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Abstract

Let G be a finitely generated group acting on a compact Hausdorff space X. We give a fixed point
characterisation for the action being amenable. As a corollary, we obtain a fixed point characterisation
for the exactness of G.
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1. Introduction

Amenability is a property of groups introduced by Von Neumann in his investigation
of the Banach–Tarski paradox. A group is amenable if it admits an invariant mean.
There are many equivalent formulations of amenability. One of the well-known
characterisations is Day’s fixed point theorem [4]: a discrete group G is amenable
if and only if any affine action of G on a nonempty compact convex subset of a locally
convex Hausdorff space has a fixed point.

The notion of an amenable action of a group on a topological space was discussed
by Anantharaman-Delaroche and Renault [2]. It is a generalisation of amenability and
arises naturally in many areas of mathematics. For example, a group acts amenably on
a point if and only if it is amenable and every hyperbolic group acts amenably on its
Gromov boundary [1].

Another generalisation of amenability was given by Kirchberg and Wassermann
[6] with the definition of exactness for groups in terms of properties of the minimal
tensor product of the reduced group C*-algebras. As with amenability, exactness has
equivalent characterisations, which are of interest in different areas of mathematics.
Higson and Roe [5] and Ozawa [8] proved a remarkable result that unifies the two
approaches: a finitely generated discrete group is exact if and only if the action on its
Stone–Čech compactification βG is amenable.
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Coarse geometric versions of classical notions or results in group theory can
sometimes be obtained by considering the problem with coefficients in `∞(G). With
this point of view, Brodzki et al. [3] introduced a notion of an invariant mean for
a topological action and proved that the existence of such a mean characterises the
amenability of an action and its exactness. In a similar fashion, we will give a fixed
point characterisation for amenable actions and exactness. Our characterisation is a
partial generalisation of Day’s fixed point theorem.

2. Fixed point characterisation

First, we recall some notation and definitions from [3]. Let X be a compact
Hausdorff topological space and let C(X) denote the space of real-valued continuous
functions on X. For a function f : G→C(X), we denote by fg the continuous function
on X obtained by evaluating f at g ∈ G. We define the sup-`1-norm of f by

‖ f ‖∞,1 = sup
x∈X

∑
g∈G

| fg(x)|

and we denote by V the Banach space of all functions on G with values in C(X) that
have finite norm.

Definition 2.1 [3]. Let W00(G,X) be the subspace of V consisting of all functions
f : G→ C(X) which have finite support and such that for some c ∈ R, depending on
f ,

∑
g∈G fg = c1X, where 1X denotes the constant function 1 on X. The closure of this

space in the sup-`1-norm will be denoted W0(G,X).

Let π : W00(G,X)→ R be defined by
∑

g∈G fg = π( f )1X. The map π is continuous
with respect to the sup-`1-norm and so extends to the closure W0(G,X).

The G-action on X gives an isometric action of G on C(X) in the usual way: for
g ∈ G and f ∈ C(X), we have (g · f )(x) = f (g−1x). The group G also acts isometrically
on the spaceV in a natural way: for g, h ∈ G, f ∈ V and x ∈ X, we have (g · f )h(x) =

fg−1h(g−1x) = (g · fg−1h)(x).

Definition 2.2 [3]. Let E be a Banach space. We say that E is a C(X)-module if it is
equipped with a contractive unital representation of the Banach algebra C(X). If X is
a G-space, then a C(X)-module E is said to be a G-C(X)-module if the group G acts
on E by linear isometries and the representation of C(X) is G-equivariant, that is, for
every g ∈ G, f ∈ E and t ∈ C(X), we have g(t f ) = (gt)(g f ).

Let E be a G-C(X)-module, let E∗ be the Banach dual of E and let 〈−,−〉 be the
pairing between the two spaces. The induced actions of G and C(X) on E∗ are defined
as follows. For α ∈ E∗, g ∈ G, f ∈ C(X) and v ∈ E, we let

〈gα, v〉 = 〈α, g−1v〉, 〈 fα, v〉 = 〈α, f v〉.

Given a Banach space E, define `∞(G,E) to be the space of functions f : G → E
such that supg∈G ‖ f (g)‖ < ∞. If G acts on E, then the action of the group G on the
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space `∞(G, E) is defined in an analogous way to the action of G on V, using the
induced action of G on E:

(gτ)h = g(τg−1h)

for τ ∈ `∞(G,E) and g ∈ G.

Definition 2.3. A G-invariant subset K in a C(X)-module E is called C(X)-convex if
given any finite collection of positive elements f1, . . . , fn ∈ C(X) such that

∑n
i=1 fi = 1X,

we have
∑n

i=1 fiki ∈ K for any k1, . . . , kn ∈ K .

Remark 2.4. From [3], we know that W0(G,X) is a G-module and W0(G,X) is not
invariant under the action of C(X). So, W0(G,X) is not a C(X)-submodule of V. If
we define W1

00(G,X) = { f ∈W00(G,X) :
∑

g∈G fg = 1X} and W1
0 (G,X) to be the closure

of W1
00(G,X), then W1

0 (G,X) is a G-module in V and is C(X)-convex. Indeed, for
any h ∈ G, f ∈ W1

00(G,X) and x ∈ X,
∑

g∈G(h · f )g(x) =
∑

g∈G fh−1g(h−1x) = 1. So,
h · f ∈ W1

00(G,X). This implies that W1
00(G,X) is a G-module and so is its closure

W1
0 (G,X). For any { fi}ni=1 ⊆ C(X) with fi ≥ 0,

∑n
i=1 fi = 1X and {ki}

n
i=1 ⊆W1

00(G,X), we
have supp(

∑n
i=1 fiki) ⊆

⋃n
i=1 supp ki and∑

g∈G

( n∑
i=1

fiki

)
g
(x) =

∑
g∈G

n∑
i=1

fi(x)ki,g(x)

=

n∑
i=1

fi(x)
∑
g∈G

ki,g(x)

=

n∑
i=1

fi(x) = 1, ∀x ∈ X.

This implies that
∑n

i=1 fiki ∈ W1
00(G,X) and W1

00(G,X) is C(X)-convex and so is its
closure W1

0 (G,X).

Definition 2.5 [3]. Let E be a Banach space and a C(X)-module. We say that v1 and
v2 in E are disjointly supported if there exist f1, f2 ∈ C(X) with disjoint supports such
that f1v1 = v1 and f2v2 = v2. We say that the module E is `1-geometric if for every two
disjointly supported v1 and v2 in E, ‖v1 + v2‖ = ‖v1‖ + ‖v2‖.

Definition 2.6 [3]. The action of G on X is amenable if and only if there exists a
sequence of elements f n ∈ W0(G,X) such that:

(1) f n
g ≥ 0 in C(X) for every n ∈ N and g ∈ G;

(2) π( f n) = 1 for every n;
(3) for each g ∈ G, we have ‖ f n − g f n‖E → 0.

Theorem 2.7. Let G be a finitely generated group acting by homeomorphisms on a
compact Hausdorff space X. This action is amenable if and only if, for any `1-
geometric G-C(X)-module E, any nonempty weak*-compact C(X)-convex G-invariant
subset K ⊆ E∗ contains a G-fixed point.
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Proof. Necessity. Suppose that the action of G on X is amenable. By [3, Theorem A],
there exists an invariant mean µ ∈W0(G,X)∗∗ for the action onX. Since µ ∈W0(G,X)∗∗

and W00(G,X) is norm-dense in W0(G,X), µ is the weak*-limit of a bounded net of
elements f λ ∈W00(G,X) with f λh ≥ 0 in C(X) for any h ∈G and

∑
h∈G f λh = π( f λ) = 1X.

We define `∞(G,E∗) to be the space of functions τ : G→E∗ such that supg∈G‖τg‖E∗<∞.
Choose τ ∈ `∞(G,E∗) and v ∈ E and define a linear functional στ,v : W00(G,X)→ R by

στ,v( f ) =

〈∑
h∈G

fhτh|v
〉
, ∀ f ∈ W00(G,X).

It follows from [3, Lemma 14] that the linear functional στ,v extends to a continuous
linear functional on W0(G,X). We also denote the extension by στ,v and so στ,v ∈
W0(G,X)∗ for any τ ∈ `∞(G,E∗) and v ∈ E.

So, for τ ∈ `∞(G,E∗) and v ∈ E,

µ(στ,v) = lim
λ
στ,v( f λ)

= lim
λ

〈∑
h

f λh τh|v
〉

= lim
λ
〈xλ|v〉,

where xλ =
∑
λ f λh τh ∈ E

∗. Since f λ ≥ 0 and
∑

h f λh = π( f λ) = 1, ‖ xλ ‖ ≤ ‖τ‖. By the
Alaoglu–Bourbaki theorem, there exists a convergent subnet of {xλ}, which we denote
again by {xλ}, and we define x0 = limλ xλ. Then

µ(στ,v) = 〈x0|v〉. (2.1)

For any g ∈ G, [3, Lemma 15] and the invariance of µ show that

〈gx0|v〉 = 〈x0|g−1v〉 = µ(στ,g−1v) = µ(gστ,g−1v) = µ(σgτ,v). (2.2)

Given a weak*-compact C(X)-convex G-module K ⊂ E∗, we choose k0 ∈ K and
define τ : G→ E∗ by

τ : h→ hk0, ∀h ∈ G.

Thus, τ ∈ `∞(G, E∗) and gτ = τ. Indeed, for any h ∈ G, (g · τ)(h) = g · τ(g−1h) =

g(g−1hk0) = hk0 = τ(h). Since K is a G-module, τh ∈ K for all h ∈ G. Since K is
weak*-closed and C(X)-convex, xλ =

∑
h f λh τh ∈ K and so x0 ∈ K . For this special

τ ∈ `∞(G,E∗) and any v ∈ E, it follows from (2.1) and (2.2) that

〈x0|v〉 = µ(στ,v) = 〈gx0|v〉.

This implies that gx0 = x0 for any g ∈ G.

Sufficiency. Let M denote the set of all means for the action of G on X. By
Goldstine’s theorem [7], if µ ∈ M ⊆ W∗∗

0 (G,XX), µ is the weak*-limit of a bounded
set of elements f λ ∈ W0(G,X). We can choose f λ ∈ W1

0 (G,X). Indeed, given f λ

with π( f λ) = cλ → µ(π) = 1, we replace f λ by f λ + (1 − cλ)δe, where δe ∈ W00(G,X),
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δe(h) = 1 if h = e and 0 otherwise. Since (1 − cλ)δe → 0 in norm in W0(G,E), µ is the
weak*-limit of the net f λ + (1 − cλ)δe, as required. Since W1

0 (G,X) is a G-module and
C(X)-convex, so isM. The setM is not empty: for example, the point evaluation is
a mean on W0(G,X)∗. There is a continuous affine action m→ gm of G onM given
by gm(ϕ) = m(gϕ) for all g ∈ G and ϕ ∈ W0(G,X)∗. Theorem A in [3] shows that the
action of G on X is amenable if and only if this action of G on M has an invariant
mean. So, the sufficiency is clear from the hypothesis. �

If X is the Stone–Čech compactification βG of the group, then C(βG) can be
identified with `∞(G), and we obtain the following result.

Corollary 2.8. A finitely generated group G is exact if and only if every G-affine
action of G on a bounded weak*-compact nonempty `∞(G)-convex G-module K of E∗

has a fixed point for any `1-geometric G-`∞(G)-module E.
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