corollary 7.9 for scalar-valued functions and in
Corollary 7.11 for matrix-valued functions. In all the arguments below we used
the convention 01/∞ = 1 for any 0 > 0.

Lemma 7.7 (locally enforcing constraints for large approximations). LetT ∈
T be any conforming refinement of T0 satisfying Assumption 6.19 (initial labelling).
Let 22 > 0, ) ∈ T and E) ∈ !∞()) satisfying 0 < E) ≤ 22 a.e. in ) . Furthermore,
for < ≥ 0 and ! > 2, assume that Ẽ) ∈ P<()) satisfies

‖Ẽ) ‖!∞() ) ≥ !22. (7.16)

Then, for the constant function Ê) ≔ 22 ∈ P<()),
21
2
< Ê) < !22 <

(
1
2
+ 2!

)
22.

Moreover, for 1 ≤ @ ≤ ∞, we have
‖E) − Ê) ‖!@() ) ≤ �+2 ‖E) − Ẽ) ‖!@() ),

where

�+2 ≔
4�−1/@

(

! − 2
and �( = �((1/2) is the constant appearing in (7.15) with d = 1/2.
Proof. Let G0 ∈ ) and 2̃2,) defined by the relation

2̃2,) ≔ |Ẽ) (G0)| ≔ ‖Ẽ) ‖!∞() ).

In view of the Lipschitz property (7.14) applied to % = Ẽ) and with d = 1
2 , we have

|Ẽ) (G) − Ẽ) (G0)| ≤ 2̃2,)

2
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for G ∈ )0 ≔ )(G0,
1
2 ) ⊂ ) . Recall (7.15), which implies that |)0 | ≥ �̃( |) | for some

constant �̃( ≔ �((1/2) depending only on 3, = and the shape regularity of T. On
the one hand, this implies that Ẽ) |)0 is bounded below with |Ẽ) (G)| ≥ 2̃2,) /2 for
G ∈ )0 and, on the other hand, E) is bounded from above by

0 ≤ E) (G) ≤ 22 ≤ !−12̃2,) , G ∈ ).
Consequently, for G ∈ )0 and since ! > 2, we have

0 ≤ E) (G) ≤ !−12̃2,) ≤
2̃2,)

2
≤ |Ẽ) (G)|

and thus

|E) (G) − Ẽ) (G)| ≥ |Ẽ) (G)| − E) (G) ≥
(

1
2
− 1
!

)
2̃2,) =

! − 2
2!

2̃2,) ,

which indicates that E) and Ẽ) are sufficiently far apart on a substantial portion )0
of ) . This is responsible for the !@-bound below. In fact, we have

‖E) − Ẽ) ‖!@() ) ≥ ‖E) − Ẽ) ‖!@()0) ≥ ! − 2
2!

2̃2,) |)0 |1/@, (7.17)

whence, from the definition Ê) ≔ 22 and using (7.15), we deduce

‖E) − Ê) ‖!@() ) ≤ 222 |) |1/@ ≤ 2!−12̃2,) |) |1/@ ≤
4�−1/@

(

! − 2
‖E) − Ẽ) ‖!@() )

as desired.

Lemma 7.8 (locally enforcing constraints for small approximations). LetT ∈
T be any conforming refinement of T0 satisfying Assumption 6.19 (initial labelling).
Let 0 < 21 ≤ 22, ) ∈ T and E) ∈ !∞()) satisfying 21 < E) ≤ 22 a.e. in ) . Fur-
thermore, for < ≥ 0 and ! > 2 assume that Ẽ) ∈ P<()) satisfies

‖Ẽ) ‖!∞() ) ≤ !22 (7.18)

and
min
G∈)

Ẽ) (G) <
21
2
. (7.19)

Then the function Ê) ≔ 21/2 + Ẽ) −minG∈) Ẽ) (G) ∈ P=()) is such that
21
2
≤ Ê) ≤ 2!22 + 21

2
≤
(

2! + 1
2

)
22

and
‖E) − Ê) ‖!@() ) ≤ �+1 ‖E) − Ẽ) ‖!@() ),

where
�+1 ≔

(
1 + �−1/@

( (d)
)

and �((d) is the constant appearing in (7.15) with d = 21/(2!22).
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Proof. We define G0 ∈ ) , 2̃1,) ∈ R by the relations

2̃1,) ≔ Ẽ) (G0) ≔ min
G∈)

Ẽ) (G).

From the Lipschitz property (7.14) and the assumption (7.18), we find that

|Ẽ) (G) − Ẽ) (G0)| ≤ 21
2

for G ∈ )0 ≔ )(G0, d) with d ≔ 21/(2!22). Recall (7.15), which implies that
|)0 | ≥ �̃( |) | for some constant �̃( ≔ �((d) depending only on 3, <, 22/21, ! and
the shape regularity of T.

For G ∈ )0, we proceed by estimating the difference

E) (G)− Ẽ) (G) = E) (G)− (̃E) (G)− Ẽ) (G0))− Ẽ) (G0) ≥ 21− 21
2
− 2̃1,) =

21
2
− 2̃1,) > 0,

because 2̃1,) < 21/2 by assumption (7.19). This implies that

|)0 |1/@
(
21
2
− 2̃1,)

)
≤ ‖E) − Ẽ) ‖!@() ),

and E) and Ẽ) are uniformly far apart in the substantial part )0 of ) . Therefore
Ê) ≔ Ẽ) + (21/2 − 2̃1,) ) satisfies

21
2
≤ Ê) ≤ 2!22 + 21

2
because 2̃1,) ≥ −‖Ẽ‖!∞() ) ≥ −!22 by assumption (7.18), and

‖E) − Ê) ‖!@() ) ≤ ‖E) − Ẽ) ‖!@() ) +
(
21
2
− 2̃1,)

)
|) |1/@

≤ ‖E) − Ẽ) ‖!@() ) +
(
21
2
− 2̃1,)

)
�̃−1/@
( |)0 |1/@

≤ (
1 + �̃−1/@

(

)‖E) − Ẽ) ‖!@() ).

This proves the assertions.

Corollary 7.9 (locally enforcing constraints). Let T ∈ T be any conforming
refinement of T0 satisfying Assumption 6.19 (initial labelling). Let 0 < 21 ≤ 22,
) ∈ T and E) ∈ !∞()) satisfying 21 ≤ E) ≤ 22 a.e. in ) . Then, for < ≥ 0, ! > 2,
and Ẽ) ∈ P<()), the function Ê) ∈ P<()) defined in (7.12) satisfies

21
2
≤ Ê) ≤

(
1
2
+ 2!

)
22 a.e. in ) .

Moreover, for 1 ≤ @ ≤ ∞, we have
‖E) − Ê) ‖!@() ) ≤ max(�+1 , �

+
2 )‖E) − Ẽ) ‖!@() ) for all ) ∈ T ,

where�+1 and�+2 are the constants appearing in Lemmas 7.8 and 7.7, which depend
only on 3, <, 22/21, ! and the shape regularity of T.
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Proof. The desired results follow from Lemma 7.7 when

‖Ẽ) ‖!∞() ) ≥ !22,

and from Lemma 7.8 when

‖Ẽ) ‖!∞() ) < !22 and min
G∈)

Ẽ) <
21
2
.

In the remaining case,

‖Ẽ) ‖!∞() ) < !22 and min
G∈)

Ẽ) (G) ≥ 21
2
,

since Ê) = Ẽ) satisfies the desired constraints, there is nothing to prove.

7.2.2. Constrained approximation of the diffusion coefficients
For matrix-valued functions, the constraints are on the eigenvalues of the matrix
rather than on the coefficients themselves. Although this requires a few adjust-
ments, the process is similar to the scalar case. We recall that for 0 < U1 ≤ U2,
"(U1, U2) ⊂ !∞(Ω;R3×3sym

)
denotes the class of symmetric matrix-valued functions

whose eigenvalues lie between U1 and U2; see (5.48).
Algorithm CONSTRAINT-A is based on (7.12) and modifies approximations

G̃ ∈ (S=�,−1
T

)3×3 of G ∈ "(U1, U2) to produce uniformly positive definite approx-
imations Ĝ ∈ (S=�,−1

T
)3×3 of G.

Algorithm 7.10 (CONSTRAINT-A). Given a threshold parameter ! > 2, 0 <

U1 ≤ U2, a conforming refinement T ∈ T of T0, and G̃ ∈ (S=�,−1
T

)3×3 , this routine
constructs a positive definite Ĝ ∈ (S=�,−1

T
)3×3 .

[ Ĝ] = CONSTRAINT-A(T , U1, U2, !, G̃)
For ) ∈ T

Ũ1,) = inf{HC G̃(G)H, G ∈ ), |H | = 1}
Ũ2,) = sup{|HC G̃(G)H |, G ∈ ), |H | = 1}
if Ũ2,) ≥ !U2

Ĝ|) = U2O3
else if Ũ1,) < U1/2

Ĝ|) = G̃|) − (U1/2 − Ũ1,) )O3
else

Ĝ|) = G̃|)
return Ĝ

Notice that CONSTRAINT-A preserves symmetry, that is, if G̃ is symmetric then
so is the output Ĝ. In addition, when = = 1 and G̃ ∈ (

S0,−1
T

)3×3 is the piecewise
constant local average of G, the output Ĝ of CONSTRAINT-A is Ĝ = G̃ since in
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that case the parameters Ũ1,) and Ũ2,) satisfy

Ũ1,) ≥ U1 >
U1
2

and Ũ2,) ≤ U2 < !U2 for all ) ∈ T .
This is consistent with the observation made in Section 5.4.2.
The next corollary hinges on Corollary 7.9 (locally enforcing constraints) to de-

rive properties of CONSTRAINT-A. In passing, we recall that for G ∈ ! ?(Ω;R3×3)
we write

‖G‖!?(Ω) ≔ ‖|G|‖!?(Ω),

where for G ∈ Ω, |G(G)| is the spectral norm of G(G).

Corollary 7.11 (locally enforcing constraints for matrices). Let the threshold
be ! > 2, 0 < U1 ≤ U2 and G ∈ "(U1, U2). Let T ∈ T be any conforming
refinement of T0 and let G̃ ∈ (

S=�,−1
T

)3×3 be a symmetric approximation of G.
Then the output [ Ĝ] = CONSTRAINT-A(T , U1, U2, !, G̃) is symmetric and satisfies

U1
2
≤ _ 9(Ĝ) ≤

(
1
2
+ 2!

)
U2 a.e. in Ω, 1 ≤ 9 ≤ 3.

Moreover, for 1 ≤ @ ≤ ∞, we have
‖G − Ĝ‖!@() ) ≤ �data‖G − G̃‖!@() ) for all ) ∈ T ,

where �data ≔ max(�+1 , �
+
2 ) and �+1 and �+2 are the constants appearing in Lem-

mas 7.8 and 7.7, which depend only on 3, =�, U2/U1, ! and the shape regularity
of T.

Proof. We observe that G̃ is not assumed to be positive semidefinite. We argue
locally and fix ) ∈ T . Let Ũ2,) > 0 and H0 ∈ R3 be such that |H0 | = 1 and

Ũ2,) ≔ sup
G∈)
|HC0 G̃(G)H0 | ≔ sup

G∈)
sup

H∈R3 , |H |=1
|HC G̃(G)H |.

We first consider the case Ũ2,) ≥ !U2 for which Ĝ|) ≔ U2O3 . For G ∈ ) , we set
0(G) ≔ HC0G(G)H0 and 0̃) (G) = HC0 G̃(G)H0 ∈ P=�()).

This notation allows us to reduce to the scalar case upon noting that

‖0 − 0̃) ‖!@() ) ≤ ‖G − G̃‖!@() )

and U1 ≤ 0 ≤ U2 a.e. in Ω. Because Ũ2,) ≥ !U2, Lemma 7.7 with < = =�
guarantees that 0̂) ≔ U2 satisfies

‖0 − 0̂) ‖!@() ) ≤ �+2 ‖0 − 0̃) ‖!@() ) ≤ �+2 ‖G − G̃‖!@() ).

Consequently, the matrix-valued approximation Ĝ|) ≔ U2O3 satisfies

‖G − Ĝ‖!@() ) = ‖0 − 0̂) ‖!@() ) ≤ �+2 ‖G − G̃‖!@() ).
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This proves the desired result when Ũ2,) ≥ !U2.
We now consider the case where Ũ2,) < !U2 and define Ũ1,) ∈ R, H1 ∈ R3 with
|H1 | = 1 by the relations

Ũ1,) = inf
G∈)

HC1 G̃(G)H1 = inf
G∈)

inf
|H |=1

HC G̃(G)H.

We also redefine the associated scalar functions for G ∈ ) using H1 instead of H0:

0(G) ≔ HC1G(G)H1 and 0̃) (G) = HC1 G̃(G)H1 ∈ P=�()).

If Ũ1,) < U1/2 then Ĝ|) = G̃|) + (U1/2 − Ũ1,) )O3 . Lemma 7.8 with < = =�
ensures that 0̂) = 0̃) + U1/2 − Ũ1,) satisfies

U1
2
≤ 0̂) ≤

(
1
2
+ 2"

)
U2

and
‖0 − 0̂) ‖!@() ) ≤ �+1 ‖0 − 0̃) ‖!@() ) ≤ �+1 ‖G − G̃‖!@() ).

Thus Ĝ|) satisfies the desired properties provided Ũ2,) ≥ !U2 as well.
It the remaining case Ũ2,) < !U2 and Ũ1,) ≥ U1/2, the function Ĝ|) = G̃|)

satisfies the desired properties and there is nothing to prove.

As a corollary, we report the complexity of an algorithm that concatenates the
linear approximation of GREEDY with the nonlinear correction into the constraint
of CONSTRAINT-A. We recall from Corollary 6.36 (approximation class of G)
that the admissible set of parameters of G for GREEDY are =� ≤ = − 1:

B� ∈ (0, =�], ?� ∈ (0,∞], @� ∈ [2,∞], B� − 3

?�
+ 3

@�
> 0, C� = 0.

Corollary 7.12 (complexity of constrained GREEDY for G). Let the initialmesh
T0 of Ω ⊂ R3 satisfy Assumption 6.19 (initial labelling) and let T ∈ T be any
admissible refinement of T0. Let g > 0 be the target tolerance, let 1 ≥ 1 be
the number of bisections performed on each marked element, and let ! > 2
be a threshold parameter. Furthermore, assume that (G, B�, C�, ?�, @�) satisfies
Assumption 7.2 (admissible set of parameters for GREEDY) with local oscillations
{‖G − Ĝ‖!@�() )}) ∈T and, in addition, G ∈ "(U1, U2) for some 0 < U1 ≤ U2. The
algorithm

[T̂ , G̃] = GREEDY(T , g, @�, 1, G)
[ Ĝ] = CONSTRAINT-A(T̂ , U1, U2, !, G̃)

where GREEDY is applied to the 3(3 + 1)/2 distinct components of G, marks #
elements of T for refinement with

# ≤ � |G|3/B�
-
B�
?�

(Ω;T0)
g−3/B� (7.20)
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and � = �(?�, @�, B�, 1, 3, =�, U2/U1, !,Ω, T0). Moreover, Ĝ ∈ (
S=�,−1
T

)3×3
satisfies

Ĝ ∈ "(Û1, Û2) : Û1 =
U1
2
, Û2 = (1 + 4!)

U2
2
, (7.21)

and there is a constant �data > 0 such that

‖G − Ĝ‖!@(Ω) ≤ �datag.

Proof. This result follows upon invokingCorollary 7.6 (performance ofGREEDY)
and Corollary 7.11 (locally enforcing constraints for matrices).

Remark 7.13 (constrained approximation class of matrices). As a consequence
of Corollary 7.12, we realize that for � ∈ "(U1, U2),

XT (G)A ≤ X̃T (G)A ≤ �dataXT (G)A ,

where the best approximation error XT (G)A and best constrained approximation
error X̃T (G)A are defined in (6.9) and (6.10).

7.2.3. Constrained approximation of the reaction coefficients
If the reaction coefficient 2 ∈ '(21, 22) is strictly positive (21 > 0), then Corol-
lary 7.9 (locally enforcing constraints) with < = =2 directly applies to E) = 2 |) ,
) ∈ T , and guarantees that the approximate coefficient 2̂ ∈ S=2 ,−1

T defined on
) ∈ T by 2̂ |) ≔ Ê) satisfies

2̂ ∈ '(2̂1, 2̂2) : 2̂1 =
21
2
, 2̂2 = (1 + 4!)

22
2
.

However, reaction coefficients are not necessarily strictly positive onΩ, and Corol-
lary 7.9 cannot be invoked directly. Instead, we take advantage of the fact that the
perturbed problem (5.5) is still well-posed provided 2̂ ≥ −Û1/(2�2

%) and the approx-
imate diffusion coefficient Ĝ ∈ "(Û1, Û2) of G ∈ "(U1, U2) satisfies Û1 ≥ U1/2
according to (5.52); hence 2̂ ≥ −U1/(4�2

%). Therefore we apply Corollary 7.9 to
the shifted reaction coefficient E = 2 + Û1/�2

%, which satisfies

E1 ≔ 21 + Û1

�2
%

≤ E ≤ 22 + Û1

�2
%

≕ E2. (7.22)

Below is the proposed algorithm for the construction of 2̂ in the general case 21 ≥ 0.

Algorithm 7.14 (CONSTRAINT-c). Given ! > 2, Û1 > 0, a conforming refine-
ment T ∈ T of T0, and 2̃ ∈ S=2 ,−1

T , this routine constructs 2̂ ∈ S=2 ,−1
T as follows:

[2̂] = CONSTRAINT-c(T , Û1, !, 2̃)
Ẽ = 2̃ + Û1/�2

%
For ) ∈ T

if ‖Ẽ‖!∞() ) ≥ !E2
Ê |) = E2
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else if minG∈) Ẽ(G) < E1/2
Ê |) = Ẽ |) −minG∈) Ẽ(G) + E1/2

else
Ê |) = Ẽ |)

2̂ = Ê − Û1/�2
%

return 2̂

We note that if =2 = 0, then 2̃ is the piecewise average of 2 and CONSTRAINT-c
does not modify 2̃, which already satisfies the structural assumption (7.11).
The next result shows that the output 2̂ of CONSTRAINT-c is a modification of

2̃ which satisfies 2̂ ∈ '(2̂1, 2̂2), with

2̂1 ≔
21
2
− Û1

2�2
%

and 2̂2 ≔ (1 + 4!)
22
2
+ (4! − 1)

Û1

2�2
%

(7.23)

without affecting the approximation of 2 in !@, 1 ≤ @ ≤ ∞ (up to a multi-
plicative constant). In particular, 2̂1 ≥ −Û1/(2�2

%), which is necessary for the
well-posedness of the perturbed problem (5.5) when �̂ ∈ "(Û1, Û2).

Corollary 7.15 (locallyenforcingconstraints fornon-negative scalar functions).
Let G ∈ "(Û1, Û2) with 0 < Û1 ≤ Û2, and 2 ∈ '(21, 22) with 0 ≤ 21 ≤ 22. Let
! > 2 and E1 ≤ E2 be defined in (7.22). Let T ∈ T be any conforming refinement
of T0 and 2̃ ∈ S=2 ,−1

T . Then the output [2̂] = CONSTRAINT-c(T , Û1, !, 2̃) satisfies

2̂1 ≤ 2̂ ≤ 2̂2 a.e. in Ω,

where 2̂1 and 2̂2 are given by (7.23). Moreover, for 0 < @ ≤ ∞, we have
‖2 − 2̂‖!@() ) ≤ �data‖2 − 2̃‖!@() ) for all ) ∈ T ,

where �data is a constant depending only on 3, =, E2/E1, Ω, ! and the shape
regularity of T.

Proof. Set ^ ≔ Û1/�2
% and E ≔ 2 + ^ ∈ '(21 + ^, 22 + ^) so that 21 + ^ > 0. On

each ) ∈ T , we invoke Corollary 7.9 (locally enforcing constraints) with < = =2 ,
Ẽ) = 2̃ |) + ^ and where 21, 22 are replaced by 21 + ^, 22 + ^ respectively. Hence
we deduce that the function Ê constructed within CONSTRAINT-c satisfies

21 + ^
2
≤ Ê ≤ (1 + 4!)

22 + ^
2

.

and
‖E − Ê‖!@() ) ≤ �data‖E − Ẽ‖!@() ) for all ) ∈ T , (7.24)

with a constant �data depending on 3, =, E2/E1, !, and the shape regularity of T.
Shifting back, 2 = E− ^ and 2̂ ≔ Ê− ^, we find that the approximation 2̂ constructed
by CONSTRAINT-c satisfies

21 + ^
2
− ^ ≤ 2̂ ≤ (1 + 4!)

22 + ^
2
− ^
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or equivalently
21
2
− :

2
≤ 2̂ ≤ (1 + 4!)

22
2
+ (4! − 1)

^

2
.

In view of (7.23) and ^ = Û1/�2
%, this is the first desired inequality in disguise.

Furthermore, the second desired inequality follows from (7.24) because for
) ∈ T we have 2 − 2̂ = E − Ê and 2 − 2̃ = E − Ẽ.

The next corollary combines the linear approximation of GREEDY together with
the nonlinear correction into the constraint of CONSTRAINT-c. We recall from
Corollary 6.37 (approximation class of 2) that the admissible set of parameters of 2
for GREEDY are =2 ≤ = − 1, B2 ∈ (0, =2], ?2 ∈ (0,∞], where

=2 > 0 ⇒ @2 >
3

2
, B2 − 3

?2
+ 3

@2
> 0, C2 = 0,

=2 = 0 ⇒ @2 = 2, B2 − 3

?2
+ 3

2
> 0, 0 < C2 < 2 − 3

2
.

Corollary 7.16 (complexity of constrained GREEDY for 2). Let the initial sub-
division T0 of Ω ⊂ R3 satisfy Assumption 6.19 (initial labelling) and T ∈ T be
any admissible refinement of T0. Let g > 0 be the target tolerance, 1 ≥ 1 be the
number of bisections performed on each marked element, let ! > 2 be the threshold
parameter, and Û1 > 0. Furthermore, assume that (2, B2 , C2 , ?2 , @2) satisfies As-
sumption 7.2 (admissible set of parameters for GREEDY) with local oscillations
{‖2 − 2̂‖!@2 () )}) ∈T and that 2 ∈ '(21, 22) for some 0 ≤ 21 ≤ 22. The algorithm

[T̂ , 2̃] = GREEDY(T , g, @2 , 1, 2)
[2̂] = CONSTRAINT-c(T̂ , Û1, !, 2̃)

marks # elements of T for refinement with

# ≤ � |2 |3/(B2+C2 )

-B2?2 (Ω;T0)g
−3/(B2+C2) (7.25)

and a constant � = �(?2 , @2 , B2 , 1, 3, =2 , E2/E1, !,Ω, T0) with E1 ≤ E2 defined in
(7.22) to construct T̂ . The function 2̂ ∈ S=2 ,−1

T̂
is a piecewise polynomial of degree

≤ =2 over T̂ and satisfies
2̂ ∈ '(2̂1, 2̂2),

where 2̂1 ≤ 2̂2 are given by (7.23). Moreover, for 1 < @2 ≤ ∞, there is a constant
�data depending only on 3, =2 , E2/E1, Ω, ! and the shape regularity of T such that

‖2 − 2̂‖!@2 (Ω) ≤ �datag.

Proof. Simply apply Corollary 7.6 (performance of GREEDY) and Corollary 7.15
(locally enforcing constraints for non-negative scalar functions).
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Remark 7.17 (constrained approximation class of scalars). Corollary 7.16 im-
plies that for 2 ∈ '(21, 22)

XT (2)@ ≤ X̃T (2)@ ≤ �dataXT (2)@,

where the best approximation error XT (2)@ and best constrained approximation
error X̃T (2)@ are defined in (6.9) and (6.10).

7.3. Approximation of the load term 5

We now turn our attention to the question of designing a practical algorithm for
reducing the global oscillation

�T ( 5 )2
−1 ≔

∑
) ∈T
‖ 5 − %T 5 ‖2�−1(l) ) ≈

∑
I∈V
‖ 5 − %T 5 ‖2�−1(lI ), (7.26)

where the projection %T is defined in (4.34). The approximation of functionals in
�−1(Ω) is rather intricate and out of reach without assuming additional structure
enabling practical evaluation of their actions on polynomial functions.
We examine three cases of independent interest. In Section 7.3.1 we consider

5 ∈ !@(Ω) for @ satisfying 23/(3 + 2) < @ ≤ ∞, which includes the most common
setting 5 ∈ !2(Ω). Sections 7.3.2 and 7.3.3 present examples of right-hand sides
not in !1. In Section 7.3.2 we treat the case 5 = 6XΓ, where Γ is a hyper-
surface not necessarily captured by the faces of the subdivisions and 6 ∈ !@(Γ),
@ ≥ 2, while in Section 7.3.3 we consider 5 = div g for some g ∈ !2(Ω;R3).
In all cases, the total error �T ( 5 )−1 is estimated by a surrogate �̃T ( 5 )−1, namely
�T ( 5 )−1 ≤ �data�̃T ( 5 )−1,

�̃T ( 5 )2
−1 ≔

∑
) ∈T

õscT ( 5 , ))2
@,

with a definition of õscT ( 5 , ))@ depending on the situation but local to ) ∈ T (and
not on stars). This allows Algorithm 7.1 (GREEDY) to reduce �̃T ( 5 )−1.

Before starting, we recall relevant definitions and results from Section 4 (a pos-
teriori error analysis). For I ∈ V , we let TI ⊂ T denote all the elements in lI and
FI ⊂ F all the faces in lI . For ℓ ∈ �−1(Ω), the restriction %T ℓ |lI belongs to the
space F(TI) = F<1,<2(TI) of functionals whose action against F ∈ �1

0(lI) reads

〈ℓ, F〉 =
∑
) ∈TI

∫
)
@) F +

∑
� ∈FI

∫
�
@� F (7.27)

for some @� ∈ %<1(�), � ∈ FI and @) ∈ %<2()), ) ∈ TI . The polynomial degrees
are chosen to be <1 = = − 1 and <2 = = − 2 but can be general in this discussion.

Corollary 4.31 (local near-best approximation) guarantees that %T ℓ |lI is the
quasi-best discrete functional in F(TI), namely

‖ℓ − %T ℓ‖�−1(lI ) ≤ �% inf
j∈F(TI )

‖ℓ − j‖�−1(lI ). (7.28)
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This will be used repeatedly to replace %T ℓ with more tractable quantities and
justify the use of GREEDY algorithms to reduce (7.26).

7.3.1. The case 5 ∈ !@(Ω)
In this section we show how to reduce the oscillation error (7.26) when 5 ∈ !@(Ω),
with @ > 23/(3 + 2) to guarantee that !@(Ω) compactly embeds in �−1(Ω). Note
that this not only includes the most treated case in the literature 5 ∈ !2(Ω) but also
the more intricate cases @ < 2 originally analysed by Cohen et al. (2012).

IfΠT 5 is the !2-projection of 5 into the space S= 5 ,−1
T of discontinuous piecewise

polynomials of degree = 5 , let 5̂ ∈ S= 5 ,−1
T be defined by (5.70); = 5 = =− 1 in some

applications but not always. Since 5̂ |lI ∈ F(TI) by taking @� = 0 and @) = 5̂ |)
in (7.27), the local near-best approximation property (7.28) of %T implies

‖ 5 − %T 5 ‖�−1(lI ) ≤ �% ‖ 5 − 5̂ ‖�−1(lI ).

Furthermore, for E ∈ �1
0(lI) we have

〈 5 − 5̂ , E〉 ≤ ‖ 5 − 5̂ ‖!@(lI )‖E‖!@̃(lI )

where 1/@ + 1/@̃ = 1. Note that the restriction @ > 23/(3 + 2) guarantees that
1 ≤ @̃ < 23/(3 − 2) and thus sob(�1) > sob(!@̃). Therefore Lemma 2.2 (first
Poincaré inequality) yields

‖ 5 − 5̂ ‖�−1(lI ) . diam(lI)1+3(1/2−1/@)‖ 5 − 5̂ ‖!@(lI ).

Returning to (7.26), after rearranging the terms element-wise and invoking the
shape regularity of T, we obtain �T ( 5 )−1 ≤ �data�̃T ( 5 )−1, where

�̃T ( 5 )2
−1 ≔

∑
) ∈T

õscT ( 5 , ))2
@, (7.29)

and õscT ( 5 , ))@ ≔ ℎC) ‖ 5 − 5̂ ‖!@() ) with C ≔ 1 + 3(1/2 − 1/@) > 0.
In view of the definition (5.70), the local oscillations õsc( 5 , ))@ satisfy As-

sumption 7.3 (monotonicity of local oscillations) in ℓ2 and we can now employ
Algorithm 7.1 (GREEDY) with local errors õscT ( 5 , ))@ accumulating in ℓ2. Recall
that we use the convention -0

@(Ω; T0) = !@(Ω).

Corollary 7.18 (approximation class of 5 ∈ !@(Ω)). Let the initial subdivision
T0 of Ω ⊂ R3 satisfy Assumption 6.19 (initial labelling) and let T ∈ T be any
admissible refinement of T0. Let g > 0 be the target tolerance and let 1 ≥ 1 be the
number of bisections performed on each marked element. Let 23/(3 + 2) < @ ≤ ∞
and set C = 1 + 3(1/2 − 1/@). Let ( 5 , B, C, ?, 2) satisfy Assumption 7.2 (ad-
missible set of parameters for GREEDY) with local oscillations {õsc( 5 , ))@}) ∈T .
Then [T̂ , 5̂ ] = GREEDY(T , g, 2, 1, 5 ) terminates in a finite number of steps with
�̃T̂ ( 5 )−1 ≤ g, whence

�T̂ ( 5 )−1 ≤ �datag.
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Moreover, the number # of marked elements by GREEDY satisfies

# . | 5 |3/(B+C)-B?(Ω;T0)g
−3/(B+C). (7.30)

In particular, 5 ∈ F3/(B+C) with | 5 |F3/(B+C) . ‖ 5 ‖-B?(Ω;T0).

Proof. Directly apply Corollary 7.6 (performance of GREEDY).

7.3.2. The case 5 = 6XC
We now consider the case where the right-hand side data 5 is a density supported
on a Lipschitz hyper-surface C ⊂ Ω in R3 with (3 − 1)-measure |C | < ∞.

The intricate interactions between bulk and interface contributions on %T makes
it difficult to analyse when 5 = 6XC with density 6 ∈ !@(C). We take a simpler
approach, likely suboptimal when = > 1 and 3 > 2, which discards %T in view of
the near-best approximation property (7.28):

‖ 5 − %T 5 ‖�−1(lI ) . ‖ 5 ‖�−1(lI ). (7.31)

The right-hand side of the above estimate is the starting point of the analysis by
Cohen et al. (2012) assuming = = 1 and 3 = 2.

We start with the derivation of a first upper bound for the local error ‖ 5 ‖�−1(lI ).

Lemma 7.19 (local oscillation). Let T ∈ T, I ∈ N , and @ > 2(3 − 1)/3. If
6 ∈ !@(C) and C ≔ 3/2 − (3 − 1)/@ > 0, then

‖ 5 ‖�−1(lI ) . |lI ∩ C |C/(3−1)‖6‖!@(lI∩C) .
∑
) ⊂lI

ℎC) ‖6‖!@()∩C). (7.32)

Proof. For E ∈ �1
0(lI) and 1/@ + 1/@̃ = 1, we have

〈 5 , E〉 =
∫
lI∩C

6E ≤ ‖6‖!@(lI∩C)‖E‖!@̃(lI∩C). (7.33)

We realize that �1/2(lI ∩ C) compactly embeds in !@̃(lI ∩ C) because

C ≔ sob(�1/2(lI ∩ C)) − sob(!@̃(lI ∩ C))

=
1
2
− (3 − 1)

(
1
2
− 1
@̃

)
=
3

2
− 1
@

(3 − 1) > 0,

provided @ > 2(3 − 1)/3. Consequently, we find that
‖E‖!@̃(lI∩C) . |lI ∩ C |C/(3−1)‖E‖� 1/2(lI∩C).

It remains to invoke the continuity (2.4) of the trace operator to write

‖E‖!@̃(lI∩C) . |lI ∩ C |C/(3−1)‖E‖� 1(lI ),

which, together with (7.33), yields the first estimate in (7.32). To deduce the second
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estimate, it suffices to note that |lI ∩ C | . diam(lI)3−1 . ℎ3−1
) for ) ⊂ lI and

that ‖6‖!@(lI∩C) ≤
∑
) ⊂lI ‖6‖!@()∩C).

Estimate (7.31) and Lemma 7.19 provide a surrogate for data oscillation

�̃T ( 5 )2
−1 ≔

∑
) ∈T

õscT (6, ))2
@, õscT (6, ))@ ≔ ℎC) ‖6‖!@()∩C), (7.34)

where C = 3/2 − (3 − 1)/@. The quantity õscT (6, ))@ verifies Assumption 7.3
(monotonicity of local oscillations) with Ω replaced by C because of its element-
wise structure. Therefore Proposition 7.4 (performance of GREEDY) states that
Algorithm 7.1 (GREEDY) can reduce �̃T ( 5 )−1. This is in contrast to the star-wise
GREEDY algorithm analysed in Cohen et al. (2012), which requires that all marked
stars are refined 3 times to ensure all the faces in the marked stars are refined.
We now discuss the performance of GREEDY with local indicators õscT (6, ))@.

Lemma 7.20 (approximation class of 5 = 6XC). LetC ⊂ Ω be aLipschitz hyper-
surface. Let the initial subdivision T0 of Ω ⊂ R3 satisfy Assumption 6.19 (initial
labelling) and let T ∈ T be any admissible refinement of T0. Let g > 0 be the
target tolerance and let 1 ≥ 1 be the number of bisections performed on each
marked element, and 2(3 − 1)/3 < @ ≤ ∞. Then [T̂ , 5̂ ] = GREEDY(T , g, 2, 1, 5 )
terminates in a finite number of steps with surrogate estimator �̃T̂ ( 5 )−1 ≤ g defined
in (7.34), whence

�T̂ ( 5 )−1 ≤ �datag.

Moreover, the number # of marked elements by GREEDY satisfies

# . ‖6‖2(3−1)
!@(C) g

−2(3−1). (7.35)

In particular, 5 = 6XC ∈ F1/(2(3−1)) with | 5 |F1/(2(3−1)) . ‖6‖!@(C).

Proof. This proof mainly follows the proof of Proposition 7.4 (performance of
GREEDY) but requires a few modifications to account for the geometry of the
problem. Since in turn the proof of Proposition 7.4 describes modifications to the
proof of Proposition 3.19 (abstract greedy error), we now provide a complete proof.
We proceed in several steps. We first consider the call GREEDY(T0, g, 2, 1, 5 ) from
T0 with one bisection 1 = 1 and accumulation in ℓ2, and discuss the general call
from T with 1 ≥ 1 in the last step of this proof.

1 Termination. Since ℎ) decreases monotonically to 0 with bisection, so does
õscT (6, ))@. Consequently, GREEDY terminates in a finite number : ≥ 1 of itera-
tions. Let )1, . . . ): be the sequence of marked elements, with M = {)1, . . . , ): }
and let T1, . . . , T: be the sequence of refinements produced by GREEDY starting
from T0. Upon termination, the surrogate error satisfies �̃T: ( 5 )−1 ≤ g, whence
�T: ( 5 )−1 ≤ �datag.

2 Counting. To estimate the cardinality of T: , we need to count #M. Set

X8 ≔ õscT8 (6, )8)@, 1 ≤ 8 ≤ : and X ≔ X:−1.
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Then we obtain

�̃T: ( 5 )−1 ≤ g < �̃T:−1( 5 )−1 ≤ X (#T:−1)1/2 ≤ X (#T:)1/2. (7.36)

We organize the elements inM by size in such a way that allows for a counting
argument. Let P 9 be the set of elements ) ofM with size

2−( 9+1) ≤ |) | < 2− 9 ⇒ 2−( 9+1)/3 ≤ ℎ) < 2− 9/3 .

We first observe that all the ) in P 9 are disjoint. This is because if )1, )2 ∈ P 9
and )̊1 ∩ )̊2 ≠ ∅, then one of them is contained in the other, say )1 ⊂ )2, due to the
bisection procedure which works in any dimension 3 ≥ 1; see Section 3.5. Hence

|)1 | ≤ 1
2
|)2 |,

contradicting the definition of P 9 . On the one hand, this implies the first bound

2−( 9+1)(3−1)/3 #P 9 . |C | ⇒ #P 9 . |C | 2( 9+1)(3−1)/3 , (7.37)

where we used that ℎ3−1
) ≈ |l) ∩ C | since ) ∩ C ≠ ∅ for all marked elements.

Recall that l) stands for the patch of elements around ) .
On the other hand, the monotonicity of the local error indicators õscT8 (6, ))@ =

ℎC) ‖6‖!@()∩C) implies that REFINE does not increase õscT8 (6, ))@ and thus

X ≤ X8 = õscT8 (6, )8)@, 1 ≤ 8 ≤ : − 1,

where C = 3/2 − (3 − 1)/@. In view of (7.34), if )8 ∈ P 9 , then we obtain
X ≤ õscT8 (6, )8)@ . 2− 9C/3 ‖6‖!@()8∩C).

Therefore, accumulating these quantities in ℓ@ yields

X@ #P 9 . 2− 9C@/3 ‖6‖@
!@(C)

and gives rise to the second bound

#P 9 . X−@ 2− 9C@/3 ‖6‖@
!@(C). (7.38)

3 Cardinality. The two bounds for #P in (7.37) and (7.38) are complementary.
The first one is good for 9 small whereas the second is suitable for 9 large (think of
X � 1). The crossover takes place for 90 such that

2( 90+1)(3−1)/3 |C | ≈ X−@ 2− 90C@/3 ‖6‖@
!@(C) ⇒ 2 90 ≈ |C |−2/@X−2‖6‖2!@(C),

upon using the expression for C. We now compute

: = #M =
∑
9

#P 9 .
∑
9≤ 90

2 9(3−1)/3 |C | + X−@ ‖6‖@
!@(C)

∑
9> 90

2−(C@/3) 9 .

Since ∑
9≤ 90

2 9(3−1)/3 ≈ 2 90(3−1)/3 ,
∑
9> 90

(2−C@/3) 9 . 2−C@ 90/3 ,
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we can write
#M . |C |1−2(3−1)/(@3)(X−1‖6‖!@(C)

)2(3−1)/3
.

We finally apply Theorem 3.16 (complexity of REFINE), to arrive at

#T: − #T0 . #M . |C |1−2(3−1)/(@3)(X−1‖6‖!@(C)
)2(3−1)/3

,

or equivalently

X . |C |3/(3−1)−2/@ ‖6‖!@(C)(#T − #T0)−3/(2(3−1)).

We deduce from (7.36) that

g . X(#T )1/2 . |C |3/(3−1)−2/@ ‖6‖!@(C)(#T − #T0)−3/(2(3−1))+1/2

or equivalently
#T: − #T0 . ‖6‖2(3−1)

!@(C) g
−2(3−1), (7.39)

From this we conclude that 5 = 6XC ∈ F1/(2(3−1)) with | 5 |F1/(2(3−1)) . ‖6‖!@(C), as
desired.

4 Starting from T . To derive similar properties for GREEDY starting from T ∈ T,
we proceed as in the proof of Corollary 7.6 (performance of GREEDY). We distin-
guish the output [T̃ , 5̃ ] = GREEDY(T0, g, 2, 1, 5 ) starting from T0 and performing
1 = 1 bisection per marked element with [T̂ , 5̂ ] = GREEDY(T , g, 2, 1, 5 ) starting
from T ∈ T and performing 1 ≥ 1 bisections per marked element. Lemma 7.5
(GREEDY starting from T ) guarantees that GREEDY(T , g, 2, 1, 5 ) terminates with
�̃T̂ ( 5 )−1 ≤ g. Moreover, Lemma 7.5 also ensures that the number of marked
elements satisfies

# ≤ #T̃ − #T0 . ‖6‖2(3−1)
!@(C) g

−2(3−1),

where we used (7.39) to derive the last inequality. This ends the proof.

7.3.3. The case 5 = div g with g ∈ !2(Ω;R3)
A characterization of distributions in �−1(Ω) is given in Evans (2010, Sec-
tion 5.9.1): they are of the form

5 = 50 + div g

with 50 ∈ !2(Ω), g ∈ !2(Ω;R3). Since we have already treated separately the
ubiquitous case g = 0 in Section 7.3.1, we now consider the case 50 = 0. Therefore

〈 5 , E〉 = −
∫
Ω
g · ∇E for all E ∈ �1

0(Ω) (7.40)

gives the action of 5 on E, and its norm is (Evans 2010, Section 5.9.1)

‖ 5 ‖�−1(Ω) = inf{‖g‖!2(Ω) | g ∈ !2(Ω;R3) satisfies (7.40)}. (7.41)
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Since adding the curl of a smooth vector field to g does not change (7.40), we
realize that the actual computation of (7.41) is problematic. We assume here that
g is given and simply deal directly with g, thereby exploiting the relation

‖ 5 ‖�−1(Ω) ≤ ‖g‖!2(Ω); (7.42)

this leads to a surrogate estimator. We first approximate g by discontinuous
piecewise polynomials of degree = 5 ≤ =−1, namely, we compute the !2-projection
gT = ΠT g onto

[
S
= 5 ,−1
T

]3 , then we let 5T ≔ div gT ∈ FT ⊂ �−1(Ω) be the
approximation of 5 :

〈 5T , E〉 = −
∑
) ∈T

∫
)

div gT E −
∑
� ∈F

∫
�
[[gT ]] · n�E for all E ∈ �1

0(Ω).

We see that for I ∈ V , 5T |lI has the form of a functional in F(TI) (see (7.27))
with @) = div gT |) ∈ P= 5 −1, @� = [[gT ]] · n� ∈ P= 5 for all ) ∈ T , � ∈ F , but
with smaller polynomial degree than functions in F(TI). We next exploit the local
near-best approximation (7.28) to replace %T 5 by 5T ,

‖ 5 − %T 5 ‖�−1(lI ) ≤ �% ‖ 5 − 5T ‖�−1(lI ) ≤ �% ‖g − gT ‖!2(lI ), (7.43)

by virtue of (7.42) with Ω replaced by lI . This leads to the surrogate element-
wise oscillation õscT (g, ))2 ≔ ‖g − gT ‖!2() ), which satisfies Assumption 7.3
(monotonicity of local oscillations). We thus have the global surrogate

�̃T ( 5 )2
−1 ≔

∑
) ∈T

õscT (g, ))2
2.

Corollary 7.21 (approximation class of div g). Let the initial subdivision T0 of
Ω ⊂ R3 satisfy Assumption 6.19 (initial labelling) and let T ∈ T be any admiss-
ible refinement of T0. Let g > 0 be the target tolerance and let 1 ≥ 1 be the
number of bisections performed on each marked element. Let (g, B, 0, ?, 2) satisfy
Assumption 7.2 (admissible set of parameters for GREEDY) with local oscillations
{õsc(g, ))2}) ∈T . Then [T̂ , 5̂ ] = GREEDY(T , g, 2, 1, 5 ) terminates in a finite
number of steps with �̃T̂ ( 5 )−1 ≤ g, whence �T̂ ( 5 )−1 ≤ �datag. Moreover, the
number # of marked elements by GREEDY satisfies

# . ‖g‖3/B
-B?(Ω)g

−3/B .

In particular, 5 = div g ∈ FB/3 with
| 5 |FB/3 . ‖g‖-B?(Ω).

Proof. Apply Corollary 7.6 (performance of GREEDY) with @ = 2 to g.

7.4. DATA module

We now summarize in one single algorithm, called DATA, all the developments in
Sections 7.2.2, 7.2.3 and 7.3. We first recall that Corollaries 7.12 (complexity of
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constrained GREEDY for G) and 7.16 (complexity of constrained GREEDY for 2)
deliver piecewise polynomial approximations (Ĝ, 2̂) of the coefficients (G, 2) over
an admissible mesh T̂ that satisfies both the global errors estimates

�T̂ (G)@� ≤ �datag, �T̂ (2)@2 ≤ �datag,

where 2 ≤ @�, @2 ≤ ∞ are the corresponding integrability indices, as well as the
structural constraint (5.51).
The situation for the load 5 is more intricate due to the evaluation of the non-local

norm �−1(Ω), which requires further structure of 5 besides regularity. Section 7.3
provides three examples of practical significance that allow for computable sur-
rogate errors �̃T ( 5 )−1 larger than the desired oscillations �T ( 5 )−1. Since these
examples have different requirements for the approximation procedure to work, we
gather the salient structural points in the following assumption.

Assumption 7.22 (structure of 5 ). Let (B 5 , ? 5 ) denote the additional regularity–
integrability indices of 5 beyond the basic �−1-regularity, which are required by
Assumption 7.2 (admissible set of parameters for GREEDY). Let | 5 |

-̃
B 5
? 5

(Ω;T0) be a
measure of piecewise regularity of 5 in T0 expressed below in terms of surrogates.
Assume that exactly one of the following cases holds, and note that all accumulate
local oscillations in ℓ2.

• 5 ∈ !@(Ω), with 23/(3 + 2) < @ ≤ ∞. Let õscT ( 5 , ))@ = ℎ
C 5
) ‖ 5 − 5̂ ‖!@() )

be the local oscillation with C 5 = 1 + 3(1/2 − 1/@) ≥ 0 and ( 5 , B 5 , C 5 , ? 5 , 2)
satisfy Assumption 7.2, and set | 5 |

-̃
B 5
? 5

(Ω;T0) ≔ | 5 |-B 5? 5 (Ω;T0).

• 5 = 6XC where C ⊂ Ω is a Lipschitz hyper-surface and 6 ∈ !@(C) with
2(3 − 1)/3 < @ ≤ ∞. Let õscT (6, ))@ = ℎA) ‖6‖!@()∩C) be the local oscilla-
tion with A = 3/2 − (3 − 1)/@ > 0. Set B 5 = 0, C 5 = 3/(2(3 − 1)), ? 5 = @,
and | 5 |

-̃
B 5
? 5

(Ω;T0) ≔ ‖6‖!@(C).

• 5 = div g with g ∈ !2(Ω;R3). Let õscT ( 5 , ))2 = ‖g − ΠT g‖!2() ) be the
local oscillation, C 5 = 0, and (g, B 5 , C 5 , ? 5 , 2) satisfy Assumption 7.3, and
set | 5 |

-̃
B 5
? 5

(Ω;T0) ≔ ‖g‖-B 5? 5 (Ω;T0).

In all these cases, GREEDY algorithms with tolerance g > 0 reduce the surrogate
error �̃T ( 5 )2

−1 and eventually guarantee that

�T ( 5 )−1 ≤ �datag,

where �data ≥ 1 is the constant appearing in Corollary 7.18, Lemma 7.20 or
Corollary 7.21 depending on Assumption 7.22 (structure of 5 ).

Algorithm 7.23 (DATA). Given a tolerance g > 0 and an arbitrary conforming
grid T ∈ T, not necessarily T0, DATA finds a conforming refinement T̂ ≥ T of T
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and approximate data D̂ = (Ĝ, 2̂, 5̂ ) ∈ DT̂ over T̂ such that

‖D − D̂‖�(Ω) = �T̂ (�)@� + �T̂ (2)@2 + �T̂ ( 5 )−1 ≤ �datag.

[T̂ , D̂] = DATA(T , g,D)
[TG, Ĝ] = GREEDY(T , g/3, @�, 1, G)
Ĝ = CONSTRAINT-A(T�, U1, U2, !, G̃)
Set Û1 = 1

2U1 and Û2 = (1 + 4!)U2/2
[T2 , 2̃] = GREEDY(T�, g/3, @2 , 1, 2)
2̂ = CONSTRAINT-c(T2 , Û1, !, 2̃)
[T̂ , 5̂ ] = GREEDY(T2 , g/3, 2, 1, 5 )
return T̂ , D̂

Note that DATA depends on the threshold parameter ! > 2 used in CONSTRAINT-A
and CONSTRAINT-c, although for simplicity it is not listed among the input para-
meters.
The next result summarizes the properties of DATA.

Corollary 7.24 (performance of DATA). Let the initial subdivision T0 of Ω ⊂
R3 satisfy Assumption 6.19 (initial labelling) and let T ∈ T be any admissible
refinement of T0. Let 1 ≥ 1 be the number of bisections performed on each marked
element. Let the assumptions of Corollaries 7.12 and 7.16 for the coefficients (G, 2)
be valid, and let 5 satisfy Assumption 7.22.
For any target tolerance g > 0 and any threshold parameter ! > 2, [T̂ , D̂] =

DATA(T , g,D) terminates in a finite number of iterations and outputs D̂, T̂ ∈ T
such that Ĝ is symmetric and

Ĝ ∈ "(Û1, Û2), 2̂ ∈ '(2̂1, 2̂2),

where Û1, Û2 are given by (7.21) while 2̂1, 2̂2 are given by (7.23). Moreover, there
is a constant �data ≥ 1 such that DATA terminates with

‖D − D̂‖�(Ω) ≤ �datag,

and the number # of elements marked to construct T̂ satisfies

# . |D |3/BDXBD/3
g−3/BD , (7.44)

with BD ≔ min{B�, B2 + C2 , B 5 + C 5 }, and

|D |XBD/3 =
(
|G|3/B�

-
B�
?�

(Ω,T0)
+ |2 |3/B2

-B2?2 (Ω,T0) + | 5 |
3/B 5
-̃
B 5
? 5

(Ω,T0)

)BD/3
.

Proof. Since the local oscillations for G and 2 satisfy Assumption 7.3 (monoton-
icity of local oscillations), we deduce that global oscillations do not increase upon
refinement, namely, for T̂ ≥ T2 ≥ TG,

�T̂ (G)@� + �T̂ (2)@2 ≤ �T�(G)@� + �T2 (2)@2 .
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In view of Corollaries 7.12 and 7.16, this in turn implies

�T̂ (G)@� + �T̂ (2)@2 ≤ �data
2
3
g.

For the load term 5 , we invoke Corollary 7.18, Lemma 7.20 or Corollary 7.21,
depending on Assumption 7.22 (structure of 5 ), to infer that

�T̂ ( 5 )−1 ≤ �data
1
3
g.

Hence
‖D − D̂‖�(Ω) = �T̂ (G)@� + �T̂ (2)@2 + �T̂ ( 5 )−1 ≤ �datag

as desired. The complexity estimate (7.44) directly follows from the complex-
ity estimates given in Corollaries 7.12 and 7.16 for (G, 2), and Corollary 7.18,
Lemma 7.20 or Corollary 7.21 for 5 depending on its structure.

Similar ideas apply to approximate non-vanishing Dirichlet data or boundary
flux conditions for Robin or Neumann problems, but we do not elaborate on this.

8. Mesh refinement: the bisection method
This section is devoted to the complexity analysis of REFINE for Λ-admissible
triangulations. More precisely, we prove the existence of a constant � > 0 such
that

#T: − #T0 ≤ �
:−1∑
9=0

#M 9 , : ≥ 0.

This kind of result holds for conforming meshes (Λ = 0) and was stated in The-
orem 3.16, and for non-conformingmeshes (Λ > 1) as anticipated in Theorem 3.29.
The results of Sections 8.1 and 8.2 are valid for 3 = 2 but the proofs of the cited
theorems extend to 3 > 2. We refer to the survey by Nochetto et al. (2009) for a
full discussion for 3 ≥ 2.

8.1. Conforming meshes

8.1.1. Chains and labelling for 3 = 2
In order to study non-local effects of bisection for 3 = 2, we now introduce the
concept of chain (Binev et al. 2004); this concept is inadequate for 3 > 2 (Nochetto
et al. 2009, Stevenson 2008). Recall that �()) denotes the edge of ) assigned for
refinement. To each ) ∈ T we associate the element �()) ∈ T sharing the edge
�()) if �()) is interior and �()) = ∅ if �()) is on mΩ. A chain C(), T ), with
starting element ) ∈ T , is a sequence {), �()), . . . , �<())} with no repetitions of
elements and with

�<+1()) = �:()) for some : ∈ {0, . . . , < − 1} or �<+1()) = ∅;
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Figure 8.1. Typical chain C(), T ) = {)9}89=0 emanating from ) = )0 ∈ T with
)9 = �()9−1), 9 ≥ 1.

see Figure 8.1. We observe that if an element ) belongs to two different grids,
then the corresponding chains may be different as well. Two adjacent elements
),) ′ = �()) are compatibly divisible (or equivalently ),) ′ form a compatible
bisection patch) if �() ′) = ) . Hence C(), T ) = {),) ′}, and a bisection of either
) or ) ′ does not propagate outside the patch.

Example (chains). Let F = {)8}12
8=1 be the forest of Figure 3.5. Then C()6, T ) =

{)6, )7}, C()9, T ) = {)9} and C()10, T ) = {)10, )8, )2} are chains, but only C()6, T )
is a compatible bisection patch.
To study the structure of chains we rely on the initial labelling (3.35) and the

bisection rule of Section 3.5 (see Figure 3.7):

Every triangle ) ∈ T with generation 6()) = 8 receives the label
(8 + 1, 8 + 1, 8) with 8 corresponding to the refinement edge �()),
its side 8 is bisected and both new sides as well as the bisector are
labelled 8 + 2 whereas the remaining labels do not change.

(8.1)

We first show that once the initial labelling and bisection rule are set, the resulting
master forest F is uniquely determined: the label of an edge is independent of the
elements sharing this edge and no ambiguity arises in the recursion process.

Lemma 8.1 (labelling). Let the initial labelling (3.35) for T0 and the above bi-
section rule be enforced. If T0 ≤ T1 ≤ · · · ≤ T= are generated according to (8.1),
then each side in T: has a unique label independent of the two triangles sharing
this edge.

Proof. We argue by induction over T: . For : = 0 the assertion is valid due to the
initial labelling. Suppose the statement is true for T: . An edge ( in T:+1 can be
obtained in two ways. The first is that ( is a bisector and so a new edge, in which
case there is nothing to prove about its label being unique. The second possibility
is that ( was obtained by bisecting an edge (′ ∈ S: . Let), ) ′ ∈ T: be the elements
sharing (′, and let us assume that �() ′) = (′. Let (8 + 1, 8 + 1, 8) be the label of ) ′,
which means that ( is assigned the label 8 + 2. By induction assumption over T: ,
the label of (′ as an edge of ) is also 8. There are two possible cases for the label
of ) .
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Figure 8.2. ) and) ′ form a compatible patch, as they share the generation.

Figure 8.3. ) ′ form a compatible patch with the child ) ′′ of ) ; indeed ) has a
lower generation than ) ′.

• Label (8 +1, 8 +1, 8): this situation is symmetric, �()) = (′, and (′ is bisected
with both halves getting the label 8 + 2. This is depicted in Figure 8.2.
• Label (8, 8, 8 − 1): a bisection of side �()) with label 8 − 1 creates a child ) ′′
with label (8 + 1, 8 + 1, 8) that is compatibly divisible with ) ′. Joining the new
node of ) with the midpoint of (′ creates a conforming partition with level
8 + 2 assigned to (. This is depicted in Figure 8.3.

Therefore, in both cases the label 8 + 2 assigned to ( is the same from both sides,
as asserted.

The two possible configurations displayed in the two figures above lead readily
to the following statement about generations.

Corollary 8.2 (generation of consecutive elements). For anyT ∈ T and), ) ′ ∈
T with ) = �() ′), we have either

(a) 6()) = 6() ′) and ) , ) ′ are compatibly divisible, or
(b) 6()) = 6() ′) − 1 and ) ′ is compatibly divisible with a child of ) .

Corollary 8.3 (generations within a chain). For all T ∈ T and ) ∈ T , its chain
C(), T ) = {): }<:=0 with ): = �

:()) has the property

6():) = 6()) − :, 0 ≤ : ≤ < − 1,
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Figure 8.4. The recursive refinement of )10 ∈ T in Figure 3.4 using
REFINE_RECURSIVE. This entails refining the chain C()10, T ) = {)10, )8, )2},
starting from the last element )2 ∈ T , which forms a compatible bisection patch on
its own because its refinement edge is on the boundary, and continuing with )8 ∈ T
and finally )10 ∈ T . Note that the successive meshes are always conforming and
that REFINE_RECURSIVE bisects elements in C()10, T ) twice before getting back
to )10.

and )< = �<()) has generation 6()<) = 6()<−1) or it is a boundary element with
lowest labelled edge on mΩ. In the first case, )<−1 and )< are compatibly divisible.

Proof. Apply Corollary 8.2 repeatedly to consecutive elements of C(), T ).

8.1.2. Recursive bisection
Given an element ) ∈ M to be refined, the routine REFINE_RECURSIVE(T , ))
recursively refines the chain C(), T ) of ) , from the end back to ) , and creates a
minimal conforming partition T∗ ≥ T such that ) is bisected once. This procedure
reads as follows:

[T∗] = REFINE_RECURSIVE(T , ))
if 6(�())) < 6())
[T ] = REFINE_RECURSIVE(T , �()))

else
bisect the compatible bisection patch C(), T )
update T

return T
We let C∗(), T ) ⊂ T∗ denote the recursive refinement of C(), T ) (or completion

of C(), T )) caused by bisection of ) . Since REFINE_RECURSIVE refines solely
compatible bisection patches, intermediate meshes are always conforming.
We refer to Figure 8.4 for an example of recursive bisection C∗()10, T ) of

C()10, T ) = {)10, )8, )2} in Figure 3.4: REFINE_RECURSIVE starts bisecting
from the end of C()10, T ), namely )2, which is a boundary element, and goes back
the chain bisecting elements twice until it gets to )10.
We now establish a fundamental property of REFINE_RECURSIVE(T , )) relat-

ing the generation of elements within C∗(), T ) (Binev et al. 2004).
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Lemma 8.4 (recursive refinement). Let T0 satisfy the labelling (3.35), and let
T ∈ T be a conforming refinement of T0. A call to REFINE_RECURSIVE(T , ))
terminates, for all ) in the set M of marked elements, and outputs the smallest
conforming refinement T∗ of T such that ) is bisected. In addition, all newly
created ) ′ ∈ C∗(), T ) satisfy

6() ′) ≤ 6()) + 1. (8.2)

Proof. We first observe that ) has maximal generation within C(), T ). So recur-
sion is applied to elements with generation ≤ 6()), whence the recursion termin-
ates. We also note that this procedure creates children of ) and either children or
grandchildren of triangles ): ∈ C(), T ) = {)8}<8=0 with : ≥ 1. If ) ′ is a child of )
there is nothing to prove. If not, we first consider < = 1, in which case ) ′ is a child
of )1 because )0 and )1 are compatibly divisible and so have the same generation;
thus 6() ′) = 6()1) + 1 = 6()0) + 1. Finally, if < > 1, then 6():) < 6()) and we
apply Corollary 8.3 to deduce

6() ′) ≤ 6():) + 2 ≤ 6()) + 1,

as asserted.

The following crucial lemma links generation and distance between ) and ) ′ ∈
C∗(), T ), the latter being defined as (Binev et al. 2004)

dist() ′, )) ≔ inf
G′∈) ′,G∈)

|G ′ − G |.

Lemma 8.5 (distance and generation). Let ) ∈ M. Any newly created ) ′ ∈
C∗(), T ) by REFINE_RECURSIVE(T , )) satisfies

dist() ′, )) ≤ �2
2√

2 − 1
2−6() ′)/2, (8.3)

where �2 > 0 is the constant in (3.34).

Proof. Suppose ) ′ ⊂ )8 ∈ C(), T ) has been created by subdividing )8 (see
Figure 8.1). If 8 ≤ 1 then dist() ′, )) = 0 and there is nothing to prove. If 8 > 1,
then we observe that dist() ′, )8−1) = 0, whence

dist() ′, )) ≤ dist()8−1, )) + diam()8−1) ≤
8−1∑
:=1

diam():)

≤ �2

8−1∑
:=1

2−6(): )/2 < �2
1

1 − 2−1/2 2−6()8−1)/2,

because the generations decrease exactly by 1 along the chain C()) according to
Corollary 8.2(b). Since ) ′ is a child or grandchild of )8 , we deduce

6() ′) ≤ 6()8) + 2 = 6()8−1) + 1,
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whence

dist() ′, )) < �2
21/2

1 − 2−1/2 2−6() ′)/2.

This is the desired estimate.

The recursive procedureREFINE_RECURSIVE is the core of the routineREFINE
of Section 3.5: given a conforming mesh T ∈ T and a subset M ⊂ T of marked
elements, REFINE creates a conforming refinement T∗ ≥ T of T such that all
elements of M are bisected at least once:

[T∗] = REFINE(T ,M)
for all ) ∈M ∩ T do
[T ] = REFINE_RECURSIVE(T , ))

return T

It may happen that an element ) ′ ∈ M is scheduled prior to ) for refinement
and ) ∈ C() ′, T ). Since the call REFINE_RECURSIVE(T , ) ′) bisects ) , its two
children replace ) in T . This implies that ) ∉ M ∩ T , which prevents further
refinement of ) .

In practice, we often like to bisect selected elements several times: for instance,
each marked element is scheduled for 1 ≥ 1 bisections. This can be done by
assigning the number 1()) = 1 of bisections that have to be executed for each
marked element ) . If ) is bisected then we assign 1()) − 1 as the number of
pending bisections to its children and the set of marked elements is M := {) ∈
T | 1()) > 0}.

8.1.3. Complexity of bisection for conforming meshes
Figure 8.4 reveals that the issue of propagation of mesh refinement to keep con-
formity is rather delicate. In particular, an estimate of the form

#T: − #T:−1 ≤ � #M:−1

is not valid with a constant � independent of :; in fact the constant can be propor-
tional to : according to Figure 8.4.

Binev, Dahmen and DeVore (2004) for 3 = 2 and Stevenson (2008) for 3 > 2
show that control of the propagation of refinement by bisection is possible when
considering the collective effect:

#T: − #T0 ≤ �
:−1∑
9=0

#M 9 . (8.4)

This can be heuristically motivated as follows. Consider the set M :=
⋃:−1
9=0 M 9

used to generate the sequence T0 ≤ T1 ≤ · · · ≤ T: =: T . Suppose that each
element )∗ ∈ M is assigned a fixed amount �1 of money to spend on refined
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elements in T , i.e. on ) ∈ T \ T0. Assume further that _(),)∗) is the portion of
money spent by )∗ on ) . Then it must hold that∑

) ∈T \T0

_(),)∗) ≤ �1 for all )∗ ∈M. (8.5a)

In addition, we suppose that the investment of all elements inM is fair in the sense
that each ) ∈ T \ T0 gets at least a fixed amount �2, whence∑

)∗∈M
_(),)∗) ≥ �2 for all ) ∈ T \ T0. (8.5b)

Therefore, summing up (8.5b) and using the upper bound (8.5a), we readily obtain

�2(#T − #T0) ≤
∑

) ∈T \T0

∑
)∗∈M

_(),)∗) =
∑
)∗∈M

∑
) ∈T \T0

_(),)∗) ≤ �1 #M,

which proves (8.4) for T and M. In the remainder of this section we design
such an allocation function _ : T ×M → R+ in several steps and prove that
recurrent refinement by bisection yields (8.5) provided T0 satisfies (3.35), thereby
establishing Theorem 3.16 (complexity of REFINE).

Construction of the allocation function. The function _(),)∗) is defined with the
help of two sequences (0(ℓ))∞ℓ=−1, (1(ℓ))∞ℓ=0 ⊂ R+ of positive numbers satisfying∑

ℓ≥−1
0(ℓ) = � < ∞,

∑
ℓ≥0

2−ℓ/2 1(ℓ) = � < ∞, inf
ℓ≥1

1(ℓ) 0(ℓ) = 2∗ > 0,

and 1(0) ≥ 1. Valid instances are 0(ℓ) = (ℓ + 2)−2 and 1(ℓ) = 2ℓ/3.
With these settings we are prepared to define _ : T ×M→ R+ by

_(),)∗) :=

{
0(6()∗) − 6())), dist(),)∗) < �3 � 2−6() )/3 and 6()) ≤ 6()∗) + 1,
0, else,

where �3 := �2(1+2(
√

2−1)−1). Therefore the investment of money by)∗ ∈M is
restricted to cells) that are sufficiently close and are of generation 6()) ≤ 6()∗)+1.
Only elements of these generations can be created during refinement of)∗ according
to Lemma 8.4. We stress that except for the definition of �, this construction is
multidimensional, and we refer to Nochetto et al. (2009) and Stevenson (2008) for
details.
The following lemma shows that the total amount of money spent by the alloca-

tion function _(),)∗) per marked element )∗ is bounded.

Lemma 8.6 (upper bound). There exists a constant �1 > 0 depending only on
T0 such that _ satisfies (8.5a), that is,∑

) ∈T \T0

_(),)∗) ≤ �1 for all )∗ ∈M.
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Proof. We proceed in two steps.
1 Given )∗ ∈M, we set 6∗ = 6()∗) and we let 0 ≤ 6 ≤ 6∗ + 1 be a generation of
interest in the definition of _. We claim that for such 6 the cardinality of the set

T ()∗, 6) = {) ∈ T | dist(),)∗) < �3 � 2−6/2 and 6()) = 6}
is uniformly bounded, i.e. #T ()∗, 6) ≤ �with� depending solely on�1, �2, �3, �.

From (3.34) we learn that diam()∗) ≤ �22−6∗/2 ≤ 2�22−(6∗+1)/2 ≤ 2�22−6/2
as well as diam()) ≤ �22−6/2 for any ) ∈ T ()∗, 6). Hence all elements of the
set T ()∗, 6) lie inside a ball centred at the barycentre of )∗ with radius (�3� +
3�2)2−6/2. Again relying on (3.34), we thus conclude that

#T ()∗, 6)�12−6 ≤
∑

) ∈T ()∗,6)
|) | ≤ 2(�3� + 3�2)22−6,

whence #T ()∗, 6) ≤ 2 �−1
1 (�3� + 3�2)2 ≕ �.

2 Accounting only for non-zero contributions _(),)∗), we deduce

∑
) ∈T \T0

_(),)∗) =
6∗+1∑
6=0

∑
) ∈T ()∗,6)

0(6∗ − 6) ≤ �
∞∑
ℓ=−1

0(ℓ) = �� =: �1,

which is the desired upper bound.

The definition of _ also implies that each refined element receives a fixed amount
of money. We show this next.

Lemma 8.7 (lower bound). There exists a constant �2 > 0 depending only on
T0 such that _ satisfies (8.5b), that is,∑

)∗∈M
_(),)∗) ≥ �2 for all ) ∈ T \ T0.

Proof. We proceed in several steps.
1 Fix an arbitrary )0 ∈ T \ T0. Then there is an iteration count 1 ≤ :0 ≤ : such
that )0 ∈ T:0 and )0 ∉ T:0−1. Therefore there exists an )1 ∈M:0−1 ⊂M such that
)0 is generated during REFINE_RECURSIVE(T:0−1, )1). Iterating this process, we
construct a sequence {)9}�9=1 ⊂ M with corresponding iteration counts {: 9}�9=1
such that )9 is created by REFINE_RECURSIVE(T: 9−1, )9+1). The sequence is
finite since the iteration counts are strictly decreasing and thus :� = 0 for some
� > 0, or equivalently )� ∈ T0.
Since )9 is created during refinement of )9+1, we infer from (8.2) that

6()9+1) ≥ 6()9) − 1.

Accordingly, 6()9+1) can decrease the previous value of 6()9) by at most 1. Since
6()� ) = 0, there exists a smallest value B such that 6()B) = 6()0) − 1. Note that for
9 = 1, . . . , B we have _()0, )9) > 0 if dist()0, )9) ≤ �3�6

−6()0)/3 .
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2 We next estimate the distance dist()0, )9). For 1 ≤ 9 ≤ B and ℓ ≥ 0 we define
the set

T ()0, ℓ, 9) := {) ∈ {)0, . . . , )9−1} | 6()) = 6()0) + ℓ}
and denote its cardinality by <(ℓ, 9). The triangle inequality combined with an
induction argument yields

dist()0, )9) ≤ dist()0, )1) + diam()1) + dist()1, )9)

≤
9∑
8=1

dist()8−1, )8) +
9−1∑
8=1

diam()8).

We apply (8.3) for the terms of the first sum and (3.34) for the terms of the second
sum, to obtain

dist()0, )9) < �2
2√

2 − 1

9∑
8=1

2−6()8−1)/2 + �2

9−1∑
8=1

2−6()8)/2

≤ �2

(
1 + 2√

2 − 1

) 9−1∑
8=0

2−6()8)/2

= �3

∞∑
ℓ=0

<(ℓ, 9) 2−(6()0)+ℓ)/2

= �32−6()0)/2
∞∑
ℓ=0

<(ℓ, 9) 2−ℓ/2.

To establish the lower bound we distinguish two cases depending on the size of
<(ℓ, B). This is done next.

3 Case 1: <(ℓ, B) ≤ 1(ℓ) for all ℓ ≥ 0. From this we conclude

dist()0, )B) < �32−6()0)/2
∞∑
ℓ=0

1(ℓ) 2−ℓ/2 = �3� 2−6()0)/2,

and the definition of _ then readily implies∑
)∗∈M

_()0, )∗) ≥ _()0, )B) = 0(6()B) − 6()0)) = 0(−1) > 0.

4 Case 2: there exists ℓ ≥ 0 such that <(ℓ, B) > 1(ℓ). For each of these ℓ there
exists a smallest 9 = 9(ℓ) such that <(ℓ, 9(ℓ)) > 1(ℓ). We let ℓ∗ be the index ℓ that
gives rise to the smallest 9(ℓ), and set 9∗ = 9(ℓ∗). Consequently

<(ℓ, 9∗ − 1) ≤ 1(ℓ) for all ℓ ≥ 0, <(ℓ∗, 9∗) > 1(ℓ∗).
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As in Case 1, we see dist()0, )8) < �3� 2−6()0)/2 for all 8 ≤ 9∗ − 1, or equivalently

dist()0, )8) < �3� 2−6()0)/2 for all )8 ∈ T ()0, ℓ, 9
∗).

We next show that the elements in T ()0, ℓ
∗, 9∗) spend enough money on )0. We

first consider ℓ∗ = 0 and note that )0 ∈ T ()0, 0, 9∗). Since <(0, 9∗) > 1(0) ≥ 1
we discover 9∗ ≥ 2. Hence there is an )8 ∈ T ()0, 0, 9∗) ∩M, which yields the
estimate ∑

)∗∈M
_()0, )∗) ≥ _()0, )8) = 0(6()8) − 6()0)) = 0(0) > 0.

For ℓ∗ > 0 we see that )0 ∉ T ()0, ℓ
∗, 9∗), whence T ()0, ℓ

∗, 9∗) ⊂ M. In
addition, _()0, )8) = 0(ℓ∗) for all )8 ∈ T ()0, ℓ

∗, 9∗). From this we conclude∑
)∗∈M

_()0, )∗) ≥
∑

)∗∈T ()0,ℓ∗, 9∗)
_()0, )∗) = <(ℓ∗, 9∗) 0(ℓ∗)

> 1(ℓ∗) 0(ℓ∗) ≥ inf
ℓ≥1

1(ℓ) 0(ℓ) = 2∗ > 0.

5 In summary, we have proved the assertion, since for any )0 ∈ T \ T0∑
)∗∈M

_()0, )∗) ≥ min{0(−1), 0(0), 2∗} =: �2 > 0. (8.6)

This completes the proof.

Remark 8.8 (complexity with 1 > 1 bisections). To show the complexity estim-
ate when REFINE performs 1 > 1 bisections, the set M: is to be understood
as a sequence of single bisections recorded in sets {M:( 9)}19=1, which belong
to intermediate triangulations between T: and T:+1 with #M:( 9) ≤ 2 9−1#M: ,
9 = 1, . . . , 1. Then we also obtain Theorem 3.16 because

1∑
9=1

#M:( 9) ≤
1∑
9=1

2 9−1#M: = (21 − 1)#M: .

In practice, it is customary to take 1 = 3 (Siebert 2012).

8.2. Non-conforming meshes

In this subsection we consider two kinds of non-conforming meshes undergoing a
refinement process: (a) quadrilateral meshes with at most one hanging node per
edge (Λ = 1 in the definition of Λ-admissible meshes), and (b) triangular meshes
having global index bounded by a fixed, but arbitrary Λ > 1.

8.2.1. Complexity of bisection for non-conforming quadrilateral meshes
We briefly examine the refinement process for quadrilaterals with one hanging node
per edge, which gives rise to the so-called 1-meshes. The refinement of ) ∈ T
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might affect four elements of T for 3 = 2 (or 23 elements for any dimension 3 ≥ 2),
all contained in the refinement patch '(), T ) of ) in T . The latter is defined as

'(), T ) ≔ {) ′ ∈ T | ) ′ and ) share an edge and 6() ′) ≤ 6())},
and is called compatible provided 6() ′) = 6()) for all) ′ ∈ '(), T ). The generation
gap between elements sharing an edge, in particular those in '(), T ), is always
≤ 1 for 1-meshes, and is 0 if '(), T ) is compatible. The element size satisfies

ℎ) = 2−6() )ℎ)0 for all ) ∈ T ,
where )0 ∈ T0 is the ancestor of ) in the initial mesh T0. Lemma 3.15 is thus valid:

ℎ) < ℎ̄) ≤ �22−6() ) for all ) ∈ T . (8.7)

Given an element ) ∈ M to be refined, the routine REFINE_RECURSIVE(T , ))
refines '(), T ) recursively in such a way that the intermediate meshes are always
1-meshes, and reads as follows:

[T∗] = REFINE_RECURSIVE(T , ))
if 6 = min{6() ′′) : ) ′′ ∈ '(), T )} < 6())

let ) ′ ∈ '(), T ) satisfy 6() ′) = 6
[T ] = REFINE_RECURSIVE(T , ) ′)

else
subdivide )
update T upon replacing ) with its children

return T

The conditional prevents the generation gap within '(), T ) from getting larger
than 1. If it fails, then the refinement patch '(), T ) is compatible, and refining )
increases the generation gap from 0 to 1without violating the 1-mesh structure. This
implies a variant of Lemma 8.4: REFINE_RECURSIVE(T , )) creates a minimal
1-mesh T∗ ≥ T refinement of T so that for all newly created elements ) ′ ∈ T∗,

6() ′) ≤ 6()) + 1 (8.8)

and ) is subdivided only once. This yields Lemma 8.5: there exist a geometric
constant �6 > 0 such that for all newly created elements ) ′ ∈ T∗

dist(),) ′) ≤ �626() ′). (8.9)

The procedure REFINE_RECURSIVE is the core of REFINE, which is concep-
tually identical to that in Section 8.1.2. Suppose that each marked element ) ∈M
is to be subdivided 1 ≥ 1 times. We assign a flag @()) to each element ) which
is initialized @()) = 1 if ) ∈ M and @()) = 0 otherwise. The marked set M
is then the set of elements ) with @()) > 0, and every time ) is subdivided it is
removed from T and replaced by its children, which inherit the flag @())− 1. This
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) ′′

) ′

E() ′′)

E() ′)

case A

) ′′

) ′

E() ′′)

E() ′)

case B

) ′′

) ′

E() ′′)

E() ′)

case C

) ′′

) ′

E() ′′)

E() ′)

case D

Figure 8.5. The elements ) ′ and ) ′′ are adjacent in cases A to D. They are
compatible in cases A and B, and non-compatible in cases C and D.

avoids the conflict of again subdividing an element that has been previously refined
by REFINE_RECURSIVE. The procedure REFINE(T ,M) reads

[T∗] = REFINE(T ,M)
for all ) ∈M ∩ T do
[T ] = REFINE_RECURSIVE(T , ));

end
return T

and its output is a minimal 1-mesh T∗ ≥ T refinement of T , so that all marked
elements ofM are refined at least 1 times. Since T∗ has one hanging node per side
it is thus admissible in the sense of (3.47). However, the refinement may spread
outside M and the issue of complexity of REFINE again becomes non-trivial.

With the above ingredients in place, a statement similar to Theorem 3.16 (com-
plexity of REFINE) for non-conforming quadrilateral meshes follows along the
lines of Section 8.1.3.

8.2.2. Complexity of bisection for Λ-admissible triangular meshes
Let T ∈ TΛ be a Λ-admissible simplicial mesh. Given any ) ∈ T , let us again
denote by �()) the edge of ) assigned for refinement, i.e. the edge opposite to the
newest vertex E()). Let G()) denote the midpoint of the edge �()).

Two elements ) ′, ) ′′ ∈ T are said to be adjacent if � = ) ′ ∩ ) ′′ is an edge for
at least one element, and are said to be compatible if they are adjacent and both
�() ′) and �() ′′) belong to the same line (see Figure 8.5, cases A and B).
The following technical results will be helpful in the design of the refinement

procedure.

Lemma 8.9 (global index of a hanging node). Consider an edge � = [G ′, G ′′]
of the partition T . If G ∈ H ∩ int � is generated by < ≥ 1 bisections of � , then its
global index _(G) satisfies

_(G) = max(_(G ′), _(G ′′)) + <.
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Figure 8.6. Three examples of distributions of proper nodes (red) and hanging nodes
(black), with associated global indices _. The bisection added in (b) converts the
centre node into a proper node, and induces non-local changes of global indices
on chains associated with it; if Λ = 3, then mesh (a) is not admissible and this
procedure is instrumental in restoring admissibility. Mesh (c) illustrates the creation
of a proper node without non-local effects on global indices.

Proof. If < = 1, then G = G" is the midpoint of � , and the formula is just
Definition 3.24 (global index of a node). If < > 1, then G is generated by bisecting
some interval [I′, I′′] ⊂ � , and _(G) = max(_(I′), _(I′′))+ 1. Exactly one between
I′, I′′ has been generated by < − 1 bisections, whereas the other one has been
generated by less than < − 1 bisections. Hence we conclude by induction.

Lemma 8.10 (reducing the global index of hanging nodes). LetH∩ int � con-
tain at least the midpoint G" of � . Assume that a bisection of some element in
T transforms G" into a proper node, and let _new denote the new global-index
mapping of the nodes inH ∩ int � after the bisection. Then we have

_new(G) ≤ _(G) − 1 for all G ∈ H ∩ int �.

Proof. If G = G" , then trivially _new(G) = 0 ≤ _(G) − 1. If G ∈ H ∩ int � is
contained, say, in (G ′, G" ) and has been generated by < > 1 successive bisections
of � , then it is generated by < − 1 successive bisections of [G ′, G" ]. Thus, by
applying Lemma 8.9, we get

_new(G) ≤ max(_new(G ′), _new(G" )) + < − 1
= max(_(G ′), 0) + < − 1 = _(G ′) + < − 1
≤ max((_(G ′), _(G ′′)) + < − 1 = _(G) − 1.

This gives the desired estimate.

The result just established is the motivation for the proposed refinement strategy,
introduced byBeirão daVeiga et al. (2024). Indeed, it ensures that in order to reduce
the global index of a hanging node sitting on an edge, it is enough to transform
the midpoint of the edge into a proper node. The situation is well represented in
Figure 8.6.
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)9−1

)9

case A

)9−1

)9

case B

)9−1

)9

case C

)9−1

)9

case D

Figure 8.7. Two elements )9−1 and )9 in the chain C(T , )): )9−1 can be bisected in
a Λ-admissible way, only after )9 is refined once (cases A and B) or twice (cases C
and D).

The following remark will be useful below.

Remark 8.11 (facing element). Given a Λ-admissible mesh T and ) ∈ T , let
G()) be the midpoint of �()), and suppose that _(G())) > Λ. Then G()) is not a
node of T , whence the edge �()) cannot contain any hanging node in its interior.
We conclude that there exists a unique adjacent element )̃ ∈ T , )̃ ≠ ) , such that
) ∩ )̃ = �()). This element will be called the element facing ) , and denoted by
�()).

Given an element ) ∈ T which has been marked for refinement, we are ready
to identify those elements in T that need be bisected with ) in order to create a
Λ-admissible refinement of T . Figure 8.7 illustrates the possible situations.

Definition 8.12 (chain of elements to be refined). Define by recurrence the chain
of elements starting at ) ,

C(), T ) = {)0, )1, . . . , ): },
for some : ≥ 0, as follows. First set )0 = ) . Assuming we have defined )9 for
9 ≥ 0, then

(i) if _(G()9)) ≤ Λ, set : = 9 and stop;
(ii) if _(G()9)) = Λ + 1 and the facing element �()9) is compatible with )9 , set

)9+1 = �()9), : = 9 + 1 and stop;
(iii) if _(G()9)) = Λ + 1 and the facing element �()9) is not compatible with )9 ,

set )9+1 = �()9) and continue.

Lemma 8.13 (properties of the chain of refinement). The chain C(), T ) has fi-
nite length; precisely, we have : ≤ 6()) + 1, where 6()) is the generation of
) , defined in Section 3.5. Furthermore, the sequence of element generations
{6()9)}:9=0 is not increasing.
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Proof. We claim that step (iii) in Definition 8.12 reduces the generation by at least
one. In fact )9 coincides with or is a refinement of a triangle )̂ ∈ T sharing a full
edge with )9+1; thus 6()9) ≥ 6()̂). Such a triangle )̂ satisfies 6()̂) = 6()9+1) + 1,
whence

6()9+1) = 6()̂) − 1 ≤ 6()9) − 1. (8.10)

Therefore, for as long as case (iii) is active, i.e. for all 9 < : , we have 6()9) ≤
6()0) − 9 and

0 ≤ 6():−1) ≤ 6()0) − (: − 1),

which gives the first statement of the lemma. The monotonicity of {6()9)}:9=0
follows from (8.10) and the fact that 6():−1) = 6():) in case (ii).

Once the chain C(T , )) is defined, all its elements are refined, starting from
the last one and proceeding backwards. This is accomplished in the following
procedure.

[T∗] = REFINE_RECURSIVE(T , ),Λ)
if _(G())) ≤ Λ

bisect )
update T

else if �()) is compatible with )
bisect �()) and )
update T

else
[T ] = REFINE_RECURSIVE(T , �()),Λ)

return T
Proposition 8.14 (properties of REFINE_RECURSIVE). If T is Λ-admissible,
the call [T∗] = REFINE_RECURSIVE(T , ),Λ) outputs the smallest Λ-admissible
refinement T∗ of T such that ) is bisected. In addition, every element ) ′ ∈ T∗
generated by this call satisfies

6() ′) ≤ 6()) + 1. (8.11)

Proof. Let C(), T ) = {)9}:9=0 and observe that, for 9 ≥ 1, one or two bisections
of )9 convert the midpoint of the edge � of )9 shared with )9−1 into a proper node.
Therefore Lemma 8.10 (reducing the global index of hanging nodes) implies that
the global indices of all interior nodes to � decrease by at least 1, and makes the
bisection of )9−1 Λ-admissible as desired.

To prove (8.11) we take 9 ≥ 1 and consider the following two mutually exclusive
cases. If )9 and )9−1 are compatible, then )9 is replaced by two elements ) ′ ∈ T∗
of generation

6() ′) = 6()9) + 1 ≤ 6()) + 1,

according to Lemma 8.13 (properties of the chain of refinement). On the other
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hand, if )9 and )9−1 are not compatible, then )9 is replaced by one element of
generation 6()9) + 1 and two elements ) ′ ∈ T∗ of generation

6() ′) = 6()9) + 2 ≤ 6()9−1) + 1 ≤ 6()) + 1

because of (8.10). Finally, the element )0 = ) is replaced by two elements of
generation 6()) + 1.

If we consider the chains starting at any element) ∈M, we obtain the procedure
REFINE(T ,M,Λ), which reads

[T∗] = REFINE(T ,M,Λ)
for all ) ∈M ∩ T do
[T ] = REFINE_RECURSIVE(T , ),Λ)

return T
and outputs a minimal Λ-admissible mesh T∗ ≥ T , refinement of T , so that all
marked elements ofM are refined.

Proof of Theorem 3.29 (complexity of REFINE for Λ-admissible meshes). The
arguments given in Section 8.1.3 for the conforming case can be easily adapted
to the current situation. The two crucial properties needed are the relation (8.3)
between the distance of two elements in a chain and their generation, which is valid
for bisection grids regardless of Λ-admissibility, and the relation (8.11) between
generations of elements.

8.2.3. Mesh overlay and Λ-admissibility
Given two partitions T� and T�, let T� ⊕ T� denote the overlay of T� and T�, i.e.
the partition whose associated tree is the union of the trees of T� and T�. The
following property holds.

Proposition 8.15 (mesh overlay is Λ-admissible). IfT� andT� areΛ-admissible,
then T� ⊕ T� remains Λ-admissible.

Proof. LetN denote the set of all nodes obtained by newest-vertex bisection from
the root partition T0. Let N0, N�, N�, N�+�, respectively, be the set of nodes of
the partitions T0, T�, T�, T� ⊕ T�. It is easily seen that for each G ∈ N \N0 there
exists a unique set B(G) = {G ′, G ′′} ⊂ N such that G is generated by the bisection
of the segment [G ′, G ′′]. Furthermore, if G ∈ N�+� is a proper node of T� (resp.
T�), then it is also a proper node of T� ⊕ T�.
Let _�, _�, _�+�, respectively, denote the global-index mappings defined on

N�,N�,N�+�. It is convenient to extend the definition of _� and _� to the whole
N�+� by setting

_�(G) = +∞ if G ∈ N�+� \N�, _�(G) = +∞ if G ∈ N�+� \N� .

With this notation at hand, we are going to prove the inequality

_�+�(G) ≤ min(_�(G), _�(G)) for all G ∈ N�+�, (8.12)
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from which the thesis immediately follows.
We proceed by induction on : = _�+�(G), G ∈ N�+�. If : = 0, the inequality

is trivial since _�(G), _�(G) ≥ 0. So suppose (8.12) holds up to some : ≥ 0. If
G ∈ N�+� satisfies _�+�(G) = : + 1 > 0, then it is a hanging node of T� ⊕ T� by
the definition of global index, so it is a hanging node of T� or T�; without loss of
generality, suppose it is a hanging node of T�. If G is generated by the bisection of
the segment [G ′, G ′′], then again by the definition of global index it holds that

: + 1 = _�+�(G) = max(_�+�(G ′), _�+�(G ′′)) + 1,

which implies
_�+�(G ′) ≤ :, _�+�(G ′′) ≤ :.

By induction,

_�+�(G ′) ≤ min(_�(G ′), _�(G ′)), _�+�(G ′′) ≤ min(_�(G ′′), _�(G ′′)),

from which we obtain

_�+�(G) ≤ max(_�(G ′), _�(G ′′)) + 1 = _�(G)

since G is a hanging node of T�. On the other hand, either G ∈ N� or G ∉ N�. In
the latter case _�(G) = +∞, and (8.12) is proved. In the former case, necessarily G
is a hanging node of T�, hence as above

_�+�(G) ≤ max(_�(G ′), _�(G ′′)) + 1 = _�(G),

and the thesis is proved.

9. Discontinuous Galerkin methods
So far we have studied conforming finite element approximations. In this section
we present and analyse a two-step AFEM for discontinuous Galerkin methods (dG).
The core PDE routine GALERKIN is thereby replaced by GALERKIN-DG, which
hinges on the interior penalty discontinuous FEM. We regard dG as a prototype
non-conforming method of practical importance and thus the natural first step to
investigate the effects of non-conformity within adaptivity.
Finite element functions, being discontinuous, allow for non-conformingmeshes

to support them. We consider Λ-admissible subdivisions, according to Defini-
tion 3.25, where Λ ≥ 0 restricts the level of non-conformity, and let TΛ denote the
collection of all Λ-admissible refinements of an initial subdivision T0; we refer to
Section 8 for details. However, we further assume that T0 is conforming, to limit
the level of technicalities.
There are several novel but characteristic aspects of dG. The most notable one

is the appearance of jumps in its formulation, to compensate for the lack of �1-
conformity, as well as in the a posteriori upper bounds and the comparison of
Galerkin solutions on different meshes. The lack of monotonicity of these jumps
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presents a formidable obstruction to the available proof techniques in adaptivity.
However, we show in Lemma 9.11 that they are controlled by the residual estimator,
thereby enabling us to loosely follow the roadmap of the conforming method,
namely Sections 4, 5 and 6. Our approach is based on Bonito and Nochetto (2010)
for the one-step AFEM.
The extra flexibility provided by non-conforming meshes, and corresponding

discontinuous functions, does not yield a better asymptotic rate in �1. An early
manifestation of this fact, although written for conforming subdivisions, is Pro-
position 6.2 (equivalence of classes). We extend this result below for general
Λ-admissible partitions.
One advantage of the two-step AFEM is that its design and analysis allows for

5 ∈ �−1(Ω) without added difficulties: the function 5 is replaced by the discrete
functional 5̂ = %T 5 ∈ FT , which applies to functions in S=,−1

T . This is in contrast
to 5 , which cannot be applied to functions in S=,−1

T . We exploit this property and
thereby extend the applicability of dG to load functions in �−1(Ω).
Our intention is to analyse the following algorithm for the approximation of the

solution D ∈ �1
0(Ω) to the coercive problem (2.7).

Algorithm 9.1 (AFEM-DG-TS). Given an initial tolerance Y0 > 0, a target toler-
ance tol and initial mesh T0, as well as a safety parameterl ∈ (0, 1], AFEM-DG-TS
is a two-step algorithm alternating between the resolution of data D and the Galer-
kin solution DT :

[T , DT ] = AFEM-DG-TS(T0, Y0, l, tol)
set : = 0
do
[T̂: , D̂:] = DATA(T: ,D, l Y:)
[T:+1, D:+1] = GALERKIN-DG(T̂: , D̂: , Y:)
Y:+1 = 1

2Y:
: ← : + 1

while Y:−1 > tol
return T: , D:

In AFEM-DG-TS, the module DATA(T ,D, g) is the same as described in Sec-
tion 5.4.2, except that it produces approximate data D̂ ∈ DT̂ , defined in (5.2),
subordinate to a Λ-admissible refinement T̂ of T0 for Λ ≥ 0, rather than Λ = 0
(conforming). The discrete data D̂ also satisfies the structural assumption (5.51)
as discussed in Section 7. It is worth pointing out that the projection %T used
to approximate the right-hand side 5 ∈ �−1(Ω) as well as all the results and
algorithms presented in Section 7.4 are restricted to conforming subdivisions T.
We briefly discuss in Section 9.7 the extension of %T and DATA to Λ-admissible
subdivisions. Algorithm 9.17 describes the module GALERKIN-DG, the counter-
part of GALERKIN for dG formulations.
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In Section 9.1 we introduce notation and tools relevant for the characterization
of discontinuous finite elements. Among them is the operator IdG

T , which projects
piecewise polynomial functions onto globally continuous piecewise polynomial
functions. It is instrumental in deriving a Poincaré inequality on the discontinuous
spaces and guarantees that the approximation classes A−1

B for the solution D using
discontinuous approximation on Λ-admissible subdivisions are equivalent to their
conforming counterpartsA0

B introduced in Section 6. We present the discontinuous
Galerkin method in Section 9.2. We start with the standard symmetric interior
penalty, discuss its drawbacks regarding the unnecessary regularity beyond �1

0(Ω)
imposed on the exact solution D, and describe a reformulation valid in �1

0(Ω).
The latter suffers from lack of consistency that needs to be accounted for. The
a posteriori estimates for the perturbed problem (5.5) are derived in Section 9.3.
Because the data is polynomial within GALERKIN-DG, the a posteriori estimators
are oscillation-free. The GALERKIN-DG module is analysed in Section 9.4 while
the discussion of rate-optimality of AFEM-DG-TS is reserved for Section 9.5.

9.1. Discontinuous Galerkin setting

We start with an initial conforming subdivision T0 made of simplices or hexahedra
satisfying Assumption 6.19 (initial labelling). GivenΛ > 0, the refinement proced-
ure REFINE is designed to produce aΛ-admissible sequence of meshes TΛ obeying
Theorem 3.29 (complexity of REFINE for Λ-admissible meshes). From now on,
we do not specify the dependence on Λ in the constants.

9.1.1. Basic setting
For T ∈ TΛ, we let

V−1
T ≔ S=,−1

T ≔
∏
) ∈T
P=())

denote the space of piecewise polynomials of degree at most = ≥ 1 subordinate to
a partition T . In contrast to the conforming spaces

V0
T ≔ S

=,0
T ∩ �1

0(Ω)

considered earlier, the space V−1
T consists of (possibly) discontinuous functions

across the elements ) ∈ T and do not necessarily satisfy the vanishing boundary
condition. Continuity across elements and vanishing boundary condition will be
weakly imposed in the discontinuous Galerkin formulations.
We recall from Section 3.7 that for a proper (interior) node % ∈ P , the domain of

influencelT (%) = supp(k%) is the support of the Lagrange basis functionk% ∈ V0
T

associated with the node %; we refer to Figure 3.11. Since the sequence of meshes
is Λ-admissible, Proposition 3.27 (size of the domain of influence) shows that the
number of elements ) ∈ T such that ) ⊂ lT (%) is uniformly bounded for T ∈ TΛ.
The set of faces associated with a subdivision T ∈ TΛ is denoted F+ ≔ F+(T ),

and it contains boundary faces as well as interior faces. The set of interior faces is
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denoted F . For a face � ∈ F+, we let {{E}}|� and [[.]] |� denote the average and
jump operators across a face �. To define them precisely, we associate for each face
� ∈ F+ one of the two unit normals n� . The choice of n� is fixed but irrelevant as
long as the outward pointing normal toΩ is chosen for boundary faces. Let )± ∈ T
be the elements that share the interior face �, namely � = )− ∩)+, and let ∓n� be
their outward pointing normals. Now, given E ∈ V−1

T , let E± ≔ E |)± and define for
an interior face �

{{E}}|� ≔ 1
2

(E− + E+)|� , [[E]] |� ≔ (E− − E+)|� , (9.1)

By convention, we set {{E}}|� ≔ E− and [[E]] |� ≔ E− whenever � is a boundary
face. These definitions extend readily to vector-valued functions.
We use the subscript T to denote the piecewise version of differential operators.

For instance, the broken gradient ∇T is the piecewise gradient ∇T E |)̊ = ∇E |)̊ for
) ∈ T and E ∈ V−1

T . For simplicity, we write

‖E‖2
!2(g) ≔

∑
) ∈g
‖E‖2

!2() )

for any subset g ⊂ T of elements, and

‖E‖2
!2(f) ≔

∑
� ∈f
‖E‖2

!2(� )

for any subsetf ⊂ F+ of faces. We also define a mesh size function ℎ ≔ ℎT : Ω→
(0,∞) such that ℎ|)̊ ≈ diam()) for ) ∈ T and ℎ|� ≈ diam(�) for � ∈ F+. With
this notation at hand, the broken �1 space

ET ≔ �1(Ω; T ) =
∏
) ∈T

�1())

is endowed with the mesh-dependent seminorm

‖E‖20,T ≔ ‖∇T E‖2!2(T ) + 0‖ℎ−1/2 [[E]]‖2
!2(F+), (9.2)

where 0 is some positive parameter. We will prove below that this is indeed a norm.
With this notation we can extend functionals 5̂ ∈ FT̂ in Definition 4.17 to V−1

T
for T ≥ T̂ . Before doing so, recall that for 5̂ ∈ FT̂ and E ∈ �1

0(Ω) we have

〈 5̂ , E〉 =
∑
)̂ ∈T̂

∫
)̂
5̂ E +

∑
�̂ ∈F (T̂ )

∫
�̂
5̂ E,

where, compared to Definition 4.17, we slightly abused the notation

5̂ |)̂ = 5̂) ∈ P2=−2()̂) 5̂ |�̂ = 5̂�̂ ∈ P2=−1(�̂).

In view of this, we can extend the duality pairing to V−1
T by setting

〈 5̂ , E〉T ≔
∑
) ∈T

∫
)
5̂ E +

∑
� ∈F

∫
�
5̂ {{E}} (9.3)
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so that consistency in �1
0(Ω) is preserved, that is,

〈 5̂ , E〉T = 〈 5̂ , E〉 for all E ∈ �1
0(Ω). (9.4)

9.1.2. Interpolation operator IdG
T

We shall need the interpolation operator IdG
T : ET → V0

T fromBonito andNochetto
(2010). Its construction is based on an original idea of Clément (1975); see also
Bernardi andGirault (1998) and other alternatives (Brenner 2003, Bonito, Nochetto
and Ntogkas 2021).
Before embarking on the construction of IdG

T , we introduce some notation. For
an interior or boundary proper node % ∈ P of the subdivision T , we let

V0
lT (%) ≔ �1

0(Ω) ∩
∏

) ⊂lT (%)
P=()) (9.5)

denote the space of continuous piecewise polynomial with support on the domain
of influence lT (%) of % and vanishing on mΩ. When the underlying grid T is
clear from the context, we will simplify the notation and write V0

% ≔ V
0
lT (%) and

l% ≔ lT (%); we refer to Figures 3.9 and 8.6.
We now construct IdG

T in two steps. First, we define+% ∈ V0
% locally as satisfying∫

l%

(E −+%)F = 0 for all F ∈ V0
% . (9.6)

The value +%(%) is then used as the nodal value of IdG
T E, namely

IdG
T E ≔

∑
%∈P

+%(%)k%, (9.7)

and we recall that {k%}%∈P is a basis of V0
T (see Section 3); note that IdG

T E = 0 on
mΩ for all E ∈ ET . Moreover, including boundary proper nodes in the definition
(9.6)–(9.7) and replacing �1

0(Ω) with �1(Ω) in the definition (9.5), IdG
T easily

extends to S=,0T without zero trace; we denote this operator by IdG
T ,+ : ET → S=,0T .

An immediate property of IdG
T is local invariance,

E ∈ V0
l) ⇒ E = IdG

T E in ) , (9.8)

where l) ≔
⋃{l% | % ∈ P , ) ⊂ l%}; a similar property is valid for IdG

T ,+. We
next gather a few more properties satisfied by IdG

T .

Lemma 9.2 (interpolation operator). Let Assumption 6.19 (initial labelling)
hold and let T ∈ TΛ. For E ∈ �1

0(Ω),

‖E − IdG
T E‖!2() ) . ‖ℎ∇E‖!2(l) ), ‖∇IdG

T E‖!2() ) . ‖∇E‖!2(l) ), (9.9)
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where l) is defined above. Instead, for E ∈ ET ,
‖E − IdG

T E‖!2() ) + ‖ℎ∇T
(
E − IdG

T E
)‖!2() )

. ‖ℎ1/2 [[E]]‖!2(F+∩l) ) + ‖ℎ∇T (E − ΠT E)‖!2(l) ), (9.10)

where ΠT is the !2 projection operator onto V−1
T = S=,−1

T .

Proof. We start with (9.9) and let E ∈ �1
0(Ω). The definition (9.6) of the local

projection +% ∈ V0
% yields for all % ∈ P

‖+% ‖!2(l%) ≤ ‖E‖!2(l%) ⇒ ‖+% ‖!∞(l%) . diam (l%)−3/2‖E‖!2(l%).

Proposition 3.27 (size of the domain of influence) gives diaml) ≤ �ℎ) , whence
the number of l% containing ) is uniformly bounded. Combining this with the
definition (9.7) of IdG

T implies

‖IdG
T E‖!2() ) .

∑
%∈P : ) ⊂l%

|+%(%)| ‖k% ‖!2() ) . ‖E‖!2(l) ) for all ) ∈ T .

(9.11)
Since IdG

T reproduces constants exactly locally, according to (9.8), the first relation
in (9.9) follows from invoking the local !2-stability property (9.11) together with
Proposition 6.34 (Bramble–Hilbert for Sobolev spaces). The second relation is
proved using the same arguments and an inverse inequality

‖∇IdG
T E‖!2() ) . ℎ

−1
) inf

E0∈R
‖IdG

T (E − E0)‖!2() ) . ‖∇E‖!2(l) ). (9.12)

We now consider E ∈ ET and let Ê = ΠT E ∈ V−1
T . We intend to prove (9.10) by

dealing with E− Ê and Ê separately and applying the triangle inequality. Since E− Ê
has zero mean in ) according to (5.66), we apply Lemma 2.3 (second Poincaré
inequality) to deduce

‖E − Ê‖!2() ) . ℎ) ‖∇(E − Ê)‖!2() ),

whence, combining an inverse estimate with (9.11), we further infer that

ℎ) ‖∇IdG
T (E− Ê)‖!2() ) . ‖IdG

T (E− Ê)‖!2() ) . ‖E− Ê‖!2(l) ) . ℎ) ‖∇(E− Ê)‖!2(l) ).

This argument yields the inequality (9.10) for E − Ê. It remains to deal with Ê.
We scale l) to a reference domain with unit diameter. Estimate (3.49) on

the size of the domains of influence guarantees that the number of such reference
patches is uniformly finite over TΛ. We relabel Ê as E and examine the seminorm
‖ [[E]]‖!2(F+∩l%) on the space of discontinuous piecewise polynomials

{E ∈ Π) ⊂l%P=())| +% = 0},
where +% is defined by (9.6). If this seminorm vanishes then E is continuous in
l% and thus E ∈ V0

%, whence the seminorm dominates any norm in this finite-
dimensional space. Consequently, scaling back gives

‖E −+% ‖!2(l%) + ‖ℎ∇T (E −+%)‖!2(l%) . ‖ℎ1/2 [[E]]‖!2(F+∩l%). (9.13)
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We now deduce corresponding estimates for IdG
T . For ) ∈ T and %,& ∈ l) ∩ P ,

(9.13) implies that

‖+% −+&‖!2() ) + ‖ℎ∇T (+% −+&)‖!2() ) . ‖ℎ1/2 [[E]]‖!2(F+∩l) ). (9.14)

Consequently, the definition (9.7) of IdG
T yields

E − IdG
T E = E −

∑
%∈l) ∩P

+%k% = (E −+&) −
∑

%∈l) ∩P
(+% −+&)k%,

which, combined with (9.13) and (9.14), implies

‖E − IdG
T E‖!2() ) + ‖ℎ∇T

(
E − IdG

T E
)‖!2() ) . ‖ℎ1/2 [[E]]‖!2(F+∩l) ).

This is the desired estimate (9.10) for E = Ê ∈ V−1
T . To finish the proof we still

need to express the right-hand side of the last inequality in terms of E ∈ ET .
Applying the triangle inequality, we are left with estimating ‖ [[E − Ê]]‖!2(� ) for
any � ∈ F+ ∩ l) . If )� ∈ T is an element within l) that contains � in its
boundary, we employ the scaled trace inequality to arrive at

ℎ1/2
) ‖E − Ê‖!2(� ) . ℎ) ‖∇(E − Ê)‖!2()� ) + ‖E − Ê‖!2()� ) . ℎ) ‖∇(E − Ê)‖!2()� ).

Finally, collecting all the estimates completes the proof.

We now discuss consequences of Lemma 9.2. The first one is that jumps are
solely responsible for controlling the discrepancy between E ∈ V−1

T and IdG
T E ∈ V0

T :

‖E − IdG
T E‖!2() ) + ‖ℎ∇T

(
E − IdG

T E
)‖!2() ) . ‖ℎ1/2 [[E]]‖!2(F+∩l) ), (9.15)

because ΠT E = E in l) . We next observe that (9.10) is also valid for IdG
T ,+ with the

same proof. We can thus apply (9.10) for IdG
T ,+ to F = E−IdG

T ,+E, use the invariance
of IdG

T ,+ in S
=,0
T , and its continuity across internal faces in F , to deduce

‖E − IdG
T ,+E‖!2() ) + ‖ℎ∇T

(
E − IdG

T ,+E
)‖!2() ) . ‖ℎ∇T (E − ΠT E)‖!2(l) )

+ ‖ℎ1/2 [[E]]‖!2(F∩l) ) + ‖ℎ1/2(E − IdG
T ,+E

)‖!2(mΩ∩l) ). (9.16)

A third consequence of (9.10) is the following Poincaré-type inequality on ET .

Lemma 9.3 (Poincaré-type inequality on ET ). Let T ∈ TΛ be a Λ-admissible
refinement of T0 satisfying Assumption 6.19 (initial labelling). There exists �% =
�%(Ω, T0), such that, for all E ∈ ET ,
‖E‖!2(Ω) ≤ �%

(‖∇T E‖!2T ) + ‖ℎ−1/2 [[E]]‖!2(F ) + ‖ℎ−1/2E‖!2(mΩ)
)
. (9.17)

In particular, if E = 0 on mΩ then (9.17) is a dG version of (2.2).

Proof. We argue locally with (9.10). First we realize that an argument similar to
(9.12) yields ‖∇T (E − ΠT E)‖!2(l) ) . ‖∇T E‖!2(l) ), whence adding over ) ∈ T
we obtain

‖E − IdG
T E‖!2(Ω) + ‖∇IdG

T E‖!2(Ω) . ‖∇T E‖!2(Ω) + ‖ℎ−1/2 [[E]]‖!2(F+).
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It thus suffices to write

‖E‖!2(Ω) ≤ ‖IdG
T E‖!2(Ω) + ‖E − IdG

T E‖!2(Ω),

and invoke (2.2) for IdG
T E ∈ �1

0(Ω) together with the preceding inequality.

Another important property obtained using the interpolation operator IdG
T is that

the approximation classes A0
B ≔ AB(�1

0(Ω); T0) defined using globally continuous
piecewise polynomial approximations of degree ≤ = on conforming subdivisions
are equivalent to those without global continuity on Λ-admissible subdivisions
T ∈ TΛ, provided ‖·‖1,T (defined in (9.2)) is used as norm on ET . We define

f=,−1
# (E) ≔ inf

T ∈TΛ#
inf

ET ∈S=,−1
T

‖E − ET ‖1,T (9.18)

and A−1
B ≔ A−1

B (�1
0(Ω); T0) to be the class of functions E ∈ �1

0(Ω) such that

|E |A−1
B
≔ sup

# ≥#T0

(
#Bf=,−1

# (E)
)
< ∞ ⇒ f=,−1

# (E) ≤ |E |A−1
B
#−B .

Note that the scaling parameter 0 for jumps in the definition of f=,−1
# is just 0 = 1.

The following result can be traced back to Bonito and Nochetto (2010).

Proposition 9.4 (equivalence of classes for D). Let T0 be an initial conforming
subdivision satisfying Assumption 6.19 (initial labelling). There are two constants
< ∈ N and � ≥ 1 such that, for all # ≥ #T0 and all E ∈ �1

0(Ω),

f=,−1
# (E) ≤ f=,0# (E) and f=,0<# (E) ≤ �f=,−1

# (E).

In particular, the approximation classes coincide: A0
B ≡ A−1

B , B ≥ 0.

Proof. We start with the first inequality. For E ∈ �1
0(Ω) and # ≥ #T0, we let

T ∈ T# be a conforming subdivision of T0 and let E0
T ∈ V0

T ⊂ V−1
T be such that

f=,0# (E) = |E − E0
T |� 1

0 (Ω).

Because E − E0
T ∈ �1

0(Ω), we have ‖E − E0
T ‖1,T = |E − E0

T |� 1
0 (Ω) and thus

f=,−1
# (E) ≤ |E − E0

T |� 1
0 (Ω) = f

=,0
# (E).

We now prove the second inequality. For E ∈ �1
0(Ω) and # ≥ #T0, let T ∈ TΛ#

be a Λ-admissible mesh with # elements and let ET ∈ V−1
T be such that

‖E − ET ‖1,T = f=,−1
# (E).

We first show that IdG
T ET ∈ V0

T satisfies

|E − IdG
T ET |� 1

0 (Ω) . f
=,−1
# (E).

Indeed, using the triangle inequality we obtain

‖E − IdG
T ET ‖1,T ≤ ‖E − ET ‖1,T + ‖ET − IdG

T ET ‖1,T .
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Interpolation estimate (9.15) yields

‖ET − IdG
T ET ‖1,T . ‖ℎ−1/2 [[ET ]]‖!2(F+), (9.19)

because ET − IdG
T ET ∈ V−1

T , whence

|E − IdG
T ET |� 1

0 (Ω) = ‖E − IdG
T ET ‖1,T ≤ �f=,−1

# (E)

as claimed for a constant � ≥ 1 independent of E and # . To assert an estimate
on f=,0# (E), we now exhibit a conforming refinement T of T with a comparable
number of elements. To do this, we note that because T ∈ TΛ is Λ-admissible, it is
the product of successive calls [T 9] = REFINE(T 9−1, )9−1), 9 = 1, . . . , �, where T 9
is the smallestΛ-admissible refinement of T 9−1 such that the element)9−1 ∈ T 9−1 is
bisected once. We now let T ∈ T be the conforming subdivision obtained from the
successive calls [T 9] = REFINE(T 9−1, {)9−1} ∩ T 9−1) with T 0 = T0, but where
this time REFINE produces the smallest conforming refinement of T 9−1, where the
element of )9−1 is bisected once if )9−1 ∈ T 9−1 or otherwise T 9 = T 9−1. A simple
induction argument, exploiting the minimality of the meshes generated by REFINE,
reveals that T 9 ≥ T 9 for 0 ≤ 9 ≤ �. Consequently, Theorem 3.16 (complexity of
REFINE) guarantees that

#T − #T0 ≤ �
�−1∑
9=0

#({)9−1} ∩ T 9−1) ≤ �� ≤ �(#T − #T0),

whence #T ≤ �#T ≤ <# with < ≔ d�e because � ≥ 1.
Therefore V0

T ⊂ V0
T
because T is a conforming refinement of T . Since #T ≤

<# and IdG
T ET ∈ V0

T , we deduce

f=,0<# (E) ≤ |E − IdG
T ET |� 1

0 (Ω) ≤ �f=,−1
# (E),

which is the desired inequality. Finally, the equivalence of moduli of approximation
yields A0

B ≡ A−1
B and completes the proof.

Remark 9.5 (equivalence of classes for D). The approximation classes for data
D = (G, 2, 5 ), namelyMB((!A (Ω))3×3); T0, CB(!@(Ω); T0) and FB(�−1(Ω); T0), are
defined for conforming subdivisions in Section 6. However, repeating the construc-
tion of the smallest conforming refinement T of any Λ-admissible subdivision T ,
and using the fact that #T ≈ #T proved above, we deduce that these classes are
equivalent to their counterparts on non-conforming meshes. Therefore we do not
repeat the proof here, and from now on we use the same notation to denote the
approximation classes on Λ-admissible subdivisions.

9.2. Discontinuous Galerkin formulation

This section discusses the SOLVE routine at the core of the moduleGALERKIN-DG.
Recall that within the two-step method AFEM-DG-TS, dataD = (G, 2, 5 ) is approx-
imated by D̂ = (Ĝ, 2̂, 5̂ ) ∈ DT̂ subordinate to a partition T̂ ∈ TΛ. For a subdivision
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T ∈ TΛ, T ≥ T̂ , the Galerkin solution [DT ] = SOLVE(T ) is constructed to approx-
imate D̂ = D(D̂) ∈ �1

0(Ω), the exact weak solution of the perturbed problem (5.5)
with approximate data D̂ = (Ĝ, 2̂, 5̂ ) constructed using Algorithm 7.23 (DATA).
Corollary 7.24 (performance of DATA) guarantees that the output [D̂, T̂ ] of DATA
satisfies the structural assumption

Ĝ ∈ "(Û1, Û2), 2̂ ∈ '(2̂1, 2̂2) (9.20)

with 0 < Û1 ≤ Û2 and −Û1/(2�2
%) ≤ 2̂1 ≤ 2̂2 upon replacing the Poincaré

constant�% with the larger constant�% appearing in Lemma 9.3 in Algorithm 7.14
(CONSTRAINT-c). We do not specify the dependence on Û1, Û2, 2̂1 and 2̂2 of the
constants appearing in the analysis below. We also emphasize that the constants
involved in (9.20) do not depend on T̂ and are thus uniform among all the discrete
data constructed within AFEM-DG-TS.
Relation (9.20) not only ensures the existence and uniqueness of a solution

D̂ ∈ �1
0(Ω) satisfying the perturbed problem (5.5) but also, as we shall see in

Corollary 9.8, the existence and uniqueness of its discontinuous Galerkin approx-
imation. We first present the standard symmetric interior penalty method and point
out that its consistency requires the exact solution D ∈ �B(Ω), B > 3/2. To circum-
vent this rather restrictive assumption, we introduce lifting operators allowing
a reformulation valid in �1(Ω). However, this reformulation is only consistent
on the conforming subspace V0

T = V−1
T ∩ �1

0(Ω), and requires our analysis to
decompose the discrete space V−1

T into V0
T and its complement V⊥T with respect to

an appropriate scalar product.

9.2.1. The symmetric interior penalty method
The symmetric interior penalty (SIP) formulation is the most standard discontinu-
ous Galerkin method. For T ∈ TΛ, it consists in finding DT ∈ V−1

T satisfying

BT [DT , E] = 〈 5̂ , E〉T for all E ∈ V−1
T , (9.21)

where BT : V−1
T × V−1

T → R is the bilinear form defined by

BT [F, E] ≔
∫
Ω

(∇T E · Ĝ∇T F + 2̂FE) −
∑
� ∈F+

∫
�
[[E]]n� · {{ Ĝ∇T F}}

−
∑
� ∈F+

∫
�
[[F]]n� · {{ Ĝ∇T E}} + ^

∑
� ∈F+

∫
�
ℎ−1
� [[F]] [[E]]. (9.22)

The parameter ^ > 0 is responsible for keeping the discontinuity of the Galerkin
solution under control and its value is discussed below. Unless specified otherwise,
all the constants appearing in the discussion below are independent of ^, and
the notation � . � signifies � ≤ �� with a constant � independent of the
discretization parameters and ^.
A few comments regarding the weak formulation (9.21) are in order. An integ-

ration by parts reveals that the method is consistent whenever the exact solution
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satisfies the additional regularity D ∈ �B(Ω), B > 3/2. However, we do not make
this assumption in the analysis below but rather extend the formulation to the en-
ergy space ET ⊃ V−1

T using lifting operators. The same integration by parts also
indicates that the term

∑
� ∈F+

∫
�
[[F]]n� · {{ Ĝ∇E}} is not necessary but included to

achieve a symmetric formulation. Recall that Ĝ constructed by DATA is symmetric.
In addition, the presence of 〈 5̂ , E〉T is not standard but allows for right-hand sides
5̂ ∈ FT̂ and in turn for 5 ∈ �−1(Ω) within the AFEM-DG-TS algorithm.

9.2.2. Lifting operators
The interior penalty bilinear form (9.22) includes inter-element terms∑

� ∈F+

∫
�
[[E]]n� · {{ Ĝ∇T F}} +

∑
� ∈F+

∫
�
[[F]]n� · {{ Ĝ∇T E}}, (9.23)

which are not defined on �1(Ω) but on �B(Ω), B > 3/2. In turn, the method is
consistent when D ∈ �B(Ω), B > 3/2. The key ingredient to extending BT [F, E]
to ET × ET without additional regularity is a lifting operator (Brezzi et al. 2000,
Arnold, Brezzi, Cockburn and Marini 2002, Perugia and Schötzau 2003, Houston,
Schötzau and Wihler 2004, 2007, Bonito and Nochetto 2010) introduced in this
section.
For =′ > 0, we define L=′T : ET → [S=

′,−1
T ]3 by the relations∫

Ω
L=′T [E] · Ĝw =

∑
� ∈F+

∫
�
[[E]]n� · {{ Ĝw}} for all w ∈ [

S=
′,−1

T
]3
. (9.24)

From this definition, we easily deduce an !2-stability estimate.

Lemma 9.6 (stability of lift). Let T ∈ TΛ be a Λ-admissible subdivision of T0
satisfying Assumption 6.19 (initial labelling). Assume Ĝ ∈ "(Û1, Û2) with 0 <
Û1 ≤ Û2. For =′ ≥ 0 and all E ∈ S=′,−1

T ,

‖L=′T [E] ‖!2(Ω) ≤ �‖ℎ−1/2 [[E]]‖!2(F+), (9.25)

where � = �(Û2/Û1, T0, =
′).

Proof. Let E ∈ S=′,−1
T and set w = L=′T [E] in (9.24) to write

‖ Ĝ1/2L=′T [E] ‖2!2(Ω) =
∫
Ω
L=′T [E] · ĜL=

′
T [E]

=
∑
� ∈F+

∫
�
ℎ−1/2 [[E]]n� · ℎ1/2{{ ĜL=′T [E]}}

≤ ‖ℎ−1/2 [[E]]‖!2(F+)‖ℎ1/2{{ ĜL=′T [E]}}‖!2(F+).

A local inverse estimate along with the eigenvalue bounds for Ĝ ∈ "(Û1, Û2) yields

‖ℎ1/2{{ ĜL=′T [E]}}‖!2(F+) ≤ �Û2‖L=′T [E] ‖!2(Ω),
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where� depends only on the shape regularity constant of T0 and =′. Combining the
above two inequalities and again taking advantage of the assumption Ĝ ∈ "(Û1, Û2)
implies (9.25).

We record two estimates based on (9.25) and used multiple times in the analysis
below. Combining the estimate (9.25) on the lifting operator with assumption
(9.20) and a Cauchy–Schwarz inequality, we find that∫

Ω
L=′T [E] · Ĝ∇T F ≤ �lift‖ℎ−1/2 [[E]]‖!2(F+)‖∇T F‖!2(T ) for all E, F ∈ ET ,

(9.26)
for a constant �lift = �lift(Û1, Û2, T0, =

′) and in particular independent of the dis-
cretization parameters and ^. This, together with a Young inequality, yields for any
n > 0 the second estimate for all E, F ∈ ET :∫

Ω
L=′T [E] · Ĝ∇T F ≤

�2
lift

2n
‖ℎ−1/2 [[E]]‖2

!2(F+) +
n

2
‖∇T F‖2!2(T ). (9.27)

We now return to the SIP weak formulation (9.21) and take advantage of the
lifting operators to deduce an equivalent expression of the bilinear form BT on
V−1
T , which is well-defined on ET . The problematic inter-element terms (9.23) are

equivalently rewritten as∫
Ω
L=′T [E] · Ĝ∇T F +

∫
Ω
L=′T [F] · Ĝ∇T E, (9.28)

provided
∇T V−1

T ⊂
[
S=
′,−1

T
]3
.

The above condition is satisfied when =′ ≥ = − 1 for subdivisions T made of
simplices and =′ ≥ = for hexahedra. To continue with an analysis incorporating
both cases, we set =′ = = and write LT ≔ L=T . With this choice, the bilinear form
BT in the symmetric interior penalty method (9.21) reads

BT [F, E] = 0T [F, E] −
∫
Ω
LT [E] · Ĝ∇T F

−
∫
Ω
LT [F] · Ĝ∇T E + ^

∑
� ∈F+

∫
�
ℎ−1
� [[F]] [[E]], (9.29)

for all F, E ∈ V−1
T and where we used

0T [F, E] ≔
∫
Ω
∇T E · Ĝ∇T F + 2̂FE (9.30)

to denote the bilinear form related to the conforming method.
Expression (9.29) is well-defined for F, E ∈ ET and the weak formulation (9.21)

is well-posed. These two claims follow from Corollary 9.8 below, which in turn is
a consequence of the next result focusing on the bilinear form 0T ; we recall (5.52).
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Lemma 9.7 (properties of 0T ). Let T ∈ TΛ be a Λ-admissible refinement of T0
satisfying Assumption 6.19 (initial labelling). Furthermore, assume that Ĝ and 2̂
satisfy the structural assumption (9.20). Then we have

0T [F, E] ≤
(
Û2 + |2̂2 |�2

%

)‖E‖1,T ‖F‖1,T for all E, F ∈ ET (9.31)

and

0T [E, E] ≥ Û1
2
‖∇T E‖2!2(Ω) +min(0, 2̂1)�2

% ‖ℎ−1/2 [[E]]‖2
!2(F+) for all E ∈ ET ,

(9.32)
where �% is the constant in Lemma 9.3 (Poincaré-type inequality in ET ).

Proof. We start with the continuity estimate (9.31). The assumption on the
discretized coefficients implies that for E, F ∈ ET we have

0T [F, E] ≤ U2‖∇T F‖!2(T )‖∇T E‖!2(T ) + |22 |‖F‖!2(Ω)‖E‖!2(Ω).

It remains to invoke Lemma 9.3 (Poincaré-type inequality on ET ) to deduce (9.31).
Similarly, for the partial coercivity estimate (9.32) we have

0T [E, E] ≥ Û1‖∇T E‖2!2(Ω) + 2̂1‖E‖2!2(Ω) ≥ Û1‖∇T E‖2!2(Ω) +min(0, 2̂1)�2
% ‖E‖21,T ,

and the desired estimate follows from the assumption −Û1/(2�2
%) ≤ 2̂1.

For the next result, we recall that the discrete norm ‖·‖^,T is defined in (9.2).

Corollary 9.8 (properties of BT ). Let T ∈ TΛ be a Λ-admissible refinement of
T0 satisfying Assumption 6.19 (initial labelling). Furthermore, assume that Ĝ and
2̂ satisfy the structural assumption (9.20). There exists a constant �cont such that

BT [F, E] ≤ �cont‖E‖^,T ‖F‖^,T for all E, F ∈ ET . (9.33)

Moreover, there are constants ^stab, �coer > 0 such that for all ^ > ^stab we have

�coer‖E‖2^,T ≤ BT [E, E] for all E ∈ ET . (9.34)

In particular, the Galerkin formulation (9.21) has a unique solution DT ∈ V−1
T .

Proof. The continuity estimate is a direct consequence of the continuity estimate
(9.31), estimate (9.26) for the lifting terms, and Cauchy–Schwarz inequality

^
∑
� ∈F+

∫
�
ℎ−1
� [[F]] [[E]] ≤ ^‖ℎ−1/2 [[F]]‖!2(F+)‖ℎ−1/2 [[E]]‖!2(F+),

which holds for all E, F ∈ ET .
We now focus on the coercivity estimate (9.34) and start from (9.32), which we

write for E ∈ ET as
Û1
2
‖∇T E‖2!2(T ) −max

(
0,−21�̂

2
%

)‖ℎ−1/2 [[E]]‖2
!2(F+) ≤ 0T [E, E] . (9.35)
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Furthermore, the terms involving the lifting operators in the definition (9.29) of the
bilinear form BT reduce to −2

∫
Ω
LT [E] · Ĝ∇T E when F = E. Hence the estimate

(9.27) with n = Û1/4 implies that

2
����
∫
Ω
LT [E] · Ĝ∇T E

���� ≤ Û1
4
‖∇T E‖2!2(T ) +

4�2
L

Û1
‖ℎ−1/2 [[E]]‖2

!2(F+).

Gathering the above inequalities and recalling definition (9.29) of BT , we find that
U1
4
‖∇T E‖2!2(T ) + (^ − ^stab)‖ℎ−1/2 [[E]]‖2

!2(F+) ≤ BT [E, E],

with

^stab ≔
4�2

L
U1
+max

(
0,−2̂1�

2
%

)
.

The desired coercivity estimate directly follows provided ^ > ^stab.

9.2.3. Partial consistency and role of the conforming Galerkin solution
From now on we shall use the expression of BT in (9.29) extending BT to ET ×ET .
This reformulation comes at the price of partial consistency. Since LT [E] = 0
whenever E ∈ �1

0(Ω) and the duality product 〈·, ·〉T satisfies the consistency (9.4),
we have

BT [D̂, E] = 0T [D̂, E] = 〈 5̂ , E〉T for all E ∈ �1
0(Ω), (9.36)

which indicates that the reformulation (9.29) using lifts is consistent on �1
0(Ω).

However, (9.36) does not hold for all E ∈ V−1
T .

This suggests splitting V−1
T into a conforming space where the consistency holds

and its orthogonal complement. We decompose the discontinuous space as

V−1
T = V0

T ⊕ V⊥T , (9.37)

where V0
T = V

−1
T ∩ �1

0(Ω) is the finest conforming subspace of V−1
T and V⊥T is the

orthogonal complement with respect to the BT [·, ·] scalar product. Note that the
latter is well-defined provided the assumption on the penalty parameter ^ > ^stab,
required by Corollary 9.8, is satisfied. From now on we assume this is the case,
and point out that although the constants appearing in the analysis below do not
depend on ^, they may depend on ^stab.
We also emphasize that there might not be a conforming subdivision associated

with V0
T . The latter is the span of the basis functions associated with proper

nodes; see Figure 3.11 for an illustration and refer to Section 8 for more details.
Consequently, the analysis provided below relies on the decomposition (9.37) of
the space VT rather than on a subdivision T . It is also worth pointing out that the
conforming part D0

T ∈ V0
T of the Galerkin solution DT ∈ V−1

T satisfies

BT
[
D0
T , E

]
= 〈 5̂ , E〉 for all E ∈ V0

T . (9.38)
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Hence D0
T is the conforming Galerkin approximation on V0

T . As we shall see, this
finest coarser conforming Galerkin solution plays a critical role in the convergence
of AFEM-DG-TS. This justifies the orthogonal decomposition (9.37) associated
with the BT scalar product.
Another advantage of using the BT -orthogonal decomposition (9.37) is that it

offers a control on the non-conforming component of E ∈ V−1
T by its scaled jumps.

To achieve this, the operator IdG
T defined by (9.7) is instrumental.

Lemma 9.9 (control of non-conformity). Let T ∈ TΛ be a Λ-admissible refine-
ment of T0 satisfying Assumption 6.19 (initial labelling). Assume that Ĝ and 2̂
satisfy the structural assumption (9.20). For ^ > ^stab, if E = E0 + E⊥ ∈ V−1

T
according to (9.37), then

‖E⊥‖^,T . ^1/2‖ℎ−1/2 [[E⊥]]‖!2(F+) = ^
1/2‖ℎ−1/2 [[E]]‖!2(F+).

Proof. Because IdG
T E ∈ V0

T , the orthogonal decomposition (9.37) implies that

BT [E⊥, E⊥] ≤ BT
[
E − IdG

T E, E − IdG
T E

]
.

The desired result follows from the coercivity (9.34) and continuity (9.33) of BT
along with the interpolation estimate (9.10).

9.3. A posteriori error estimates

Wederive a residual error estimate for the discontinuousGalerkinmethod. Because
the data D̂ ∈ DT is discrete, the analysis is free from data oscillation. In the notation
introduced in Section 4, this means ET = [T , where for E ∈ ET

[2
T (E) ≔

∑
) ∈T

[T (E, ))2,

and
[T (E, ))2 ≔ ℎ)

∑
� ⊂m) \mΩ

‖ 9T (E) − 5̂ ‖2
!2(� ) + ℎ2

) ‖AT (E)‖2
!2() ),

with 9T (E)|� ≔ n� · [[ Ĝ∇T E]] and AT (E)|) ≔ 5̂ − 2̂E + divT (Ĝ∇T E).
We start with a result mimicking the conforming argument, and then discuss its

drawbacks and remedies.

Lemma 9.10 (a posteriori error estimates). Let T ∈ TΛ be a Λ-admissible re-
finement of T0 satisfying Assumption 6.19 (initial labelling). Assume that Ĝ and 2̂
satisfy the structural assumption (9.20). If ^ > ^stab, then

‖D̂ − DT ‖2^,T . [T (DT )2 + ^‖ℎ−1/2 [[DT ]]‖2!2(F+) (9.39)

and
�L [T (DT ) ≤ ‖D̂ − DT ‖^,T , (9.40)

for some constant �L.
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Proof. We start with the upper bound (9.39). To exploit the consistency (9.36)
in V0

T , we decompose the error 4 ≔ D̂ − DT ∈ ET into a conforming part 40 ≔
D̂ − D0

T ∈ �1
0(Ω) and a non-conforming part 4⊥ ≔ −D⊥T ∈ V−1

T according to
(9.37). The proof thus relies on techniques used in the conforming theory coupled
with Lemma 9.9 (control of non-conformity). We let � denote a generic constant
independent of the discretization and ^ but possibly depending on ^stab.

Using the coercivity (9.34) and partial consistency (9.36), we get

�coer‖4‖2^,g ≤ BT [4, 4] = BT [4, 40 − IT 40] − BT [4, D⊥T ], (9.41)

where �T is the Scott–Zhang interpolant provided in Proposition 3.5. For the first
term, note that since 40 − �T 40 ∈ �1

0(Ω) we have

BT
[
4, 40 − �T 40] = 0T [4, 40 − �T 40] −

∫
Ω
LT [4] · G∇(40 − �T 40).

For the term involving the bilinear form 0T , we proceed as in the conforming case,
to arrive at

0T [4, 40 − �T 40] . [T (DT )‖∇40‖!2(Ω).

This, combined with estimate (9.26) on the lifting operators and the �1-stability of
the Scott–Zhang interpolant, yields

BT
[
4, 40 − �T 40] . (

[T (DT )2 + ‖ℎ−1/2 [[DT ]]‖2!2(F+)
)1/2‖∇40‖!2(Ω).

We rewrite 40 = 4 + D⊥T and use the estimate on the non-conforming component
provided by Lemma 9.9 along with a Young inequality, to write

BT
[
4, 40 − �T 40] ≤ �([T (DT )2 + ^‖ℎ−1/2 [[DT ]]‖2!2(F+)

) + �coer
4
‖∇4‖2

!2(Ω).

For the second term in (9.41), the continuity (9.33) of the bilinear form BT ,
Lemma 9.9 again, and a Young inequality yield

BT [4, D⊥T ] ≤
�coer

4
‖4‖2^,T + �^‖ℎ−1/2 [[DT ]]‖2!2(F+).

Returning to (9.41), we find that

‖4‖2T . [T (DT )2 + ^‖ℎ−1/2 [[DT ]]‖2!2(F+),

which is the desired upper bound.
We finally deal with the lower bound (9.40). For ) ∈ T and E ∈ �1

0()), we get∫
)

(− divT (Ĝ∇T DT ) + 2̂DT − 5̂ )E =
∫
)
∇E · Ĝ∇T (D̂ − DT )E + 2̂(D̂ − DT )E.
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For an interior face � ∈ F , E ∈ �1
0(l� ) with l� ≔ {) ∈ T | ) ∩� ≠ ∅}, we have∫

�
([[ Ĝ∇T DT ]] − 5̂ )E =

∫
l�

(− divT (Ĝ∇T DT ) + 2̂DT − 5̂ )E

−
∫
l�

∇E · Ĝ∇T (D̂ − DT ) − 2̂(D̂ − DT )E.

The desired lower bound follows from the same arguments as in the conforming
case; we refer to Proposition 4.12 (partial lower bound).

Upper bound (9.39) may suggest adding the jump term ^1/2‖ℎ−1/2 [[DT ]]‖!2(F+)
to the residual estimator [T (DT ). This would result in a clean upper bound but,
because of the presence of negative powers of the mesh size, it would be at the
expense of destroying the monotonicity property of the estimator; see e.g. Propos-
ition 4.56 (estimator reduction). The latter is instrumental to the analysis provided
below.
The next result mitigates the effect of the additional jump term by showing that
‖ℎ−1/2 [[DT ]]‖!2(F+) can be bounded by [T (DT )/^ and can thus be absorbed by the
estimator in the upper bound provided ^ is sufficiently large. We follow the proof
provided in Bonito and Nochetto (2010) and refer to Karakashian and Pascal (2007,
(3.20)) for an alternative (original) proof.

Lemma 9.11 (discontinuity control). Let T ∈ TΛ be a Λ-admissible refinement
of T0 satisfying Assumption 6.19 (initial labelling). Assume that Ĝ and 2̂ satisfy
the structural assumption (9.20). There exists a constant ^jump ≥ ^stab > 0 such
that if ^ ≥ ^jump, then

‖ℎ−1/2 [[DT ]]‖!2(F+) . ^
−1[T (DT ).

Proof. For E0
T ∈ V0

T we realize that because [[E0
T ]] = 0, the coercivity estimate

(9.34) implies that

�coerc^‖ℎ−1/2 [[DT ]]‖2!2(F+) ≤ BT
[
DT − E0

T , DT − E0
T
]
. (9.42)

We now rewrite the right-hand side of (9.42) to produce residual terms. Since DT
solves (9.21), we have

BT
[
DT − E0

T , DT − E0
T
]
= 〈 5̂ , DT − E0

T 〉T − BT
[
E0
T , DT − E0

T
]
. (9.43)

We concentrate for the moment on the second term. Since [[E0
T ]] = 0, the stabiliz-

ation term vanishes as well:

^
∑
� ∈F+

∫
�
[[E0

T ]] [[DT − E0
T ]] = 0.
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Hence, writing E0
T = DT + (E0

T − DT ), we deduce that

BT
[
E0
T , DT − E0

T
]
= 0T [DT , DT − E0

T ]
− 0T [DT − E0

T , DT − E0
T ] −

∫
Ω
∇E0

T · ĜLT [DT ],

where we again invoked the property [[E0
T ]] = 0 to infer that LT [E0

T ] = 0. Integ-
rating the first term on the right-hand side by parts, adding it to the first term on
the right-hand side of (9.43), and using the extended definition (9.3) of the duality
pairing leads to the following expression involving the residuals AT (DT ), 9T (DT ):

BT
[
DT − E0

T , DT − E0
T
]

=
∫
Ω
AT (DT )(DT − E0

T ) +
∫
F+

( 9T (DT ) − 5̂ ){{DT − E0
T }}

+ 0T [DT − E0
T , DT − E0

T ] −
∫
Ω
∇(DT − E0

T ) · ĜLT [DT ] .

We point out that we have also employed the definition (9.24) of lift to rewrite the
resulting face terms. Inserting this estimate back in (9.42), together with the bound
(9.26) for lifts and the continuity estimate (9.31) of 0T , gives

^‖ℎ−1/2 [[DT ]]‖2!2(F+) . ‖DT − E0
T ‖21,T

+ [T (DT )
(‖ℎ−1(DT − E0

T )‖!2(Ω) + ‖ℎ−1/2{{DT − E0
T }}‖!2(F+)

)
.

Note that the presence of ‖·‖1,T rather than ‖·‖^,T on the right-hand side of the
above estimate is critical for the argument below. The former is independent of
^ and can thus be absorbed on the left-hand side for sufficiently large ^ provided
E0
T = IdG

T DT . In fact the interpolation estimates (9.15) in turn imply

‖ℎ−1(DT − IdG
T DT )‖!2(Ω) + ‖ℎ−1/2{{DT − IdG

T DT }}‖!2(F+)

+ ‖DT − IdG
T DT ‖1,T . ‖ℎ−1/2 [[DT ]]‖!2(F+).

Hence a Young’s inequality yields

(^ − ^stab)‖ℎ−1/2 [[DT ]]‖2!2(F+) . ^
−1[T (DT )2 + ‖ℎ−1/2 [[DT ]]‖2!2(F+),

and the desired estimate follows provided ^ is sufficiently large.

As a direct consequence of the previous lemma, we obtain a simpler practical
upper bound.

Corollary 9.12 (stabilization-free a posteriori upper bound). If we make the
same assumptions as Lemma 9.11, there exists a constant �U such that for all
^ ≥ ^jump we have

‖D̂ − DT ‖^,T ≤ �U [T (DT ). (9.44)

Proof. Combine the upper bound (9.39) and Lemma 9.11.
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The partial consistency (9.36) leads to partial Galerkin orthogonality

BT [D̂ − DT , E] = 0 for all E ∈ V0
T . (9.45)

This would suggest that a quasi-best approximation (Céa’s lemma) result in the
full space V−1

T is questionable. However, the lack of consistency is built into the
jump terms, which are in turn controlled by the estimator weighted by a negative
power of the penalty parameter ^. It thus remains to resort to the lower bound to
return to the error and derive a quasi-best approximation estimate for sufficiently
large ^. We prove this result next, which expresses the important fact that dG
is quasi-optimal with respect to the norm ‖ · ‖^,T defined in (9.2). This has two
significant consequences: first it leads to quasi-monotonicity of the error upon
refinement (see Corollary 9.14 below), and second it dictates the approximation
class for dG already alluded to in Proposition 9.4 (equivalence of classes for D).

Corollary 9.13 (Céa’s lemma). Under the assumptions of Lemma 9.11, there is
^Céa ≥ ^jump such that, for ^ ≥ ^Céa,

‖D̂ − DT ‖^,T ≤ �Céa inf
ET ∈V−1

T

‖D̂ − ET ‖^,T . (9.46)

Proof. We combine the orthogonal decomposition (9.37) and the partial Galerkin
orthogonality (9.45) to write

BT [D̂ − DT , D̂ − DT ] = BT [D̂ − DT , D̂ − ET ] − BT [D̂ − DT , D⊥T ] + BT [D̂ − DT , E⊥T ]
for all ET ∈ VT . Invoking the coercivity and continuity of BT in Lemma 9.8
(properties of BT ) in conjunction with Lemma 9.9 (control of non-conformity)
yields

‖D̂ − DT ‖^,T . ‖D̂ − ET ‖^,T + ^1/2‖ℎ−1/2 [[DT ]]‖!2(F+) + ^1/2‖ℎ−1/2 [[ET ]]‖!2(F+).

Now applying Lemma 9.11 (discontinuity control) results in

‖ℎ−1/2 [[DT ]]‖!2(F+) . ^
−1[T (DT ) . ^−1‖D̂ − DT ‖^,T

because of the lower bound (9.40). We thus end up with

‖D̂ − DT ‖^,T . ‖D̂ − ET ‖^,T + ^−1/2‖D̂ − DT ‖^,T ,
which for ^ sufficiently large gives the desired bound.

With this best approximation result, we deduce the following crucial property.

Corollary 9.14 (quasi-monotonicity). Under the assumptions of Lemma 9.11,
there is a constant �Mo independent of the discretization parameters and ^ such
that for all ^ ≥ ^jump and T∗ ≥ T we have

‖D̂ − DT∗ ‖^,T∗ ≤ �Mo‖D̂ − DT ‖^,T . (9.47)
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Proof. We rely on the orthogonal decomposition (9.37) to write DT = D0
T + D⊥T

and on Corollary 9.13 (Céa’s lemma). Since D0
T ∈ V0

T ⊂ V−1
T∗ , we see that

�−1
Céa‖D̂ − DT∗ ‖^,T∗ ≤ ‖D̂ − D0

T ‖^,T∗ = |D̂ − D0
T |� 1

0 (Ω) = ‖D̂ − D0
T ‖^,T .

Therefore, adding and subtracting D⊥T and making use of Lemma 9.9 (control of
non-conformity) together with Lemma 9.11 (discontinuity control) implies

‖D̂ − DT∗ ‖^,T∗ . ‖D̂ − DT ‖^,T + ^−1/2[T (DT ).

It remains to invoke the lower bound (9.40) to deduce the desired result.

Corollary 9.14 assumes the same data. In estimating the cost of GALERKIN-DG
we need a variant of this result that allows for different data. We establish this next.

Corollary 9.15 (quasi-monotonicity with different data). LetT∗ ≥ T and D̂∗, D̂
be discrete data on these meshes. Let D̂∗ = D(D̂∗), D̂ = D(D̂) ∈ �1

0(Ω) and let
DT∗ ∈ V−1

T∗ , DT ∈ V−1
T be the corresponding exact and Galerkin solutions. Under

the assumptions of Lemma 9.11, for ^ ≥ ^jump we have

‖D̂∗ − DT∗ ‖^,T∗ ≤ �Mo
(‖D̂ − DT ‖^,T + |D̂∗ − D̂ |� 1

0 (Ω)
)
. (9.48)

Proof. We proceed as in the proof of Corollary 9.14 with D̂∗, but in the last
step use the fact that DT and D̂ are the functions associated with the same data
D̂ and thereby satisfy �![T (DT ) ≤ ‖D̂ − DT ‖^,T according to (9.40). Applying
the triangle inequality and the property ‖D̂∗ − D̂‖^,T = |D̂∗ − D̂ |� 1

0 (Ω) concludes the
proof.

We end this section with the dG counterpart of Theorem 4.48 (upper bound for
corrections). One striking difference is that the lack of consistency prevents the
discrete lower bound in the dG context from localizing to the refined set T \ T∗
for T∗ ≥ T . Rather, it contains a global jump term that expresses the lack of
conformity and vanishes as ^ →∞ in view of Lemma 9.11 (discontinuity control).
This is consistent with the upper bound (9.39). We use the notation lT (g) for a set
of elements g ∈ T to denote g augmented by one layer of elements

l(g) ≔ lT (g) =
⋃
) ∈g

lT ()).

Lemma 9.16 (quasi-localized discrete upper bound). AssumeT , T∗ ∈ TΛ, with
T∗ ≥ T , are two Λ-admissible refinements of T0 satisfying Assumption 6.19 (initial
labelling). Assume that Ĝ and 2̂ satisfy the structural assumption (9.20), 5̂ ∈ FT ,
and let DT ∈ V−1

T , DT∗ ∈ V−1
T∗ denote the two Galerkin solutions associated with T ,

T∗ respectively. There is a constant �LU such that for all ^ > ^stab we have

‖D0
T∗ − DT ‖

2
^,T ≤ �2

LU
(
[2
T (DT , l(T \ T∗)) + ^‖ℎ−1/2 [[DT ]]‖2!2(F+)

)
,

where DT∗ = D0
T∗ + D

⊥
T∗ is the orthogonal decomposition according to (9.37).
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Moreover, if ^ ≥ ^jump, then

‖D0
T∗ − DT ‖

2
^,T ≤ �2

LU
(
[2
T (DT , l(T \ T∗)) + ^−1[2

T (DT )
)
. (9.49)

Proof. We decompose DT∗ = D0
T∗ + D

⊥
T∗ according to (9.37), exploit the partial

consistency (9.36) for D0
T∗ with E

0 ∈ V0
T , and 5̂ ∈ FT ⊂ FT∗ to obtain

BT∗ [DT∗ , E0] = 0T∗ [DT∗ , E0] = 0T [DT∗ , E0] = BT [DT∗ , E0] = 〈 5̂ , E0〉T .
Since BT [DT , E0] = 〈 5̂ , E0〉T , we readily see that

BT [D0
T∗ − DT , E

0] = 0 for all E0 ∈ V0
T .

We rely on this reduced form of Galerkin orthogonality to prove the assertions. To
this end, we write D0

T∗ − DT = 40∗ − D⊥T , with 40∗ ≔ D0
T∗ − D

0
T . Using the coercivity

estimate (9.34) for E = D0
T∗ − DT ∈ ET yields for ^ ≥ ^stab

‖D0
T∗ − DT ‖

2
^,T . BT [D0

T∗ − DT , D
0
T∗ − DT ]

= BT [D0
T∗ − DT , 4

0
∗] − BT [D0

T∗ − DT , D
⊥
T ] . (9.50)

Note that the last term cannot be localized, and accounts for the lack of consistency
of the dG method. However, it can be made arbitrarily small by increasing the
penalty parameter ^. In fact, combining the continuity (9.33) with Lemma 9.9
(control of non-conformity) gives

BT [D0
T∗ − DT , D

⊥
T ] . ^1/2‖ℎ−1/2 [[DT ]]‖!2(F+)‖D0

T∗ − DT ‖^,T .
To localize BT [D0

T∗ − DT , 4
0∗], we choose E0 = IdG

T 40∗, where the interpolation
operator IdG

T is given by (9.7), and exploit the reduced Galerkin orthogonality.
Since 40∗ −IdG

T 40∗ ∈ �1
0(Ω), the decomposition (9.29) of the bilinear form BT reads

BT
[
D0
T∗ − DT , 4

0
∗
]

= BT
[
D0
T∗ − DT , 4

0
∗ − IdG

T 40
∗
]

= 0T
[
D0
T∗ − DT , 4

0
∗ − IdG

T 40
∗
] − ∫

Ω
LT

[
D0
T∗ − DT

] · Ĝ∇T (40
∗ − IdG

T 40
∗).

We handle the first term as in the conforming case (Theorem 4.48), namely

0T (D0
T∗ − DT , 4

0
∗) . [T (DT , l(T \ T∗)) |D0

T∗ − D
0
T |� 1

0 (Ω).

Note that the interpolation estimate (9.9) for IdG
T is responsible for the appearance

of l(T \ T∗) rather than the smaller set T \ T∗.
For the second term, we use the lift estimate (9.26) along with the �1-stability

of IdG
T and [[D0

T∗]] = 0 to write∫
Ω
LT [D0

T∗ − DT ] · Ĝ∇T 4
0
∗ . ‖ℎ−1/2 [[DT ]]‖!2(F+) |D0

T∗ − D
0
T |� 1

0 (Ω).
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Inserting the estimates into (9.50), and recalling that 1 . ^stab ≤ ^, we find that
‖D0

T∗ − DT ‖
2
^,T . ^

1/2‖ℎ−1/2 [[DT ]]‖!2(F+)‖D0
T∗ − DT ‖^,T

+ ([T (DT , T \ T∗) + ^1/2‖ℎ1/2 [[DT ]]‖!2(F+)
)|D0

T∗ − D
0
T |� 1

0 (Ω).

Notice that D0
T∗ − D

0
T = D0

T∗ − DT + D
⊥
T , so that in view of Lemma 9.9 (control of

non-conformity), we have

|D0
T∗ − D

0
T |� 1

0 (Ω) = ‖D0
T∗ − D

0
T ‖^,T . ‖D0

T∗ − DT ‖^,T + ^
1/2‖ℎ−1/2 [[DT ]]‖!2(F+).

The first desired inequality follows from the last two estimates. For the second
inequality, it suffices to further invoke Lemma 9.11 (discontinuity control).

9.4. Module GALERKIN-DG

The main ingredients for the a posteriori estimation have been derived in the
previous section and we can now turn our attention to the adaptive method. In
essence, it is the same as in the conforming case (Algorithm 5.4) but accounting
for the perturbation arising from the non-conforming setting. Compared to Algo-
rithm 5.4, SOLVE(T ) determines the discontinuous Galerkin solution to (9.21) and
REFINE(T ,M) produces the smallest Λ-admissible refinement of T where all the
marked elements M are refined at least 1 ≥ 1 times.

Algorithm 9.17 (GALERKIN-DG). Let T̂ ≥ T0 be a Λ-admissible refinement,
Λ ≥ 0, of a suitable initial mesh T0. Let data D̂ = (Ĝ, 2̂, 5̂ ) ∈ DT̂ be discrete on T̂
and let Y > 0 be a stopping tolerance. The following routine creates aΛ-admissible
refinement T ≥ T̂ and discontinuous Galerkin solution DT ∈ V−1

T for data D̂ such
that [T (DT ) ≤ Y.
[T , DT ] = GALERKIN-DG(T̂ , D̂, Y)

set 9 = 0, T0 = T̂ and do
[D 9] = SOLVE(T 9);
[{[ 9(D 9 , ))}) ∈T 9 ] = ESTIMATE(D 9 , T 9 , D̂);
if [ 9(D 9) ≤ Y;

return (T 9 , D 9)
[M 9] = MARK({[ 9(D 9 , ))}) ∈T 9 , T 9 , \);
[T 9+1] = REFINE(T 9 ,M 9);
9 ← 9 + 1;

while true

We start the analysis of GALERKIN-DG by investigating how the energy norm
BT [E, E]1/2 changes upon refining T . Note that in the conforming case, Lemma 5.2
(Pythagoras) directly provides the relation |||D̂ − DT∗ |||Ω ≤ |||D̂ − DT |||Ω. In the non-
conforming setting, the constant on the right-hand side is no longer 1 and jump
terms are present in the estimate. Regardless, it is possible to assess the effect
of refinement in the energy norm and, in turn, compare two consecutive Galerkin
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solutions DT and DT∗ , where T ∈ TΛ and T∗ = REFINE(T ,M) for some M ⊂ T .
This is the subject of the next three results, but before embarking on this path, we
mention a key ingredient for this comparison to hold: the routine REFINE does not
refine elements in T more than 3 times for 1 = 1; see Corollary 3.31. This implies
that for any � ∈ F+ and �∗ ∈ F+∗ with �∗ ⊂ �, we have

ℎ� . ℎ�∗ . (9.51)

Lemma 9.18 (mesh perturbation). Let T ∈ TΛ be aΛ-admissible refinement of
T0 satisfying Assumption 6.19 (initial labelling),M ⊂ T and T∗ = REFINE(T ,M).
Assume that Ĝ and 2̂ satisfy the structural assumption (9.20). There is a constant
� such that, for 0 < Y < 1 and all E ∈ ET ,

BT∗ [E, E] ≤ (1 + Y)BT [E, E] + �Y−1^‖ℎ−1/2 [[E]]‖2
!2(F+). (9.52)

Proof. Because ∇T∗E = ∇T E when E ∈ ET , we directly deduce that

BT∗ [E, E] = BT [E, E] + 2
∫
Ω

(LT [E] − LT∗ [E]) · Ĝ∇T E

+ ^‖ℎ−1/2
∗ [[E]]‖2

!2(F+∗ ) − ^‖ℎ−1/2 [[E]]‖2
!2(F+), (9.53)

where ℎ∗ ≔ ℎT∗ denotes the mesh size function of T∗.
Unlike the broken gradients, the lifting operators are affected by refinements.

However, this effect is controlled by the scaled jumps, as we now show. Using
estimate (9.27) twice with n = Y�coer/2 yields

2
∫
Ω

(LT [E] − LT∗ [E]) · Ĝ∇T E

≤ Y�coer‖∇T E‖2!2(T ) +
2�2

lift
Y�coer

(‖ℎ−1/2
∗ [[E]]‖2

!2(F+∗ ) + ‖ℎ−1/2 [[E]]‖2
!2(F+)

)
.

Hence the coercivity estimate (9.34) gives

2
∫
Ω

(LT [E] − LT∗ [E]) · Ĝ∇T E

≤ nBT [E, E] +
2�2

lift
Y�coer

(‖ℎ−1/2 [[E]]‖2
!2(F+) + ‖ℎ

−1/2
∗ [[E]]‖2

!2(F+∗ )
)
.

Inserting this back into (9.53), and using the fact that the jumps of E occur only on
F+ ⊂ F+∗ , the mesh size relation (9.51) proves the desired estimate.

Lemma 9.19 (comparison of solutions). Let T ∈ TΛ be a Λ-admissible refine-
ment of T0 satisfying Assumption 6.19 (initial labelling), M ⊂ T , and T∗ =
REFINE(T ,M). Assume that Ĝ and 2̂ satisfy the structural assumption (9.20).
Let D̂ = D(D̂) ∈ �1

0(Ω) be the solution of the perturbed problem (5.5) with discrete
data D̂ and let DT ∈ V−1

T , DT∗ ∈ V−1
T∗ denote the Galerkin solutions associated to

T , T∗ respectively with data D̂. Let ^jump be as in Lemma 9.11. There exists a
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constant �comp such that for all ^ ≥ ^jump and all 0 < n < 1 we have

BT∗ [D̂ − DT∗ , D̂ − DT∗]
≤ (1 + n)BT [D̂ − DT , D̂ − DT ]

− �coer
2
‖∇T∗(DT∗ − DT )‖2

!2(T∗) +
�comp

n^

(
[T (DT )2 + [T∗(DT∗)2).

Proof. We invoke the partial Galerkin orthogonality (9.45) of D̂−DT∗ upon testing
with E0 ≔ D0

T∗ − D
0
T ∈ V0

T∗ :

BT∗ [D̂ − DT∗ , D̂ − DT∗] = BT∗ [D̂ − DT∗ + E0, D̂ − DT∗ + E0] − BT∗ [E0, E0] .
Note that

D̂ − DT∗ + E0 = D̂ − DT + D⊥T − D⊥T∗
and ‖E0‖^,T∗ = ‖∇T∗E0‖!2(T∗), which is critical to the argument below. Hence, from
the coercivity and continuity of BT∗ (Corollary 9.8), we deduce that

BT∗ [D̂ − DT∗ , D̂ − DT∗]
≤ BT∗ [D̂ − DT , D̂ − DT ] + 2�1/2

contBT∗ [D̂ − DT , D̂ − DT ]1/2‖D⊥T − D⊥T∗ ‖^,T∗
+ �cont‖D⊥T − D⊥T∗ ‖2^,T∗ − �coer‖∇T∗(D0

T∗ − D
0
T )‖2

!2(T∗).

We now apply the reverse triangle inequality and Young’s inequality

‖∇T∗(D0
T∗ − D

0
T )‖2

!2(T∗) ≥
1
2
‖∇T∗(DT∗ − DT )‖2

!2(T∗) − ‖∇T∗(D
⊥
T∗ − D⊥T )‖2

!2(T∗)

to deduce that for any 0 < Y < 1

BT∗ [D̂ − DT∗ , D̂ − DT∗] ≤(1 + Y)BT∗ [D̂ − DT , D̂ − DT ]
− �coer

2
‖∇T∗(DT∗ − DT )‖2

!2(T∗) +
�

Y
‖D⊥T∗ − D⊥T ‖2^,T∗ ,

where � is for the remainder of this proof a constant independent of the discretiz-
ation parameters and ^.

To bound the last term we recall Lemma 9.9 (control of non-conformity),

‖D⊥T∗ − D⊥T ‖^,T∗ . ^1/2‖ℎ−1/2
∗ [[DT∗]]‖!2(F+∗ ) + ^1/2‖ℎ−1/2

∗ [[DT ]]‖!2(F+∗ ),

and notice that the last integral over F+∗ has weights relative to the local mesh size
of T∗ ≥ T . Since for consecutive meshes the local mesh sizes are comparable,
according to (9.51), we can write ‖ℎ−1/2 [[DT ]]‖!2(F+) instead. Inserting these
expressions in the preceding estimate, and using Lemma 9.18 (mesh perturbation)
to replace BT∗ with BT on the right-hand side, yields

BT∗ [D̂ − DT∗ , D̂ − DT∗] ≤ (1 + Y)BT [D̂ − DT , D̂ − DT ] − �coer
2
‖∇T∗(DT∗ − DT )‖2

!2(T∗)

+ � ^
Y

(‖ℎ−1/2
∗ [[DT∗]]‖2!2(F+∗ ) + ‖ℎ−1/2 [[DT ]]‖2!2(F+)

)
,
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where 2Y has been relabelled Y. Finally, to derive the desired estimate, it remains
to invoke Lemma 9.11 (discontinuity control).

Combining Lemma 9.19 (comparison of solutions) with Lemma 9.10 (a posteri-
ori error estimates), we derive the following dG version of Lemma 5.2 (Pythagoras).

Corollary 9.20 (quasi-orthogonality of dG errors). If we make the same as-
sumptions as Lemma 9.19, then for all

^ ≥ ^QO ≔
�comp

Y2�!
and 0 < Y ≤ 1

4
we obtain

‖D̂ − DT∗ ‖2^,T∗ ≤ (1 + 4Y) ‖D̂ − DT ‖2^,T −
�coer

2
‖∇T∗(DT∗ − DT )‖2

!2(T∗).

Proof. We make use of the lower bound (9.40), and set

� ≔
�comp

Y�!
,

to rewrite the estimate of Lemma 9.19 as follows:(
1− �

^

)
‖D̂ − DT∗ ‖2^,T∗ ≤

(
1+Y+ �

^

)
‖D̂ − DT ‖2^,T −

�coer
2
‖∇T∗(DT∗ −DT )‖2

!2(T∗).

For ^ ≥ ^QO = �/Y this inequality implies

‖D̂ − DT∗ ‖2^,T∗ ≤
1 + 2Y
1 − Y ‖D̂ − DT ‖

2
^,T −

�coer
2(1 − Y)

‖∇T∗(DT∗ − DT )‖2
!2(T∗).

It remains to realize that (1 + 2Y)/(1 − Y) ≤ 1 + 4Y provided Y ≤ 1
4 .

The last ingredient to prove convergence of GALERKIN-DG is a dG version of
Proposition 4.56 (estimator reduction) with 5 = 5∗ ∈ FT . It turns out that the same
estimate and proof are valid for dG except that the �1

0-seminorm is to be replaced
by the broken �1

0-seminorm. We thus state the result without proof.

Proposition 9.21 (estimator reduction). Given T ∈ TΛ and a subsetM ⊂ T of
elements marked for refinement, let T∗ = REFINE(T ,M). If 5 = %T 5 ∈ FT , then
there is a constant �Lip such that, for all E ∈ VT , E∗ ∈ VT∗ and any X > 0,

[T∗(E∗, T∗)2 ≤ (1+X)
(
[T (E, T )2−_ [T (E,M)2)+(1+X−1)�2

Lip ‖∇T∗(E∗−E)‖2
!2(T∗).

We are now in a position to prove a contraction property between two consecutive
iterations of the adaptive loop GALERKIN-DG.

Theorem 9.22 (contraction property). Let T̂ be a Λ-admissible refinement of
T0 satisfying Assumption 6.19 (initial labelling). Let D̂ ∈ DT̂ be such that Ĝ and
2̂ satisfy the structural assumption (9.20). Let \ ∈ (0, 1] be the Dörfler marking
parameter used in the MARK module and let {T 9 ,V 9 , D 9}�9=0 be a sequence of
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conforming meshes, finite element spaces and discrete solutions D 9 = D 9(D̂) ∈ V 9
created within GALERKIN-DG. If D̂ ∈ �1

0(Ω) is the exact solution of (5.5) with
discrete data D̂, then there exist constants ^conv ≥ 0, W > 0, and 0 < U < 1
independent of the discretization parameters and ^, such that, for all ^ ≥ ^conv and
0 ≤ 9 < �,

�2
9+1 + W[2

T 9+1(D 9+1) ≤ U2(�2
9 + W[2

T 9 (D 9)
)
, (9.54)

where � 9 ≔ (BT 9 [D̂ − D 9 , D̂ − D 9])1/2 is the dG norm of D̂ − D 9 .
Proof. In essence, we proceed as in Theorem 5.8 (general contraction property)
for the conforming case but with minor changes that account for non-conformity.
We only explain the differences below. For 9 ≥ 0, we shorten the notation and
write [ 9 ≔ [T 9 (D 9) and � 9 ≔ ‖∇T 9+1(D 9+1 − D 9)‖!2(T 9+1).

Corollary 9.20 (quasi-orthogonality of dG errors) gives for any 0 < Y ≤ 1
4

�2
9+1 ≤ (1 + 4Y)�2

9 −
�coer

2
�2
9 .

Combining Proposition 9.21 (estimator reduction), written in terms of T = T 9 ,
T∗ = T 9+1, E = D 9 and E∗ = D 9+1, with Dörfler marking [ 9(D 9 ,M 9) ≥ \[ 9 , yields

[2
9+1 ≤ (1 + X)(1 − _\2)[2

9 + (1 + X−1)�2
Lip�

2
9

for any X > 0. We now multiply this inequality by W > 0 and add it to the previous
one with the following choice of parameters:

X =
1 − _\2/2
1 − _\2 − 1, W =

�coer

2�2
Lip(1 + X−1)

.

Consequently, the terms involving �2
9 cancel out and we end up with

�2
9+1 + W[2

9+1 ≤ (1 + 4Y)�2
9 + W(1 + X)(1 − _\2)[2

9

=

(
1 + 4Y − W_\

2

4

)
�2
9 + W

(
1 − _\

2

4

)
[2
9 .

We finally choose

Y ≔
W_\2

32
to obtain (9.54) with

U2 = max
{
1 − W_\

2

8
, 1 − _\

2

4

}
,

and conclude the proof.

Corollary 9.23 (linear convergence). Under the assumptions of Theorem 9.22,
and if 0 < U < 1, W > 0, ^conv > 0 are the constants in (9.54), then for all ^ ≥ ^conv
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we obtain
‖D̂ − D: ‖^,T: ≤ �∗U:− 9 ‖D̂ − D 9 ‖^,T 9 ,

for some constant �∗ independent of the discretization parameters and ^.

Proof. Let 42
: = ‖D̂ − D: ‖2^,T: and �2

: = BT: [D̂ − D: , D̂ − D:]2, and use the
coercivity estimate (9.34), the contraction property (9.54), the continuity estimate
(9.33) and the lower bound (9.40), to arrive at

�coer4
2
: ≤ �2

: ≤ U2(:− 9)(�2
9 + W[2

9

) ≤ U2(:− 9)
(
�cont + W

�2
!

)
42
9 .

This is the desired estimate in disguise with

�∗ ≔
1

�coer

(
�cont + W

�2
L

)1/2
.

We end the discussion of GALERKIN-DG by deriving the optimality property
of the Dörfler marking strategy. We mimic the proof of Lemma 6.16 (Dörfler
marking) but directly use the optimal parameter ` = 1

2 to simplify the argument.
We refer to the discussion after Lemma 6.16 for the role of ` and its influence on \0.
Notice that \0 depends on ^−1 because of its appearance in the perturbed localized
upper bound (9.49). It plays a similar role to f in Assumption 6.15 (restriction
on l) in the presence of oscillations (one-step method with switch).

Lemma 9.24 (Dörfler marking). Let T∗ ≥ T be two Λ-admissible refinements
of T0 satisfying Assumption 6.19 (initial labelling). Let D̂ ∈ DT̂ be such that Ĝ
and 2̂ satisfy the structural assumption (9.20). Let DT ∈ V−1

T , DT∗ ∈ V−1
T∗ denote the

Galerkin solutions associated with T , T∗, respectively, and let D̂ ∈ �1
0(Ω) denotes

the solution to (5.5) with discrete data D̂. Assume

^ > ^� ≔ max
(
^stab, 4�2

Lip�
2
LU

)
.

If

[T∗(DT∗) ≤
1
2
[T (DT ), (9.55)

then the refined set T \ T∗ satisfies the Dörfler property
[T (DT , l(T \ T∗)) ≥ \0 [T (DT ), (9.56)

with

0 < \2
0 ≔ \2

0(^) ≔
1 − 4�2

Lip�
2
LU^

−1

4�2
Lip�

2
LU

<
1

4�2
Lip�

2
LU
.

Proof. To relate [T to [T∗ , we invoke Proposition 9.21 (estimator reduction) with
X = 1, along with the localized upper bound (9.49), to write

[T (DT )2 ≤ 2[T∗(DT∗)
2 + 2�2

Lip�
2
LU

(
[T (DT , l(T \ T∗))2 + ^−1[T (DT )2).
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This, combined with (9.55), yields(
1
2
− 2�2

Lip�
2
LU^

−1
)
[T (DT )2 ≤ 2�2

Lip�
2
LU[T (DT , l(T \ T∗))2

for ^ ≥ ^D. This is the desired result in disguise.

9.5. Convergence of AFEM-DG-TS

Algorithm 9.1 (AFEM-DG-TS) relies on two modules: GALERKIN-DG and DATA.
We have analysed the performance of GALERKIN-DG in the previous section and
showed in Section 7 that the output [T̂: , D̂:] = DATA(T: ,D, lY:) satisfies

‖D − D̂: ‖�(Ω) ≤ lY: ⇒ |D − D̂: |� 1
0 (Ω) ≤ ��lY: . (9.57)

Recall that D = D(D), D̂: = D(D̂:) ∈ �1
0(Ω) are the exact solutions to (2.7) with

exact dataD and discrete data D̂: , respectively. We also recall that D̂: satisfies the
structural assumption (9.20) uniformly in : and thus �� does not depend on : .
We start with a result guaranteeing that the cost of GALERKIN-DG does not

depend on the iteration counter : within AFEM-DG-TS.

Lemma 9.25 (computational cost of GALERKIN-DG). For any ^ ≥ ^conv and
any : ∈ N, the number of sub-iterations �: inside a call of GALERKIN-DG at
iteration : of Algorithm 9.1 (AFEM-DG-TS) is bounded independently of : .

Proof. We proceed as in the proof of Proposition 5.27 (computational cost of
GALERKIN) for the conforming case, and focus on the essential differences. We
fix the iteration counter : ≥ 1, recall that the output of the (: − 1)th loop of
AFEM-DG-TS is [T: , D:] = GALERKIN-DG(T̂:−1, D̂:−1, Y:−1), and let T:, 9 and
D̂:, 9 ∈ V−1

T:, 9 denote the 9 th mesh and Galerkin solution to (9.21) with data D̂: in
the :th loop of AFEM-DG-TS. The exact solution to the perturbed problem (5.5)
with discrete coefficient D̂: is D̂: = D(D̂:).
We recall that T:,0 = T̂: is the mesh produced by DATA, and assume that

D:,0 ∈ V:,0 satisfies [T:,0(D:,0) > Y: , because otherwise �: = 0 and there is
nothing to prove. In view of Corollary 9.23 (linear convergence), all we need to
prove is that the error ‖D:,0 − D̂: ‖^,T:,0 entering GALERKIN-DG is bounded by Y: .
We resort to Corollary 9.15 (quasi-monotonicity with different data) to write

‖D:,0 − D̂: ‖^,T:,0 ≤ �Mo
(‖D: − D̂:−1‖^,T: + |D̂: − D̂:−1 |� 1

0 (Ω)
)
.

The appearance of the last term is the only difference with respect to Proposi-
tion 5.27. However, in view of property (9.57) of DATA, we infer that

|D̂: − D̂:−1 |� 1
0 (Ω) ≤ |D̂: − D |� 1

0 (Ω) + |D̂:−1 − D |� 1
0 (Ω) ≤ ��l(Y: + Y:−1) = 3��lY: .

Moreover, the stabilization-free upper bound (9.44) implies

‖D: − D̂:−1‖^,T: ≤ �U [T: (D:) ≤ �UY:−1 = 2�UY: ,
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which, combined with the lower bound (9.40), further yields

‖D:,0 − D̂: ‖^,T:,0 ≤ (3��l + 2�* )Y: = ΛY: ⇒ [T:,0 ≤ �−1
! ΛY: .

This is the requisite estimate. In fact, recalling Corollary 9.23, we see that

[T:, 9 (D:, 9) ≤ �−1
L ‖D:, 9 − D̂: ‖^,T:, 9 ≤ �−1

L �∗U 9 ‖D:,0 − D̂: ‖^,T:,0 ≤ �−1
L �∗ΛY:U 9 .

Since GALERKIN-DG stops when [T�: ,: (D�: ,:) ≤ Y: , we finally conclude as in the
proof of Proposition 5.27 that �: is independent of : .

The proof of convergence of AFEM-DG-TS is identical to the proof of Proposi-
tion 5.29 upon replacing the seminorm |.|� 1

0 (Ω) with the appropriate dG norm. It is
therefore not repeated here.

Proposition 9.26 (convergence of AFEM-DG-TS). For any ^ ≥ ^conv and : ≥ 0,
the (: + 1)th iteration of AFEM-DG-TS terminates and requires a finite number
of inner iterations of GALERKIN-DG independent of : . Moreover, if D ∈ �1

0(Ω)
denotes the solution to (2.7), there exists a constant �∗ such that the output of
[T:+1, D:+1] = GALERKIN-DG(T̂: , D̂: , Y:) satisfies

‖D − D:+1‖^,T:+1 ≤ �∗Y: for all : ≥ 0.

Therefore AFEM-DG-TS stops after

 < 2 + log Y0/tol
log 2

iterations and delivers
‖D − D +1‖^,T ≤ �∗ tol .

9.6. Rate-optimality of AFEM-DG-TS

To derive rates of convergence for the discontinuous Galerkin method, we pro-
ceed similarly to Section 6 for the conforming case. Recall that in the :th step
of Algorithm 9.1 (AFEM-DG-TS), the output of [T̂: , D̂:] = DATA(T: ,D, lY:)
is fed to [T:+1, D:+1] = GALERKIN-DG(T̂: , D̂: , Y:), which in turn iterates �:
times. Lemma 9.25 shows that �: is uniformly bounded in : , and we assume that
�: ≥ 1, for otherwise the module GALERKIN-DG is skipped altogether. We let
(T:, 9 ,M:, 9 , DT:, 9 ) denote the triplets of grids, marked sets and discrete solutions
computed within GALERKIN-DG(T̂: , D̂: , Y:) for 0 ≤ 9 < �: . Note that

Ŷ:, 9 ≔ [T:, 9 (DT:, 9 , D̂:) > Y: , 0 ≤ 9 < �:
so that together with the lower a posteriori error estimate (9.40), we infer that

‖D̂: − DT:, 9 ‖^,T:, 9 ≥ �LŶ:, 9 > �LY: ,

where D̂: = D(D̂:) ∈ �1
0(Ω) is the exact solution with approximate data D̂: .
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The module DATA guarantees (9.57), and the parameter l modulates the dis-
crepancy between D and D̂: relative to Y: . The error due to data approximation can
be made small relative to the finite element approximation by choosing l much
smaller than 1. In addition, we have established Lemma 9.24 (Dörfler marking) for
\0 < 1, which implies a Dörfler property for any 0 < \ ≤ \0. The restrictions on
the parameters ^, l and \ are gathered in the following assumption.

Assumption 9.27 (restrictions on ^, l and \). Assume that ^ > max(^� , ^conv),
that 0 < l ≤ 1

4�
−1
Mo�L�

−1
� and that 0 < \ ≤ \0(^), where ^� and \0 are defined in

Lemma 9.24 (Dörfler marking).

Note that if Assumption 9.27 is valid then

|D − D̂: |� 1
0 (Ω) ≤

1
4
�−1

Mo�LY: . (9.58)

The next results rely on Assumption 6.3 (approximability of D) and Assump-
tion 6.10 (approximability of data). They are stated and proved for conforming
meshes and continuous approximations of D. However, Proposition 9.4 (equival-
ence of classes for D) and Remark 9.5 (equivalence of classes for D) show that
these classes coincide with the conforming case.

Proposition 9.28 (cardinality of marked sets). Let Assumptions 6.3 (approxim-
ability of D), 6.17 (cardinality of M) and 9.27 (restrictions on ^, l and \) hold.
If Ŷ:,0 > Y: , then GALERKIN-DG at iteration : of AFEM-DG-TS is called and the
cardinality #:, 9(D) of the marked setM:, 9 satisfies

#:, 9(D) . |D |1/BB ‖D − DT:, 9 ‖−1/B
^,T:, 9 for all 0 ≤ 9 < �: . (9.59)

Proof. Fix 0 ≤ 9 < �: and set

X ≔
1
2
�−1

Mo�L [T:, 9 (DT:, 9 ) ≥
1
2
�−1

Mo�LY: ,

because [T:, 9 (DT:, 9 ) > Y: for 9 < �: . Thanks to (9.58), D̂: is an ( 1
2�
−1
Mo�LY:)-

approximation of order B to D according to Lemma 6.13 (Y-approximation of D of
order B). Hence there exists a conforming mesh TX ∈ TΛ and D0

TX ∈ VTX such that

‖D̂: − D0
TX ‖^,TX = |D̂: − D

0
TX |� 1

0 (Ω) ≤ X, #TX . |D |1/BAB X
−1/B .

To compare TX with T:, 9 we consider the overlay T∗ = T:, 9 ⊕ TX , which satisfies
#T∗ ≤ #T:, 9 + #TX − #T0;

see Proposition 8.15 (mesh overlay isΛ-admissible). Let DT∗ ∈ V−1
T∗ be the Galerkin

solution on the subspace V−1
T∗ and invoke Corollary 9.13 (Céa’s lemma), to write

[T∗(DT∗) ≤ �−1
L ‖D̂: − DT∗ ‖^,T∗ ≤ �−1

L �Mo‖D̂: − D0
TX ‖^,T∗ = �

−1
L �Mo |D̂:−D0

TX |� 1
0 (Ω),
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whence [T∗(DT∗) ≤ �−1
L �MoX and

[T∗(DT∗) ≤
1
2
[T:, 9 (DT:, 9 ).

ApplyingLemma9.24 (Dörflermarking) toT∗ andT:, 9 , we infer that the enlarged
refined set l(T:, 9 \ T∗) satisfies the Dörfler marking property

[T:, 9 (DT:, 9 , l(T:, 9 \ T∗)) ≥ \ [T∗(DT∗)
since 0 < \ ≤ \0 by Assumption 9.27. The Dörfler marking involves a minimal set
M:, 9 according to Assumption 6.17, which thus implies

#:, 9(D) ≤ #l(T:, 9 \ T∗) . #(T:, 9 \ T∗) ≤ #TX − #T0 . |D |1/BAB X
−1/B . |D |1/B

AB
Y−1/B
: ,

because #(T:, 9 \ T∗) ≤ #T∗ − #T:, 9 . This concludes the proof.
Corollary 9.29 (quasi-optimality of GALERKIN-DG). Let Assumptions 6.3 (ap-
proximability of D), 6.17 (cardinality of M) and 9.27 (restrictions on ^, l and
\) hold. Assume ^ ≥ max(^conv, ^D). Then the total number of marked elements
#:(D) within a call to GALERKIN-DG satisfies

#:(D) ≤ ��0 |D |1/BAB Y
−1/B
: ,

where � ≥ �: is a uniform upper bound for the number of iterations required by
GALERKIN-DG according to Lemma 9.25 (computational cost of GALERKIN-DG).

Proof. Use the fact that #:(D) =
∑�:−1
9=0 #:, 9(D) and combine Propositions 9.28

(cardinality of marked sets) and 9.25 (computational cost of GALERKIN-DG).

We finally address the rate-optimality of the two-step algorithm AFEM-DG-TS.

Theorem 9.30 (rate-optimality of AFEM-DG-TS). Let Assumptions 6.3 (approx-
imability of D), 6.10 (approximability of data), 6.11 (quasi-optimality ofDATA), 6.17
(cardinality of M), 6.19 (initial labelling) and 9.27 (restrictions on ^, l and \)
hold. Then AFEM-DG-TS gives rise to a sequence

(
T: ,V−1

T: , DT:
) +1
:=0 such that

‖D − DT: ‖^,T: ≤ �(D,D)(#T:)−B, 1 ≤ : ≤  + 1,

where 0 < B = min{BD , BD} = min{BD , B�, B2 , B 5 } ≤ =/3 and

�(D,D) = �∗
(
|D |1/BD
ABD
+ |G|1/B�MB�

+ |2 |1/B2
CB2
+ | 5 |1/B 5FB 5

)B
with constant �∗ > 0 independent of D and D.

Proof. Assumptions 6.3, 6.17 and 9.27 combined with Corollary 9.29 for D, and
Assumptions 6.10 and 6.11 for D, imply the existence of a constant �# such that
the total number of marked elements within one loop of AFEM-DG-TS is

#:(D) + #:(D) ≤ �#

(
|D |1/BD
ABD
+ |D |1/BD

ABD

)
Y−1/B
: ,
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with BD , BD ≤ =/3. Moreover, upon termination DATA and GALERKIN-DG give

|D − D̂: |� 1
0 (Ω) ≤

1
4
�−1

Mo�LY: ,

‖D̂: − DT:+1 ‖^,T:+1 ≤ �U[T:+1(DT:+1) ≤ �UY: ,

because of (9.58) and (9.44). This implies, by the triangle inequality,

‖D − DT:+1 ‖^,T:+1 ≤
(

1
4
�−1

Mo�L + �U

)
Y: .

We finally conclude as in Theorem 6.24 (rate-optimality of AFEM-TS).

Remark 6.25 on the role of l, \∗ and Remark 6.26 on the optimality of the
result, written after Theorem 6.24 for the conforming case, remain valid for the
non-conforming case and are not repeated here.

9.7. Operator %T and routine DATA on Λ-admissible partitions

In this section we have extensively used the notion of Λ-admissible meshes for the
design and study of dG methods, including forcing 5 ∈ �−1(Ω). To this end, as
well as for the design of the two-step AFEM for dG, namely AFEM-DG-TS, the
construction of the local projection %T 5 ∈ FT is critical. We discuss this now.
Recall that for a conforming partition T ∈ T, %T 5 is defined as a projection

to FT ; see Definition 4.24 (projection onto discrete functionals). The definition
and subsequent properties of %T hinge on extensions �� for � ∈ F , studied in
Lemma 4.20 (extending from faces), as well as on bubble functions q) , ) ∈ T ,
and q� , � ∈ F satisfying Assumption 4.21 (abstract cut-off).
The definition of the element bubble functions q) in (4.14) is local to ) and

is thus unchanged on non-conforming subdivisions. The situation is different for
faces. If � is a conforming face, we have the conforming definitions of �� and q�
as in (4.17). Instead, if � is a non-conforming face, � = ) ∩)∗ with 6()∗) > 6()),
we use a virtual conforming refinement of l� to define �� and q� as in (4.17).
Recall that 6()) is the generation of ) ∈ T , and T ∈ T is a uniform refinement
of T0 if and only if 6 is constant on T . Let T be the uniform refinement of T0
containing )∗, whence 6()) = 6()∗) for all ) ∈ T ; T is conforming thanks to
Assumption 6.19 (initial labelling) on T0. Let ) ∈ T be the element sharing �
with )∗ (and thus contained in )) and let l� ≔ )∗ ∪ ) be the virtual conforming
patch around �. We now proceed by defining �� via (4.4) with l� replaced by
l� and q� as in (4.17) using the basis functions qI , I ∈ V ∩ �, associated with∏
) ⊂l� P=()) ∩ �1

0(l� ). Note that because T is Λ-admissible, Proposition 3.27
guarantees that the diameters of ) , ) , )∗, l� and l� are all comparable with
constants depending on the initial mesh T0 and Λ.

Assumption 4.21 is an important ingredient in the analysis of %T and it holds
true with l� replaced by l� when � is a non-conforming face. Therefore Re-
mark 4.26 (local computation) and Corollary 4.31 (local near-best approximation)
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are valid for Λ-admissible partitions as well. Consequently, all the algorithms and
results presented in Section 7 (data approximation) readily extend to Λ-admissible
subdivisions as well. We do not dwell on this matter any further.

10. AFEMs for inf-sup stable problems
We go back to the functional framework introduced in Section 2.4. Precisely, let
the bilinear form B : V ×W→ R be continuous and inf-sup stable (i.e. it satisfies
one of the equivalent conditions stated in Theorem 2.8 (Nečas)). Given 5 ∈ W∗,
let D ∈ V be the unique solution of the variational problem

D ∈ V : B [D, F] = 〈 5 , F〉 for all F ∈ W. (10.1)

Let V 9 ⊂ V, W 9 ⊂ W be finite-dimensional subspaces depending on an integer
parameter 9 ≥ 0, such that

dimV 9 = dimW 9 = = 9 , V 9 ⊂ V 9+1, W 9 ⊂ W 9+1.

(Note that the notation has changed with respect to Section 3.1, where V# was a
subspace of dimension # . Here V 9 may stand for VT 9 , where T 9 is the 9 th mesh
generated by an adaptive algorithm.)
We assume B satisfies a uniform discrete inf-sup condition on any product of

subspaces V 9 ×W 9 , that is, there exists a constant V > 0 such that for all 9

inf
E∈V 9

sup
F ∈W 9

B [E, F]
‖E‖V‖F‖W ≥ V. (10.2)

Let D 9 ∈ V 9 be the solution of the (Petrov–)Galerkin problem
D 9 ∈ V 9 : B [D 9 , F] = 〈 5 , F〉 for all F ∈ W 9 . (10.3)

The first part of this section, which is mostly based on the recent work by Feischl
(2022), is devoted to studying the convergence of this approximation. Convergence
and rate-optimality of different AFEMs will be discussed next in Section 10.3.
Applications will be given to the Stokes problem (see Section 10.4) and the mixed
formulation of a scalar diffusion problem (see Section 10.5).

10.1. Linear convergence of inf-sup stable methods

We make the following key assumptions that guarantee the convergence of the
sequence D 9 to D in the V-norm, and comment about them afterwards. The first
assumption is a relaxed formof the general quasi-orthogonality property introduced
in Carstensen et al. (2014) as part of an abstract set of axioms of adaptivity.

Assumption 10.1 (relaxed quasi-orthogonality). For each # ∈ N there exists a
non-decreasing constant � = �(#) such that

9+#∑
:= 9

‖D:+1 − D: ‖2V ≤ �(#)‖D − D 9 ‖2V, 9 ≥ 0, (10.4)
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and
�(#) = >(#) as # →∞.

Assumption 10.2 (equivalence of error and estimator). There exist constants
�* ≥ �! > 0 and, for each 9 ≥ 0, an error estimator [ 9 = [ 9(D 9), such that

�![ 9 ≤ ‖D − D 9 ‖V ≤ �*[ 9 , 9 ≥ 0. (10.5)

Assumption 10.3 (estimator reduction). There exist constants 0 < d1 < 1 and
�1 > 0 such that

[2
9+1 ≤ d1[

2
9 + �1‖D 9+1 − D 9 ‖2V, 9 ≥ 0. (10.6)

Remark 10.4. Assumptions 10.2 and 10.3 are abstract and allow for a general
convergence theory. In the context of our model problems of Section 2.3, they are
valid for discrete data, that is, if the coefficients of the linear operator corresponding
to the bilinear form B are piecewise polynomials on the adopted meshes, and if
5 ∈ FT (see Section 4.3). We make this concrete in Sections 10.4 and 10.5 below.

Remark 10.5. We comment on the significance of Assumption 10.1 upon con-
sidering two extreme cases.
(1) Assumption 10.1 with �(#) = $(1) is precisely the general quasi-orthogon-

ality property of Carstensen et al. (2014). It is valid with�(#) = 1 forV =W
and B symmetric and coercive. Indeed,

B [D:+1 − D: , D − D:+1] = 0 (Galerkin orthogonality),

whence
|||D:+1 − D: |||2Ω + |||D − D:+1 |||2Ω = |||D − D: |||2Ω,

where |||·|||Ω is the energy norm induced by B. Adding upon : and using
telescopic cancellation yields

9+#∑
:= 9

|||D:+1 − D: |||2Ω =
9+#∑
:= 9

|||D − D: |||2Ω − |||D − D:+1 |||2Ω

= |||D − D 9 |||2Ω − |||D − D 9+#+1 |||2Ω ≤ |||D − D 9 |||2Ω.
Finally, the equivalence (2.30) of the norms ‖·‖V and |||·|||Ω yields the result.

(2) Assumption 10.1 trivially holds with �(#) = $(#) for B continuous and inf-
sup stable. Indeed, choosing in Corollary 3.3 (quasi-monotonicity)V# = V:
or V:+1 and V" = V 9 for 9 ≤ : , and using the triangle inequality gives

‖D:+1 − D: ‖2V . ‖D:+1 − D‖2V + ‖D: − D‖2V . ‖D − D 9 ‖2V.
Adding, we get

9+#∑
:= 9

‖D:+1 − D: ‖2V ≤ �
9+#∑
:= 9

‖D − D 9 ‖2V = �# ‖D − D 9 ‖2V.
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However, the relation�(#) = $(#) is not enough for the subsequent analysis.
In fact, we need �(#) = >(#).

We now prove that the stated assumptions guarantee the linear convergence of
the sequence of Petrov–Galerkin solutions (10.3). This result is similar to the
convergence result for the estimators given in Feischl (2022), and exploits the
equivalence (10.5) between errors and estimators.

Theorem 10.6 (linear convergence). Under Assumptions 10.1, 10.2 and 10.3,
the discretization (10.3) is convergent; precisely, there exist constants 0 < d < 1
and 2 > 0 such that

4 9+8 ≤ 2d84 9 for all 8, 9 ∈ N, (10.7)

where 4 9 ≔ ‖D − D 9 ‖V.
Proof. The proof is divided into several steps. First, we set

�: ≔ ‖D: − D:−1‖V.
1 We start by iterating (10.6) 1 ≤ = ≤ : times to obtain

[2
: ≤ d1[

2
:−1 + �1�

2
:

≤ d1
(
d1[

2
:−2 + �1�

2
:−1

) + �1�
2
: ≤ d2

1[
2
:−2 + �1

(
�2
: + �2

:−1
)

≤ d=1[2
:−= + �1

:∑
ℓ=:−=+1

�2
ℓ .

We now invoke Assumption 10.2 to state the upper bound

42
: ≤ 21[

2
:

and the lower bound
[2
: ≤ 224

2
:

(with 21 = �2
* and 22 = �−2

! ). This yields

42
: ≤ 21[

2
: ≤ 2122d

=
1 4

2
:−= + 21�1

:∑
ℓ=:−=+1

�2
ℓ . (10.8)

Let = ∈ N be sufficiently large that

d2 = 2122d
=
1 < 1,

and let us relabel 21�1 as �1 to get

42
: ≤ d24

2
:−= + �1

:∑
ℓ=:−=+1

�2
ℓ . (10.9)

This shows that the reduction property (10.6) of the estimator is valid for the error
after = iterations. We cannot expect (10.9) to hold for 4: with = = 1, even in the
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coercive case: see Example 5.7 (lack of strict error monotonicity) for G = O and
5 = 1. It is thus convenient to rewrite (10.9) as follows:

42
:= ≤ d24

2
(:−1)= + �1

:=∑
ℓ=(:−1)=+1

�2
ℓ . (10.10)

2 Sum up (10.10) from : = 9 + 1 to : = 9 + # , to get
9+#∑
:= 9+1

42
:= ≤ d2

9+#∑
:= 9+1

42
(:−1)= + �1

( 9+# )=∑
ℓ= 9=+1

�2
ℓ .

Using (10.4) we see that
( 9+# )=∑
ℓ= 9=+1

�2
ℓ =

( 9+# )=−1∑
ℓ= 9=

�2
ℓ+1 ≤ �(#= − 1) 42

9= ≤ �(#=) 42
9=,

whence
9+#∑
:= 9+1

42
:= ≤ d2

9+#∑
:= 9+1

42
(:−1)= + �1�(#=) 42

9=

≤ d2

( 9+#∑
:= 9+1

42
:= + 42

9=

)
+ �1�(#=) 42

9=.

This implies

(1 − d2)
9+#∑
:= 9+1

42
:= ≤ (d2 + �1�(#=)) 42

9=,

or equivalently

1 − d2
d2 + �1�(#=)

9+#∑
:= 9+1

42
:= ≤ 42

9=. (10.11)

Let us add the quantity
∑ 9+#
:= 9+1 4

2
:= to both sides to arrive at(

1 + 1 − d2
d2 + �1�(#=)

) 9+#∑
:= 9+1

42
:= ≤

9+#∑
:= 9

42
:=.

We can rewrite this inequality as follows:
9+#∑
:= 9+1

42
:= ≤ d(#)

9+#∑
:= 9

42
:=, (10.12)
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where

d(#) =
1

1 + 1−d2
d2+�1�(#=)

=
d2 + �1�(#=)
1 + �1�(#=)

= 1 − 1 − d2
1 + �1�(#=)

= 1 − 1
�(#)

with

�(#) =
1 + �1�(#=)

1 − d2
→∞, # →∞,

whenever �(#) diverges. Therefore (10.12) is a contraction for the quantity∑ 9+#
:= 9+1 4

2
:= with a constant d(#) uniform in 9 that may degenerate to 1 as # →∞.

3 We iterate (10.12) and exploit the fact that the left-hand side has one fewer term
than the right-hand side. Take

9 → 9 + 1, # → # − 1,

to get
9+#∑
:= 9+2

42
:= ≤ d(# − 1)

9+#∑
:= 9+1

42
:=,

whence
9+#∑
:= 9+2

42
:= ≤ d(# − 1)d(#)

9+#∑
:= 9

42
:=.

Iterating, we get

42
( 9+# )= =

9+#∑
:= 9+#

42
:= ≤ d(1) . . . d(# − 1)d(#)

9+#∑
:= 9

42
:=.

We now need to bound the sum on the right-hand side by a single term. To this
end, we resort to (10.11), that is,

9+#∑
:= 9+1

42
:= ≤

d2 + �1�(#=)
1 − d2

42
9=,

and add 42
9= to both sides:

9+#∑
:= 9

42
:= ≤

(
1 + d2 + �1�(#=)

1 − d2

)
42
9= = �(#) 42

9=.
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Altogether, we arrive at

42
( 9+# )= ≤ d(1) . . . d(#)�(#) 42

9= = �(#)
#∏
:=1

(
1 − 1

�(:)

)
42
9=.

4 We estimate the factor on the right-hand side. For #0 > 0 to be chosen later, set

d0 ≔ �(#0)
#0∏
:=1

(
1 − 1

�(:)

)
and compute the logarithm of d0 via

log(d0) = log(�(#0)) +
#0∑
:=1

log
(

1 − 1
�(:)

)
≤ log(�(#0)) −

#0∑
:=1

1
�(:)

,

because the log is concave and log(1 + G) ≤ G. Since we assume in (10.4) that
�(:) ' �(:#0) = >(:), the series diverges and we see that

log(d0) < 0

for #0 sufficiently large. Summarizing, there exist #0 > 0 and 0 < d0 < 1 such
that

42
( 9+#0)= ≤ d0 4

2
9= for all 9 ∈ N. (10.13)

5 For any 9 , 8 ∈ N, we now find 2 > 0 and 0 < d < 1 such that the inequality

4 9+8 ≤ 2d84 9
holds. We decompose 9 and 9 + 8 in terms of integers :, <,

9 = (: − 1)= + 9̂ , : ≥ 1, 0 ≤ 9̂ < =,
9 + 8 = (: + <)= + 8̂, < ≥ −1, 0 ≤ 8̂ < =,

and first examine the case < ≥ 0. We further decompose

< = 0#0 + 1, 0, 1 ∈ N, 0 ≤ 1 < #0 ⇒ 0 =
<

#0
− 1

#0
.

Note that

:= = 9 − 9̂ + = > 9, < =
8

=
−
(
8̂ − 9̂
=
+ 1

)
, 0 >

8

=#0
− 2 + #0

#0
.

Therefore, invoking Corollary 3.3 (quasi-monotonicity),

4 92 ≤
‖B‖
V

4 91 = �∗4 91 , 92 ≥ 91 ≥ 0,

in conjunction with (10.13), yields

4 9+8 ≤ �∗4(:+0#0)= ≤ �∗d0/20 4:= ≤ �2
∗ d
0/2
0 4 9 < �

2
∗ d
−(2+#0)/(2#0)
0

(
d1/(2=#0)

0
)8
4 9 .
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This is the desired estimate with 2 = �2∗ d
−(2+#0)/(2#0)
0 and d = d1/(2=#0)

0 for < ≥ 0.
We finally consider < = −1 and again use the error quasi-monotonicity to write

4 9+8 ≤ �∗4 9 = �∗
d8
d84 9 <

�∗
d=
d84 9 .

This concludes the proof with

2 = max
{
�2
∗ d
−(2+#0)/(2#0)
0 ,

�∗
d=

}
.

Remark 10.7 (improving on Assumption 10.1). It is worth emphasizing that
while linear convergence (10.7) is established in Theorem 10.6 using Assump-
tion 10.1, the same property combined with uniform inf-sup stability tells us
a posteriori that the constant �(#) in (10.4) can be made independent of # , i.e.
�(#) = $(1). To see this, we apply the linear convergence bound

‖D − D: ‖V ≤ 2d:− 9 ‖D − D 9 ‖V
in conjunction with the triangle inequality

‖D:+1 − D: ‖V ≤ ‖D − D:+1‖V + ‖D − D: ‖V ≤ 22d:− 9 ‖D − D 9 ‖V;

summation of a geometric series gives
9+#∑
:= 9

‖D:+1 − D: ‖2V ≤ �‖D − D 9 ‖2V

with � = 422 ∑∞
ℓ=0 d

2ℓ < +∞. This suggests that Assumption 10.1 might be too
pessimistic.

10.2. Inf-sup stability implies quasi-orthogonality

We aim at proving the following key result in this section.

Theorem 10.8 (sufficient condition for Assumption 10.1). Assumption 10.1
(relaxed quasi-orthogonality) is valid if the bilinear form B : V × W → R is
continuous and uniformly inf-sup stable on the sequence of subspaces V 9 ×W 9 ,
9 ≥ 0.

To accomplish this task, we proceed in two steps. Using variational techniques,
we first establish an intermediate result formally similar to (10.4) (see Corol-
lary 10.14), but involving the norm of a matrix [ related to the form B. Next,
we rely on algebraic techniques to estimate such a norm (see Theorem 10.15) and
complete the proof of the desired result.
In order to perform the first step, we introduce orthonormal bases of the finite

element spaces V 9 , W 9 , 0 ≤ 9 ≤ # , and next we biorthogonalize them. This
procedure turns out to be crucial.
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We start with some notation. Let

= 9 = dimV 9 = dimW 9 .

Let V⊥9−1 andW⊥9−1 denote the orthogonal complements of V 9−1 andW 9−1 within
V 9 andW 9 , respectively. Let

3 9 = = 9 − = 9−1 = dimV⊥9−1 = dimW⊥9−1

be the dimension of the Galerkin update to augment the space V 9−1 into the next
space V 9 , and likewise with the spaceW 9−1 andW 9 .
We consider orthonormal bases

v = {v( 9)}#9=0 ⊂ V# , w = {w(8)}#8=0 ⊂ W# (10.14)

partitioned into blocks for 1 ≤ 9 ≤ #
v( 9) = (E:)= 9:== 9−1+1 ⊂ V

⊥
9−1, w(8) = (F:)=8:==8−1+1 ⊂ W

⊥
8−1, (10.15)

and v(0) ⊂ V0, w(0) ⊂ W0. In other words, (v( 9), w( 9)) represent the 3 9 new
directions added by Galerkin to the current spaces (V 9−1,W 9−1) for 1 ≤ 9 ≤ # .
We recall that the bilinear form B : V# × W# → R satisfies the following

uniform properties for all 0 ≤ 9 ≤ # .
(P1) Continuity:��B [E, F]�� ≤ ‖B‖‖E‖V‖F‖W for all E ∈ V 9 , F ∈ W 9 . (10.16)

(P2) Inf-sup condition:

V‖E‖V ≤ sup
F ∈W 9

B [E, F]
‖F‖W for all E ∈ V 9 . (10.17)

The block bases v and w given in (10.14) induce a block matrix

H ≔ (H(8, 9))#8, 9=0 ∈ R=#×=#
defined by

H(8, 9) = B [v( 9), w(8)] . (10.18)

Note that the actual size of H is =# = dimV# � # , and that the following analysis
entails expressing important quantities in terms of the number of blocks # rather
than the dimension =# .

We will use this block decomposition for a generic matrix

S = (S(8, 9))#8, 9=0 ∈ R=#×=# ,
and we let S [:] = (S(8, 9)):8, 9=0 denote the principal :th block of S. Figure 10.1
shows schematically what this means.

We stress that (P2) implies that H[:] is uniformly invertible with

‖H[:]−1‖2 ≤ 1
V

for all 0 ≤ : ≤ #. (10.19)
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Figure 10.1. Block partition of a matrix S ∈ R=#×=# with (# +1)× (# +1) blocks
S(8, 9) ∈ R38×3 9 and principal :th block S [:] ∈ R=:×=: with 0 ≤ 8, 9 , : ≤ #.

In fact, (P2) with 9 replaced by : can be rephrased as follows in terms of the
coordinates v ∈ R=: relative to the orthonormal basis {v( 9)}:9=0 of V: of a generic
vector in V: :

V‖v‖2 ≤ ‖H[:]v‖2 for all v ∈ R=: ,
that is, setting z = H[:]v,

V ‖H[:]−1z‖2 ≤ ‖z‖2 for all z ∈ R=: ,
which is precisely (10.19).
A fundamental linear algebra theorem of Gaussian elimination guarantees the

existence of a unique normalized block R[ decomposition of H without pivoting
due to (10.19):

H = R[, (10.20)

with block partitioning

R(8, 9) ∈ R38×3 9 , R(8, 9) = 0 for 9 > 8, R(8, 8) = O(8, 8), (10.21)
[(8, 9) ∈ R38×3 9 , [(8, 9) = 0 for 8 > 9 . (10.22)

10.2.1. Matrix representation
The :th Galerkin solution D: satisfies

D: ∈ V: : B [D: , F] = 〈 5 , F〉 for all F ∈ W: .

Equivalently, if {$( 9)}:9=0 ∈ R=: are the coordinates of D: with respect to the
orthonormal basis {v( 9)}:9=0, that is,

D: =
:∑
9=0

$( 9) · v( 9),
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then
:∑
9=0

$( 9) · B [v( 9), w(8)] = 〈 5 , w(8)〉 for all 0 ≤ 8 ≤ :,

or using matrix notation
:∑
9=0

H(8, 9) $( 9) = f (8) = 〈 5 , w(8)〉 for all 0 ≤ 8 ≤ :. (10.23)

If we further write

$: = ($( 9)):9=0 ∈ R=: , f : = ( f (8)):8=0 ∈ R=: ,
then (10.23) reduces to

H[:]$: = f : . (10.24)

In view of the definition of f : we realize that the :th section f # [:] ∈ R=: of f #
coincides with f : :

f # [:] = ( f (8)):8=0 = f : .

However, this statement is not true for the solution $: of (10.24), namely

$# [:] ≠ $: .

10.2.2. Block biorthogonal bases
We define biorthogonal bases ṽ ⊂ V# and w̃ ⊂ W# as follows:

ṽ ≔ [−>v ⇒ ṽ( 9) =
9∑

<=0
[−>( 9 , <)v(<), 0 ≤ 9 ≤ #, (10.25)

w̃ ≔ R−1w ⇒ w̃(8) =
8∑

<=0
R−1(8, <)w(<), 0 ≤ 8 ≤ #. (10.26)

We will see below that these bases are convenient for representing the Galerkin
solution D: ∈ V: . We start with a list of properties.

Lemma 10.9 (span of new bases). The vectors ṽ and w̃ are bases of V# and
W# , respectively, and satisfy

span{ṽ( 9)}:9=0 = span{v( 9)}:9=0,

span{w̃(8)}:8=0 = span{w(8)}:8=0.

Proof. This relies on the fact that [−> and R−1 are lower triangular and the
diagonal blocks are non-singular (i.e. both R and[ are invertible).

Now consider the matrix H̃ induced by (̃v, w̃), namely

H̃ ≔ B [ṽ, w̃] ∈ R=#×=# . (10.27)
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Lemma 10.10 (biorthogonality). The block matrix H̃ is equal to the identity,
namely

H̃(8, 9) = O(8, 9) for all 0 ≤ 8, 9 ≤ #.
Proof. We simply combine the definition (10.27) with (10.25) and (10.26) to
deduce, for all 0 ≤ 8, 9 ≤ # , that

H̃(8, 9) = B [ṽ( 9), w̃(8)]

= B
[ 9∑
<=0

[−>( 9 , <)v(<),
8∑
:=0

R−1(8, :)w(:)
]

=
9∑

<=0

8∑
:=0

R−1(8, :)B [v(<), w(:)][−>( 9 , <)

=
9∑

<=0

8∑
:=0

R−1(8, :)H(:, <)[−1(<, 9)

= (R−1H[−>)(8, 9)
= (R−1(R[)[−1)(8, 9)
= O(8, 9),

as asserted.

Generic functions E ∈ V# and F ∈ W# can be represented as follows in terms
of the old and new bases:

E =
#∑
9=0

$( 9) · v( 9) =
#∑
9=0

$̃( 9) · ṽ( 9), (10.28)

F =
#∑
8=0

"(8) · w(8) =
#∑
8=0

"̃(8) · w̃(8). (10.29)

The following lemma relates the coordinates in the two systems.

Lemma 10.11 (change of basis). The coordinates

$ = ($( 9))#9=0, " = ("(8))#8=0

satisfy
$ = [−1$̃, " = R−>"̃. (10.30)

Proof. Write (10.28) in vector form and use (10.25) to obtain

E = $̃>ṽ = $̃>([−>v) = ([−1$̃)>v = $>v,

whence
$ = [−1$̃.
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Similarly, combining (10.29) and (10.26) yields

F = "̃>w̃ = "̃>(R−1w) = (R−>"̃)>w = ">w

and
" = R−>"̃.

This concludes the proof.

10.2.3. An intermediate inequality
We intend to prove the following crucial estimate. This result is in Feischl (2022),
but we give a different proof based on variational arguments.

Proposition 10.12 (quasi-orthogonality I). If D: ∈ V: denotes the :th Galerkin
solution of (10.3), then

#−1∑
:=0
‖D:+1 − D: ‖2V ≤

‖[‖22
V2 ‖D# − D0‖2V. (10.31)

Proof. We proceed in several steps.

1 Estimate of ‖D:−1 − D: ‖V. Galerkin orthogonality yields
B [D:+1 − D: , F] = 0 for all F ∈ W: . (10.32)

The uniform discrete inf-sup property (P2) implies the existence of F ∈ W:+1 with
‖F‖W = 1 such that

V‖D:+1 − D: ‖V ≤ B [D:+1 − D: , F] . (10.33)

We decompose F orthogonally as follows:

F = F: + F⊥: , F: ∈ W: , F⊥: ∈ W⊥: ,
with ‖F⊥: ‖W ≤ 1. In view of (10.32), (10.33) also reads

V‖D:+1 − D: ‖V ≤ B [D:+1 − D: , F⊥: ] ≤ B
[
D:+1 − D: ,

F⊥:
‖F⊥: ‖W

]
.

We now let

F̂:+1 ≔
F⊥:
‖F⊥: ‖W

∈ W⊥: ⊂ W:+1,

and decompose it along the oblique subspacesW: = span{w̃( 9)}:9=0 and span{w̃(:+
1)}, as illustrated in Figure 10.2. Since W⊥: = span{w(: + 1)} and w(: + 1) =
(F 9)=:+19==:+1 is an orthonormal basis, the function F̂:+1 ∈ W⊥: can be written
uniquely as

F̂:+1 = "(: + 1) · w(: + 1),
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span{w̃(: + 1)}

W⊥: = span{w(: + 1)}

W: = span{w̃( 9)}:9=0

F̂:+1

Figure 10.2. Oblique decomposition of the space W:+1 into the subspaces W: =
span{w̃( 9)}:9=0 and span{w̃(: + 1)}.

with "(: + 1) ∈ R3:+1 satisfying
‖"(: + 1)‖2 = 1 = ‖F̂:+1‖W.

Invoking (10.26), we can express w(: + 1) in terms of {w̃( 9)}:9=0 as

w(: + 1) =
:+1∑
9=0

R(: + 1, 9) w̃( 9)

= w̃(: + 1) +
:∑
9=0

R(: + 1, 9) w̃( 9)

because R(: + 1, : + 1) = O(: + 1, : + 1) ∈ R3:+1×3:+1 . Consequently
B [D:+1 − D: , F̂:+1] = B [D:+1 − D: ,"(: + 1) · w̃(: + 1)]

because (10.32) implies

B [D:+1 − D: , w̃( 9)] = 0 for all 0 ≤ 9 ≤ :.
In addition, the biorthogonality of w̃(: + 1) with respect to ṽ( 9) for 0 ≤ 9 ≤ :
translates into

B [D: , w̃(: + 1)] = 0 = B [D0, w̃(: + 1)] .
Moreover, Galerkin orthogonality yields

B [D:+1, w̃:+1] = 〈 5 , w̃:+1〉 = B [D# , w̃:+1],
and collecting the preceding expressions we obtain

‖D:+1 − D: ‖ ≤ 1
V
"(: + 1) · B [D# − D0, w̃(: + 1)] . (10.34)
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2 Estimate of B [D# − D0, w̃(: + 1)]. We exploit the biorthogonality between
{ṽ( 9)}#9=0 and {w̃( 9)}#9=0. In fact we write

D# − D0 =
#∑
9=0

$̃( 9) · ṽ( 9),

and substitute into the right-hand side of (10.34) to arrive at

B [D# − D0, w̃(: + 1)] =
#∑
9=0

$̃( 9) · B [ṽ( 9), w̃(: + 1)] = $̃(: + 1).

Therefore (10.34) gives

‖D:+1 − D: ‖V ≤ 1
V
"(: + 1) · $̃(: + 1),

whence

‖D:+1 − D: ‖V ≤ 1
V
‖$̃(: + 1)‖2

because ‖"(: + 1)‖2 = 1.

3 Final estimate. Compute
#−1∑
:=0
‖D:+1 − D: ‖2V ≤

1
V2

#−1∑
:=0
‖$̃(: + 1)‖22 ≤

1
V2 ‖$̃‖

2
2 ≤
‖[‖22
V2 ‖$‖

2
2 ,

according to (10.30). Since {v( 9)}#9=0 are orthonormal, we get

D# − D0 =
#∑
9=0

$( 9) · v( 9) ⇒ ‖D# − D0‖V = ‖$‖2

and
#−1∑
:=0
‖D:+1 − D: ‖2V ≤

‖[‖22
V2 ‖D# − D0‖2V,

as asserted. This concludes the proof.

In order to get the quasi-orthogonality estimate, we still need to compare the
errors ‖D# − D0‖V and ‖D − D0‖V. The following is a variant of (3.3).
Lemma 10.13 (stability). We have

‖D# − D0‖V ≤ ‖B‖
V
‖D − D0‖V.
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Proof. We use (10.17) and (10.16), in this order, together with Galerkin ortho-
gonality, to deduce

V‖D# − D0‖V ≤ sup
F ∈W#

B [D# − D0, F]
‖F‖W

= sup
F ∈W#

B [D − D0, F]
‖F‖W ≤ ‖B‖‖D − D0‖V.

This completes the proof.

Corollary 10.14 (quasi-orthogonality II). Let D: ∈ V: be the :th Galerkin
solution of (10.3). Then, for all 0 ≤ 9 ≤ # , we have

9+#−1∑
:= 9

‖D:+1 − D: ‖2V ≤
‖B‖2
V4 ‖[‖

2
2 ‖D − D 9 ‖2V.

Proof. Combining Proposition 10.12 with Lemma 10.13 yields
#−1∑
:=0
‖D:+1 − D: ‖2V ≤

‖B‖2
V4 ‖[‖

2
2 ‖D − D0‖2V.

Finally, replacing D0 ∈ V0 with the 9 th Galerkin solution D 9 ∈ V 9 , we obtain the
desired estimate.

This corollary says that in order to prove Theorem 10.8, i.e. to check the validity
of Assumption 10.1, it is enough to investigate the growth of the block triangular
factor[ introduced in (10.20), and more precisely to prove that

‖[‖2 = >(#1/2).

This is the second step of our analysis. In fact we prove something more, which is
expressed by the following result.

Theorem 10.15 (bound of block matrices R and[). There are constants�LU >
0 and ? > 2 such that the block R[ factors of H satisfy

‖[‖2 + ‖R‖2 + ‖[−1‖2 + ‖R−1‖2 ≤ �LU #1/? . (10.35)

The proof of this theorem is lengthy and very technical; it involves subtle linear
algebra arguments, which may not be familiar to many readers. For such reasons,
we prefer to postpone it to the end of this section (see Section 10.6).

10.3. Convergence rates of AFEMs for inf-sup stable methods

In this section we discuss AFEMs to solve a boundary value problem admitting a
variational formulation of the form

D ∈ V : B [D, F] = 〈 5 , F〉 for all F ∈ W, (10.36)
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in which the bilinear form B on V × W is continuous and inf-sup stable, with
inf-sup constant V > 0, and 5 ∈ W∗. We will consider the one-step AFEM given
by Algorithm 5.4 (GALERKIN) when all data are discrete, the one-step AFEM with
switch given by Algorithm 5.16 (AFEM-SW) when the operator coefficients are
discrete but the forcing term is not (as in the Stokes problem), and the general
two-step AFEM given by Algorithm 5.1 (AFEM-TS).

10.3.1. Algorithm 5.4 (GALERKIN)
For 9 ≥ 0, let (T 9 ,V 9 , D 9), with D 9 ∈ V 9 = VT 9 , denote the sequence of meshes,
subspaces and Galerkin approximations to (10.36) generated by GALERKIN. Let

[T 9 (E) = [T 9 (E, 5 ) =
( ∑
) ∈T 9

[T (E, ))2
)1/2

(10.37)

be the PDE error estimators used in the loop. If such estimators fulfil Assump-
tions 10.2 (equivalence of error and estimator) and 10.3 (estimator reduction), then
Theorem 10.6 (linear convergence) applies and the following result holds.

Proposition 10.16 (convergence and termination of GALERKIN). The module
GALERKIN produces a sequence {D 9} converging linearly to D ∈ V,

‖D − D 9+8 ‖V ≤ � d8 ‖D − D 9 ‖V for all 9 , 8 ≥ 0, 0 < d < 1,

thereby reaching any prescribed accuracy ‖D − D 9 ‖V ≤ Y in a finite number of
iterations.

10.3.2. Algorithm 5.16 (AFEM-SW)
This algorithm applies to the situation inwhich the operator coefficients are discrete,
whereas the forcing 5 ∈ W∗ is not. Then the PDE estimator [T (E, 5 ) depends on
5 via a projection %T 5 upon a finite-dimensional subspace of W∗. Inspired by
Lemma 4.5 (localization of�−1-norm), we letW∗T denote a suitable decomposition
ofW∗ subordinate to T with norm ‖ 5 ‖W∗T . In this part of the discussion, we prefer
to make the dependence of [T upon %T 5 explicit to avoid confusion, so we will
write [T (E, %T 5 ) rather than [T (E, 5 ) as usual.
Let us begin by stating two assumptions on the estimator (10.37) to be used

below.

Assumption 10.17 (Lipschitz continuity of estimator). There exists a constant
�Lip > 0 such that for any T ∈ T, any E, F ∈ VT and any 5 , 6 ∈ W∗, we have

|[T (E, %T 5 ) − [T (F, %T 6)| ≤ �Lip
(‖E − F‖V + ‖%T 5 − %T 6‖W∗T ).

Assumption 10.18 (monotonicity of estimator). If T ∈ T and T∗ is a refinement
of T , then the projection operator satisfies %T∗%T = %T and

[T∗(E, %T 5 , )) ≤ [T (E, %T 5 , )) for all ) ∈ T and E ∈ VT , 5 ∈ W∗.
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It is useful for the subsequent applications to have explicit criteria that guarantee
the fulfilment of Assumption 10.3. This is the purpose of the following result.

Proposition 10.19 (estimator reduction under Dörfler marking). Let the esti-
mator [T (E, %T 5 ) in (10.37) be used in GALERKIN. Let Assumptions 10.17
and 10.18 be valid. Let T∗ be a refinement of T , with estimator [T∗(E, %T∗ 5 ),
obtained by bisecting the elements ) ∈ M marked in MARK, using a Dörfler
condition on the estimator [T (DT , %T 5 ) for the Galerkin solution DT ∈ VT .

Suppose that there exists _ ∈ (0, 1) such that

[T∗(DT , %T 5 , ))2 ≤ _ [T (DT , %T 5 , ))2 for all ) ∈M. (10.38)

Then there exists 0 < d < 1 and � > 0 such that, for all ET∗ ∈ VT∗ ,

[T∗(ET∗ , %T∗ 5 )
2 ≤ d [T (DT , %T 5 )2 + �(‖ET∗ − DT ‖2V + ‖%T∗ 5 − %T 5 ‖2W∗T∗).

Proof. By Assumption 10.17 applied to T∗, we have
[T∗(ET∗ , %T∗ 5 ) ≤ [T∗(DT , %T 5 ) + �Lip(‖ET∗ − DT ‖V + ‖%T∗ 5 − %T 5 ‖W∗T∗ ).

Using Assumption 10.18 while extending Proposition 4.56 to the current abstract
setting, we have for any X > 0

[T∗(ET∗ , %T∗ 5 )
2 ≤ (1 + X)

(
[T (DT , %T 5 )2 − (1 − _) [T (DT , %T 5 ,M)2)

+ 2(1 + X−1)�2
Lip

(‖ET∗ − DT ‖2V + ‖%T∗ 5 − %T 5 ‖2W∗T∗).
We conclude using Dörfler condition [T (DT ,M) ≥ \[T (DT ) and choosing X small
enough.

Before proceeding further, let us introduce the quantity

oscT ( 5 ) ≔ ‖ 5 − %T 5 ‖W∗T ,
which is a measure of the oscillation of the data 5 . If DT ∈ VT is the solution of
AFEM-SW, we let ET (DT , 5 ) indicate the full estimator defined by

ET (DT , 5 )2 ≔ [T (DT , %T 5 )2 + oscT ( 5 )2. (10.39)

We formulate the following assumption on the data oscillation.

Assumption 10.20 (quasi-monotonicity of oscillation). There exists a constant
�osc > 0 such that, for any T ∈ T and any admissible refinement T∗ ≥ T , we have

oscT∗( 5 ) ≤ �osc oscT ( 5 ).

A consequence of this assumption is the bound

‖%T∗ 5 − %T 5 ‖W∗T∗ ≤ ‖ 5 − %T∗ 5 ‖W∗T∗ + ‖ 5 − %T 5 ‖W∗T∗ ≤ (1 + �osc) oscT ( 5 ),

which, inserted into the reduction estimate of Proposition 10.19, gives the existence
of 0 < d0 < 1 and �0 > 0 independent of T such that

[T∗(DT∗ , %T∗ 5 )
2 ≤ d0 [T (DT , %T 5 )2 + �0

(‖DT∗ − DT ‖2V + oscT ( 5 )2). (10.40)
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We aim at establishing a linear convergence result similar to Theorem 10.6 for
the sequence {D 9}∞9=0 generated by AFEM-SW. To this end, we introduce as usual
the short-hand notation 4 9 = ‖D − D 9 ‖V, � 9+1 = ‖D 9+1 − D 9 ‖V, [ 9 = [T 9 (D 9 , %T 9 5 ),
osc 9 = oscT 9 ( 5 ), E 9 = ET 9 (D 9 , 5 ), and we also introduce the scaled estimator

Z2
9 ≔ [2

9 + W osc2
9 , (10.41)

where the parameter W > 0 is to be found. Note that at this point we have three
parameters l ∈ (0, 1), b ∈ (0, 1) and W > 0 to play with, and the idea is to
find conditions on them such that an inequality similar to (10.9) in the proof of
Theorem 10.6 holds true. The following result is an intermediate step.

Lemma 10.21 (linear estimator reduction). Let Assumptions 10.3 (estimator
reduction), 10.17 (Lipschitz continuity of estimator), 10.18 (monotonicity of estim-
ator) and 10.20 (quasi-monotonicity of oscillation) be valid. There exists l0 > 0
such that, for any choice of parameters 0 < l ≤ l0 and 0 < b ≤ 1/

√
2 in

AFEM-SW, there exist constants 0 < d < 1 , Λ > 0, W ≥ 1 for which

Z2
: ≤ d:− 9Z2

9 + Λ
:∑

ℓ= 9+1
�2
ℓ , : ≥ 9 ≥ 0. (10.42)

Proof. We discuss the two alternatives in Algorithm 5.16 (AFEM-SW) separately.
1 Case osc 9 ≤ lE 9 . We use (10.40) to get

[2
9+1 ≤ d0[

2
9 + �0�

2
9+1 + �0 osc2

9

and Assumption 10.20 to write

osc 9+1 ≤ �osc osc 9 .

From
osc2

9 ≤ l2E2
9 = l

2([2
9 + osc2

9) ≤ l2([2
9 + W osc2

9) = l
2Z2
9 ,

provided W ≥ 1, we deduce

Z2
9+1 = [

2
9+1 + W osc2

9+1 ≤ d0[
2
9 + �0�

2
9+1 +

(
�0 + W�2

osc
)

osc2
9

≤ d0[
2
9 + �0�

2
9+1 +

(
�0 + W�2

osc
)
l2([2

9 + W osc2
9

)
=

[
d0 +

(
�0 + W�2

osc
)
l2][2

9 +
[(
�0 + W�2

osc
)
l2]W osc2

9 +�0�
2
9+1

≤ [
d0 +

(
�0 + W�2

osc
)
l2]Z2

9 + �0�
2
9+1. (10.43)

Below we will impose

d1 ≔ d0 +
(
�0 + W�2

osc
)
l2 < 1, (10.44)

which will yield the desired bound

Z2
9+1 ≤ d1Z

2
9 + �0�

2
9+1. (10.45)

https://doi.org/10.1017/S0962492924000011 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000011


Adaptive finite element methods 447

2 Case osc 9 > lE 9 . We use E2
9 = [

2
9 + osc2

9 > [
2
9 to get

[2
9 <

1
l2 osc2

9 .

Proceeding as in the proofs of Proposition 10.19 (now with M = ∅) and (10.40),
we obtain for any X > 0

[2
9+1 ≤ (1 + X)[2

9 + �X
(
�2
9+1 + osc2

9

) ≤ (1 − X)[2
9 + �X�2

9+1 +
(

2X
l2 + �X

)
osc2

9

with �X = �2
0 (1 + X−1). On the other hand, since osc 9+1 is computed after a call to

DATA, it satisfies

osc2
9+1 ≤ b2f2

9 = b
2l2E2

9 < b
2 osc2

9 =
1 + b2

2
osc2

9 −
1 − b2

2
osc2

9 .

Combining the last two equations, we obtain

Z2
9+1 = [

2
9+1 + W osc2

9+1

≤ (1 − X)[2
9 + W

1 + b2

2
osc2

9 +�X�2
9+1 +

(
2X
l2 + �X − W

1 − b2

2

)
osc2

9 .

Below we will enforce

Γ ≔
2X
l2 + �X − W

1 − b2

2
≤ 0, (10.46)

which will guarantee
Z2
9+1 ≤ d2Z

2
9 + �X�2

9+1, (10.47)

with d2 ≔ max(1 − X, (1 + b2)/2) < 1.
3 Choice of parameters. Summarizing, in both cases 1 and 2 we have obtained

Z2
9+1 ≤ dZ2

9 + Λ�2
9+1, (10.48)

with d ≔ max(d1, d2) < 1 andΛ ≔ max(�0, �X), which holds under the conditions
(10.44) and (10.46). Iterating (10.48), we obtain the desired bound (10.42).
To fulfil (10.44), we write l2 in the form l2 = f0/W, which gives

d1 = d0 +
(
�0 + W�2

osc
)f0
W
= d0 +

(
�0
W
+ �2

osc

)
f0 ≤ d0 +

(
�0 + �2

osc
)
f0

since W ≥ 1, and we pick a f0 > 0 small enough to make d0 +
(
�0 + �2

osc
)
f0 < 1.

To fulfil (10.46), we use b ≤ 1/
√

2 and again l2 = f0/W to write

Γ = �X +
(

2X
f0
− 1 − b2

2

)
W ≤ �X +

(
2X
f0
− 1

4

)
W.

Choosing X = X0 = f0/16 yields

Γ ≤ �X0 −
1
8
W ≤ 0 provided W ≥ 8�X0 .
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In conclusion, setting W0 = max(1, 8�X0) and l0 =
√
f0/W0, we fulfil both condi-

tions (10.44) and (10.46) for any 0 < l ≤ l0, by choosing the scaling parameter
W = f0/l2 ≥ W0. This completes the proof.

Before establishing the linear convergence result forAlgorithm5.16 (AFEM-SW),
we need to extend Assumption 10.2 (equivalence of error and estimator) to the
present situation, in which the estimator [T is replaced by the full estimator ET
defined in (10.39); see Theorem 4.45 (modified residual estimator).

Assumption 10.22 (equivalence of error and full estimator). There exist con-
stants �* ≥ �! > 0 such that

�!E 9 ≤ ‖D − D 9 ‖V ≤ �*E 9 , 9 ≥ 0, (10.49)

where E 9 = ET 9 (DT 9 , 5 ).
Theorem 10.23 (linear convergence for AFEM-SW). SupposeAssumptions 10.22
(equivalence of error and full estimator), 10.3 (estimator reduction), 10.17 (Lip-
schitz continuity of estimator) and 10.20 (quasi-monotonicity of oscillation) are
valid. There exists l0 ∈ (0, 1] such that, for any choice of parameters 0 < l < l0
and 0 < b, \ < 1 in AFEM-SW, constants 0 < d < 1 and 2 > 0 exist for which

4 9+1 ≤ 2d84 9 for all 8, 9 ∈ N, (10.50)

where 4 9 ≔ ‖D − D 9 ‖V.
Proof. By Assumption 10.22 and W ≥ 1 in (10.41), we get the equivalence of
error and scaled estimator
�2
!

W
Z2
9 =

�2
!

W
([2
9 + W osc2

9) ≤ �2
!E2

9 ≤ 42
9 ≤ �2

*E2
9 ≤ �2

* ([2
9 + W osc2

9) = �
2
* Z

2
9 .

Invoking (10.42) yields

42
: ≤ �2

* Z
2
: ≤ �2

* d
:− 9Z2

9 + �2
*Λ

:∑
ℓ= 9+1

�2
ℓ

≤ W�
2
*

�2
!

d:− 942
9 + �2

*Λ
:∑

ℓ= 9+1
�2
ℓ .

This inequality is similar to the expression (10.8) obtained in step 1 in the proof
of Theorem 10.6. Therefore we can finally proceed as in that proof and obtain the
desired result.

10.3.3. Algorithm 5.28 (AFEM-TS)
As usual, DATA produces discrete data D̂: on a mesh T̂: ≥ T: , whereas GALERKIN
produces an approximation D:+1 on a mesh T:+1 ≥ T̂: to the exact solution D̂:
of the boundary value problem of interest with data D̂: . Its kernel is given in
Algorithm 5.4 (GALERKIN).
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In order to proceed, we need some notation and some assumptions. Let �(Ω)
denote the space of admissible data D for the boundary value problem at hand; let
‖D‖�(Ω) be a (quasi-)norm on �(Ω). If D collects all data of problem (10.36), we
write B = B(D) and F = F(D) = 〈 5 (D), ·〉 to highlight the dependence of the
bilinear and linear forms on the chosen data; similarly, we write D = D(D) for the
corresponding solution. A perturbation D̂ of D generates perturbed bilinear and
linear forms B̂ = B(D̂) and F̂ = F(D̂) = 〈 5 (D̂), ·〉, and a perturbation D̂ = D(D̂)
of D, which satisfies

D̂ ∈ V : B̂[D̂, F] = F̂ [F] for all F ∈ W. (10.51)

We assume, as in Section 5.4.2, that a call [T̂ , D̂] = DATA(T ,D, g) generates an
admissible refinement T̂ of T and discrete data D̂ over T̂ , such that

‖D − D̂‖�(Ω) ≤ �datag, (10.52)

where �data > 0 depends on data (see Section 7.2). Finally, we associate to any
admissible refinement T of T0 two finite-dimensional spacesVT ⊂ V andWT ⊂ W
of equal dimension, made of piecewise polynomial functions on T (typically this is
accomplished by choosing a type of finite element compatible with the pair (V,W)
and adopting it in any T ∈ T).

We are ready to state the assumptions which will rule our forthcoming analysis
of AFEM-TS.

Assumption 10.24 (perturbation estimate). For any T̃ ∈ T and Y ≤ Y0, let
[T̂ , D̂] = DATA(T̃ ,D, Y) and let D̂ = D(D̂) be the solution of (10.51). There exists
a constant �� > 0, independent of T̃ and Y, such that

‖D − D̂‖V ≤ �� ‖D − D̂‖�(Ω). (10.53)

Note that concatenating this inequality with (10.52) for g = Y, we can quantify
the effect of a call to DATA on the perturbation of the exact solution; we indeed
have

‖D − D̂‖V ≤ ���dataY. (10.54)

Assumption 10.25 (uniform continuity constant). For any T̃ ∈ T and Y ≤ Y0,
let [T̂ , D̂] = DATA(T̃ ,D, Y) and let B̂ = B(D̂) be the associated bilinear form.
There exists a constant �� ≥ ‖B‖, independent of T̃ and Y, such that

‖B̂‖ ≤ �� . (10.55)

Assumption 10.26 (uniform inf-sup constant). For any T̃ ∈ T and Y ≤ Y0, let
[T̂ , D̂] = DATA(T̃ ,D, Y), let B̂ = B(D̂) be the associated bilinear form, let T be
either T̂ or an admissible refinement of T̂ , and finally let VT ⊂ V, WT ⊂ W be
the subspaces built on T as above. There exists a constant 0 < V̄ ≤ V, independent
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of T̃ , Y and T , such that

inf
F ∈WT

sup
E∈VT

B̂[E, F]
‖E‖V‖F‖W ≥ V̄. (10.56)

The last assumption guarantees the well-posedness of all the discrete variational
problems

DT ∈ VT : B̂[DT , FT ] = F̂ [FT ] for all FT ∈ WT , (10.57)

associated with the successive refinements of the initial mesh T0 performed by
AFEM-TS.

We want to prove, as in the coercive case (see Proposition 5.27), that the number
of iterations performed in any call to GALERKIN inside AFEM-TS (which is finite
by Proposition 10.16) is indeed uniformly bounded.

Proposition 10.27 (computational cost of GALERKIN). Let Assumptions 10.2,
10.3, 10.24, 10.25 and 10.26 be valid. For any : ∈ N, the number of subiterations
�: inside a call to GALERKIN at iteration : of AFEM-TS is bounded by a constant
� independent of : .

Proof. Let T:, 9 denote the successive refinements of T̂: defined in GALERKIN at
iteration : , and let D:, 9 ∈ V:, 9 = VT:, 9 be the corresponding Galerkin solutions,
which are approximations of the solution D̂: ∈ V of the perturbed problem (10.51)
with forms B̂ = B̂: = B(D̂:) and 5̂ = 5̂: = 5 (D̂:). Note also that we use
a posteriori estimators [:, 9 = [:, 9(E) defined onV:, 9 , which depend on D̂: via the
coefficients of the equation. However, in reference to Assumptions 10.2 and 10.3,
we always suppose the constants in the bounds (10.5) and (10.6) to be independent
of : and 9 .

Let us pick 9 ≔ �: − 1. By definition of stopping criterion in GALERKIN, and
by (10.5) and (10.7), we get

Y: < [:, 9(D:, 9) ≤ 1
�!
‖D̂: − D:, 9 ‖V ≤ 2

�!
d 9 ‖D̂: − D:,0‖V. (10.58)

The norm on the right-hand side can be bounded via Corollary 3.3 (quasi-monotoni-
city), applied to B ≔ B̂: , D ≔ D̂: ∈ V, D# ≔ D:,0 ∈ V# ≔ VT̂: and
E ≔ D: ∈ V" ≔ VT: ⊆ VT̂: (the output of GALERKIN at iteration : − 1).
Using Assumptions 10.25 (uniform continuity constant) and 10.26 (uniform inf-
sup constant), we thus have

‖D̂: − D:,0‖V ≤ _‖D̂: − D: ‖V, (10.59)

with _ = ��/V̄.
Finally, we again use the triangle inequality to get

‖D̂: − D: ‖V ≤ ‖D̂: − D̂:−1‖V + ‖D̂:−1 − D: ‖V
≤ ‖D − D̂: ‖V + ‖D − D̂:−1‖V + ‖D̂:−1 − D: ‖V;
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then, Assumption 10.24 (perturbation estimate) yields ‖D − D̂: ‖V ≤ ���data lY:
and ‖D − D̂:−1‖V ≤ ���data lY:−1, whereas the termination test for GALERKIN at
iteration : − 1 yields ‖D̂:−1 − D: ‖V ≤ �* Y:−1. Hence, recalling Y:−1 = 2Y: and
l ≤ 1, we get

‖D̂: − D: ‖V ≤ f Y: (10.60)

with f = 3���data + 2�* . Finally, concatenating (10.58), (10.59) and (10.60), we
obtain

d 9 ≥ �!
2_f

,

which implies

�: ≤ 1 +
(

log
�!
2_f

)
(log d)−1 ≕ �.

The remainder of this section is devoted to investigating the rate-optimality of
AFEMs for inf-sup stable problems. Precisely, we aim at establishing the analogue
of bound (6.1) for such problems, that is,

‖D − DT ‖V ≤ �(D,D) (#T )−B . (10.61)

To this end, we have to introduce approximation classes for the solution and the data,
and to study the quasi-optimality properties of mesh refinement and GALERKIN.

10.3.4. Nonlinear approximation classes
The definition of the approximation class AB = AB(V; T0) for functions in V is
identical to that given in Section 6.1.1 for functions in �1

0(Ω) (see Definition 6.1),
provided the norm |E |� 1

0 (Ω) is replaced by the norm ‖E‖V at all occurrences.
In the rest of the section we will make the following regularity assumption.

Assumption 10.28 (approximability of D). The exact solution D ∈ V of problem
(10.36) belongs to the approximation class AB(V; T0) for some B = BD ∈ (0, =/3].
The approximation classes of data D ∈ �(Ω) are defined via discrete approxim-

ations DT ∈ DT subordinate to a partition T ∈ T, which produce the oscillation
oscT (D) = inf

DT ∈DT
‖D −DT ‖�(Ω).

Definition 10.29 (approximation classes of D). Let DB ≔ DB(�(Ω); T0) be the
set of data D ∈ �(Ω) satisfying

|D |DB ≔ sup
# ≥#T0

(
#B inf

T ∈T#
oscT (D)

)
< ∞ ⇒ inf

T ∈T#
oscT (D) ≤ |D |DB#−B .

(10.62)

The following assumptions on the data of our boundary value problem will be
valid in the rest of the section.
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Assumption 10.30 (approximability of D). The data D ∈ �(Ω) of problem
(10.36) belongs to the approximation class DB(�(Ω); T0) for some B = BD ∈
(0, =/3].
Assumption 10.31 (quasi-optimality of DATA). Acall [T̂ , D̂] = DATA(T ,D, Y)
marks a set of elementsMD whose cardinality #(D) = #MD obeys

#(D) . |D |1/BDDB
Y−1/BD . (10.63)

The concept of Y-approximation of order B of D ∈ AB(V; T0) is identical to the
one given in Definition 6.12, and so is the proof of the following result.

Lemma 10.32 (Y-approximation of D of order B). Let D ∈ AB(V; T0) and E ∈ V
satisfy ‖D − E‖V ≤ Y for some 0 < Y ≤ Y0. Then E is a 2Y-approximation of order
B to D.

10.3.5. Rate-optimality of GALERKIN
To estimate the growth of the cardinality of the meshes produced inside a call to
GALERKIN, which always deals with discrete data, and to relate it to the approx-
imation class of the exact solution D, we need an additional assumption of the
estimators [T . Henceforth, for any subset S ⊂ T , we define [T (E,S) by

[T (E,S)2 =
∑
) ∈S

[T (E, ))2.

Assumption 10.33 (discrete reliability of the estimator). There exists a constant
22 > 0 such that for any T ∈ T and any refinement T∗ ≥ T , ifR = RT→T∗ = T \T∗
is the set of refined elements of T , then

‖DT∗ − DT ‖V ≤ 22[T (DT ,R),

where DT (resp. DT∗) are the Galerkin solutions in VT (resp. VT∗).

We recall that the module MARK in GALERKIN implements Dörfler’s strategy,
that is, for a fixed \ ∈ (0, 1], it identifies a subset M ⊆ T of elements undergoing
bisection by the condition

[T (DT ,M) ≥ \ [T (DT ). (10.64)

The following property is the analogue of the one stated in Lemma 6.16 for
coercive problems. Since the proof is similar, we omit it.

Lemma 10.34 (Dörfler marking). Let Assumptions 10.17 and 10.33 be valid.
For all 0 < ` < 1

2 there exists 0 < \0 < 1 such that, if T ∈ T and T∗ is a refinement
of T with refined set R = T \ T∗, and if the Galerkin solutions DT ∈ VT and
DT∗ ∈ VT∗ satisfy

[T∗(DT∗) ≤ ` [T (DT ),

then
\0 [T (DT ) ≤ [T (DT ,R).
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We are ready to investigate the rate-optimality of the :th call to GALERKIN in
the two-step AFEM (see Definition 5.1). We let M:, 9 ⊆ T:, 9 denote the marked
set at the 9 th iteration inside GALERKIN (hereafter we refer to the notation in the
proof of Proposition 10.27). To achieve quasi-optimality, the following assumption
is fundamental.

Assumption 10.35 (minimality of marked sets). The module MARK selects a
setM:, 9 with minimal cardinality among those satisfying Dörfler’s condition

[:, 9(D:, 9 ,M) ≥ \ [:, 9(D:, 9) for all :, 9 .

Proposition 10.36 (cardinality of marked sets). Let Assumptions 10.2, 10.24,
10.25, 10.26, 10.28, 10.17, 10.33 and 10.35 hold true. There exists a constant
�0 > 0 independent of : and 9 such that the cardinality #:, 9(D) ofM:, 9 satisfies

#:, 9(D) ≤ �0 |D |1/BAB Y
−1/B
: (10.65)

and
#:, 9(D) ≤ �0 |D |1/BAB ‖D − D:, 9 ‖

−1/B
V . (10.66)

Proof. The proof can be easily obtained by slightly adapting to the current abstract
setting the proof of Corollary 6.22, also taking into account Proposition 6.18.

LetM: denote the set of marked elements in GALERKIN at iteration : of AFEM.
Since the cardinality #:(D) = #M: of M: satisfies #:(D) =

∑�:−1
9=0 #:, 9(D), we

can estimate its cardinality by combining Propositions 10.27 and 10.36.

Corollary 10.37 (rate-optimality of GALERKIN). Under the assumptions of Pro-
positions 10.27 and 10.36, the total number of marked elementsM: in GALERKIN
at iteration : of AFEM satisfies

#:(D) ≤ � �0 |D |1/BAB Y
−1/B
: .

10.3.6. Rate-optimality of AFEM-TS
At last, we focus on the two-step AFEM in Definition 5.1 (AFEM-TS), and prove its
rate-optimality, in relation to the nonlinear approximation classes of the solution D
and the problem data D.

Theorem 10.38 (rate-optimality of AFEM-TS). Under the same assumptions as
Proposition 10.36, plus Assumptions 10.30 and 10.31, there exists a constant �∗
independent of D and D such that the sequence (T: ,VT: , DT: ), : ≥ 0, produced by
AFEM-TS satisfies

‖D − DT: ‖V ≤ �∗
(
|D |1/BD
ABD
+ |D |1/BDDBD

)B
(#T:)−B,

with 0 < B = min(BD , BD) ≤ =/3.
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Proof. Let MD
ℓ (resp. MD

ℓ ) denote the set of elements marked by GALERKIN
(resp. DATA) at iteration ℓ of AFEM. By Corollary 10.37 and Assumption 10.31,
there exist constants �1, �2 independent of D, D and : such that

#ℓ(D) ≤ �1 |D |1/BDABD
Y−1/BD
ℓ , #ℓ(D) ≤ �2 |D |1/BDDBD

Y−1/BD
ℓ .

Then we conclude as in the proof of Theorem 6.24.

10.4. The Stokes problem

Here we consider the Stokes problem

−Δu + ∇? = f in Ω,
div u = 0 in Ω,

u = 0 on mΩ,
(10.67)

already introduced in Section 2.3. Assuming f ∈ �−1(Ω;R3) = V∗, its weak
formulation is given in (2.15) or, equivalently, in (2.16), where the bilinear form B
is continuous and inf-sup stable, as a consequence of Theorem 2.11 (Brezzi); see
Section 2.4.
A Galerkin discretization of this problem, based on finite-dimensional subspaces
VT ⊂ V = �1

0(Ω;R3) and QT ⊂ Q = !2
0(Ω), reads as follows: find (uT , ?T ) ∈

VT × QT such that

0[uT , v] + 1[?T , v] = 〈 f , v〉 for all v ∈ VT ,

1[@, uT ] = 0 for all @ ∈ QT ,
(10.68)

or equivalently

(uT , ?T ) ∈ VT ×QT : B [(uT , ?T ), (v, @)] = 〈 f , v〉 for all (v, @) ∈ VT ×QT .

We assume that the pair (VT ,QT ) is uniformly inf-sup stable for the form 1, that is,
there exists a constant V > 0, independent of the refinement T , such that

inf
@∈QT

sup
v∈VT

1[@, v]
‖v‖V‖F‖W ≥ V. (10.69)

This condition is equivalent to the uniform inf-sup stability of the bilinear form B
on the product space XT ≔ VT × QT . Then, applying a discrete form of Brezzi’s
theorem, we obtain the existence and uniqueness of the solution of (10.68), which
satisfies the stability bound

‖uT ‖V + ‖?T ‖Q ≤ � ‖ f ‖V∗ , (10.70)

where � depends only on the continuity constant ‖0‖ and the coercivity constant
U of the form 0, and the inf-sup constant V. Furthermore, we have the quasi-best
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approximation bounds (Boffi et al. 2013, Proposition 8.2.1)

‖u − uT ‖V ≤ �11 min
v∈VT

‖u − v‖V + �12 min
@∈QT

‖? − @‖Q, (10.71)

‖? − ?T ‖V ≤ �21 min
v∈VT

‖u − v‖V + �22 min
@∈QT

‖? − @‖Q, (10.72)

where the constants �8 9 , 1 ≤ 8, 9 ≤ 2, depend only on the quantities ‖0‖, ‖1‖, U
and V.
There are many families of finite element spaces that are uniformly inf-sup

stable for the Stokes problem; see Boffi et al. (2013, Chapter 8). Among them,
we consider here the Taylor–Hood element (Taylor and Hood 1973) and its higher-
order versions. They all use continuous discrete pressures, so they fit into the
general form

VT = {v ∈ �1
0(Ω;R3) | v |) ∈ \) , ) ∈ T },

QT = {@ ∈ !2
0(Ω) ∩ �0(Ω̄) | @ |) ∈ &) , ) ∈ T },

where \) and &) are spaces of polynomials on the element ) . Considering
simplicial elements, we have for = ≥ 2

\) = (P=()))3 , &) = P=−1()). (10.73)

The convergence and optimality of an adaptive algorithm for the Stokes problem
based on Taylor–Hood elements was first established by Feischl (2019) (see also
Feischl 2022, Section 6). We aim at deriving a similar result using the abstract
framework presented in this section.
We start by developing the a posteriori error analysis, and for this we introduce

the weak residual

〈RT , (v, @)〉 ≔ 〈 f , v〉 − B [(uT , ?T ), (v, @)] for all (v, @) ∈ V × Q,
whichwe represent asRT = (R<

T ,R2
T ) according to themomentum and continuity

equations; note that R2
T = div uT . The continuity and inf-sup stability properties

of the exact Stokes form B yield the equivalence

‖u − uT ‖V + ‖? − ?T ‖Q ≈ ‖RT ‖V∗×Q∗ ≈ ‖R<
T ‖V∗ + ‖ div uT ‖!2(Ω). (10.74)

We now apply Corollary 4.6 (star localization of residual norm) to each component
of the momentum residualR<

T , to get

‖R<
T ‖2V∗ ≈

∑
I∈V
‖R<

T ‖2(�−1(lI ))3 ,

whereas Lemma 4.35 (splitting of local residual norm) yields the equivalence

‖R<
T ‖2(�−1(lI ))3 ≈ ‖%T f + ΔuT − ∇?T ‖2(�−1(lI ))3 + ‖ f − %T f ‖2(�−1(lI ))3 .

In view of mesh refinement, we recall Lemma 4.8 (localization re-indexing), and
we express the error indicator in terms of elements ) ∈ T rather than stars lI , in
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analogy with the scalar case (4.52). To this end, define

[<T (uT , ?T , ))2 := ℎ2
) ‖%) f + ΔuT − ∇?T ‖2(!2() ))3

+ ℎ)
∑

� ⊂m) \mΩ
‖ [[(∇uT )n� ]] − %� f ‖2(!2(� ))3 ,

oscT ( f , ))2
−1 := ‖ f − %T f ‖2(�−1(l) ))3 .

(10.75)

Note that the jump term [[(∇uT )n� ]] does not contain the pressure contribution,
since discrete pressures in QT are globally continuous. We thus have

‖R<
T ‖2V∗ ≈

∑
) ∈T

(
[<T (uT , ?T , ))2 + oscT ( f , ))2

−1
)
. (10.76)

Recalling (10.74), the full local PDE residual indicator could be defined as

[T (uT , ?T , ))2 ≔ [<T (uT , ?T , ))2 + ‖ div uT ‖2!2() ).

However, such a quantity is not guaranteed to strictly reduce undermesh refinement,
due to the presence of the divergence term, which is not scaled by a positive power
of the mesh size. The following result provides an equivalent expression of the last
term, which does reduce. We recall the definition (9.1) of jumps across faces.

Lemma 10.39 (norm equivalence for divergence). We have

‖ div uT ‖2!2(Ω) ≈
∑
) ∈T

∑
� ⊂m) \mΩ

ℎ� ‖ [[div uT ]]‖2!2(� ).

Proof. The result follows from applying to i = div uT the equivalence

‖i − ΠT i‖2!2(Ω) ≈
∑
) ∈T

∑
� ⊂m) \mΩ

ℎ� ‖ [[i]]‖2!2(� ) for all i ∈ S=−1,−1
T

(where ΠT is the !2-orthogonal projection upon S=−1,0
T ), after observing that

ΠT i = 0 since uT is discretely divergence-free, that is, it satisfies the second set
of equations in (10.68)). To prove the equivalence for arbitrary i ∈ S=−1,−1

T , we
use the quasi-interpolation operator IdG

T introduced in Section 9.1.2, which leaves
S=−1,0
T invariant. Then it is easily seen that

‖i − ΠT i‖2!2(Ω) ≈ ‖i − IdG
T i‖2

!2(Ω),

so it is enough to prove the equivalence with ΠT replaced by IdG
T . But this

calculation can be done on patches l) since IdG
T is quasi-local:

‖i − IdG
T i‖2

!2() ) .
∑
� ⊂l)

ℎ� ‖ [[i]]‖2!2(� )

. ‖i − IdG
T i‖2

!2(l) ) for all i ∈ S=−1,−1
T .

The first inequality follows from (9.10) (see also Bänsch, Morin andNochetto 2002,
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Proposition 5.4). The second inequality results from the fact that if the rightmost
term vanishes on l) then i = IdG

T i, whence i is continuous in l) . This yields
[[i]] |� = 0 for all internal faces F of l) and the middle term vanishes.

Applying Lemma 10.39, we are led to define the elemental residual indicator

[T (uT , ?T , ))2 ≔ [<T (uT , ?T , ))2 + ℎ)
∑

� ⊂m) \mΩ
‖ [[div uT ]]‖2!2(� ). (10.77)

Concatenating (10.74), (10.76) and Lemma 10.39, we fulfil Assumption 10.22
(equivalence of error and full estimator). The precise result is as follows.

Proposition 10.40 (a posteriori error analysis for Stokes). There exist constants
�* ≥ �! > 0 such that

�!ET (uT , ?T , f ) ≤ ‖u − uT ‖V + ‖? − ?T ‖Q ≤ �*ET (uT , ?T , f ),

where the full estimator is defined by

ET (uT , ?T , f )2 ≔
∑
) ∈T

ET (uT , ?T , f , ))2,

with ET (uT , ?T , f , ))2 ≔ [T (uT , ?T , ))2 + oscT ( f , ))2
−1 introduced in (10.77)

and (10.75) and oscT ( 5 , ))−1 = ‖ 5 − %T 5 ‖�−1(l) ).

Since the Stokes problem has constant coefficients but variable forcing, it is
natural to resort to Algorithm 5.16 (AFEM-SW), the one-stepAFEMwith switch, for
its adaptive discretization. With respect to the functional setting of Section 10.3.2,
the ambient spaceW is V × Q and the data projection operator %T is

VT ≔
(
(%T )3 ,Π=−1

T
)

: W∗ → (FT )3 × S=−1,−1,

where FT is the scalar discrete space introduced in Definition 4.17, %T is here
the scalar projection operator introduced in Definition 4.24, and Π=−1

T is the !2-
orthogonal projection upon S=−1,−1. Furthermore, the norm used to measure data
perturbations is

‖( f , 6)‖2W∗T =
∑
) ∈T

(‖ f ‖2(�−1(l) ))3 + ‖6‖2!2() )
)
.

It is easily seen that [T (uT , ?T , )) satisfies Assumptions 10.17 (Lipschitz con-
tinuity of estimator) and 10.18 (monotonicity of estimator) as well as the hypotheses
of Proposition 10.19 (estimator reduction under Dörfler marking): the estimator is
clearly Lipschitz-continuous and monotone, and it satisfies condition (10.38) since
all its addends appear multiplied by a positive power of the mesh size. In addition,
the oscillation oscT (( f , 6)) = ‖( f , 6) − VT ( f , 6)‖W∗T fulfils Assumption 10.20
(quasi-monotonicity of oscillation).
Theorem 10.23 provides sufficient conditions for the linear convergence of the

algorithm, and these conditions have been verified according to the previous dis-
cussion. Therefore we may summarize our findings in the following theorem.

https://doi.org/10.1017/S0962492924000011 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000011


458 A. Bonito, C. Canuto, R. H. Nochetto and A. Veeser

Theorem 10.41 (linear convergence for Stokes). Consider theGalerkin discret-
ization (10.68) of the Stokes problem which uses Taylor–Hood elements of order
= ≥ 2, and let the a posteriori estimator be given in Proposition 10.40. Then
Theorem 10.6 guarantees the linear convergence of Algorithm 5.16 (AFEM-SW)
applied to this problem, that is, for some 2 > 0 and 0 ≤ d < 1,

4 9+8 ≤ 2d84 9 for all 8, 9 ∈ N,
with 4 9 ≔ ‖∇(u − u 9)‖Ω + ‖? − ? 9 ‖Ω.
In order to assess the optimality of the discretization, we specify the definition

of approximation classes for the solution of the Stokes problem. Precisely, given
(v, @) ∈ V × Q, we let f# (v, @) be the smallest approximation error incurred on
(v, @) with elements in VT × QT over meshes belonging to T# :

f# (v, @) ≔ inf
T ∈T#

inf
(vT ,@T )∈VT ×QT

(‖∇(v − vT )‖2Ω + ‖@ − @T ‖2Ω
)1/2

. (10.78)

For 0 < B ≤ =/3, the class AB = AB(V × Q; T0), relative to the partition T0 is the
set of functions (v, @) ∈ V × Q such that

|(v, @)|AB ≔ sup
# ≥#T0

(#Bf# (v, @)) < ∞. (10.79)

By adapting the arguments used in the proof of Theorem 6.20 (rate-optimality of
one-step AFEMs), we can prove the following result.

Theorem 10.42 (rate-optimality of AFEM-SW for Stokes). Let the assumptions
of Theorem 10.41 be valid. If (u, ?) ∈ AB, then the sequence {T: ,V: , (u: , ?:)}:≥0
generated by AFEM-SW satisfies

‖∇(u − u:)‖!2(Ω) + ‖? − ?: ‖!2(Ω) . |(u, ?)|AB (#T:)−B, : ≥ 0. (10.80)

Remark 10.43 (limits of the analysis). Other inf-sup stable elements, such as
the Mini element or the Crouzeix–Raviart element (see e.g. Boffi et al. 2013), do
not fit into the present setting of the analysis, since their velocities contain element-
wise bubble components (which are indeed responsible for the stability of the
elements). Unfortunately, a bubble on an element does not restrict to two bubbles
when the element is bisected, preventing the nestedness condition VT ⊂ VT∗ from
being satisfied when T∗ is a refinement of T .

10.5. Mixed FEMs for scalar elliptic PDEs

The diffusion–reaction problem (2.5) can be formulated in mixed form as follows:

G−12 = ∇D in Ω,
− div2 + 2D = 5 in Ω,

D = 0 on mΩ.
(10.81)
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Introducing the porosity matrix Q ≔ G−1, we assume hereafter that data

D = (Q, 2, 5 ) ∈ �(Ω) ≔ "(U1, U2) × '(21, 22) × !2(Ω), (10.82)

where "(U1, U2) and '(21, 22) are defined in (5.48) and (5.49), respectively. Note
that the current parameters U1, U2 are the reciprocals of U2, U1 in (5.48), but to
avoid complicating the notation further, we relabel them hereafter.

Weak formulation. To write the weak formulation of these equations, we introduce
the Hilbert space

�(div;Ω) ≔ {3 ∈ !2(Ω;R3) | div 3 ∈ !2(Ω)} (10.83)

equipped with the norm ‖3‖2� (div;Ω) ≔ ‖3‖2Ω + ‖ div 3‖2Ω. Then we multiply the
first equation in (10.81) by 3 ∈ �(div;Ω) and the second equation by E ∈ !2(Ω),
we integrate over Ω and apply partial integration to the term containing ∇D, taking
into account the Dirichlet boundary condition. In this way we obtain the following
variational problem: find (2, D) ∈ V ≔ �(div;Ω) × !2(Ω) such that∫

Ω
Q2 · 3 +

∫
Ω
D div 3 = 0 for all 3 ∈ �(div;Ω),∫

Ω
E div2 −

∫
Ω
2 D E = −

∫
Ω
5 E for all E ∈ !2(Ω).

(10.84)

This can be written as follows: find (2, D) ∈ + ×& such that

0[2, 3] + 1[D, 3] = 0 for all 2 ∈ +,
1[E,2] + < [D, E] = −〈 5 , E〉 for all E ∈ &, (10.85)

if we set + ≔ �(div;Ω), & ≔ !2(Ω), and we introduce the continuous bilinear
forms 0 : + ×+ → R, 1 : & ×+ → R and < : & ×& → R by

0[2, 3] =
∫
Ω
Q2 · 3, 1[E, 3] =

∫
Ω
E div 3, < [D, E] = −

∫
Ω
2 D E,

and the linear form 〈 5 , E〉 =
∫
Ω
5 E. An equivalent formulation, similar to (2.16),

is as follows:

(2, D) ∈ + ×& : B [(2, D), (3, E)] = −〈 5 , E〉 for all (3, E) ∈ + ×&, (10.86)

with
B [(2, D), (3, E)] := 0[2, 3] + 1[D, 3] + 1[E,2] + < [D, E] .

Formulation (10.85) is a generalization of the classical saddle point problem
considered in Section 2.4, given by the presence of the third bilinear form <.
According to Boffi et al. (2013, Theorem 4.3.1), the well-posedness of such a
problem can be derived from the following three conditions:

(i) the form 0 is coercive on +0 = {3 ∈ + | 1[E, 3] = 0 for all E ∈ &},
(ii) the form 1 satisfies an inf-sup condition on + ×&,

https://doi.org/10.1017/S0962492924000011 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492924000011


460 A. Bonito, C. Canuto, R. H. Nochetto and A. Veeser

(iii) the form < is non-positive on &, i.e. < [E, E] ≤ 0 for all E ∈ &.
These conditions are easily checked for our mixed formulation of the Dirichlet
problem.

Discretization. To define a finite element discretization of this problem, we con-
sider partitions T ∈ T obtained by conforming bisection refinements of an ini-
tial partition T0, and let +T ⊂ + and &T ⊂ & be finite-dimensional subspaces
made of piecewise polynomial functions on T . Among the families of uniformly
inf-sup stable finite element spaces for this problem, we consider the Raviart–
Thomas–Nédélec family (Raviart and Thomas 1977, Nédélec 1980), and the
Brezzi–Douglas–Marini family (Brezzi, Douglas Jr andMarini 1985) on simplicial
elements. They fit into the general definition

+T = {3 ∈ �(div;Ω) | 3 |) ∈ \) , ) ∈ T },
&T = {@ ∈ !2(Ω) | @ |) ∈ &) , ) ∈ T }.

For the Raviart–Thomas–Nédélec (RTN) family we have

\) = (P=−1()))3 + x P=−1()), &) = P=−1()), = ≥ 1,

where x = (G1, . . . , G3) is the coordinate vector, whereas for the Brezzi–Douglas–
Marini (BDM) family we have

\) = (P=()))3 , &) = P=−1()), = ≥ 1.

Note that for any face � of the triangulation we have 3 |� · n� ∈ P=−1(�) for the
RTN family, and 3 |� ·n� ∈ P=(�) for the BDM family; furthermore, div\) = &) .
We refer to Boffi et al. (2013, Sections 2.3.1, 7.1.2) for more details.

Due to the presence of variable data, it is natural to perform the adaptive discret-
ization of the problem by adopting Algorithm 5.28 (AFEM-TS), the two-stepAFEM.
The procedure [T̂ , D̂] = DATA(T ,D, g) generates an admissible refinement T̂ of
T and discrete data

D̂ = (Q̂, 2̂, 5̂ ) ∈ DT̂ ≔
[
S=−1,−1
T̂

]3×3 × S=−1,−1
T̂

× S=−1,−1
T̂

over T̂ , such that Q̂ ∈ "(Û1, Û2), 2̂ ∈ '(2̂1, 2̂2) (see Sections 7.2.2 and 7.2.3), and

‖D − D̂‖�̂(Ω) ≤ �datag,

where the space �̂(Ω) is defined in (5.55).
The Galerkin discretization with these discrete data reads: find (2T , DT ) ∈

+T ×&T such that

0̂[2T , 3] + 1[DT , 3] = 0 for all 3 ∈ +T ,
1[E,2T ] + <̂ [DT , E] = −〈 5̂ , E〉 for all E ∈ &T ,

(10.87)
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with

0̂[2, 3] =
∫
Ω
Q̂2 · 3, <̂ [D, E] = −

∫
Ω
2̂ D E, 〈 5̂ , E〉 =

∫
Ω
5̂ E,

or equivalently

(2T , DT ) ∈ +T ×&T : B̂[(2T , DT ), (3, E)] = −〈 5̂ , E〉 for all (3, E) ∈ +T ×&T .

A posteriori error estimator. Let (2̂, D̂) ∈ + × & denote the exact solution of the
perturbed problem

B̂[(2̂, D̂), (3, E)] = −〈 5̂ , E〉 for all (3, E) ∈ + ×&;

note that the forcing 5̂ appears with a negative sign. Then, by continuity and
uniform inf-sup stability of the form B̂, we know that the error

‖2̂ − 2T ‖� (div;Ω) + ‖D̂ − DT ‖!2(Ω)

is equivalent to the quantity

sup
(3,E)∈+×&

B̂[(2̂ − 2T , D̂ − DT ), (3, E)]
‖3‖� (div;Ω) + ‖E‖!2(Ω)

= sup
(3,E)∈+×&

〈 5̂ , E〉 + B̂[(2T , DT ), (3, E)]
‖3‖� (div;Ω) + ‖E‖!2(Ω)

.

By Galerkin orthogonality, the numerator is equal to

〈 5̂ , E − ET 〉 + B̂[(2T , DT ), (3 − 3T , E − ET )] for all (3T , ET ) ∈ +T ×&T ,

which we now proceed to estimate. The term

B̂[(2T , DT ), (3 − 3T , 0)]
can be analysed as in Carstensen (1997) (see also Verfürth 2013, Section 4.8), by
resorting to a stable decomposition of �(div;Ω): precisely, given 3 ∈ �(div;Ω),
there exist � ∈ (�1(Ω))3 and u ∈ (�1(Ω))3 such that

3 = � + curl u (10.88)

with ‖�‖(� 1(Ω))3 + ‖u‖(� 1(Ω))3 . ‖3‖� (div;Ω) (see Xu, Chen and Nochetto 2009,
Section 5.1.3). Note that if Ω is convex, then (10.88) is the Helmholtz decompos-
ition of 3, with � = ∇� for some � ∈ (�2(Ω))3 . Using (10.88) and a suitable
choice of 3T , one can show that

|B̂[(2T , DT ), (3 − 3T , 0)] | . [T ,1((2T , DT )) ‖3‖� (div;Ω), (10.89)

with

[T ,1((2T , DT ))2 =
∑
) ∈T

[T ,1((2T , DT ), ))2
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and

[T ,1((2T , DT ), ))2

≔ ℎ2
) ‖Q̂2T − ∇DT ‖2!2() ) + ℎ2

) ‖ curl(Q̂2T )‖2
!2() )

+ ℎ)
∑

� ⊂m) \mΩ
‖ [[(Q̂2T )C ]]‖2!2(� ) + ℎ)

∑
� ⊂m)∩mΩ

‖(Q̂2T )C ‖2!2(� ), (10.90)

where 5C = 5 − (5 · n� )n� denotes the tangential component of the vector field 5
on �. On the other hand, the term

〈 5̂ , E − ET 〉 + B̂[(2T , DT ), (0, E − ET )] =
∫
Ω

( 5̂ + div2T − 2̂ DT )(E − ET )

can be bounded as follows. For any ) ∈ T , let Π) = Π=−1
) be the !2-orthogonal

projection upon &) = P=−1()), and let us choose (ET )|) = Π) E. Then, noticing
that 5̂ + div2T ∈ &) , we have∫

Ω
( 5̂ + div2T − 2̂ DT )(E − ET ) =

∑
) ∈T

∫
)

( 5̂ + div2T − Π) (2̂ DT ))(E − Π) E)

−
∑
) ∈T

∫
)

(2̂ DT − Π) (2̂ DT ))(E − Π) E)

= −
∑
) ∈T

∫
)

(2̂ DT − Π) (2̂ DT ))E, (10.91)

whence

|〈 5̂ , E − ET 〉 + B̂[(2T , DT ), (0, E − ET )] | ≤
∑
) ∈T
‖2̂ DT − Π) (2̂ DT )‖!2() )‖E‖!2() ).

Conversely, it is easily checked that (10.91) implies the bound

‖2̂ DT − Π) (2̂ DT )‖!2() ) . ‖ div2 − div2T ‖!2() ) + ‖2̂‖!∞() )‖D̂ − DT ‖!2() ).

The choice = = 1 yields 2̂ DT ∈ P0()), hence 2̂ DT − Π) (2̂ DT ) = 0. For = ≥ 2,
we could define as a (squared) local error indicator the quantity

[T ,1((2T , DT ), ))2 + ‖2̂ DT − Π) (2̂ DT )‖2
!2() ),

but the second addend is not guaranteed to reduce under refinement, since it is
not scaled by a positive power of the mesh size. However, there is an equivalent
quantity which does reduce, as stated in the following result.

Lemma 10.44 (equivalence of local error indicators). Assume 2̂, DT ∈ P=−1()),
for = ≥ 2. Let Π 9) be the !2-orthogonal projection upon P 9()). Then

‖2̂ DT − Π) (2̂ DT )‖!2() ) ≈ ℎ)
=∑
9=1
‖DT − Π=−1− 9

) DT ‖!2() )‖∇2̂ − Π 9−2
) ∇2̂‖!∞() ),

(10.92)
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where the constants hidden in the symbol ≈ are independent of 2̂, DT and ) .

Proof. By the Bramble–Hilbert theorem,

‖2̂ DT − Π) (2̂ DT )‖!2() ) . ℎ
=
) |2̂ DT |�=() )

and

|2̂ DT |�=() ) .
=−1∑
9=1
|2̂ |
,
9
∞() ) |DT |�=− 9 () ).

Moreover,
|2̂ |
,
9
∞() ) = |∇2̂ |, 9−1

∞ () ) = |∇2̂ − Π
9−2
) ∇2̂ |, 9−1

∞ () )

and
|DT |�=− 9 () ) = |DT − Π=−1− 9

) DT |�=− 9 () ).

Applying inverse estimates for seminorms, we obtain the . inequality in (10.92).
To get the opposite inequality, it is enough to check that the vanishing of the

left-hand side implies the vanishing of the right-hand side, since both quantities are
defined on finite-dimensional spaces and their scaling with respect to the element
size is the same. Now, 2̂ DT = Π) (2̂ DT ) implies 2̂ DT ∈ P=−1()). Let us assume
that DT ∈ P=−1−:()) for some 0 ≤ : ≤ = − 1, and consequently 2̂ ∈ P:()), i.e.
∇2̂ ∈ P:−1()). Then Π=−1− 9

) DT = DT for any 9 ≤ : , and hence the corresponding
differences in the summation on the right-hand side of (10.92) vanish. Conversely,
for 9 > : we have 9 − 2 ≥ : − 1, which implies Π 9−2

) ∇2̂ = ∇2̂, that is, the corres-
ponding differences in the summation on the right-hand side vanish. In conclusion,
all terms in the summation in (10.92) vanish, and the thesis is proved.

Summarizing, we have obtained the following result.

Proposition 10.45 (a posteriori error estimator for mixed methods). For every
) ∈ T , the local quantity

[T ((2T , DT ), ))2

≔ ℎ2
) ‖Q̂2T − ∇DT ‖2!2() ) + ℎ2

) ‖ curl(Q̂2T )‖2
!2() )

+ ℎ)
∑

� ⊂m) \mΩ
‖ [(Q̂2T )C ] ‖2!2(� ) + ℎ)

∑
� ⊂m)∩mΩ

‖(Q̂2T )C ‖2!2(� )

+ ℎ2
)

=∑
9=1
‖DT − Π=−1− 9

) DT ‖2!2() )‖∇2̂ − Π
9−2
) ∇2̂‖2!∞() ) (10.93)

is a (squared) a posteriori error indicator for the mixed problem (10.87), which
gives rise to a global a posteriori error estimator [T (2T , DT ) that satisfies As-
sumption 10.2.
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Finally, Assumption 10.3 follows from Proposition 10.19 (estimator reduction
under Dörfler marking), since the estimator is clearly Lipschitz-continuous and
monotone, and it satisfies condition (10.38) since all its addends are scaled by
positive powers of the mesh size.
As a consequence, the GALERKIN step in AFEM-TS converges linearly by The-

orem 10.6, and the number of sub-iterations in the :th call toGALERKIN is bounded
by a constant � independent of : (Proposition 10.27). Furthermore, Theorem 10.38
guarantees the quasi-optimality of the two-step AFEM.

Theorem 10.46 (quasi-optimality of AFEM-TS for mixed methods). Let the ex-
act solution (2, D) of the mixed problem (10.84) belong to the approximation
class ABD (+ ; T0), and let the data (Q, 2, 5 ) belong to the approximation class
DBD (�(Ω); T0). Let Assumptions 6.14 (marking parameter), 6.21 (size of l)
and 6.19 (initial labelling) be valid. Consider the Galerkin discretization (10.87)
based on one of the Raviart–Thomas–Nédélec or Brezzi–Douglas–Marini finite
element pairs. There exists a constant �∗ independent of the exact solution (2, D)
and the dataD = (Q, 2, 5 ) such that the sequence {(T: ,VT: ×QT: , (2T: , DT: ))}:≥0
produced by AFEM-TS satisfies for : ≥ 0

‖2 − 2T: ‖� (div;Ω) + ‖D − DT: ‖!2(Ω) ≤ �∗
(
|(2, D)|1/BD

ABD
+ |D |1/BDDBD

)B
(#T:)−B,

with 0 < B = min(BD , BD) ≤ =/3.
Remark 10.47. Another family of uniformly inf-sup stable spaces is that of
Brezzi, Douglas Jr, Fortin and Marini (1987), where V) = {3 ∈ (P=()))3 |
3 · n� ∈ P=−1(�) for all � ∈ F ∩ m)} and &) = P=()), = ≥ 1. However, the
imposed condition on the normal component of vector fields on each face of T
prevents the inclusion of VT into VT∗ from holding if T∗ is a bisection refinement
of T .

10.6. Proof of Theorem 10.15

This section is devoted to establishing Theorem 10.15, which in turn contributes
with Corollary 10.14 to the proof of Theorem 10.6.
It is important to notice that the growth of ‖[‖2 is dictated by the number of

blocks # rather than the actual dimension =# � # of [. Therefore we again use
the block notation from Section 10.2,

H = (H(8, 9))#8, 9=0 ∈ R=#×=# ,
with lower and upper triangular factors

R = (R(8, 9))#8, 9=0 ∈ R=#×=# , [ = ([(8, 9))#8, 9=0 ∈ R=#×=# .
We also set

G = (G(8, 9))#8, 9=0 ≔
√
UH

for a suitable parameter U > 0 defined below.
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10.6.1. Representation of block inverse matrices
We first show that it suffices to derive the estimates

‖[−1‖2 . #−1/?, ? > 2, (10.94)

‖[̃−1‖2 . #−1/?, ? > 2, (10.95)
‖J‖2 . 1, (10.96)

where H> = R̃[̃ is the normalized block triangular decomposition of H>, and
J ∈ R=#×=# stands for the block diagonal part of[,
In fact, in view of property (P1) (continuity of B), we see that

‖H‖2 = ‖H>‖2 ≤ ‖B‖,
whence

R = H[−1 ⇒ ‖R‖2 ≤ ‖H‖2‖[−1‖2 ≤ ‖B‖‖[−1‖2
and, similarly,

‖ R̃‖2 ≤ ‖B‖‖[̃−1‖2.
On the other hand, from

H = RJ(J−1[) ⇒ H> = ([>J−1)JR>

we infer that

R̃ = [>J−1 ⇒ [ = JR̃
>
,

[̃ = JR> ⇒ R−1 = J[̃
−>
,

(10.97)

which implies

‖[‖2 ≤ ‖J‖2‖ R̃>‖2,
‖R−1‖2 ≤ ‖J‖2‖[̃−>‖2.

Therefore we can focus on proving (10.94) and (10.96), since the proof of
(10.95) is identical to that of (10.94). We proceed in several steps. The most
delicate estimate is (10.94).

1 9 th column of[−1. To prove (10.94), it turns out to be convenient to first get an
explicit expression for the 9 th column of[−1. We achieve this next.

Lemma 10.48 (representation of the 9th column of[−1). We have

[−1(8, 9) = H[ 9]−1(8, 9) for all 0 ≤ 8 ≤ 9 ≤ #. (10.98)

Proof. We compute the (8, 9) block of H[ 9]−1 = [[ 9]−1R [ 9]−1,

H[ 9]−1(8, 9) =
9∑
:=0

[−1 [ 9](8, :)R−1 [ 9](:, 9) = [[ 9]−1(8, 9),
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because R−1(:, 9) = 0 for : < 9 and R−1( 9 , 9) = O( 9 , 9). Moreover, we claim that

[−1 [ 9](8, 9) = [−1(8, 9), 8 ≤ 9 ,
because[−1 is block upper triangular. To see this, let

x(:, 9) = [−1(:, 9) ∈ R=#×3 9

be the 9 th block column of[−1, which satisfies

[x(:, 9) = O(:, 9) ∈ R=#×3 9 .
Since O(8, 9) = 0 for 8 > 9 and [ is block upper triangular, we have x(8, 9) = 0 for
8 > 9 . Therefore the matrix

x̃(:, 9) = (x(8, 9)) 98=0 ∈ R= 9×3 9 ,
with the first 9 blocks of x(:, 9), satisfies the reduced system

[[ 9]( 9 , 9) x̃( 9 , 9) = O( 9 , 9),
9∑
:=8

[[ 9](8, :) x̃(:, 9) = 0, 0 ≤ 8 ≤ 9 .

We thus deduce that x̃(:, 9) = [[ 9]−1(:, 9), as asserted.

This lemma justifies dealing with H[ 9]−1.

2 Representation of H[ 9]−1. We resort to the Neumann series expansion. We first
consider the uniform SPD matrix

H[ 9]H[ 9]> ∈ R= 9×= 9 ,
for which there exists U > 0 such that

‖O[ 9] − UH[ 9]H[ 9]>‖2 < 1

uniformly in 9 . In fact, note that for x ∈ R= 9×= 9

‖x − UH[ 9]H[ 9]>x‖22 = ‖x‖22 − 2U〈x, H[ 9]H[ 9]>x〉 + U2‖H[ 9]H[ 9]>x‖22 ,
as well as

〈x, H[ 9]H[ 9]>x〉 = ‖H[ 9]>x‖22 ≥ V2‖x‖22
in view of property (P2) (discrete inf-sup) and (3.2), and

‖H[ 9]H[ 9]>x‖2 ≤ ‖H[ 9] ‖22 ‖x‖2 ≤ ‖B‖2‖x‖2.
Consequently

‖x − UH[ 9]H[ 9]>x‖22 ≤ (1 − 2UV2 + U2‖B‖4)‖x‖22 .
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The quadratic polynomial inU on the right-hand side isminimized byU = V2/‖B‖4,
and gives

‖O[ 9] − UH[ 9]H[ 9]>‖22 ≤ 1 − V4

‖B‖4 ≕ d2. (10.99)

From now on, we fix this value of U and assume the uniform bound (10.99). Let

G[ 9] = √UH[ 9] ∈ R= 9×= 9

be the 9 th principal section of the matrix G introduced previously, and let

M [ 9] ≔ O[ 9] − G[ 9]G[ 9]> ∈ R= 9×= 9 . (10.100)

Lemma 10.49 (representation of H[ 9]−1). The following expression is valid:

H[ 9]−1 = UH[ 9]>
∞∑
<=0

M [ 9]< for all 0 ≤ 9 ≤ #. (10.101)

Proof. Since ‖M [ 9] ‖2 ≤ d < 1 according to (10.99), the Neumann series theorem
guarantees that

G[ 9]G[ 9]> = O[ 9] − M [ 9]
is invertible, and the inverse reads

G[ 9]−>G[ 9]−1 =
∞∑
<=0

M [ 9]<,

where M [ 9]0 = O[ 9]. Multiplying on the left by G[ 9]>, we obtain
1√
U
H[ 9]−1 =

√
UH[ 9]

∞∑
<=0

M [ 9]<,

which yields the assertion.

3 Representation of[−1. In order to obtain a representation of[−1, we now build
on (10.98), which gives a formula for the 9 th column of [−1 in terms of H[ 9]−1,
and (10.101), which provides a series representation of H[ 9]−1. To this end, we
introduce the block upper triangular matrix M< ∈ R=#×=# given by

M<(8, 9) ≔

{
M [ 9]<(8, 9), 8 ≤ 9 ,
0, 8 > 9 ,

for < ≥ 1 and M0 = O. Hence

[−1(8, 9) =



U

(
H[ 9]>

∞∑
<=0

M< [ 9]
)

(8, 9), 8 ≤ 9 ,

0, 8 > 9 .
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To write this expression in compact form, it is convenient to introduce the block
upper triangular truncation operator U : R=#×=# → R=#×=# defined by

U(S)(8, 9) ≔

{
S(8, 9), 8 ≤ 9 ,
0, 8 > 9 ,

for all S ∈ R=#×=# .

Lemma 10.50 (representation of[−1). We have

[−1 = U U
(
H>

∞∑
<=0

M<

)
. (10.102)

Proof. SinceM< is block upper triangular for all< ≥ 0, so is the series
∑∞
<=0 M<.

It thus suffices to check that(
H>

∞∑
<=0

M<

)
(8, 9) =

(
H[ 9]>

∞∑
<=0

M< [ 9]
)

(8, 9), 8 ≤ 9 .

This shows the desired relation (10.102).
4 Recursion. In order to estimate M<, it is useful to relate M< to M<−1. We start
with a simple property of the operator U : for G, H ∈ R=×= and 1 ≤ 8 ≤ 9 ≤ =, we
have

(G U(H))8 9 =
=∑
:=1

G8: U(H): 9 =
9∑
:=1

G8: H: 9 = (G[ 9]H[ 9])(8, 9).

Lemma 10.51 (recursion). The following is valid for all < ≥ 1:

M< = M<−1 − U(G U(G>M<−1)), (10.103)

with M0 = O. Therefore the 9 th column of M< reads

M<(0 : 9 , 9) = M [ 9]M<−1(0 : 9 , 9), 0 ≤ 9 ≤ #. (10.104)

Proof. First take < = 1 and apply the proceeding relation for 0 ≤ 8 ≤ 9 ≤ # , to
obtain

(M0 − U(G U(G>M0)))(8, 9) = O(8, 9) − (G U(G>))(8, 9)
= O(8, 9) − G[ 9]G[ 9]>(8, 9)
= M [ 9](8, 9) = M1(8, 9),

in light of (10.100). Then take < > 1 and 0 ≤ 8 ≤ 9 , to arrive at
(M<−1 − U(G U(G>M<−1)))(8, 9)

= M<−1(8, 9) −
9∑

:,ℓ=1
G(8, :) G>(:, ℓ)M<−1(ℓ, 9)

=
9∑
ℓ=1

(O[ 9] − G[ 9]G[ 9]>)(8, ℓ)M<−1(ℓ, 9)
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=
9∑
ℓ=1

M [ 9](8, ℓ)M [ 9]<−1(ℓ, 9)

= M [ 9]<(8, 9) = M<(8, 9).

This is the asserted equality (10.103). The remaining relation (10.104) follows
from the last equality upon realizing that

M<(0 : 9 , 9) = (M<(8, 9)) 98=0 = M [ 9]M [ 9]<−1(0 : 9 , 9) = M [ 9]M<−1(0 : 9 , 9).

This completes the proof.

5 Schatten norms. In the view of Lemmas 10.51 (recursion) and 10.50 (repres-
entation of [−1), we intend to estimate ‖[−1‖2 in terms of suitable norms of M<
that depend on the number # of blocks rather than the dimension =# , because
=# � # . These special norms are called block Schatten norms.
However, for the sake of clarity, we start with the definition and properties of the

usual Schatten norms. They include the operator 2-norm, the Frobenius norm, and
satisfy a Hölder inequality.

Definition 10.52 (Schatten norms). Given S ∈ R=×=, let
f1(S) ≥ f2(S) ≥ · · · ≥ f=(S) ≥ 0

be the singular values of S. Given 1 ≤ ? ≤ ∞, let the ?-Schatten norm be

|S |? ≔
( =∑
<=1

f<(S)?
)1/?

.

Remark 10.53. Note that if ? = ∞, the Schatten norm reduces to the 2-norm,
that is,

|S |∞ = f1(S) = ‖S‖2,
and if ? = 2 it is equivalent to the Frobenius norm,

|S |2 =
( =∑
<=1

f<(S)2
)1/2

=

( =∑
<=1

S2
8 9

)1/2
= ‖S‖� .

We now list a number of useful properties of these norms.

Lemma 10.54 (properties of | · |?). The following properties hold for 1 ≤ ? ≤ ∞:
(i) f8(S>S) = f8(S)2 ⇒ |S>S |? = |S |22?,
(ii) f8(S) = f8(S>) ⇒ |S |? = |S> |?,
(iii) Hölder inequality: for 1/A = 1/? + 1/@, with A, ?, @ ∈ [1,∞],

|S1 S2 |A ≤ |S1 |? |S2 |@,
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(iv) |U(S)|∞ . log(=) |S |∞,
(v) |U(S)|2 9 ≤ 2 9−1 |S |2 9 .

Remark 10.55. Properties (i) and (ii) are trivial. We refer to Dunford and
Schwartz (1988, Lemma XI.9.20) for property (iii), to Bhatia (2000, (15)) for
property (iv), and to Davies (1988) and Feischl (2022, Lemma 17) for property (v).

To define the block Schatten norms, we consider the subspace D1 of R=#×(#+1)

of matrices of the form

^ =



^0
^1

. . .

^#


, ^ 9 ∈ R3 9 , 0 ≤ 9 ≤ #,

or equivalently

^ ∈ D1 ⇐⇒ ^8 9 = 0 for all 8 ≠ = 9−1 + 1, . . . , = 9 .

We can represent ^ using block notation as follows:

^ = (^(8, 9))#8, 9=0, ^(8, 9) ∈ R3 9×1,

where

^(8, 9) =

{
^ 9 , 8 = 9 ,

0, 8 ≠ 9 .

Given a block matrix S = (S(8, 9))#8, 9=0 ∈ R=#×=, we consider

S^ = (S(8, 9)^ 9)#8, 9=0 ∈ R=#×(#+1),

namely the 9 th block column of S^ is

(S(8, 9)^ 9)#8=0 ∈ R=# .
Definition 10.56 (block Schatten norms). For 1 ≤ ? ≤ ∞, let

|S |1,? ≔ sup
^ ∈D1 , |^ |∞≤1

|S^ |? for all S ∈ R=#×=# .

Note the unusual norm |^ |∞ instead of |^ |? in this definition of operator norm
|S |1,?. This choice is deliberate and will be useful later; see Remark 10.58.
We now list important properties of the block Schatten norms; see Feischl (2022,
Lemmas 15, 16, 17) for proofs.

Lemma 10.57 (properties of | · |1,?). The following properties hold for all S,
S1, S2 ∈ R=#×=# and 1 ≤ ? ≤ ∞:
(i) |S |1,? ≤ (# + 1)1/? |S |∞ = (# + 1)1/? ‖S‖2,
(ii) |S1S2 |1,? ≤ |S1 |∞ |S2 |1,?,
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(iii) |S |∞ ≤ |S |1,?, |S |1,∞ = |S |∞,
(iv) if S1 ∈ R=#×=# is block triangular with 9 th block column

S1(0 : 9 , 9) = V 9S2(0 : 9 , 9), V 9 ∈ R= 9×= 9
for 0 ≤ 9 ≤ # , then

|S1 |1,2 ≤ max
0≤ 9≤#

|V 9 |∞ |S2 |1,2,

(v) |U(S)|1,2: ≤ 2:−1 |S |1,2: , : = 1, 2,
(vi) |U(S)|∞ ≤ (dlog2(#)e + 1)|S |∞.
Remark 10.58. To understand the significance of Definition 10.56, we examine
the growth of the usual and block ?-Schatten norm relative to the∞-Schatten norm
for 1 ≤ ? < ∞. Given S ∈ R=#×=# , we have for the usual ?-norm

|S |? =
( =#∑
8=1

f8(S)?
)1/?

≤ =1/?
# f1(S) = =1/?

# |S |∞ = =
1/?
# ‖S‖2,

whereas for the block ?-norm we get

|S |1,? ≤ (# + 1)1/? |S |∞ = (# + 1)1/? ‖S‖2,
according to Lemma 10.57(i). In fact, given ^ ∈ D1 with |^ |∞ = ‖^‖2 = 1, we
first note that

|S^ |? =
( #∑
9=0
f9(S^)?

)1/?
≤ f0(S^)(# + 1)1/? = ‖S^‖2(# + 1)1/?,

and also that

‖S^‖2 = sup
x∈R#+1

‖S^x‖2
‖x‖2 ≤ ‖S‖2 sup

x∈R#+1
‖^x‖2
‖x‖2 ≤ ‖S‖2,

because ‖S‖2 = |S |∞ = 1. On the one hand, this explains why it is convenient to
have the norm |^ |∞ rather than |^ |? in Definition 10.56. On the other hand, this
calculation reveals the key point that

|S |1,? � |S |?,
because the growth of |S |1,? is dictated by the number of blocks # + 1 whereas
that of |S |? is proportional to the dimension =# of S and =# � # . This property
is essential to the estimate of ‖[−1‖2 below.

6 Estimate of ‖[−1‖2. We are now in a position to prove the desired bound (10.94).

Proposition 10.59 (estimate of ‖[−1‖2). Let H ∈ R=#×=# be a block matrix
such that

‖H‖2 ≤ ‖B‖, max
0≤ 9≤#

‖H[ 9]−1‖2 ≤ 1
V
.
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Then there exist constants �LU and ? > 2 such that the block upper triangular
factor[ of H satisfies

‖[−1‖2 ≤ �LU#
1/? . (10.105)

Proof. We recall (10.102) of Lemma 10.50 (representation of[−1),

[−1 = U U
(
H>

∞∑
<=0

M<

)
,

along with (10.103) of Lemma 10.51 (recursion),

M< = M<−1 − U(G U(G>M<−1)), < ≥ 1,

and (10.104) of Lemma 10.51,

M(0 : 9 , 9) = M [ 9]M<−1(0 : 9 , 9), 0 ≤ 9 ≤ #,
with M0 = O. We use these expressions in conjunction with Lemma 10.57 (proper-
ties of | · |1,?) to prove (10.105). We proceed in several steps.
(i) Bound for |M< |1,2. In light of (10.99) and (10.100),

|M [ 9] |∞ = ‖M [ 9] ‖2 ≤ d =
√

1 − V4

‖B‖4 < 1, 0 ≤ 9 ≤ #.

Applying Lemma 10.57(iv) to M< yields
|M< |1,2 ≤ max

0≤ 9≤#
|M [ 9] |∞ |M<−1 |1,2

≤ d |M<−1 |1,2 ≤ d< |O |1,2.
Recalling Lemma 10.57(i),

|O |1,2 ≤ (# + 1)1/2‖O‖2 = (# + 1)1/2,

whence
|M< |1,2 ≤ d< (# + 1)1/2.

We observe that this bound is not good enough for our purposes because it
scales like #1/2 instead of #1/? for ? > 2. We next improve upon this bound.

(ii) Bound for |M< |1,4. We take : = 2 in Lemma 10.57(v) and use the triangle
inequality to arrive at

|M< |1,4 ≤ |M<−1 |1,4 + |U(G U(G>M<−1))|1,4
≤ |M<−1 |1,4 + 2|G U(G>M<−1)|1,4.

We further apply parts (ii) and (v) of Lemma 10.57 to obtain

|G U(G>M<−1)|1,4 ≤ 2|G|∞ |G>M<−1 |1,4 ≤ 2|G|2∞ |M<−1 |1,4.
Therefore

|M< |1,4 ≤ (1 + 4|G|2∞)|M<−1 |1,4,
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but the prefactor on the right-hand side is greater than 1 and thus not suitable
for iteration. We still have

|M< |1,4 ≤ (1 + 4|G|2∞)< |O |1,4.
(iii) Bound for |M< |∞. We combine the estimates from steps (i) and (ii) to exploit

their relative merits. Recall from Lemma 10.57(iii) that

|M< |∞ ≤ |M< |1,? for all 1 ≤ ? ≤ ∞.
Take ? = 2, 4 and 0 < C < 1 to be chosen later, and write

|M< |∞ ≤ |M< |1−C1,2 |M< |C1,4
≤ [

d1−C(1 + 4|G|2∞
)C ]< |O |1−C1,2 |O |C1,4.

Consequently, there exists 0 < C0 < 1 such that

@ ≔ d1−C(1 + 4|G|2∞
)C
< 1, 0 < C < C0

and
|M< |∞ ≤ @< |O |1−C1,2 |O |C1,4.

We now estimate the two terms on the right-hand side via Lemma 10.57(i),
namely

|O |1,2 ≤ (# + 1)1/2‖O‖2 = (# + 1)1/2,

|O |1,4 ≤ (# + 1)1/4‖O‖2 = (# + 1)1/4.

We thus obtain
|M< |∞ ≤ @<(# + 1)1/ ?̃,

with 1/?̃ = (1 − C)/2 + C/4 < 1/2 for 0 < C < C0.
(iv) Estimate of ‖[−1‖2. Recalling the expression

[−1 = U U
(
H>

∞∑
<=0

M<

)
,

and applying parts (vi), (ii) and (iii) of Lemma 10.57, we see that

‖[−1‖2 = |[−1 |∞ . log(#) |H |∞
∞∑
<=0
|M< |∞

. |H |∞(# + 1)1/ ?̃ log(#)
∞∑
<=0

@<

. ‖H‖2(# + 1)1/ ?̃ log(#).

Finally, for any 2 < ? < ?̃, we can absorb the logarithm, thereby getting

‖[−1‖2 . ‖H‖2(# + 1)1/?,

which is the desired estimate (10.105).
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This concludes the proof.

7 Estimate of block diagonal J. We recall that J = diag[ ∈ R=#×=# is the block
diagonal of[. We consider the block partitioning of H[ 9],

H[ 9] =
[
H[ 9 − 1] X1

X>2 X3

]
∈ R= 9×= 9 ,

where

X1 = H[ 9](1 : 9 − 1, 9) ∈ X= 9−1×3 9 ,

X>2 = H[ 9]( 9 , 1: 9 − 1) ∈ X3 9×= 9−1 ,

X3 = H[ 9]( 9 , 9) ∈ R3 9×3 9 .
Lemma 10.60 (bound of ‖J‖2). We have

‖J‖2 ≤ ‖B‖ + ‖B‖
2

V
= �� . (10.106)

Proof. Compute the R[ factorization of H[ 9],

H[ 9] =
[

O[ 9 − 1] 0
X>2 H[ 9 − 1]−1 1

] [
H[ 9 − 1] X1

0 X3 − X>2 H[ 9 − 1]−1X1

]
,

and realize that

[( 9 , 9) = J( 9 , 9) = X3 − X>2 H[ 9 − 1]−1X1 ∈ R3 9×3 9 .
Since

|X8 |∞ = ‖X8 ‖2 ≤ ‖H[ 9] ‖2 ≤ ‖H‖2 = ‖B‖, 8 = 1, 2,
|X3 |∞ = ‖X3‖2 ≤ ‖H[ 9] ‖2 ≤ ‖B‖,

and

|H[ 9 − 1]−1 |∞ = ‖H[ 9 − 1] ‖2 ≤ 1
V
,

according to properties (P1) and (P2) of the bilinear form B, we deduce

|J( 9 , 9)|∞ = ‖J( 9 , 9)‖2 ≤ ‖B‖ + ‖B‖
2

V

as asserted.

8 Bound of R[ factors. We are finally in the position to prove Theorem 10.15.
We combine Proposition 10.59 (estimate of ‖[−1‖2) and R = H[−1 to obtain

‖R‖2 ≤ ‖H‖2‖[−1‖2 ≤ ‖B‖�LU#
1/? .

Then, invoking (10.97) in conjunction with Proposition 10.59 and Lemma 10.60
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(bound of ‖M‖2), as well as the bounds of ‖[−1‖2 and ‖R‖2, yields
‖[‖2 ≤ ‖J‖2‖ R̃>‖2 ≤ �� ‖B‖�LU#

1/?,

‖R−1‖2 ≤ ‖J‖2‖[̃−>‖2 ≤ ���LU#
1/?,

(10.107)

with �� being the constant in (10.106). This completes the proof.
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Index
Algorithms
AFEM-SW: AFEM with switch, 303
AFEM-TS: two-step AFEM successively approximating the data and the Galerkin
solution with approximate data, 287, 319
AFEM-DG-TS: interior penalty version of AFEM-TS, 398
CONSTRAINT-A: modify an approximation of G to satisfy the structural con-
straints, 366
CONSTRAINT-c: modify an approximation of G to satisfy the structural con-
straints, 369
DATA: procedure to approximate the data D = (G, 2, 5 ), 287, 379
ESTIMATE: compute the element error indicators and element data oscillations,
292
GALERKIN: procedure that iterates SOLVE, ESTIMATE, MARK, REFINE, 287, 293
GALERKIN-DG: discontinuous Galerkin version of GALERKIN, 418
GREEDY: abstract greedy algorithm for DATA, 356
MARK: Dörfler marking, 292
REFINE: refine all marked elements 1 times and others necessary to produce a
conforming mesh, 292, 392
REFINE: refine marked elements and others necessary to produce a Λ-admissible
mesh, 396
SOLVE: construct FEM approximation, 291
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Assumptions
Abstract cut-off, 237
Admissible set of parameters for GREEDY, 357
Approximability of D, 328
Approximability of data, 332
Cardinality of the marked set, 336
Discrete coefficients and discrete functionals, 252
Equivalence of error and estimator, 430
Equivalence of error and full estimator, 448
Estimator reduction, 430
Initial labelling, 337
Lipschitz continuity of estimator, 444
Marking parameter \, 334
Monotonicity of estimator, 444
Monotonicity of local oscillations, 358
Properties of DATA, 312
Quasi-monotonicity of oscillation, 445
Quasi-optimality of DATA, 333
Relaxed quasi-orthogonality, 429
Restriction on l, 335
Restrictions on ^, l and \, 426
Size of l, 339
Structural assumption for discrete data, 308
Structural assumption for exact data, 308
Structure of 5 , 379

Constants
(�! , �* ): a posteriori lower and upper bounds constants, 252, 289, 334
(�eq
! , �

eq
* ): lower and upper estimators equivalence constant, 324

(U1, U2): lower and upper bounds of the diffusion coefficient spectrum, 176, 308
(Û1, Û2): lower and upper bounds of the approximate diffusion coefficient spectrum,
308
(Û1, Û2): lower and upper bounds on the spectrum of Ĝ, 369
(21, 22): lower and upper bounds of the reaction coefficient, 308
(2̂1, 2̂2): lower and upper bounds of the approximate reaction coefficient, 308
(2B, �B): norm equivalence constants, 181, 288
(2B̂, �B̂): norm equivalence constants for the perturbed problem, 309
��: DATA constant, 312
�%: Poincaré constant, 175
�loc: localization constant, 220
�ovrl: overlay constant, 220
�Céa: best approximation constant, 187
�Lip: estimator Lipschitz property constant, 291
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�osc: oscillation quasi-monotonicity constant, 263
!: threshold parameter for constrained approximation, 362
�BA: best approximation constant of Π) , 313
�BA: quasi-monotonicity constant of Π) , 313
�: complexity of REFINE constant, 206, 216, 381
�̃: modified complexity of REFINE constant, 338
�ctr: constrain upper bound amplification constant, 308
�data: DATA approximation constant, 312, 316
�Lip: estimator Lipschitz property constant, 262, 263
Λ: Λ-admissibility constant, 211
Λdata: DATA quasi-optimality constant, 312, 330
U: inf sup constant, 179
U: contraction constant, 294, 304
f: shape regularity constant of T, 188
\: Dörfler marking parameter, 292
�̃* : localized upper bound constant, 257, 334

Definitions
Y-approximation of order B, 333
T -meshed subdomain, 232
Face-connected, 193
Global index of a node, 211
Interior vertex property, 259
Sobolev number sob(, :

?), 173

Error estimators
�T (E)@: generic total error, 356
'T : residual in �−1(Ω), 218
Eabs
T (I): abstract total estimator, 247

ET : total estimator, 252
ET ()), ET (DT , 5 , )): local total estimator, 252
E std
T (DT ,D): standard residual estimator, 224

E std
T (DT ,D, )): standard local indicators, 225

E std
T (DT , 5 , )): standard local indicators, 231
[abs
T (I): abstract PDE estimator, 247
[T (DT , )): PDE local estimator, 252
[T (DT , 5 ): PDE estimator, 255
[std
T (DT , )): standard local PDE indicators, 231

oscabs
T ('T , I): abstract oscillation, 247

oscT (G, ))A : local surrogate for the diffusion coefficient approximation error, 314
oscT (D): surrogate for the data error, 312
oscT (2, ))2: super-convergent local surrogate for the reaction coefficient approx-
imation error, 315
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oscT (2, ))∞: super-convergent local surrogate for the reaction coefficient approx-
imation error, 315
oscT (2, ))@: local surrogate for the reaction coefficient approximation error, 314
oscT ( 5 ), oscT ( 5 )−1: oscillation for the load function, 255
oscT ( 5 , )), oscT ( 5 , ))−1: local oscillation for the load function, 252, 255, 315
oscT (E, ))?: generic surrogate for data error, 314
oscstd

T (DT ,D): standard oscillation, 227
oscstd

T (DT ,D, )): standard local oscillation, 227
oscT (D): total data error estimator, 316
oscT (G)A : oscillation for the diffusion coefficient, 315
oscT (2)@: oscillation for the reaction coefficient, 315
oscT ( 5 ), oscT ( 5 )−1: oscillation for the load function, 315
�̃T ( 5 )2

−1: generic surrogate estimator for the approximation of the load term, 372
9(DT ): jump residual, 225
AT (DT ), A(DT ): element residual, 225

Functional spaces
�B?,@(Ω): Besov spaces, 347
�(Ω): metric space for the data perturbation, 311
�̂(Ω): temporary metric space for the data perturbation, 309
"(U1, U2): admissible set for G, 308
'(21, 22): admissible set for 2, 308
, :
?(Ω): Sobolev spaces, 173

,−B@ (Ω): dual of, B
@∗(Ω) with @∗ = @/(@ − 1), 309

-B?(Ω): abstract functional spaces, 345
MB: approximation classes of G, 330
CB: approximation classes of 2, 331
FB: approximation classes of 5 , 331
D: data, 286
DT̂ : discrete data subordinate to T̂ , 286
F(Tl): local discrete functionals, 232
FT , F(T ): discrete functionals, 232
V+(Tl): local test space for discrete functionals, 238
VT : conforming finite element space, 189
V+(T ), V+T : test space for discrete functionals, 238
AB: approximation class for D, 327
A−1
B : approximation classes for E for the discontinuous Galerkin norm, 404
ET : broken �1 space, 400
V−1
T : non-conforming finite element space, 399

Lip=+1? (Ω): Lipschitz spaces, 345
S=,−1
T : piecewise polynomials of degree ≤ =, 188
S=,0T : globally continuous piecewise polynomials of degree ≤ =, 188
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Functions
qI : Lagrange basis of S1,0

T , 189
kI : Lagrange basis of S=,0T , 190
D̂: solution to the perturbed problem (5.5), 288
D: solution to weak formulation (2.7), 177
DT : Galerkin approximation, 217

Meshes
)3: reference element, 188
P: proper nodes, 211, 214
F , FT : interior faces, 218
Fl: faces interior to l, 232
FI , FlI : faces interior to lI , 232
WI : skeleton of lI , 189
T ≤ T∗: refinement relation, 288
T1 ⊕ T2: mesh overlay, 206
Tl: triangulated submesh, 232
TI , TlI : elements forming lI , 232
TI : star of elements sharing the vertex I, 220
T: set of all conforming refinements of T0, 201
TΛ: set of all Λ-admissibility refinements of T0, 212
T# : set of all conforming refinement of T0 with no more than # elements, 327
[[g]] · n� : normal jump across �, 225
[[·]]: jump across faces, 400
{{·}}: average on faces, 400
N : Lagrange nodes of order =, 190
l� : region of elements containing the face �, 222
l) , lT ()): region of elements intersecting ) , 191, 223
l̃) , l̃T ()): elements sharing a face with ) , 191
lT (%): domain of influence of a proper node %, 213
lI : region made of elements sharing the vertex I, 189, 220
n� : normal to the face �, 225
V: set of vertices, 189
6()): generation of ) , 202
_(G): global index of a node G ∈ N , 211

Norms
|||·|||Ω: energy norm with exact coefficients, 288
|||·|||Ω: energy norm with perturbed coefficients, 288
‖E‖0,T : discontinuous Galerkin norm, 400
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Operators
�T : quasi-interpolation operator, 191
%) , %� : polynomial densities of %T , 239
%T : projection operator from �−1(Ω) into FT , 239
IdG
T : discontinuous Galerkin quasi-interpolant, 401
Π , Π< : !

2 projection onto P<( ), 227, 312
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