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THE FOCAL LOCUS OF A RIEMANNIAN 
4-SYMMETRIC SPACE 

BY 

J. ALFREDO JIMENEZ1 

ABSTRACT. A compact Riemannian 4-symmetric space M can be 
regarded as a fibre bundle over a Riemannian 2-symmetric space 
with totally geodesic fibres isometric to a 2-symmetric space. Here 
the result of R. Crittenden for conjugate and cut points in a 
2-symmetric space is extended to the focal points of the fibres of M. 
Also the restriction of the exponential map of M up to the first focal 
locus in the normal bundle of a fibre is proved to yield a covering 
map onto its image. It is shown that for the noncompact dual A/*, 
the fibres have no focal points and hence the exponential map of 
M* restricted to the normal bundle of a fibre is a covering map. The 
classification of the compact simply connected 4-symmetric spaces 
GIL with G classical simple provides a large class of examples of 
these fibrations. 

1. Statement of Results. Riemannian 4-symmetric spaces have two interest­
ing features, on one hand, they can be represented as coset spaces GIL of a well 
defined type, see Proposition 4 below. On the other hand, at least in the 
compact case, they fibre over ordinary symmetric spaces with totally geodesic 
fibres isometric to another ordinary symmetric space. See Theorem A. 

In this paper both features are combined to study the focal locus of the fibres. 
The motivation arises from the equivalent classical results for conjugate points 
for ordinary symmetric spaces. Therefore, in this first part we have included 
both the statements of the classical results and their extensions to 4-symmetric 
spaces. Section 2 contains some preliminary results and section 3 contains the 
proofs of the Theorems. Finally, in Section 4 we draw a table with a detailed 
description of the fibrations for all the compact simply connected 4-symmetric 
spaces GIL with G classical simple. 

THEOREM A. Let M = GIL be a 4-symmetric space with metric induced from 
the Killing form of G, where G is a compact simply connected semisimple Lie group 
and L is the fixed point set of an automorphism o of order four of G. Let K be the 
fixed point set of o , the square of a, and F = KIL Then 
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(1) Geodesies perpendicular to F minimize the distance to F up to the first focal 
point in M. 

(2) F is a connected complete totally geodesic submanifold of M which is also a 
2-symmetric space. 

(3) Endow G/K with the metric induced by the Killing form of G. Then the 
canonical projection ir.GIL —> G/K is a Riemannian submersion of M onto 
the 2-symmetric space B = G/K with fibre F = K/L. 

REMARKS. If K = L, then M is in fact a Hermitian 2-symmetric space, F 
reduces to a point and the statement is a particular case of Theorem 1 below. 
Thus the interesting case in the theorem is that for which dim F ^ 1. See 
Section 4 for examples. 

Part (3) can be regarded as a particular case of the fibrations of reflexion 
spaces as obtained by O. Loos in [10]. However, here this fibration is an 
immediate consequence of the homogeneous structure of M. 

The following is the classical motivating result. A proof of it can be found in 
Cheeger, J. and Ebin, D. G., [2, pp. 102-103]. 

THEOREM 1. Let B = G/K be a symmetric space with metric induced from the 
Killing form of Gy where G is a compact simply connected semisimple Lie group 
and K is the fixed point set of an involutive automorphism o of G. Then 

(1) Geodesies minimize up to the first conjugate point in M. 
(2) B is simply connected. 
(3) K is connected. 

Part (1) is originally due to R. Crittenden. Under the condition that G is 
simply connected, (2) and (3) are equivalent and go back to E. Cartan. (If G 
is not simply connected, then (3) is not necessarily true). (3) has been extended 
by R. Bott to all automorphisms of compact simply connected semisimple Lie 
groups G, see [4, p. 351]. 

In what follows v(F) will denote the normal bundle of F. Exp:^(F) —> M 
will be the usual exponential map of v(F) onto M. Let v(F)r be the set of 
v e v(F) such that there are no focal points of F along the geodesic segment 
t -> Exp(/v), 0 < / < 1. Let v(F\ be the boundary of v(F)r in v(F). Thus, 
p(F)s may be considered as the "first focal locus" of F in v(F). 

Here we also prove the following 

THEOREM B. Let M and F be as in Theorem A. Then Exp:v(F)r —> Exp(v(F)r) 
is a covering map. 

The idea of duality for ordinary symmetric spaces extends in a natural way to 
4-symmetric spaces, see section 2. Then Theorem A has the following extension 
to the noncompact case. 

THEOREM C. Let M = G/L be a Riemannian 4-symmetric space as in Theorem 
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A. Let M* = G*/L* be its dual with metric induced from the Killing form of G*, 
where G* is a noncompact simply connected semisimple Lie group and L* is the 
fixed point set of the induced automorphism o of order four of G*. Let K* be 
the fixed point set of (a*) , the square of a*, and set i7* = K*/L*. Then 

(1) i7* has no focal points in M*. 
(2) F* is a connected complete totally geodesic submanifold of M*. 
(3) Expiai7*) —» M* is a diffeomorphism. 
(4) Endow B* = G*/K* with the metric induced by the Killing form ofG*. Then 

the canonical projection IT:G*/L* —> G*/K* is a Riemannian submersion of M* 
onto B* with fibre F*. 

The antecedent of Theorem C is the following classical result for 2-symmetric 
spaces. See [4, Ch. VI]. 

THEOREM 2. Let B = G IK be as in Theorem 1. Its dual B* = G*/K* is a 
2-symmetric space with metric induced from the Killing form of G*, where G* is 
a noncompact simply connected semisimple Lie group and K* is the (connected) 
subgroup of fixed points of an involution o* of G*. Then, B* has non positive 
curvature, B* has no conjugate points and the exponential map is a diffeomorphism 
at each point of B*. 

It is interesting to point out that the proofs of these theorems do not make 
any use of the theory of root systems. Root systems can be used to locate the 
focal points of the fibres, see [6]. 

2. Preliminaries. A Riemannian 4-symmetric space is a connected C°°-
Riemannian manifold (M, g) together with a family of isometries (sx)x in M, 
with the following properties: 

(i) For each x in M, the isometry sx is of order four and has x as an isolated 
fixed point. sx is called the symmetry at x. 

(ii) (Regularity condition) For any two points x and j> in M, the symmetries sx 

and s satisfy 
SxOSy = Sp° Sx 

here/? is the point sx(y). 

REMARK, «-symmetric spaces were first introduced by Ledger, A., [8] (see 
also [3] ) without condition (ii), however, here we shall be exclusively concerned 
with the case when the spaces are regular, thus we have included the regularity 
condition as part of the definition. This condition is best explained in terms of 
Lie groups, see Proposition 4 below. 

One of the central results in the theory of «-symmetric spaces is that they are 
homogeneous manifolds. Let I(M, g) denote the group of isometries of the 
manifold M with Riemannian metric g. 
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THEOREM 3 [9]. If(M, g) is a Riemannian n-symmetric space, then I(M, g) acts 
transitively on M. 

The next proposition summarizes the basic features of the homogeneous 
structure of 4-symmetric spaces. For details see [6] or [7]. 

PROPOSITION 4. Let (M, g) be a Riemannian Asymmetric space. Let G be the 
identity component of the closed subgroup generated by the symmetries, (sx)x in M, 
in I(M, g). Then 

(i) G acts transitively on M, and for a fixed point 0 e M, M can be written as 
the homogeneous space GIL with L the isotropy group of G at 0. 

(ii) Conjugation with respect to s0, the symmetry at 0, induces an automorphism 
o of order four on G such that the fixed point set Ga satisfies 

(G\ c L c G°. 

Here (Ga)0 denotes the identity component of G°, (this is in fact the regularity 
condition in disguise). Also, if TT.G —> GIL is the canonical projection, then 

SQ O 7T = 77 O a . 

(iii) Let g be the Lie algebra of G, and let a also denote the automorphism 
induced by a on g. Then g splits as 

Q = I + b + ï) (vector space direct sum) 

where I is the Lie algebra of L, b is the eigenspace of o for the eigenvalue — 1 and {) 
is the eigenspace of o for the eigenvalue — 1. 

Furthermore, this decomposition is A d(L)~variant and GIL is a reductive 
homogeneous space. 

Finally we indicate how the ideal of duality for ordinary symmetric spaces 
extends to 4-symmetric spaces. 

Let g be a compact semisimple Lie algebra and let a be an automorphism of 
order four of g. g splits as in (iii) above into the vector space direct sum 

ô = I + b + ft 

furthermore, if 0 = a2, then (g, 9) is an orthogonal-symmetric Lie algebra of the 
compact type - see e.g. Helgason [4] - If g c denotes the complexification of g 
and both a and 0 are extended to (complex) automorphisms of gc, (denote these 
extensions by the same letters), then both leave invariant the real form g* of g 
defined as follows: 

g* = I + b + V-T ^ 

g* is also semisimple and in fact (g*, 0*) with 0* the restriction of 0 to g*, is the 
dual symmetric Lie algebra to (g, 0) in the sense of ordinary symmetric spaces. 
On the other hand if a* denotes the restriction of a to g*, then g* becomes 
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an orthogonal 4-symmetric Lie algebra. The pair (g*, a*) is then called the 
4-symmetric dual of (g, a). 

3. Proofs of the Theorems. Proof of Theorem A. Part (3) is immediate and 
we shall use it to obtain part (1) as a special case of the following 

THEOREM A'. Let TT:M —> B be a Riemannian submersion with B — GIK as in 
Theorem 1. Then geodesies perpendicular to a fibre F minimize the distance to the 

fibre up to the first focal point of F in M. 

PROOF OF THEOREM A'. Let y(/) = Exp tX, t > 0 be a perpendicular geodesic 
ray to a fibre F with ||X|| = 1. And let/? = Exp t0X be the first focal point in M 
along y. We need to show that d(p, F) = t0. 

Let 77 o y be the geodesic ray in B issuing from 0 = 77(F). O'Neill has shown 
[11, Theorem 4] that the order of y(/0) as a focal point of the fibre F along y is 
equal to the order of conjugacy of the end points of 77 O y, 0 ^ t ^ t0, along 
7T o y. Thus ir{p) is the first conjugate point of 0 along 77 o y. 

Theorem 1 implies that d(0, 77(77) ) = t0. If we now assume the d(p, F) < t0 

then a contradiction is obtained as follows: Let yj = Exp tXh 0 < t < 00 be a 
perpendicular geodesic ray to F with y ^ ) = p and d(p, F) = tx, tx < t0. As 
before 77 o y! is a geodesic ray in B issuing from 0 with 77 o Yi(fj) = TT(P), but 
then d(0, <n(p) ) = tx < t0 in contradiction with the previous observation that 
</(0, TT(P) ) = t0. 

Part (1) of Theorem A is now a direct consequence of this result and part (3). 
As for part (2), the fact that F is connected follows from the fact that K is 
connected. To see that it is complete and totally geodesic one only has to 
observe that it coincides with the connected component through 0 of the fixed 
pointset of s^ a result that follows from the relation 77 o o = s0 o 77. (See 
Proposition 4). Since SQ is an isometry, its fixed point set is a totally geodesic 
submanifold. 

PROOF OF THEOREM B. R. Hermann [5] has proved that if Exp v(F)s is 
contained in the boundary of Exp v(F)r Then Exp:v(F)r —» Exp v(F)r is a 
covering map. Here we show that this condition is satisfied. 

The idea is to show that if Xs G v(F\ and Xr G v(F)r, the relation Exp Xs = 
Exp Xr is impossible. 

Once again we make use of the submersion 77 of M onto B. The geodesic 
rays ys(t) = Exp tXs, yr(f) = Exp tXr9 t > 0, project down to the geodesic rays 
pr = 77 o ys and ps = 77 o yr issuing from 0 = 77(F). As in the proof of Theorem 
A' we have that ps(\) is conjugate to 0 along ps and that pr(l) is a regular point 
along pr However ps(\) = pr(l) and this is impossible for B = G/K, see 
[4, Lemma 8.1, p. 319]. 
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PROOF OF THEOREM C. Parts (2) and (4) are similarly proved to parts (2) and 
(3) of Theorem A. Part (1) is then an immediate consequence of (4), the fact that 
M* has no conjugate points and the result by O'Neill mentioned in the proof of 
Theorem A'. 

Then for (3) J. Bolton [1] has shown that for an immersion F* —» M* which 
has no focal points, Exp:v(F*) —> M* is a covering map. Since M* is simply 
connected the result follows. 

4. Examples. The following table gives a complete classification (up to 
isometry) of all the compact simply connected Riemannian 4-symmetric spaces 
M = GIL with G classical simple. At the same time, for each M, the base space 
B and the fibre F are described. Furthermore, the corresponding (noncompact) 
dual space M* is also given along with the base space B*. Here the fibre F* 
coincides with F. Throughout, the notational conventions are the same as in 
[4, pp. 444-455]. For details the reader is referred to [6] where the classification 
for the exceptional simple Lie groups is also obtained. 
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