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Abstract

Let u be a solution of a parabolic equation us = F(u, Du, D?u). Under convenient hypotheses
it is proved that the angle between a given direction and the normal to the level surfaces of
u(-, t) satisfies a maximum principle.
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1. Introduction

Let 1 be an open, connected, bounded set in R®, T a positive constant and
H = (O x (0,T). Let u be a sufficiently smooth solution in H of a parabolic
equation of the form

(1) Ut =F(U,DU,D2U)’

where Du = (3u/dz1,...,0u/d8z,), and D?u is the hessian matrix of u with
respect to the space variables.

Let |Du| # 0 in H and let w(z,t) be the angle between Du(z,t) and a given
direction in R™. We will prove the following strong maximum principle.

If w<7/2in H, then

(2) w(z,t) <maxw for (z,t) € H,
3, H
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where d,H = {002 x [0,T]} U {(z,0);z € O} is the parabolic boundary of H;
furthermore w is constant in H if equality holds in (2) for some (z,T).

We will also show that for n > 2 the hypothesis w < 7/2 is essential.

Note that no hypothesis on the sign of the derivative of F with respect to u
is assumed.

Analogous results for solutions of elliptic equations have been obtained in [5].

The maximum principle for w gives information on the behaviour of the level
sets of u(-,t). Geometric properties of these level sets have been investigated by
Brascamp and Lieb [1], Matano [4], Jones [3], Gage [2], Tso [7].

The results obtained in this paper were announced in [6] where references
can be found about geometric properties of level sets of solutions of elliptic and
parabolic equations.

2. A differential equation

Let T be the class of real functions u, u € C*(H), such that Du € C'(H),
and D2 is differentiable with respect to the space variables.

In this paper we denote by F a real differentiable function on the set R x R™ x
M, M being the space of the real, symmetric, n X n matrices. Let us suppose
that a positive constant o exists such that in H

In

(3) > oF (u, Du, D*u)A Ay > alA]? for A € R,

where u,, is the second derivative of u with respect to z, and z,. Furthermore
let us assume throughout this paper that

|Du| #0 in H.

THEOREM 1. Under the stated hypothesis the angle w(z,t), between Du(z,t)
and a given direction pu in R™, is a function of class CO(H); in the set K =
{(z,t); (z,t) € H,0 < w(z,t) < 7}w 13 of class C! and Dw is differentiable with
respect to the space variables; moreover w satisfies in K the following parabolic
equation

6F
(4) 'w,s + Z brwy + cotgw

ws — gcotg w,

where by, g € CO(H),

(5) 9>0;
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by and g have the following expressions

1,n

(6) b, (u Du, D*u) + |Du|-22 (u Du, D?u) Zu,u,s,

1n aF 1,n in 1,n
g = |Du|™? Z W(u, Du, D?u) Z UirUis — | Du| 2 Z U Uiy Z UjUjs
r,8 TS 1 1 7

PROOF. We compute the derivatives of w in terms of the derivatives of u.
Since we have

]
(8) w=arccos|1u)—‘;|, (u“ = 5%) ,
it follows that
1n
9) w, = —[|Du|* - uﬁ]_l/z [u,,, — u,|Du|™? Zuiuir] ,
i
1In
(10) w, = —[|Du|? - u;":]‘l/2 [u,,t — u,|Du|™? Zuiuit] ,
in
Wy —[[Dul2 - u2] 1/2 [u,‘,s — uu|Du|™ —2 z:u,'u"s — uus|Dul|™ Zu,u"
+ 2u,4|Du|_4 Z UiUiy Z U Ujs
i 7
1,n
—u,‘IDul_r" Z uisui,J
i
1,n 1n
+ [|Dul2 - uf,]“"’/2 [Z UilUss — u,,u,‘s] [um - u,‘|Du|‘2 Z uiu,-r} .
i i
By (9) it follows

I,n

Uys = Uy, |Du| 2 Zu,-u,-s — [|Du|? - ui]lﬂws,
i
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and with this substitution we obtain

1,n

(11) wys = —[|Du|? - uf‘]‘l/2 Iiums — u,|Du| ™2 Z Uilirs

t
1,n in
-4
+ uy|Du| E uuu,-,i UjUjg
i J

1,n

—u,|Du|™? Z UisUir
i

In

— |Du|™? [Z ui (Ui ws + u,-sw,)} ~ (|1Du]? — ¥ 2w, wow,.
i

By (1) we obtain

SR OF L SROF OF L

Oy M7 Lt Pu; M Gy M
r.s )

and
STOF SR OF
— aurs nrs = - au] 1] au 1 ts:

Hence, by (9) and (10), we have

in OF 1n
(12) _— [u,m, — u,‘IDu|‘2 Z uiui,s}
[

Oury
rs
X OF
= [IDuI2 - uf‘]l/2 Z —aij —wy .
7 7

Therefore the equation (4) follows from (11) and (12), taking into account (6)
and (7).
Let F be the matrix (3F/du,,); by the assumption (3) it follows that the
matrix (D?u)*¥ (D?u) is symmetric and positive definite. Hence
tr((D*u)*F (D%u)) — |Du|((D*u)*F (D?*u)Du, Du) > 0,

that is, (5) holds.
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3. The maximum principle

As a consequence of the previous theorem we obtain

THEOREM II. Let us suppose
(13) u, >0 inH

where p 13 a given direction in R". Then the angle w(z,t) between p and Du(z,t)
satisfies the strong mazimum principle, that is, (2) holds and w is constant in
Q1 x [0,7] if equality holds in (2) for some (€,7) € H. Furthermore, if w s
constant and less than /2 in Q x [0,7], then Du has constant direction in this
set.

REMARKS. (1) Changing u to —u yields the analogous statement for the
minimum of w.

(2) The hypothesis of smoothness of u can be relaxed. It is sufficient to
suppose smoothness of u such that the maximum principle holds for w.

(3) The hypothesis |Du| # 0 is necessary to define w. In the case |[Du| =0
in a subset of H, the theorem gives information on the behaviour of w in the
neighbourhood of any point at which |Du| # 0.

(4) If w is constant in H and equal to #/2, then

Gu =0 in H.
Ou
In this case, u can be considered as a function of n — 1 space variables. In case
w is constant in H and less than 7/2, u can be considered as a function of only
one space variable.
(5) The hypothesis (13) needs to be justified. We shall show that it is super-

fluous for n = 2 (Theorem III) and it is essential for n > 2.

PROOF. By Theorem I, w satisfies (4) in K. By (13) it follows that w < 7 /2;
hence by (5) we get

KX OF n
—-wy + g —'—aurs'w,-s + ; Brwr Z 0 in K)

with B, continuous in K.
n
oF
B, =b, + cotng a_u;"’s'
s=1
Then maxz w = maxp, x w; where d,K is the parabolic boundary of the open

set K, as usually defined. Since H = K U {w = 0}, we get (2). Furthermore
the strong parabolic maximum principle holds in H: if there is (£,7) € H such
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that w(¢,7) = maxs, g w, then w is constant in {2 x [0,7]. Let us consider now
this latter case with w < 7/2 to complete the proof of the theorem. If w = 0,
Du has constant direction pu. Let 0 < w < 7/2. Let y be a given point in ; it
uniquely defines a direction A in R", coplanar with Du(y,7) and y, orthogonal
to Du(y,7) and such that the angle between A and p is /2 — w. Let ~(z,t)
the angle between A and Du(z,t); by the inequality v < w + /:7\ it follows that
4(z,t) < /2 in H. Thus v has a maximum at (y,7) and, by the previous strong
maximum principle, v is constant in 2 x [0,7]. Hence, at any point of this set
Du is orthogonal to A and the angle w between u and Du is constant, then the
direction of Du is constant.

THEOREM III. Let us suppose n =2 and w < 7 in H. Then (2) holds and,
if the mazimum of w 1s achieved in a point (€,7) of H, then Du has constant
direction in Q x [0, 7].

PROOF. Because of Theorem II, it is sufficient to prove the theorem under
the hypothesis maxgw > 7/2.
Let us suppose that there exists (£, 7) such that

(14) w(é, )= maxw, (¢, 7)€ H.

By the continuity of Du, a positive constant 6 exists such that the angle between
Du(z,t) and Du(&,7) is less than w(¢,7) — 7/2 in

(15) M= {(z,t);|lz - € <b7-86<t<T}CH.

A direction A in R2, orthogonal to u, is uniquely defined such that the angle

between A and Du(&,7) is equal to w(€,7) — n/2. Let ~(z,t) be the angle
between Du(z,t) and A; we have

y(z,t) < 4{(€,7) < g for (z,t) € M.

Then uy > 0 in M. By Theorem II it follows that Du has constant direction
in M; hence w is constant in M. We have proved that, for any (§,7) for which
(14) holds, there is a set M, defined by (15), in which w is constant and Du
has constant direction. Hence w is constant and Du has constant direction in
Q x[0,7).

The following example shows that the hypothesis (12) cannot be relaxed in
the case n > 2.

Let ¢ be a negative constant,

u(z,t) = 21 + 22 — 23 — 622(T —t)—:cg

+e[dal - Llzi2d + Lad — 27528 + La8],

_( 2e -1 0)
= \Vizee Vit )’
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and let w be the angle between y and Du. The function u satisfies the heat
equation
uy = Au in H=R®x [0,T).

Let @ = (0,0,0); one may check with elementary calculations
w(Q,T)=0, =123, w(Q,T)=8,
w1 (@ T) =6, w2(Q,T)=-¢, wi3(QT)=0,
wy2(Q,T) =3~ 6, w3(@,T) =0, wss(Q,T)=4e.

Hence w(z,t) < w(1,T) = arc cos(2¢/v/1 + 4¢2) for (z,t) in a neighbourhood of
(Q,T), t <T. We can observe w(Q,T) > n/2 and w(Q,T) — n/2if e — 0.
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