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Abstract

Recently, considerable interest has been shown in the connection between smooth-
ing splines and a particular class of stochastic processes. Here the connection with
an equivalent class of least squares problems is used to develop algorithms, and
properties of the solution are examined. We give an estimate of the condition
number of the solution process and compare this with an estimate for the condi-
tion number of the Reinsch algorithm in its conventional implementation.

1. Introduction

Let data values j/j be given at points ti, i = 1,2,... ,n. A smoothing spline of
order 2p — 1 provides a smooth curve through the data by minimising

s(f) = f > - ttk))2 + a f" /(p)2
dt

where the smoothing parameter p. provides a compromise between fidelity of the
approximation as measured by the first term in (1.1), and smoothness of the
approximation as measured by the second. The computation of the smoothing
spline, given //, is generally regarded as straightforward for smll p (for example,
an implementation of the algorithm of Reinsch [17] is given in de Boor [5] for
the case p = 2), and most recent interest has centered on the questions of how
to set (i and how to attach confidence intervals to / . Perhaps the most popular
method for choosing fi based on the data, is the procedure of generalised cross

1 Department of Statistics, Research School of Social Sciences, Australian National University,
G.P.O. Box 4, Canberra, A.C.T. 2601, Australia.
2Department of Pure and Applied Mathematics, Washington State University, Pullman, Wash-
ington 99164, U.S.A.
© Copyright Australian Mathematical Society 1988, Serial-fee code 0334-2700/88

322

https://doi.org/10.1017/S0334270000005841 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005841


[2] Algorithms for smoothing splines 323

validation championed by Wahba (for example [23]). This now has strong the-
oretical support [20], and can be implemented with small numerical cost—see
[21], [18], and [6] for possible approaches offering different compromises between
simplicity and generality. Explicit in these considerations is the assumption that
the data can be decomposed as

yi = r){ti) + ei (1.2)

where r]{i) can be thought of as an unknown signal which is to be estimated
by minimising S(f), and e* is a noise term. Here it is assumed that the £,
are independent and distributed as JV(0,o-2). This nonparametric estimation
problem has a solution which is a piecewise polynomial of degree 2p — 1, and
within this framework of piecewise polynomial functions it is possible to interpret
smoothing splines as the mean of a posterior distribution given the data under
the assumption of an appropriately tailored form of prior distribution [19]. This
stochastic setting has the advantage that it makes it possible to attach confidence
intervals to the smoothing spline.

An alternative route to a similar type of result has been given by Wahba [22].
In her approach the signal is modelled by the stochastic differential equation

dpx n-dw .

15 = CT%/% (L3)

where w(t) is a unit scale Wiener process (Billingsley [4]) and A is a scale pa-
rameter (corresponding to 1/n in (1.1)) which is to be determined. She assumes
a diffuse prior distribution on the vector of initial conditions on (1.3)

which is made precise by setting XQ ~ iV(0,72/) and letting 72 —> oo, and shows
that

f(t)= lim E{x{t)\yi,y^...,yn}. (1.4)
*7—>oo

This result has stimulated other work. For example, Weinert, Byrd and Sidhu
[25] observe that a natural setting for characterising a smoothing spline is an ap-
propriate reproducing kernel Hilbert space, and that the reproducing kernel can
be interpreted as a covariance function in an isomorphic and isometric Hilbert
space of random variables. This provides them with a stochastic interpretation
of the smoothing spline which is readily generalised to Lg splines, and they also
describe filtering and smoothing algorithms for its computation. An alternative
approach is adopted by Wecker and Ansley [24]. They assume XQ is a constant
vector and use the Markov property of the Wiener process to set up an equiv-
alent discrete stochastic process describing the evolution of x(£j). This permits
them to use the Kalman filter to construct a likelihood function for the prob-
lem, and they maximise this to estimate XO,A,CT2. Kohn and Ansley [13] show

https://doi.org/10.1017/S0334270000005841 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005841


324 M. R. Osborne and Tania Prvan [3]

how to modify the Kalman filter in order to handle the computations involv-
ing the diffuse prior in the Wahba model (other authors, for example [10], have
worked explicitly with large values of 72), and discuss equivalences between the
approaches based on stochastic models.

Here we consider a stochastic differential equation model which includes (1.3)
as a special case (our aim is to escape from purely deterministic equations for
compartmental modelling, but that is another story). We summarise filtering
and smoothing algorithms available for estimating the solution given the data,
and make an application of these procedures to derive smoothness results for the
solution, which provide a neat generalisation of the variational characterisation
of smoothing splines. To ensure efficient and numerically stable computation, we
have investigated the use of a novel information-filter formulation of the Kalman
filter due to Paige and Saunders [15] which has the advantage that the smoothing
step, which is a major component of the other algorithms, comes practically for
nothing in the sense that it is conceptually an integral part of the algorithm. Both
the Wahba, and Wecker and Ansley, models can be estimated by this approach,
and in the Wahba model the starting procedure needed to take account of the
diffuse prior leads to an initialisation which is identical to that used by Weinert,
Byrd and Sidhu. Although both approaches must be equivalent in the sense that
both lead to the same smoothing spline, the mechanism of the equivalence is not
trivial [3].

The remaining question considered is, which of the numerical algorithms
should be used? This question is settled easily if efficiency is the main crite-
rion, for then there would seem to be no serious competition to the Reinsch
algorithm. This appears to be the case, for we argue in Section 5 that the
sensitivity of both types of algorithm is similar in having the same asymptotic
dependence on n. More serious is the size of the estimate, which suggests that
numerical problems are likely to be encountered for small values of p and modest
values of n with both approaches, and this is confirmed for the information-filter
algorithm by presenting the results of calculations.

2. The stochastic model

Let T(t, f) satisfy the initial value problem

j t ) = I (2-1)

where M(t): W —* W is sufficiently smooth to permit subsequent manipula-
tions. Then T is a fundamental matrix for the associated system of first order
linear differential equations. Properties of T that will be used frequently include

(i) T(t,8)T{8tt) = T(t,Q (2.2a)
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and
(ii) £T{t,s) = -T(t,s)M(s). (2.2b)

Given the inhomogeneous problem

^ x(O=x€ > (2.3)

then knowledge of T permits an explicit form for the solution to be written down.
This is

x(t) = T(t, flx€ + f T(t, s)g(s) ds. (2.4)

In the case that g corresponds to a stochastic forcing term (compare (1.3))

g = aV\^b (2.5)
at

where b is a constant vector, then (2.4) can be written in recurrence relation
form as

+ u(t1+1,ti) (2.6)
where

t>+l dw
T(ti+1,s)b—ds. (2.7)

By definition u(ti+i,£j) is independent of x(£), t < tu and

u(ti+itti) ~ N(0,n{tt+i,ti))

where

n(ti+1,ti) =<r2X f *+I T(tt+1,s)bbTT(ti+1,s)Tds. (2.8)
Jt,

Corresponding to assumption (1.2) we write

Vi = hTx{ti) + et, i = l,2,...,n, (2.9)

where (in part to simplify presentation) we take h to be a constant vector, and
where we assume also that the e, are independent of u(£,+i,t,).

The problem considered is that of computing x(<|n), the conditional expec-
tation of x(t) given 2/1,2/2.- • • ij/n- An estimate of the data is then given by
hTx(t,|n), i = 1,2,..., n, and we refer to hTx(t\n) as a generalised smoothing
spline. This computation requires a strategy for imposing the initial conditions
x^ needed to specify the solution to (2.3); and here two possible approaches are
considered.

(i) The vector of initial conditions xo is constant. This means that x(t) can
be written in signal-plus-noise form

z(0 (2-10)
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where z(t) provides the stochastic dependence. As xo is constant, z(i) satisfies

E{z{U)} = 0, varfrfa)} = 0. (2.11)

The estimation problem can now be treated by writing the observational equa-
tions in the form (subtracting out the signal)

developing the likelihood for this system, and them maximising the likelihood
to estimate xo, A and a2. This is the program advocated by Wecker and Ansley
[24].

(ii) A diffuse prior distribution is assumed for x(ti |0) and is treated by setting
x(£i|0) ~ iV(0,72/) and seeking limits for the conditional expectations as 72 —*•
oo. In the particular case of (1.3) this is Wahba's model for smoothing splines.

In both cases, the estimation problem is specified by a dynamics equation
(2.6) which describes the evolution of the state vector x(£), and an observation
equation (2.9) or (2.12) providing information about the particular realisation
of the process. It is a consequence of the assumptions made concerning the
independence of the noise terms that the Kalman filter is an appropriate device
for computing the conditional expectations. Assume that x(£j|i), the conditional
expectation of x(ij) given y3•, j = 1,2,..., i, and

v&r{x.(ti)-x(tt\i)} = S%lt (2.13)

are known. Then
x(ti+1\i)=T(tt+1,ti)x(tl\i) (2.14)

is the best available estimate of x(£t+i), and the innovation

<Ti+i = Vi+i ~ hTx{ti+i |0 (2.15)

is uncorrelated with the past. It follows that the projection theorem (see, for
example, Luenberger [14]) can be used to give

x(«,-+1|t + 1) =x(ti+1\i) + ^ r-5i+1,th (2.16)

and

where
Si+1\i = T(ti+uti)Si\iT(tl+1,ti)

T + n(ti+1,ti). (2.18)

To estimate the dependence of x(ti) on all of the data requires also a backward
recurrence (the fixed interval smoothing algorithm [1]). For U-i < t < U this
gives

t-_1)x(*,-_1|t - 1) + A{ti,t)(x{tt\n) - x(t,-|t - 1)) (2.19)
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where

A (± x\ irP( 4- +. \ C . TV4 4 . \T _i_ T^-f. 4-W Q * (0 OCi\

and

T{t i, t) = Q{t, ti-!)T(ti, if. (2.21)

The corresponding formula for S(t\n) = var{x(t) — x(<|n)} is

b(t\n) - \l(t,tt-i) + 1 [t,ti-i)bi-i\t-il (t,U-i) , ,

T (2.22)

Because the £ are independent, the output from the Kalman filter permits the
log likelihood to be written down. For the Wecker and Ansley model this gives

n

LWA = > ] Lfa) = V] ̂  - , * r + log(<ra + ^'Sii^ih) } + const= ±m = ± I {—^—
(2.23)

where Lfa) is the contribution to the log likelihood by &. A similar formula is
available in the case of the Wahba model but it must be interpreted in a limiting
sense as 72 —* oo [13].

3. Smoothness properties

Justification for calling hTx(t|n) a generalised smoothing spline is provided by
considering the smoothness properties of x(i|n). The key formula to investigate
is the interpolation formula (2.19). The first step is to differentiate A(tt, t) which
in turn depends on T(tt,t) which can be written (using (2.2), (2.8))

rt
T(tif t) = o2\ I T{t, s)bbTT{t, s)TT(ti, if ds

'71 (3-D
T(«,8)bbTT(«t,s)Tds.

Differentiating (3.1) gives

—— = MF + a Abb T(ti,t) (3.2)
dt

from which we obtain

+ a2\bb1TT(ti,t)S^_1 (3.3)

and

—x(t\n) = Mx(«|n) + CT2AbbTTT(^, 0%1_i(x(<i|n) - x(<j|z - 1)). (3.4)
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An immediate consequence is that between data points x(£|n) has the same
smoothness as solutions of the homogeneous differential equation. It follows that
it is the data points which are of most interest in investigating the smoothness
of x(t|n).

REMARK 3.1. Consider the pth order linear differential equation

n ~. — ~(*\ to c\

where g(t) is a stochastic forcing term (compare (1.3)). If this is written as a
first order system using the standard substitution

dxi-1/dt = xi, i = 2,...,p (3.6)

then the natural choices for b and g are

b = ep, g = g(t)b. (3.7)

Taking the scalar product of (3.4) with ep gives

CpX^^Xe^iU^d (3.8)

where
d = S-ll

1_1(x((ti\n)-x(ti\i -1)) ) .

But it is immediately verified that

L+elTT(ti:t)d = 0 (3.9)

for every d where £+ is the formal adjoint of £.p, and this shows that between
the data points x\ satisfies

£+Lpx1= 0. (3.10)

This result is well known for smoothing splines. The above derivation is essen-
tially that given in [12].

Continuity of ^x(£\n) at t = ti requires

B ^ - i ( * ( ' « • W - x(*il*' - !)) = BTTT(ti+1,ti)S-+
1

Mt(x(ti+1\n) - x(ti+1|i)).
(3.11)

Using (2.19) gives

Also, inverting both sides of (2.17),

stll =sl\i-l+a h h '

so that the difference between the two sides of (3.11) becomes

D = ^{SZ^^iUli) - x ( M t - 1)) - a
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Simplifying using the Kalman filter equation (2.16) gives

D =

and this vanishes provided b T h = 0.
To extend this result to higher derivatives note that
(a) it is necessry only to consider derivatives of the term involving

bbTTT(ti,t) in (3.4) to find the first occurrence of a discontinuity, and
(b) successive derivatives of T(ti, t) can be represented by

U, t)/dt> = T(U, t)Pj(M) (3.13)

where the Pj satisfy the recurrence

i, j = l ,2 (3.14)

Paralleling the above argument now gives the result that the first k derivatives
of x(t|n) are continuous at U provided

brP,-_i(Af)rh = 0, j = l,2,...,k. (3.15)

If the successive vectors Pj(M)Th, j = 0 ,1 , . . . ,p — 1 are linearly independent,
then at most the first (p — 1) derivatives can be continuous, as any vector which
is orthogonal to p linearly independent vectors must vanish, leading to a contra-
diction in (3.15) in the case p = k.

REMARK 3.2. Returning to the example discussed in Remark 3.1 note that
in this case Pi{M) can be written

«&

where the atJ are functions of the coefficients in £.p. Clearly

. ' , ' (3-16)
= 1, ^ = p - l ,

showing that the choice
b = ep, h = ei

makes %\ together with its first 2p — 2 derivatives continuous at the data points.
The discontinuity in the (2p — l)'st derivative is obtained by evaluating the
bracketed term in (3.12). Simplifying using (2.16) gives

A direct comparison with the variational argument given in Reinsch [17] shows
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that xi(t\n) is exactly the Lg smoothing spline provided
(a) A = l//i, and
(b) the natural boundary conditions

Cpxi{t\n) =0, t < U, t >tn (3.18)

are satisfied.
But (b) is a consequence of the extrapolation formula (2.14) for t > tn and

also for t < t\ provided that u(t, t\) is uncorrelated with both u(s, ti) for s > t\
and x(<i |0). This condition is satisfied for both the stochastic models considered
here. Thus it follows from the uniqueness theorem for Lg splines that both
models give the same x(<|n) for any prescribed value of A.

REMARK 3.3. An alternative characterization of b and h can be obtained
by considering the eigen-decomposition of fi(£ + 6, t) in the limit as 6 —• 0.
Expanding T(t + 6, s) in (2.8) using (3.13) gives

= a2x ft
ds-

Because successive powers of 6 are incommensurable as 6 —* 0, an application of
(3.16) to the evaluation of the Rayleigh quotient [9] gives:

(i) The largest eigenvalue of Q(t + 6, t) is

up = <72\6bTb + O{62), 6-+0 (3.20)

and is associated with an eigenvector which tends to b as 6 —* 0.
(ii) The smallest eigenvalue of Q(t + 6, t) is

• — — + 0(<52p) (3.21)
2p — 1

and is associated with an eigenvector which tends to h as 6 —• 0.
(iii) The remaining eigenvalues are contained between these asymptotic lim-

its. Any vector asymptotically orthogonal to b must give a Rayleigh quotient
estimate which is o{a2\6) as 6 —* 0 and, in particular, this estimate must hold
for wp_i.

4. Computation

It is not usual for the Kalman filter to be implemented directly in the recur-
sive form (2.14)-(2.18) which can apparently lead to scaling-related numerical
problems, and preferred strategies work either with a square root factorisation of
the covariance matrix or of its inverse (the information matrix). Our approach
has been to use a method of the latter kind due to Paige and Saunders [15]
which has the particular advantage that the backward recursion, which gives
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the smoothed values x(£,|n), is an integral part of the algorithm rather than a
separate procedure as in the case of the fixed interval smoother.

The starting point for this algorithm is an alternative formulation of the es-
timation problem given by Duncan and Horn [7]. In this approach the problem
becomes a linear least squares problem with independent noise terms having unit
variance, and Paige and Saunders suggest the use of orthogonal matrix transfor-
mations to take the data matrix to upper triangular form (the standard stable
algorithm). However, they also show that the factorisation can be organised
to take advantage of the problem structure and to reveal the close relationship
between this method and the Kalman filter. In fact the Kalman filter recursion
can be deduced from the steps of the orthogonal factorisation and the smoothing
procedure can be deduced from the back substitution.

To specify the least squares problem, it is convenient to define

var{x(ti)-x(t1 |0)}"1 = LxL[, V.(tuti-\Y
l = LtLj', i = 2,...,n>

The key step is to transform (2.6) by premultiplying by Lf to give an equation
involving the barred quantities just introduced, in which the noise components
Uj are uncorrelated and have unit variance. In terms of this notation the required
sum of squares is

t=2

Actually our models correspond to the special cases Ly = oo (xo a constant
vector), and L\ = 0, the limiting case as 72 —> oo of the prior distribution
x(ti|0) ~ iV(0,72/). In the first case, the first two terms are omitted from the
sum of squares, but not from the likelihood calculation. However, the case L\ = 0
leads to a singular least squares problem, but it is possible to identify limiting
values by running the filter for an increasing sequence of values {-y2} —> oo. The
key result is that Sp\p is bounded as 72 —• oo provided

dim{v<; \i = TT{ti, h)h, i = 1,2,..., k} = k, k = 1,2,..., p. (4.2)

This result makes it possible to initialise the information filter at t = tp instead
of t = ti and then to proceed in the usual way to compute x(ti|n), i > p. A
smoothing step is needed to compute x(£,|n) for i < p.

The required result is demonstrated inductively by showing that for k < p

S*|it-i = T(tk, < i )bV - Qk-i) + Ek}T(tk, h)T (4.3)

where Ek = 0(1), 72 —• oo, and Qk is the orthogonal projection of rank k defined
by

Vk = [vuy2,...,vk}. (4.4)
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The result is. clearly true when k = 1, so it is necessary to verify it for k := k +1
contingent on (4.3). Let

wfc = (/ - Qfc-i)vfc

so that

Substituting in (2.17) gives

fc + Ekvk)<? TV* *\l~?(T n U PSk]k = T(tk, tl) | 7 (/ - <*_,) + Ek -

= T{tk, <i){7
2(/ - Qk)

(4.5)
where, up to terms of order I/72,

Note that i?fc = O(l) and is positive definite if Ek is. Now (2.18) gives

— T{tk+i,tk)Sk\kT(tk+i,tk)
T + Q(tk+i,tk)

where
Ek+1 =Rk + T{tk+ut1)-

1Q{tk+1,tk)T(tk+1,t1)-
T

U tk + i
T(tus)bbTT(t1,s)Tds

This establishes the induction. But now after p steps Qp = I so I — Qp = 0 and

5 p b = T{tp, ti)R,,T(tp, h)T = 0(1). (4.8)

To estimate lim-y2_,oo x(tk, k) for k < p, assume an expansion having the form

x(tfc|*) = x°(tfc|*) + ^(tk\k) + •••. (4.9)

Substituting in (2.16), setting

x.0(tk\k) = T(tk,h)Zk, (4.10)

and collecting leading terms gives the recurrence

i/fcwfc/||wfc||
2

which should be compared with (4.6).
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REMARK 4.1. Equation (4.11) can also be written

e* = (Vf)+y* (4-12)

where ejy/t = j/<, t = 1,2,..., k. It is important to note that £*, Qk can be built
up using a stable algorithm, for example by transforming the successive V* to
upper triangular form using Householder transformations. This would appear
to offer numerical advantages over calculations which essentially deflate I — Qk
in recursive calculations. A procedure of this kind is given by Ansley and Kohn

[2]-
REMARK 4.2. Note that both x°(tp\p) and var{x(£p) - x°(tp\p)} can be

computed directly as Vp is invertible by assumption—the variance calculation
uses, for k = 1,2,... ,p,

-ek = vlT(tp, U)-1 |x(«p) - x°(gP) + ay/xj T(tp, s)b^ ds

This corresponds to the initialisation used by Weinert, Byrd, and Sidhu [25].
The limiting form of the smoothing recursion for i < p is obtained in similar

fashion. Consider

= T{U,
(4.13)

The term involving if2 can be written (in an obvious notation)

- Qt) + £

iHl - Qi) + Rio + i~2Rn + • • • }{X0 + 7-2Xx + • • •}

where A* = Rio — E(i+1)0, and XQ satisfies

XQ = QiXoQi, QiE(i+i)oXo = Qi-

The corresponding recursion for the smoothed variance (2.22) requires a knowl-
edge of the O(l / 7

2) terms in (4.14) in the intermediate calculations. The con-
tribution from the unbounded terms is (after some manipulation)

Tituh)-1^ -A{tt+1,ti)Si+1\iA(tl+1,ti)
T}T(tl,t1)-

T

= -Ai - AiX0Ai + O(l/7
2).

Once again there is a well determined limit as 7
2 —> oo.

REMARK 4.3. For the class of problems discussed in Remarks 3.1, 3.2 there
exists an alternative to using these limiting forms of the smoothing recursions
to calculate x(t\n), t < tp. The idea is to use the knowledge of the discontinuity
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in the (2p — l)st derivative at the data points to successively generate terminal
conditions for x(£|n) at ti = p, p — 1, . . . , 2, and then to integrate (3.10) back
to U-i. In this case the smoothing formula for interpolating x.(t\n) between
the data points provides an explicit solution to the boundary value problem for
(3.10) with the boundary data x(t,-_i|n), x(£j|n).

5. Implications

Thus far we have shown that the stochastic models can be estimated using
what are regarded as very satisfactory numerical procedures. But this is not
sufficient to guarantee a successful computation—for this it is necessary to known
something of the intrinsic sensitivity of this approach to the estimation problem
itself. This information is sought in this section.

Our analysis is based on the assumptions that £ —• 0, and nS is bounded as
n -»oo . This corresponds to sampling on finer and finer subintervals of a fixed
base interval and seems appropriate enough if the aim is to smooth a given set of
data. It need not correspond to sampling with fixed 6 unless 6 is small in some
natural scale.

Following Golub and Van Loan [9], the sensitivity analysis appropriate to the
linear least squares problem

min||r||2; r = Cx — c

leads to the basic perturbation result

2 + O(£2) (5.1)

where x is the solution to the perturbed problem, £ is a bound for the relative
perturbations to C, c, sinfl = ||r||/||c||, and cond{C} = TTP/TT\, the ratio of
largest to smallest singular values of C. The application of this result to the
Paige and Saunders algorithm needs an estimate of the extreme singular values
of the data matrix H associated with (4.1). Two further assumptions are made,
(i) It is assumed for simplicity that U+i - t, = 6 = 1/n - 1, i = 1,2,..., n - 1.
(ii) It is necessary to have an idea of the asymptotic behaviour of the scale
parameter A. Some information is available ([20], [23]), and it would appear to
be compatible with this to assume that A -» 0 like (5*,0<<A<las<5—»0.

That this assumption is tenable can be seen by considering the extreme values
of 0. When <f> = 0 the approximation term must dominate (1.1) for large n unless
the spline tends to interpolate the data, while when 4> = 1 the smoothing term
matches the growth of the approximation term for a general signal plus noise
model. Numerical experience is reported in Section 5.
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The following sequences prove useful. These are

a x = h, ai+1=T(ti+1,tt)ai + h, i = 1,2,. . . , n - 1, (5.2)

/ ? 1 = b , Pi+i = T{ti+llti)fii + b, t = l , 2 , . . . , n - l , (5.3)

and they have the property that

ft
ai~TiB{U) + O(l), a{t)= T(t,s)hds, (5.4)

hi

A ~ n^(ti) + O(l), 0(t) = / T(«, s)b ds. (5.5)

- 2 ( h r

The idea is to estimate the Rayleigh quotient associated with the data ma-
trix using the results already obtained concerning the extreme eigenvalues of
Q(t + 6, t). The Rayleigh quotient is

flQ(x) = i7(x) /X>i | | 2 (5.6)
' t=i

where

tf(x) = HLfxjII2 +<r-2(hrx1)
t=2

(5.7)
Large values of RQ are obtained by exciting the smallest eigenvalue wi of
Q(t + 6,t) which has been estimated by (3.21). This can be done by choos-
ing x = a which picks up these small values for each i by (5.2) and gives

H(a) = £ Lr^OIMfU + O(S)) + ̂ (hr«i)2} • (5.8)
t= i *• '

Also

JT aTai ~ n*J2 ||5(ti)||2 ~ n3 /"*" ||a(s)||2 d«, (5.9)
t=i «=i J t l

so that
RQ{a) = O{\-16~:ip+3) + 0(1).

A second possibility is to choose x so that the small eigenvalues are excited in
only a small number of terms in (5.7) and the O(n3) growth in the normalising
term (5.9) avoided. The simplest possibility corresponds to the choice x^ = h,
Xj = 0, j •£ i and gives

RQ(x) = O ( A - 1 6 " 2 P + 1 ) + 0(1). (5.10)

This estimate beats that above and it is clear that a larger order is not possible.
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To obtain small values of RQ it is necessary to choose x to stimulate only the
largest eigenvalue of Q(t + 6,t). In this case the choice x̂  = b, Xj = 0, j ^ i
does not work. It gives

F(x) = u-l(U)\\b\\2(l + 0(6)) + ||7Vnb||2 + 0(1)

and in the second term other eigenvalues (exception a»i) will be excited. It
foiiows that the smallest H(x) can be, with this choice of x, is O(6~1/X). The
alternative is to excite the large eigenvalues for each i by taking x = /?. This
gives

H l + O(S)) + a-2(hrA)2}. (5.11)
t=i

Now, by (5.3)

Y) 6hTM(tj)n / T(tj, a)bds

ft, rt
I hTM{t) / T(t,s)bds.
'o ô'0

It follows that the second term in H(0) contributes a term which is O(n3). But
we also have

n n "3 r
so that

RQ(0)=O{6/\)+O(l)=O{l). (5.12)

Again it is clear that a smaller order is not possible.
To use these results in the sensitivity inequality requires also a knowledge of

0. Here the assumptions of independence and unit variance give (for n effective
degrees of freedom)

1/2

(5.13)

and this tends to a limit > 0 as n -* oo. It follows from (5.10), (5.12) that
cond{//} —• oo, 6 —* 0 so that (5.1) must eventually be dominated by the term
involving the square of the condition number. This means that asymptotically
condPS, the condition number of the Paige Saunders algorithm, satisfies

condPS = 0(<r2p+1/A), (5.14)

provided the assumption regarding A is correct.
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REMARK 5.1. The occurrence of the square of the condition number of H
when 6 —• 0 suggests that this may give a generic dependence on n for sensitivity
estimates of stable implementations of the Kalman filter applied to this problem
which use some form of local scaling based on n(tj+1,tj)1/2. It may be that
the local scaling makes a significant contribution to (5.14) as it is clearly an
important aspect of the estimate (5.10) which, as noted above, is able to beat
RQ[a) because of its purely local character. A method which avoids this explicit
local scaling is being investigated.

The main algorithm used to construct smoothing splines is the Reinsch algo-
rithm, and this generalises readily to give smoothed estimates of the observed
data also for the somewhat more general model considered here. The argument
follows Kohn and Ansley [13]. Let

Ar = [Af1,...,At^+1)] (5.15)

be defined by the conditions

p+i P+I

<+i_1> « o = 0 ,

Then, using (2.4) with f = U,

zt = Af Vi = &?v(U) + Af £< (5.17)

is independent of x(£j), and hence of the particular model of the initial conditions.
The projection theorem gives the best estimate r\ of the signal given the data as

») = y -cov(e,z}var{z}~1z, (5.18)

and in the particular case of the smoothing spline this is exactly the vector of
values of the spline at the data points [13]. To evaluate the quantities in (5.18)
let J: Rn —> Rn~p be the upper triangular matrix formed from the Af shifted
so that Ju = A^. Then

cov{e,z}=a2JT, (5.19)

var{z} = a2 J JT + a2\62*>- V , (5.20)

where V is the scaled covariance matrix of the vector q with components defined
by

« = J2 A* hT r + J " Tfo+i-i, * ) b ^ da. (5.21)

There can be a contribution to i?{qqT} only when intervals of integration
in (5.21) overlap. It follows that V is a 2p - 1 banded matrix. Also, as
h is asymptotically the eigenvector associated with the smallest eigenvalue of
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6, t) it follows that the nonzero elements in V are 0(1) as 6 —» 0. In simple
examples they are also positive.

Implementations of the Reinsch algorithm (for example [5]) appear to con-
struct and factorise var{z} explicitly. Thus the obvious quantity to consider in
attaching a condition number to this method is cond{var{z}}. To estimate this
we note first that there is a strong analogy between (5.16) and the definition of
divided differences. Let D: B? —> Rp be nonsingular. Then

9(t)T = hTr(Mi)£> (5.22)

is a vector of linearly independent functions which are annihilated by Ap, i =
1,2,..., n — p. Sample values of the *y, j = 1,2,..., p, span the null space of
JTJ, and any sufficiently smooth function m(t) can be written as a linear combi-
nation of the * j plus a remainder term and it is then easy to show (Householder
[11]) that

p+i

X . (5.23)

An immediate consequence is that JT J has a nonzero eigenvalue which is 0{82p).
But the nonzero eigenvalues of JTJ are the eigenvalues of JJT. Thus the
Rayleigh quotient of var{z} can be made small of order max{A<52p~1,<52p} at
most. Worked examples show that the correct order is O(X62p~1), and this is
to be expected because if V has positive elements then its contributions to the
Rayleigh quotient will be small for the highly oscillatory eigenvectors of var{z}.
But these eigenvalues give O(l) contributions from JJT (case of m(t) varying
rapidly) and so are not relevant in estimating small eigenvalues.

The above argument indicates that the condition number of the algorithm (at
least in its usual implementation) is given by

cond{var{z}} = O(£-2p+1/A). (5.24)

However, there are other possibilities which perhaps should be considered. For
example, cov{e, z)var(z)"1 J can be interpreted as the northwest corner of a
projection matrix which can be computed using the orthogonal transformation
determined by the QR factorisation of [J|v

/A<5p~1/2F1/2]r.
REMARK 5.2. It follows from (5.14) and (5.24) that the Paige and Saun-

ders and Reinsch algorithms have condition number estimates of the same order
as 6 —* 0 and it is easily seen that this does not depend on the particular as-
sumptions concerning A. Thus the analysis presented here does not discriminate
between them on the grounds of stability. More disturbing is the actual order
in 6 given by this sensitivity analysis, which suggests that both algorithms must
be considered suspect for values of p as small as 5 (say) and modest values of n.
This point is illustrated in Table 5.1 which gives estimates of the rounding error
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in results obtained by applying the Paige and Saunders algorithm to be Gallant
data [8] (here n = 72), and the sunspot data [16, p. 487], (here n = 176) for a
range of values of p and A. The values of A have been chosen to straddle the
values given by maximising the likelihood (2.23) as in [24]. For the Gallant data
the maximising A decreased rapidly with p (from O(10~2) for p = 2 to O(10"6)
for p = 4). As this implies increasingly heavy smoothing it suggests overntting
for the higher values of p. For the sunspot data, values of the maximising A
were much larger (varying from 20.1 for p = 2 to 1.1 for p = 4), and in this case
the spline is trying hard to interpolate the data values. Thus these examples
illustrate two rather different types of behaviour. The estimates are obtained by
computing {n"1 £)" = 1 Arj^j)2}1/2 where Afj(ti) is the difference between esti-
mates of the signal computed in single and double precision on a Univac 1182
computer. The results clearly show a deterioration in accuracy as p is increased.

TABLE 5.1. Error estimates for fitted values.

p

1

2

3

4

5

A

.1

.01

.001

.0001

.1

.01

.001

.0001

.1

.01

.001

.0001

.1

.01

.001

.0001

.1

.01

.001

.0001

Gallant data

.13 x

.21 x

.67 x

.21 x

.37 x

.62 x

.13 x

.24 x

.25 x

.72 x

.80 x

.10 x

.27 x

.40 x

.89 x

.52 x

.25 x

.28

.28 x

.26 x

i o - 7

i o - 7

io-8

io-8

io-7

io-7

lO-6

lO-6

lO-6

io-5

10~5

io- 4

io - 3

io-3

io- 4

10"3

lO"1

io - 1

io- 1

A

100
10

1
.1

100
10

1
.1

100
10

1
.1

100
10

1
.1

Sunspot data

.11 X

.13 x

.27 x

.52 x

.17 x

.14 x

.18 x

.24 x

.72 x

.17 x

.33 x

.38 x

.41 x

.11 X

.88

.33 x

lO-6

lO-6

10"6

lO-6

io- 5

10~5

io- 4

io- 4

io-3

io-2

10"3

io-3

io-1

10

10
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