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Abstract
Crop rotations in the United States increasingly involve few crops dominated by corn frequently combined
with soybeans. We assess factors tied to corn acreage intensification over the past two decades. Using state-
level data of 11 U.S. Corn Belt states from 2000 to 2021, we applied a panel fixed effects instrumental
variable modeling approach to investigate these linkages. Findings suggest Conservation Reserve Program
acreage releases, crop prices, ethanol demand, farm size, productivity, and genetically modified varieties
positively impact corn acreage intensity. These results imply crop planting decisions are complex and are
not uniquely attributed to biofuel considerations.

Keywords: Conservation Reserve Program; corn acreage intensity; cropland conversions; cropping pattern changes; ethanol;
genetically modified crops

Introduction
In recent decades, U.S. cropping systems continued a long-term trend toward shorter and less
diverse rotations with increased importance placed on corn, often combined with soybeans (Lark
et al., 2015; Mortensen and Smith, 2020; Socolar et al., 2021). Between 2002 and 2020, U.S. corn
and soybean acreage plantings increased by 12 and 18%, respectively (Vaiknoras and Hubbs,
2023). The U.S. Corn Belt region has seen similarly dramatic shifts over the last 20 years (Fausti,
2015; Johnston, 2014). In parts of the United States, corn and soybean acreages increased at the
expense of cotton plantings and hay land during the first decade of the twenty-first century
(Wallander et al., 2011). Susanto et al. (2008) found that corn acreage expansion in the southern
United States after 2006 occurred at the expense of other crops such as soybeans, wheat, and
cotton, as well as cropland enrolled in the Conservation Reserve Program (CRP), but as noted by
Coppess (2024), over more than a century of soybean planting in the United States, its acreage
experienced a near continuous absolute and relative increase. Lin and Henry (2016) also observed
that corn and soybean acreages increased while other crop plantings and grasslands decreased in
nine Corn Belt states from 2006 to 2013, and O’Brien et al. (2020) documented similar trends for
North and South Dakota.

The increase in U.S. corn acres planted as a proportion of principal crop area planted – referred
to here as the increase in corn acreage intensity – has been associated with ethanol production
expansion tied to corn price increases (Elobeid et al., 2007; Lark et al., 2015; Lin and Henry, 2016;
Smith and Moschini, 2023; Westcott, 2010). Occurring parallel with the expansion of soybean
plantings, additional factors may have contributed to corn acreage intensification, including
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changes in agronomic and management practices, cost concerns, and socioeconomic aspects
(Vaiknoras and Hubbs, 2023).

Corn acreage intensification potentially comprises two components: reduced acres planted to
other crops and an increase in total cropland acres devoted to growing crops (Lark et al., 2022). In
the early 2000s, Elobeid et al. (2007) predicted an expansion of crops in marginally productive
areas and an increase in continuous corn production facilitated by transgenic varieties linked to
corn-based ethanol production increases. This was confirmed by Fausti (2015), who linked
ethanol production increases to genetically modified (GM) corn acreage plantings and overall
corn acreage plantings across 11 Corn Belt states, but to varying degrees across states. Annan et al.
(2022) also tied increased corn acreage plantings to ethanol policies and the use of GM crop
varieties in Corn Belt states in two decades since 2000.

This research further explores concomitant factors of corn acreage intensification across Corn
Belt states from 2000 to 2021. The study’s main objective is to assess the degree to which corn
acreage intensification over the past two decades was affected by external factors, including GM
crop adoption, market forces, CRP releases, corn production efficiency improvements, ethanol
demand and production infrastructure changes, and scale aspects.

Numerous studies have shown that diverse cropping systems can sustain higher levels of
productivity that rely on limited external inputs and give rise to fewer externalities than do
simplified systems (Archer et al., 2020; Bullock, 1992; Davis et al., 2012; Howieson et al., 2000;
Karlen et al., 2006; Smith et al., 2008, 2018; Weisberger et al., 2019). Complex cropping systems
also provide better buffers against weather extremes linked to climate change than simple ones
(Bommarco et al., 2013; Bowles et al., 2020; Gaudin et al., 2015; Liu et al., 2022; Williams et al.,
2016). Thus, findings of this research are expected to be of interest to both agricultural producers
and policymakers as they consider economic, environmental, and sustainability implications of
the national trend toward simplified cropping systems.

Possible sources of corn acreage intensification
Between 2000 and 2020, the area planted to corn and soybeans in the United States increased from
79.6 million acres and 74.3 million acres to 90.8 million and 83.1 million acres, respectively, while
the acreage of other crops traditionally included in rotation strategies decreased from 174.9
million to 136.2 million acres (Fig. 1). This corresponds with increases of 14.2% and 11.9% of corn
and soybean acres, respectively, while other crop acres declined by 22.1% in the United States over
the same period (National Agricultural Statistics Service, 2021).

GMO seed adoption

GM crop varieties have become widely adopted in the United States since their introduction for
use in agricultural production in the 1990s. For each of the three most important GM crop
varieties in the United States (corn, soybeans, and cotton) GM acres planted account for well over
90% of total crop area in 2023 (Dodson, 2023). Agricultural producers rely on GM crop varieties
to maintain pest control, reduce their labor input, and increase overall output, thus reducing input
and output uncertainty and increasing net economic benefits (Benbrook, 2012; Brester et al., 2019;
Brookes and Barfoot, 2018; Cattaneo et al., 2006; Fernandez-Cornejo et al., 2014). The process of
adopting GM crops is largely irreversible because the benefits flow from the investments in the
technology (for example, in the form of time savings resulting in managerial and farm family
adjustments), while the costs are sunk (for example, in the form of learning and experimentation,
transactions, machinery, and technological investments) (Beckmann et al., 2010; Scandizzo and
Savastano, 2010; Wesseler and Zhao, 2019). Due to broadly overlapping adoption patterns since
the 1990s, we include the spread of GM soybeans – as a proxy for GM corn – as a possible factor
contributing to corn acreage intensification in the 11 Corn Belt states analyzed over more than two
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decades. Due to their relatively rapid adoption following their introduction, any observable
relationship between the spread of GM crops and corn acreage intensification was likely more
pronounced in the first decade of the period of analysis than in subsequent years.

Corn and soybean markets

In addition to the spread of GM crops, Claassen et al. (2010) documented that agricultural
producers have increasingly responded directly to market signals, policy incentives, and
technological changes following agricultural policy changes of the late 1990s. Figure 2 shows U.S.
commodity price changes from 2000 to 2020 for three common crops in the Corn Belt: corn,

Figure 1. U.S. Cropping pattern changes from 2000 to 2020.
Source: Authors compiled using data from NASS. https://quickstats.nass.usda.gov/.

Figure 2. U.S. commodity prices movement from 2000 to 2020.
Source: Authors compiled using data from NASS. https://quickstats.nass.usda.gov/.
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soybeans, and wheat. Between 2000 and 2012, prices of all three commodities rose to then-
historically high levels, but subsequently fell. Even in the face of large annual and seasonal
variations, U.S. corn prices rose from $1.85 to $4.30 per bushel (132%), while soybean prices
increased from $4.54 to $11.15 per bushel (146%) between 2000 and 2020 (National Agricultural
Statistics Service, 2021). Thus, any analysis of factors tied to cropping pattern changes over time
must include commodity price changes. Because our focus is on corn acreage intensification, we
consider the average price of corn and soybeans. Considering that the previous year’s crop prices
reflect expectations about future market conditions (including the stocks-to-use ratio, a widely
used used price predictor), they influence crop planting decisions (Westcott and Hoffman, 1999).
We utilize a one-year lag of the average of the corn and soybean price (the sum of annual corn
price plus the annual soybean price divided by two) to capture market forces, which we expect to
influence corn acreage intensity positively.1

Corn ethanol industry

Following the ban on methyl tertiary butyl ether as a fuel additive in the early 2000s, ethanol was
used in its place as an oxygenate, leading to a large increase in the demand for corn as its fuel stock
(Solomon et al., 2007). Two subsequent energy policy changes that directly boosted the demand
for ethanol and the derived demand for corn were the 2005 Energy Policy Act (EPA) and the 2007
Energy Independence and Security Act (EISA), which established Renewable Fuel Standards
(RFS) that mandated blending ethanol into transportation fuel. The 2005 EPA mandate was to
blend ethanol with gasoline annually through 2012, while the 2007 EISA extended it through 2022
(Renewable Fuels Association, 2023). Consequently, corn-based ethanol became a major fuel
source in the United States over past decades, with an annual maximum usage of 15 billion gallons
through 2022 (Bracmort, 2022).2 Overall, between 2000 and 2020, the share of corn produced and
used for ethanol fuel production in the United States increased from about 6% to nearly 34%, with
much of the increase occurring prior to 2013 (Williams, 2023).

The RFS policy changed the supply of ethanol-blended gasoline and influenced production
costs, commodity prices, and cropland usage (Austin et al., 2022, 2023; Hanon, 2014; Lark et al.,
2022; Roberts and Schlenker, 2009; Vo, 2020). Changes in cropland usage were particularly
pronounced near ethanol refineries (Li et al., 2019; Motamed et al., 2016; Stevens, 2015, 2021).
Ceteris paribus, the additional demand for corn due to biofuel policy changes of the early 2000s
would increase corn prices and be expected to contribute to corn acreage intensification.

CRP adoption practices

Cropland conservation acreage reductions are also expected to affect cropping patterns. The most
important U.S. conservation program is the CRP, which enables farmers to retire environmentally
sensitive cropland using 10 to 15 year contracts in exchange for annual rental payments and taking
steps to improve the land’s health (Farm Service Agency, 2024). During times of high commodity
prices, CRP acreage releases can have a significant role in land use shifts (Hendricks and Er, 2018;
Ifft et al., 2019; Janssen et al., 2008; Secchi and Babcock, 2015). While previous studies have linked
CRP and grassland losses to row crop acreage increases and environmental quality reductions
(Alemu et al., 2020; Bigelow et al., 2020; Chen and Khanna, 2018; Morefield et al., 2016; Zhang
et al., 2021), the emphasis of this research is on identifying factors contributing to cropping
pattern changes. While Arora and Wolter (2018) argued that the origins of cropland conversions

1We use the annual average of corn and soybean prices rather than the widely used corn to soybean price ratio to capture
market forces because we suspect that the latter can be affected by other confounders in our analysis.

2While the RFS statute sets minimum targets for renewable fuel volumes for each year, it is subject to reductions due to
waivers of the RFS requirements.
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and cropping pattern changes are unclear, other authors ascribe the increase in corn and soybean
acreage to converting CRP land toward crop production (Johnston, 2014; Wimberly et al., 2017).
Yet others attribute it to the conversion of marginal grasslands (Lark et al., 2015; Wright and
Wimberly, 2013), and the development of biofuels (Lark et al., 2022; Wang and Khanna, 2023). As
cropland is released from the CRP and turned into crop production, an expected disproportionate
share may be used for corn production, thus increasing corn acreage intensity.

Farm size and productivity

Between 2000 and 2020, average U.S. farm size increased from 436 acres to 448 acres (National
Agricultural Statistics Service, 2023). While the increase is modest, MacDonald and Hoppe (2017)
show large shifts of cropland being farmed by large operations over the past two decades, based on
Census data.3 Also, various studies have found significant scale and scope economies in U.S.
agriculture during different time periods (Halloran and Archer, 2008; Langemeier and Boehlje,
2017; Paul et al., 2004). Furthermore, farm program payments tend to be concentrated among the
largest farms and may have contributed to scale enlargement and consolidation among farm
operations and in turn affects cropping systems (Bekkerman et al., 2019; Just and Schmitz, 1988;
MacDonald and Hoppe, 2017; MacDonald et al., 2013). To capture scale factors in crop
production we consider acres farmed per operation, expected to be positively associated with corn
acreage intensification.

Lastly, to account for productivity increases over the two decades of analysis, we include a
variable that seeks to approximate total factor productivity (TFP), which provides an indicator of
how efficiently agricultural inputs are used to produce outputs (Wang et al., 2015). Because no
state-level TFP data for years after 2014 exist, we utilize a productivity variable, expressed in
bushels per dollar of production expenses. Accordingly, we predict that productivity is positively
associated with corn acreage intensity.4

Data
Annual data pertaining to 11 Corn Belt states – Iowa, Illinois, Indiana, Nebraska, Kansas,
Michigan, Minnesota, Missouri, Ohio, South Dakota, and Wisconsin – were collected for the
period from 2000 through 2021, yielding a total of 242 observations.5,6 Similar to preceding years,
the 11 Corn Belt states accounted for 80% of corn planted acres in 2022.7 These contiguous states
comprised the 11 largest corn-producing states and partially overlap with the Corn Belt region
over the past two decades.8 Table 1 provides a description of the variables used and their data
sources. All data were obtained from National Agricultural Statistics Service (2023), except for GM
crop varieties, CRP and ethanol production data, which were obtained from the Economic
Research Service (2023a), Farm Service Agency (2023), and U.S. Energy Information
Administration (2023), respectively. For the productivity variable, corn yield data were taken

3The authors thank an anonymous reviewer for alerting us to this issue.
4Possible sources of corn acreage intensification explained above and included in the models are CRP acreage exits, acreage

planted to GM crop varieties, average crop (corn and soybean) price, productivity, ethanol production infrastructure and farm size.
5Lack of GM crop data consistency preclude conducting the analysis for years prior to 2000.
6While a county-level analysis may provide additional insights, work by Bullock (2021) highlights the importance of state-

level production outcomes on national level production and explains the importance of state-level analysis in assessing the
state-level geography and geographic concentration of corn and soybean production in the context of climatic and policy
changes. Bullock’s study is a recent example of the relevance of state-level analysis for assessing issues such as cropping
intensity/geographic concentration in agricultural production.

7As pointed out by an anonymous reviewer, this overlaps with the study period (see Table 1E in the Appendix), making
these states appropriate for studying corn patterns and acreage intensities in the United States.

8Despite its recent increase in corn production, North Dakota was not included in the analysis because GM crop data were
not available for years prior to 2005.
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from National Agricultural Statistics Service (2023) and production cost data from the Economic
Research Service (2023b) commodity cost and returns schedule. In accordance with the literature,
nominal crop prices and nominal production costs data used in this study are deflated by the 2017
U.S. implicit GDP deflator from the U.S. Bureau of Economic Analysis (2023).9

Table 2 lists descriptive statistics of the variables used in the analysis. The mean of corn acreage
intensity (CAI) suggests that the average corn acres planted as a proportion of total acreage of
principal crops was approximately 39% in the 11 Corn Belt states over the 22 years of analysis,
varying from about 13 to 58%. Average GM soybean acres planted as a share of total soybean acres
planted was 88% and varied between 44 and 98%. Ethanol production varied from zero to 104
thousand barrels per year. The CRP variable had a mean of 1.04 million CRP acres and varied
between 0.11 and 3.26 million acres. Assuming the CRP enrollment decision involves long-term
strategic planning, it may not be affected by other potential confounders. In considering farm size
for explaining corn acreage intensity, we define the farm size variable as simply the number of
acres per farm operation (in hundreds), with a mean of 480 acres, and varying between 175 acres
and 1,469 acres. Finally, to account for productivity increases over the two decades, the
productivity measure averaged 0.26 bushels per dollar of expenditure with a range of 0.11 to 0.38
over the analysis period.

Table 3 lists the Pearson correlation matrix, which shows the bivariate correlations between the
predictors. To determine the influence of multicollinearity on the estimated standard errors, we

Table 1. Variable definitions and data sources, state-level observations

Variable
acronym Variable definition

Variable
Description Units Data Source

CAI Corn acreage
intensity

Corn acres planted as a
share of principal crop
area planted

Ratio National Agriculture Statistics
(2023)

Avg. Price Average of corn &
soybean prices,
lagged

Average of the corn &
soybean prices, 1-year
lagged

Dollar per
bushel

National Agriculture Statistics
Service (2023)

GMcorn GM corn acres GM corn acres planted as a
share of total Corn acres
planted

Ratio Economic Research Service
(2023a)

GMsoy GM soybean acres GM soy acres planted as a
share of total soy acres
planted

Ratio Economic Research Service
(2023a)

Ethanol Ethanol
production,
lagged

Ethanol production, 1-year
lagged

100,000
barrels

U.S. Energy Information
Administration (2023)

CRP CRP acres CRP acreage million acres Farm Service Agency (2023)

Principal crop
area planted

Field crop totals (principal,
including potatoes)

acres National Agriculture Service (2023)

Farm size Average farm size Farm acres per operations 100 acres per
operation

National Agriclulture Service
(2023)

Productivity Productivity
measure

Corn yield as a fraction of
total production cost

Ratio National Agricultural Statistics
(2023) and Economic Research
Service (2023b)

9We used various inflation adjustment measures, such as the CPI-U for crop prices and both the CPI-U and the PPI for
production costs, and the results remained consistent; therefore, we used the U.S. implicit GDP deflator to account for more
general trends, and in accordance with the literature.
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estimated variance inflation factors (VIF) for all covariates. All covariate VIF estimates are less
than 0.5, except in two instances. Even without satisfying this condition, multicollinearity can be
safely disregarded if the colinear variables are control variables (Allison, 2012). Initial information
based on the correlation coefficients suggests that the ethanol production, CRP, and size variables
may serve as possible predictors of corn acreage intensification.

Methodology
Because corn production is made up of both GM and non-GM varieties, using GM corn as a
covariate could cause endogeneity problems. Therefore, we applied a fixed effects
instrumental variable (FE-IV) approach to estimate the fixed effects, using GM soy as
instrument for GM corn. This provides a better method for identification than the usual fixed

Table 2. Descriptive statistics of the main variables (2000 to 2021)

Variables N Mean Std. Dev. Min Max

Corn acreage intensity* 242 0.389 0.112 0.125 0.582

CRP (million acres)* 242 1.039 0.718 0.114 3.259

GM soy (ratio)* 242 0.881 0.101 0.440 0.980

GM corn (ratio)* 242 0.726 0.260 0.090 0.980

Average crop price* 242 6.945 1.907 3.954 11.767

Ethanol (100,000 barrels)* 242 0.195 0.216 0.00 1.041

Productivity* 242 0.261 0.047 0.107 0.379

Farm size (100 acres)* 242 4.800 3.717 1.750 14.690

Corn planted acres (million acres) 242 6.307 3.45 2.00 14.20

Corn stock (billion bushels) 242 0.822 0.606 0.143 2.405

Corn yield (bushel per acre) 242 153.727 25.033 75.00 210.00

Production expenses (dollar per acre) 242 599.253 95.153 442.707 715.404

Note: all variables indicated with an asterisk (*) are directly included in the model specifications section. The highest planted acres of 14.2
million acres corresponds to Iowa in 2007. All prices and expenditures are converted to real dollars using the 2017 U.S. implicit GDP deflator.

Table 3. Correlation matrix of main variables in this study (2000 to 2021)

Variables (1) (2) (3) (4) (5) (6) (7)

(1) CAI 1.000

(2) CRP −0.390 1.000

(3) GM Corn 0.085 0.106 1.000

(4) Avg. Price 0.152 −0.053 0.559 1.000

(5) Ethanol 0.572 0.181 0.478 0.382 1.000

(6) Productivity 0.348 −0.002 −0.446 −0.525 0.058 1.000

(7) Scale −0.264 0.406 0.267 −0.031 0.114 −0.123 1.000
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effects or mixed models, although the latter two approaches are also preferred when their
model assumptions are met.10

The FE-IV model specification is given in equation (1) below.

CAIit � β0 � β1CRPit � β2GMCornit � β3Xit � β4Trendit � µi � εit; (1)

where βs are parameters to be estimated and CAIit is corn acreage intensity (defined as the ratio of
corn acres planted to principal crop area planted) in state i at time t. The terms CRPit and
GMCornit (with the GM soy as an instrument) are the main variables of interest, which are CRP
acres released and GM corn acres in state i at time t, respectively. Vector Xit denotes additional
variables including ethanol production, the average of the corn and soybean price, productivity,
and farm size in each state over the period of the analysis. Except for farm size, the additional
predictors are all expressed as their first lags. The terms Trendit, μi and εit are the state time trends,
and the state fixed effect and idiosyncratic error terms, respectively. The fixed effect error term
captures unobserved state-level and time-invariant heterogeneity affecting corn acreage intensity,
such as climate, weather, and soil conditions. We used state time trends to capture the overall
trend and the yearly variation (potential long-term changes) in the model, because the outcome
variable grows linearly over time.11 We also used a similar specification that included year-fixed
effects terms to account for unobserved heterogeneity across years while controlling for time-
specific factors that could influence corn acreage intensity to ensure the robustness of our findings.
Our empirical approach contributes to the existing literature on explaining the increasingly
dominant role of corn in crop rotations by analyzing previously unexplored variables and using
the panel FE-IV model with GM soy as an instrument for GM corn. Aside from running a just
identified model with only GM soybean as an instrument, we also ran a similar model with
overidentified models that used more than one IV to ensure the robustness of our findings. This
procedure provides a formal approach for testing the instruments’ exogeneity (via the Sargan-
Hansen test of overidentified instruments) as well as determining their strength.

Equation (1) is the two-stage specification where the predicted values from the first-stage
regression in equation (2) are used to estimate the FE-IV model. We used the xtivreg2 package and
its command in Stata, which enables estimating both first and second-stage regressions at the
same time (rather than manually regressing the two stages separately). The variables in the first-
stage regressions are the same as those in equation (1), except for GM corn as the outcome and
GM soy as a covariate. Therefore, we do not repeat the explanation of the variables in specification
of equation (2).

GMCornit � β0 � β1CRPit � β2GMSoyit � β3Xit � β4Trendit � µi � εit (2)

For GM soy to be a good instrument, it must be relevant and exogenous. We tested for the
relevance condition by using the results of the first-stage regression and the first-stage F-statistic
values. To determine if the instrument is exogenous, we performed a weak exogeneity test by
running regressions in equation (1) with GM soy as the response for the first-stage regression. We
then used its residuals for GM corn to determine the significance of the residuals in the second-
stage regression with corn acreage intensity as the response. Following Wooldridge (2020), if the
residuals from the second stage are not significant, then the instrument is exogenous. These
conditions are satisfied, suggesting that the GM soy can be used as an instrument for GM corn (see
Table 4 and Appendix Table 1A).

We estimated four alternative models to capture differences by state using the panel FE-IV
models. The baseline models (Models 1 and 3) without any controls include the specification
of equation (1) with and without the year trend. Models 2 and 4 include the additional

10The authors thank an anonymous reviewer for alerting us to this issue.
11For example, Miao et al. (2016) used time trends to account for technological advancements and other agronomic

practices in US corn and soybean acreage responses over time.
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predictors (ethanol production, the corn and soybean price average, productivity, and farm
size). The GM crop variables capture the supply-side effect of biotechnology on corn
production, and the ethanol variable reflects the ethanol demand and its production
infrastructure, encouraged through renewable fuels policies. While the spatial measurement
error or heterogeneity in our estimation technique could be a possible source of concern, our
panel FE-IV models provide a preferred identification strategy with the data at hand. The state
fixed effects and the robust standard errors at the state level help mitigate potential biases
caused by possible spatial heterogeneity.12 Another possible concern is that some of the
controls, such as ethanol production, could have a bi-directional relationship with corn
acreage intensity, but we consider these effects of relatively minor importance because we used
the first lags of the controls. Tests for the endogeneity of lagged ethanol production indicate
that the variable is exogenous (see Appendix Table 1B).

Empirical results and discussion
Table 4 reports the first-stage regressions where GM corn is regressed on the instrument and the
other covariates as specified in equation (2). The strongly positive relationship between GM corn
and the instrument (the GM soy variable) suggests that the instrument is highly relevant, as
further confirmed by the first-stage F-statistic values (P-value <0.01) in all models (see Tables 4
and 5). Also, when using GM soy as the response in the first-stage regressions, the residuals from
the second-stage regressions showed that the residuals are not statistically significant in any of the
models at the 5% significance level. This suggests that the instrument passed the weakly exogenous

Table 4. Panel fixed effects instrumental variable regressions with genetically modified (GM) soy as an instrument for GM
corn (first stage)

(Model 1) (Model 2) (Model 3) (Model 4)

Dependent Variable = GM corn (ratio)

GM soy (ratio) 2.040 *** 2.272 *** 1.016*** 1.109***

(0.138) (0.143) (0.040) (0.139)

CRP (million acres) −0.228*** −0.007 0.131*** 0.172***

(0.038) (0.036) (0.040) (0.031)

Observations 231 231 231 231

AIC −1199.33 −1168.97 −1189.49 −1159.21

BIC −1192.35 −1148.32 −1179.02 −1135.11

1st Stage F Statistic 219.28 250.96 51.99 63.82

Other Controls NO YES NO YES

Year Trend NO NO YES YES

State FE YES YES YES YES

Notes: controls included in Models 2 and 4 are average crop price, ethanol production, productivity, and farm size per operation; all the
controls are used as their first lags except for the size variable; robust standard errors (in parentheses) are at the state level to account for
serial correlation and state-level heterogeneity; and ***, **, and * indicate significance at 0.01, 0.05, and 0.10 levels, respectively. The models
use similar assessment criteria to those in Table 5 because we estimated the two steps simultaneously. Although the AIC and BIC measures do
not differ much, they all indicate that the models must account for year effects.

12However, spatial data analysis and fixed effects spatial panel models help address some of these concerns effectively.
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Table 5. Panel fixed effects instrumental variable regressions with genetically modified (GM) soy as an instrument for GM corn (second stage)

(Model 1) (Model 2) (Model 3) (Model 4) (Model 4A - standardized beta)

Dependent Variable: Corn acreage intensity

GM corn (ratio) 0.064*** 0.035*** 0.085*** 0.072** 0.167**

(0.006) (0.011) (0.026) (0.033) (0.077)

CRP (million acres) −0.038*** −0.038*** −0.049*** −0.051*** −0.326***

(0.007) (0.009) (0.014) (0.014) (0.087)

Average crop price ($/bu) 0.005*** 0.004** 0.071**

(0.001) (0.002) (0.028)

Ethanol (100,000 barrels) 0.027** 0.044*** 0.085***

(0.013) (0.012) (0.024)

Productivity (ratio) 0.152*** 0.156*** 0.064***

(0.044) (0.045) (0.019)

Farm size (100 acres) 0.022* 0.038** 1.254**

(0.012) (0.016) (0.521)

Observations 231 231 231 231 231

RK Wald F statistic 219.28 250.96 51.99 63.82 63.82

Cragg-Donald Wald F statistic 519.78 313.69 100.51 77.61 77.61

R-squared 0.465 0.520 0.447 0.504 0.504

AIC −1199.33 −1168.97 −1189.49 −1159.21 −1159.21

Consistent AIC −1190.35 −1142.32 −1176.02 −1128.11 −1128.11

BIC −1192.35 −1148.32 −1179.02 −1135.11 −1135.11

Year trend NO NO YES YES YES

State FE YES YES YES YES YES

Notes: controls added to Models 2 and 4 are average crop price, ethanol production (in 100,000 barrels), productivity, and farm size per operation. All controls are in their first lags except for the farm size variable. All
F-statistic values show that the instrument passed the weak identification test, indicating that the instrument has excellent power. Robust standard errors in parentheses; and ***, and ** indicate significance at 0.01
and 0.05 levels, respectively.
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test as well (see Appendix Table 1A).13 ln Table 4, the statistically significant relationship between
GM corn and the instrument (GM soy) in all models indicates that GM soybean adoption is
positively associated with GM corn. Also, in line with expectations, the results of Models 3-4
indicate that CRP acreage releases are positively associated with GM crop acreage. Model 1 has the
reverse sign and is statistically significant because we did not control for year variations and did
not include any additional variables in the model.14

Table 5 lists the second-stage results of the four models using the FE-IV method. Given that
the results in Table 4 suggest a specification bias associated with the other models (1-3), we
focus on Model 4 reported in Table 5. The panel FE-IV parameter estimates for the CRP,
lagged average of the corn and soybean prices, lagged ethanol production, lagged productivity,
farm size, and GM corn variables have the expected signs and are statistically significant at the
5% level or lower. Empirical results suggest that an increase in cropland enrolled in CRP
reduced corn acreage intensity, while an increase in the GM corn adoption increased corn
acreage intensity, holding other factors constant.15 For the controls, an increase in the lagged
average corn-soybean price, ethanol production, farm size, and corn productivity each had a
positive effect on corn acreage intensity relative to its state-specific trend in the Corn Belt
region over the period of analysis.

The positive coefficients of the lagged price variable suggest that market forces provided strong
incentives for farmers to increase their corn plantings. Because farm size serves as a proxy for
economies of scale effects on corn acreage intensity, we hypothesize that market signals
disproportionately increase economic incentives for large operations to focus on corn production,
given capital-intensive input investments. Also, the positive coefficient of the lagged ethanol
production variable suggests that growing ethanol demand incentivized ethanol firms to increase
production. The results suggest that increased ethanol production is empirically associated with
increased corn acreage intensity. Furthermore, the positive coefficient of the GM corn variable
suggests that the nearly complete adoption of genetically modified varieties contributed to corn
acreage intensification over time in the region.

Drawing a direct connection between expiring CRP acres and corn acreage intensification is
novel to the literature. The negative CRP coefficient indicates that as cropland was converted from
CRP to crop production, corn acreage intensified in the 11 Corn Belt states. In particular, the
empirical results show that for every million acres released from the CRP and turned into
cropland, there is a corresponding 5.1% increase in corn acreage intensity. This result remains
robust after accounting for other time-specific factors that may affect the model using year-fixed
effects (see Appendix Table 1C). Furthermore, the results are robust for the overidentified models
with more than one IV (see Appendix Table 1D). This suggests that a disproportionate share of
the released of CRP acres was planted to corn, relative to other grain and oil seed crops. The
literature has discussed the decline in CRP enrollments, with broad trends documented by
Johnston (2014), Wimberly et al. (2017), and O’Brien et al. (2020). A key contribution to the
literature of the current study is presenting empirical evidence that quantifies the relationship
between the release of CRP acres and corn acreage intensification.

While the panel FE-IV parameter estimates for Model 4 reported in Table 5 are statistically
significant and the estimated coefficients are consistent with hypothesized relationships,
additional insight on the relevance of the covariates to CAI is now addressed. Model 4A provides

13Also, the instruments in the overidentified models used for the robustness checks passed the Sargan-Hansen
overidentification test, since we failed to reject the joint null hypothesis that the instruments are exogenous in all models (see
Appendix Table 1D). This confirms the exogeneity of the instruments.

14The reverse sign provides additional evidence for the importance of the time-effects variable and other predictors to the
robustness of the estimates. Failure to include relevant effects leads to a biased estimation, providing support for selecting
Model 4 as the one to rely upon for discussing the results.

15All model coefficients are interpreted in relation to state-specific trends, but to avoid repetition, we do not state this in all
interpretations of the variables reported in Table 5.
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estimated standardized beta coefficients for each of the covariates in Model 4. Standardized beta
coefficients provide insights on the influence of each covariate on CAI variability (Bring, 1994).16

The interpretation of the GM corn standardized beta coefficient of 0.167 suggests a one
standard deviation change in GM corn is associated with a 0.167 standard deviation increase in the
predicted value of CAI. In a more intuitive sense, we can now estimate the increase in CAI
variability effects by multiplying the standardized beta coefficients by the CAI standard deviation.
Using the standard deviation from the summary statistics estimates of Table 2 (with a 0.112
standard deviation for CAI), a one standard deviation increase in GM corn is linked to a 1.9%
increase in CAI. Similarly, using the CRP estimate of -0.326 suggests that one standard deviation
increase in CRP releases to cropland is associated with a CAI increase of 3.7%. For the other
control variables, the lagged ethanol production standardized beta coefficient of 0.085 indicates
that increasing ethanol production by one standard deviation was associated with a 1.0% increase
in corn acreage intensity in the Corn Belt region. Analogously, based on the standardized beta
estimate of 0.071 for the first lag of the average crop price, a one standard deviation increase in the
average corn price per bushel is linked to 0.8% increase in corn acreage intensification. Following
the same logic, based on the standardized beta coefficient estimate of 0.064 of corn productivity, a
one standard deviation increase in corn productivity is linked to a 0.7% increase in corn acreage
intensity relative to its state-specific trend. Finally, using the standardized beta coefficient of 1.254
for the farm size covariate suggests that an increase in the standard deviation of average farm size
acres is associated with a 1.254 standard deviation increase in the predicted value of corn acreage
intensification. This change results in a 14% increase in corn acreage intensity, holding other
factors constant. This exceptionally large scale effect may be the result of large operations further
specializing in corn production in response to market signals, but this result warrants the need for
additional study.

The literature suggests that rapid increases in ethanol production and GM technology adoption
since the turn of the 21st century were the primary drivers of the increase in the dominance of corn
relative to other grain and oil seed crops in the United States (e.g., Fausti (2015); and Mumm et al.
(2014)). The empirical evidence presented here suggests that while ethanol and GM seed
technology made significant contributions to corn acreage intensification during this time period,
other economic factors – in particular, changes in CRP enrollment, productivity improvements,
and scale effects – also played a significant role but have not been highlighted in the literature.

Summary and conclusions
This study addresses factors affecting cropping pattern changes at the state level in the Corn Belt
region by exploring the influence of cropland released from CRP, changes in the average corn-
soybean price, the rapid increase in ethanol production resulting from the enactment of the
renewable fuel laws in the early 2000s, the spread of GM Corn adoption, productivity increases,
and farm size as economic factors that affect corn acreage intensification. Using state-level data of
11 Corn Belt states from 2000 to 2021, we applied a panel FE-IV approach to investigate these
linkages. Results indicate that state-level corn acreage intensities are positively impacted by CRP
cropland releases, the one-year lag of the average of corn and soybean prices, the increase in
ethanol production, productivity, average farm size, and the spread of GM crops.

16The standardized estimates compare the relative influence of predictors, measured in different units, on the response
variable. In contrast, unstandardized estimates help interpret the magnitude and direction of the effect of predictor variables
on the response, regardless of how the variables are measured, while holding other factors constant. Despite concerns about
standardized coefficients, Bring (1994) generalizes a preferred method for generating standardized coefficients, which we
adopted in interpreting our results. Thus, we calculated the increase in CAI variability effects by multiplying the standardized
betas by the CAI standard deviation. This also gives a similar result as multiplying the unstandardized estimates by the
standard deviations of their respective covariates.
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Our empirical evidence suggests that while ethanol and GM seed technology contributed
significantly to the increase in acreage intensity during this period, other economic factors not
discussed in the literature also played a significant role – including changes in CRP enrollment,
productivity gains, and economies of scale. Thus, this study makes an important contribution to
the existing literature by demonstrating that changes in cropland usage are not solely, and not
necessarily directly, attributable to increases in biofuel production and GM seed adoption. Our
study sheds light on a mix of factors linked to corn acreage intensification within the Corn Belt
region. The findings elucidate the well-documented changes in cropping patterns involving loss of
acreage of small grains and marginal areas in favor of corn and soybeans. The findings of the study
are expected to raise awareness among policymakers and agricultural producers about changing
cropping patterns and their implications for long-term sustainability, enabling them to make
more informed policy decisions.

A caveat of this study is that state-level analyses mask disparities in land use within one state
and thus for the Corn Belt region overall. While a county-level analysis could solve some of the
bias due to spatial measurement errors, impediments to conducting county-level analysis include
lack of meaningful and reliable estimates of prices, genetically modified corn and soybean
adoption rates, and ethanol production. Nevertheless, a consideration for further research is to
investigate whether elements of our analysis can be disaggregated to the county level. One useful
line of research at the county level is to obtain spatial data and use spatial fixed effects models to
directly address spatial spillover issues. Another area worth exploring is the use of nonlinear
models to further investigate the factors contributing to changes in cropland usage.

Data availability. The data that support the findings of this study are available from the corresponding author, Evert Van der
Sluis, upon reasonable request.
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Appendix

Table 1A. Panel fixed effects endogeneity test of the instrument (second-stage results)

(Model 1) (Model 2) (Model 3) (Model 4)

Dependent Variable = Corn acreage intensity

Model Residuals −0.105* −0.004 −0.100 −0.012

(0.054) (0.090) (0.061) (0.128)

CRP (million acres) −0.049*** −0.038*** −0.048** −0.039***

(0.006) (0.007) (0.016) (0.012)

Constant 0.297*** 0.159** 0.068 0.397

(0.034) (0.060) (2.652) (2.683)

Observations 231 231 231 231

R-squared 0.481 0.534 0.482 0.534

AIC −747.714 −929.258 −748.099 −928.145

Consistent AIC −738.737 −902.604 −734.632 −897.049

BIC −740.737 −908.604 −737.632 −904.047

Year trend NO NO YES YES

State FE YES YES YES YES

Notes: We regress the instrument on all covariates including genetically modified (GM) corn in the first-stage regression, and then use its
residuals for GM soy in the second-stage regression (including the instrument) – see (Wooldridge, 2020) although we use panel data. The other
controls added to Models 2 and 4 are average crop price, ethanol production (100,000 barrels), productivity, and average farm size. All controls
are in their first lags except for the average farm size variable. Robust standard errors in parentheses; and ***, **, and * indicate significance at
0.01, 0.05, and 0.10 levels, respectively. Model 3 outperforms model 1 based on the consistent AIC, as does Model 4 over Model 2.
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Table 1C. Panel fixed effects instrumental variable regressions with genetically modified (GM) soy as an instrument for GM corn

(1st stage) (2nd stage)

GM Corn CAI

GM Soy (ratio) 0.505***

(0.147)

CRP (million acres) 0.182*** −0.049***

(0.027) (0.017)

GM Corn (ratio) 0.018

(0.071)

Observations 231 231

1st Stage F statistic 11.78

Cragg-Donald Wald F statistic 13.15

R-squared 0.728

AIC −1260.44

Consistent AIC −1144.93

BIC −1170.93

Year FE YES YES

State FE YES YES

Notes: Because we included year-fixed effects, GM soy is used as an instrument instead of its lag. The instrument for the year trend models is
stronger than the year-fixed effects model, so the latter model reduces the significance of GM corn. Despite this, our primary variable of
interest (the CRP) remains robust. The regression used all covariates in Model 4. Robust standard errors in parentheses; and *** indicates
significance at the 0.01 level.

Table 1B. Panel fixed effects endogeneity test of the lag ethanol (second-stage results)

Dependent Variable = Corn acreage intensity

Model residuals 0.027 0.028

(0.043) (0.045)

CRP (million acres) −0.039*** −0.038***

(0.007) (0.011)

Constant 0.158** 0.134

(0.055) (1.867)

Observations 231 231

R-squared 0.534 0.534

AIC −1028.67 −1038.54

Consistent AIC −1001.99 −1007.94

BIC −1007.99 −1014.94

Other controls YES YES

Year trend NO YES

State FE YES YES

Notes: We regress lagged ethanol on all the covariates including ethanol in the first-stage regression, and then use the residuals from the first
stage for lag ethanol in the second-stage regression (including the lagged ethanol) – see (Wooldridge, 2020) although we use panel data. The
other controls added in Models are average crop price, ethanol production (100,000 barrels), productivity, genetically modified soy, and farm
acres per operation. All the controls are in their first lags except the scale variable. Robust standard errors in parentheses; and ***, **, and *
indicate significance at 0.01, 0.05, and 0.10 levels, respectively.
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Table 1D. Panel fixed effects instrumental variable regressions with more than one instrument for genetically modified
(GM) corn (second stage)

(5) (6) (7) (5A) (6A) (7A)

Dependent Variable is Corn acreage intensity in all models

GM corn (ratio) 0.034*** 0.028*** 0.028*** 0.072** 0.052** 0.053**

(0.009) (0.008) (0.008) (0.029) (0.023) (0.023)

CRP (million acres) −0.038*** −0.039*** −0.039*** −0.051*** −0.047*** −0.047***

(0.009) (0.009) (0.009) (0.013) (0.012) (0.012)

Average crop price ($/bu) 0.005*** 0.006*** 0.006*** 0.004*** 0.005*** 0.005***

(0.001) (0.001) (0.001) (0.002) (0.001) (0.001)

Ethanol (100,000 barrels) 0.027** 0.031*** 0.031*** 0.044*** 0.041*** 0.041***

(0.012) (0.011) (0.011) (0.012) (0.012) (0.012)

Productivity (ratio) 0.152*** 0.156*** 0.155*** 0.156*** 0.157*** 0.157***

(0.045) (0.044) (0.044) (0.045) (0.044) (0.044)

Farm size (100 acres) 0.022* 0.023* 0.023* 0.038** 0.033** 0.033**

(0.012) (0.012) (0.012) (0.015) (0.015) (0.015)

Observations 231 231 231 231 231 231

R-squared 0.521 0.524 0.524 0.504 0.518 0.517

Hansen J statistic
P-value

0.921 0.223 0.290 0.976 0.282 0.383

Cragg-Donald Wald
F statistic

201.413 359.01 238.84 47.45 71.20 44.08

AIC −1169.08 −1170.97 −1170.93 −1159.08 −1165.77 −1165.43

Consistent AIC −1142.43 −1144.32 −1144.28 −1127.99 −1134.67 −1134.34

BIC −1148.43 −1150.32 −1150.28 −1134.99 −1141.67 −1141.34

Year trend NO NO NO YES YES YES

State FE YES YES YES YES YES YES

Notes: Models 5 and 5A employ the GM soybean and the first lag of December corn stock as instrumental variables (IVs) for GM corn. Similarly,
Models 6 and 6A use the GM soybean and the first lag of corn yield as IVs for GM corn, while Models 7 and 7A use all three variables as IVs. The
Sargan - Hansen test for overidentified instruments shows that we fail to reject the joint null hypothesis that the instruments are exogenous in
all models, implying that the instruments are extremely exogenous. The F-statistic values indicate that the instruments are not weak, but
rather very strong. Model 5A (with GM corn and the first lag of corn stock as IVs) has the lowest AICs and BICs, indicating that the model fits the
data better than the other models (though the AICs are fairly similar). The results are very consistent with those in Model 4, with only one IV.
Robust standard errors in parentheses; and ***, **, and * indicate significance at 0.01, 0.05, and 0.10 levels, respectively.
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Table 1E. Overall summary statistics aggregated by mean across the 11 states (2000–2021)

States CAI (ratio)
Corn planted acres

(million acres)
% of Corn acres out of
U.S. total (2000–2021) CRP (million acres)

Iowa 0.538 13.209 15% 1.737

Illinois 0.487 11.200 13% 0.955

Nebraska 0.477 9.189 11% 1.068

Minnesota 0.399 7.830 9% 1.465

Indiana 0.466 5.684 7% 0.267

South Dakota 0.296 5.025 6% 1.232

Kansas 0.188 4.373 5% 2.519

Wisconsin 0.483 3.868 4% 0.421

Ohio 0.346 3.464 4% 0.296

Missouri 0.234 3.191 4% 1.259

Michigan 0.364 2.348 3% 0.215

11 Corn Belt total 4.277 69.380 80% 11.432

11 Corn Belt Average 0.389 6.307 – 1.039

U.S. Avg. total (2000-2021) – 87.126 – –

U.S. 2022 total – 88.162 –

Notes: The values corresponding to each state represent the average value of each state. Over the study time - period, the 11 Corn Belt states
accounted for about 80% of corn planted acres in the U.S. (which is consistent with those in 2022 and other years). Iowa has the highest
proportion of corn acreage coverage of about 15% and followed by Illinois.
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