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An adjoint method to calculate the gradient of island width in stellarators is presented and
applied to a set of magnetic field configurations. The underlying method for calculation
of the island width is that of Cary & Hanson (Phys. Fluids B, vol. 3, issue 4, 1991,
pp. 1006–1014) (with a minor modification), and requires that the residue of the island
centre be small. Therefore, the gradient of the residue is calculated in addition. Both
the island width and the gradient calculations are verified using an analytical magnetic
field configuration introduced by Reiman & Greenside (Comput. Phys. Commun., vol. 43,
issue 1, 1986, pp. 157–167). The method is also applied to the calculation of the shape
gradient of the width of a magnetic island in a National Compact Stellarator Experiment
(NCSX) vacuum configuration with respect to positions on a coil. A gradient-based
optimization is applied to a magnetic field configuration studied by Hanson & Cary
(Phys. Fluids, vol. 27, issue 4, 1984, pp. 767–769) to minimize stochasticity by adding
perturbations to a pair of helical coils. Although only vacuum magnetic fields and an
analytical magnetic field model are considered in this work, the adjoint calculation of
the island width gradient could also be applied to a magnetohydrodynamic (MHD)
equilibrium if the derivative of the magnetic field, with respect to the equilibrium
parameters, is known. Using the island width gradient calculation presented here, more
general gradient-based optimization methods can be applied to design stellarators with
small magnetic islands. Moreover, the sensitivity of the island size may itself be optimized
to ensure that coil tolerances, with respect to island size, are kept as high as possible.

Key words: plasma devices, fusion plasma

1. Introduction

Stellarators (Spitzer 1958) are promising candidates for a nuclear fusion device whose
main advantage is to operate in an intrinsically steady state (Helander 2014). To avoid the
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need of a toroidal plasma current to produce a poloidal magnetic field, stellarators lack
the continuous toroidal symmetry of the magnetic field vector, which is a characteristic
of the tokamak. In contrast to tokamaks, however, stellarators have magnetic fields that
tend to be non-integrable and develop magnetic islands, which break the otherwise nested
toroidal magnetic surfaces (Rosenbluth et al. 1966; Cary & Hanson 1986). This decreases
the energy and particle confinement in the device. Thus, minimizing the number and size
of magnetic islands is one of the most basic properties of a good stellarator configuration
(Yamazaki et al. 1993).

Nowadays, stellarator configurations can be produced with an extraordinarily high
degree of accuracy (Pedersen et al. 2016). Unfortunately, owing to the inherent tendency
to possess islands, the configurations can be sensitive to the positions of the coils used to
produce the magnetic field. An instructive example of the importance of island width
sensitivity is the National Compact Stellarator Experiment (NCSX). In the NCSX, a
resonant flux surface was found to be particularly sensitive to the positioning of the coils,
which contributed to the tight tolerances on the coils. Construction of the device became
economically unsustainable for several reasons, which included coil tolerances, and lead to
the eventual cancellation of the experiment (Strykowsky et al. 2009; Neilson et al. 2010).
From this lesson, it is clear that a method for efficient evaluation of the sensitivity of island
size on coil positioning is of fundamental importance.

Magnetic islands tend to occur at rational flux surfaces, and especially at low-order
rational surfaces, owing to the fact that perturbations to the intended magnetic field
configuration, called error fields, can resonate with the rotational transform of the
magnetic field (Helander 2014). The effect of error fields on stellarator configurations has
been a subject of study since the measurement of magnetic islands in Wendelstein 7-AS
by Jaenicke et al. (1993) highlighted that the assumption of flux surfaces in a stellarator
experiment is incorrect. Error fields have been studied in the Columbia Non-neutral Torus
stellarator configuration (Hammond et al. 2016), and in the island divertor in Wendelstein
7-X (Lazerson et al. 2018). A recent paper by Zhu et al. (2019) addresses the issue of the
identification and removal of the error fields responsible for island size using a Hessian
matrix approach and making the simplifying assumptions that first derivatives are zero
and that variations in the magnetic coordinates can be ignored.

There are several methods to calculate the width of a magnetic island. The most basic
approach relies on making a detailed scatter plot (Poincaré plot) of the position at which
a magnetic field line intersects a given poloidal plane, and then measuring the island size
from the plot. This, however, is extremely time consuming and noisy, and is therefore
especially inadequate if one wants to calculate the island width of a very large number
of configurations in a short time, let alone if one wants to obtain gradient information.
Variations of this method employ automated algorithms to detect islands and calculate
the island width from integration of several magnetic field lines in an island (Pedersen
et al. 2006), but this is still not a viable approach to obtain accurate gradient information.
Another approach to calculate island size was developed by Lee, Harris & Lee (1990) and
exploits a Fourier decomposition of the magnetic field vector. In this work, we consider a
measure of island width derived by Cary & Hanson (1991) that allows for an efficient
computation of the width of a magnetic island and also the direct calculation of its
gradient. This approach exploits the small island approximation to calculate a measure
of width that depends only on the magnetic field line corresponding to the island centre
and on the equations for linearized displacements from the island centre.

Adjoint methods have recently been applied in stellarators to obtain derivatives
of neoclassical fluxes (Paul et al. 2019), departure from quasisymmetry and several
other quantities (Antonsen, Paul & Landreman 2019; Paul et al. 2020). This work has
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highlighted the potential of adjoint methods in enabling efficient derivative computations
with respect to a large number of parameters describing the coils or the outermost
magnetic surface. In this work, we present an adjoint method to calculate the gradient
of the Cary–Hanson measure of island width with respect to any parameter describing the
magnetic field. The calculations of residues, island widths and gradients of these quantities
are applied to three example magnetic field configurations:

(i) an analytical configuration (not curl-free) studied in Reiman & Greenside (1986),
which we refer to as the Reiman model;

(ii) the magnetic field in NCSX, specified by the position of a set of discrete points on a
set of filamentary coils and by the current through each coil;

(iii) a magnetic field produced by a pair of helical coils that was optimized in Hanson &
Cary (1984) and Cary & Hanson (1986).

A potential application of the gradient calculations is the fast calculation of coil
tolerances with respect to island size. Another important application of the gradient
calculations developed here is the optimization of stellarator surfaces. To minimize
stochasticity and island size in stellarator vacuum magnetic fields, methods employed
so far often minimize the magnitude of a quantity known as the residue (Greene 1968)
of periodic field lines (Hanson & Cary 1984; Cary & Hanson 1986). This quantity is
calculated by linearizing the equations for the magnetic field line about the island centre
and calculating a matrix known as the full-orbit tangent map. This is a linear map
relating the displacement of a magnetic field line from a nearby periodic field line, after
a full magnetic field line period, to the initial displacement. In general, this map is a
two-dimensional matrix with unit determinant, and therefore has three degrees of freedom.
The residue is related to the trace of this map and provides a criterion for determining
whether the closed field line is an O point (island centre) or an X point. Furthermore, if
the residue is small and positive, the size of the island chain is small compared with the
length scale of the magnetic configuration. Therefore, the residue constitutes an extremely
useful degree of freedom of the map. Minimizing the absolute value of the residue of a
periodic field line amounts to reducing the stochasticity in the magnetic field configuration
and eventually also reducing the volume occupied by the corresponding island chain in
the magnetic field configuration. The gradient of the residue is used to find an optimal
magnetic field configuration with small islands for a helical coil configuration previously
optimized in Cary & Hanson (1986).

An aspect of the problem that is not considered in this work is the application
to magnetohydrodynamic (MHD) equilibrium configurations (Hudson, Monticello &
Reiman 2001; Hegna 2012). The problem of calculating the gradient of island width (or
residue) with respect to magnetic field parameters amounts to calculating the gradient of
the magnetic field with respect to the parameters of the equilibrium. This is not addressed
here and is left to future work.

This paper is structured as follows. In § 2, we review the derivation of a method
developed by Cary & Hanson (1991) to compute the small island width by integration
along the island centre. Then, in § 3, we derive equations for the variation of island
width and residue as a function of the variation of the magnetic field configuration, using
an adjoint method. In § 4, we present some numerical results obtained by considering
three different magnetic field configurations. We also present results of a gradient-based
optimization of residues in the helical coil configuration. Finally, in § 5, the main results
of this paper are summarized and discussed.
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2. Calculation of island size from periodic magnetic field trajectory

In this section, we review the calculation method of island widths introduced in Cary
& Hanson (1991). In § 2.1, we assume the existence of toroidal flux surfaces and, upon
considering an island-producing perturbation, we derive the equations for magnetic field
lines in an island chain in the magnetic coordinates of the unperturbed system. The
linearized motion near the island centre (O point) is analysed in § 2.2 and the equation
for the displacement from the island centre is expressed in a frame rotating with the island
centre poloidally around the magnetic axis. The equations describing magnetic field line
trajectories in cylindrical coordinates are obtained in § 2.3. Using the results of §§ 2.2 and
2.3, in § 2.4, an expression for the island width is obtained.

2.1. Magnetic coordinates
It is often convenient to use magnetic coordinates (Helander 2014) when describing the
position along a magnetic field in systems with nested flux surfaces, such as the ideal
magnetic configuration in fusion devices. Flux surfaces are closed toroidal surfaces where
the enclosed toroidal magnetic flux 2πψ through a surface of constant toroidal angle ϕ
and the enclosed poloidal magnetic flux 2πχ through a surface of constant poloidal angle
θ are constant. The choice of magnetic coordinates is not unique: here we choose ϕ to be
the geometric toroidal angle, which also constrains the poloidal angle θ (not generally a
geometric angle). The magnetic field is given by

B = ∇ψ × ∇θ + ∇ϕ × ∇χ(ψ, θ, ϕ). (2.1)

With nested flux surfaces, the poloidal flux χ is always a function of the toroidal flux ψ
only, because both these quantities are constant on each flux surface. Then, ∇χ and ∇ψ
are parallel to one another and the magnetic field line trajectory never crosses the flux
surfaces because B · ∇χ = B · ∇ψ = 0.

To study the small departure from the ideal configuration with nested flux surfaces, we
use the magnetic coordinates ψ , θ and ϕ, which correspond to the toroidal flux, poloidal
angle and geometric toroidal angle of the unperturbed system. Equation (2.1) still describes
the magnetic field in such a system, but the function χ comprises a large piece, which is
equal to the poloidal flux of the unperturbed nested flux surfaces, χ0(ψ), and a small
perturbation that breaks the flux surfaces, χ1(ψ, θ, ϕ),

χ(ψ, θ, ϕ) = χ0(ψ)+ χ1(ψ, θ, ϕ). (2.2)

As shown in Appendix A, the magnetic field line trajectory is a Hamiltonian system
where the canonical coordinate q is θ , the canonical momentum p is ψ , the Hamiltonian
H is χ and the time t is ϕ (Cary & Littlejohn 1983). Hamilton’s equations are therefore
given by dψ/dϕ = −∂χ/∂θ and dθ/dϕ = ∂χ/∂ψ . Because χ1 is small, the magnetic
field line trajectory approximately lies in the unperturbed flux surface

dψ
dϕ

� 0, (2.3)

dθ
dϕ

� χ ′
0(ψ) ≡ ι0(ψ). (2.4)

Here, we have defined the rotational transform ι0(ψ), which corresponds to the average
number of poloidal turns of a magnetic field line around the magnetic axis divided by the
average number of toroidal turns. The magnetic field trajectory in magnetic coordinates is
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therefore approximately given by ψ � ψ0 (where ψ0 is a constant) and θ � ι0(ψ0)ϕ + θi,
where θi is a constant.

To calculate the effect of the perturbation to the function χ on the magnetic field line
trajectory, we re-express χ1 as a sum of its Fourier components,

χ1(ψ, θ, ϕ) =
∑
m,n

χm,n(ψ) exp (imθ − inϕ) , (2.5)

where we have used that χ1 is periodic in θ and ϕ. Here, n is the toroidal mode number
and m is the poloidal mode number of the perturbation. As shown in Appendix B, for
any unperturbed flux surface χ0(ψ), the effect of χ1 is dominated by the pair of Fourier
modes that resonate with the rotational transform of the unperturbed flux surface, n/m =
ι0(ψ) (Cary & Littlejohn 1983; Helander 2014). Thus, the effect of the perturbation is
largest at rational flux surfaces, where the rotational transform is a rational number. In the
following, we assume that resonances at different rational flux surfaces do not overlap and
interact with each other, and that higher-order harmonics of the resonances have a smaller
amplitude and can be neglected. Consider the rational flux surface where

ι0(ψ0) = N
M
. (2.6)

Here, N is the toroidal mode number and M is the poloidal mode number of the
island-producing perturbation, which is readily re-expressed as

χ1(ψ, θ, ϕ) = ε(ψ) cos (Mζ(ψ)+ Mθ − Nϕ) . (2.7)

An amplitude, ε(ψ) > 0, and a phase factor, ζ(ψ), of the resonant perturbation have been
introduced to replace the pair of complex amplitudes χM,N and χ−M,−N , which correspond
to the terms in χ1 that resonate with ι0(ψ0). The subscripts M and N on ε and ζ have been
omitted for brevity. Introducing a new variable Θ ,

Θ = θ − Nϕ
M
, (2.8)

χ1 is re-expressed as

χ1(ψ,Θ) = ε(ψ) cos (Mζ(ψ)+ MΘ) . (2.9)

With this change of variable, the dependence on ϕ of the phase of χ1 has dropped.
However, the function χ is no longer a Hamiltonian in the variables (ψ,Θ). As shown
in Appendix A.1, the Hamiltonian in the new variables is

K(ψ,Θ) = χ(ψ,Θ)− ι0(ψ0)ψ, (2.10)

and Hamilton’s equations are dΘ/dϕ = ∂K/∂ψ and dψ/dϕ = −∂K/∂Θ . The
Hamiltonian K is independent of ϕ and is therefore conserved following the perturbed
magnetic field lines.
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In the following, K(ψ,Θ) is expanded close to the rational flux surface. The
perturbation in ψ near the rational flux surface is

ψ1 = ψ − ψ0. (2.11)

The function χ is expanded to

χ(ψ1,Θ) = χ0(ψ0)+ χ ′
0(ψ0)ψ1 + 1

2χ
′′
0 (ψ0)ψ

2
1 + ε(ψ0) cos (Mζ(ψ0)+ MΘ)

+ ε ′(ψ0)ψ1 cos (Mζ(ψ0)+ MΘ)− Mε(ψ0)ζ
′(ψ0)ψ1 sin (Mζ(ψ0)+ MΘ)

+ O(εψ̂2
1 , ψψ̂

2
1 ), (2.12)

where the normalized ψ perturbation is ψ̂1 = ψ1ι
′
0(ψ0) (equivalent to the ψ perturbation

divided by a measure of typical variations of ψ and χ across the toroidal configuration).
Using (2.12), (2.10) and ι0 = χ ′

0(ψ0), the Hamiltonian K becomes

K(ψ1,Θ) = χ0(ψ0)− ι0(ψ0)ψ0 + 1
2 ι

′
0(ψ0)ψ

2
1 + ε(ψ0) cos (Mζ(ψ0)+ MΘ)

+ ε ′(ψ0)ψ1 cos (Mζ(ψ0)+ MΘ)− Mε(ψ0)ζ
′(ψ0)ψ1 sin (Mζ(ψ0)+ MΘ)

+ O(εψ̂2
1 , ψψ̂

2
1 ). (2.13)

Hamilton’s equations for the magnetic field line sufficiently close to the rational flux
surface are thus

dΘ
dϕ

= ∂K
∂ψ1

= ι′0(ψ0)ψ1 + ε ′(ψ0) cos (Mζ(ψ0)+ MΘ)

− ε(ψ0)Mζ ′(ψ0) sin (Mζ(ψ0)+ MΘ)+ O(ε̂ψ̂1, ψ1ψ̂1), (2.14)

and
dψ1

dϕ
= − ∂K

∂Θ
= ε(ψ0)M sin (Mζ(ψ0)+ MΘ)+ O(εψ̂1), (2.15)

where ε̂ = ι′0(ψ0)ε(ψ0).
The fixed points of the magnetic field line flow in the (ψ1,Θ) coordinates, which

represent closed magnetic field lines, occur at dΘ/dϕ = dψ1/dϕ = 0. This corresponds
to (ψ1,Θ) = (ψ̄1, Θ̄), such that sin(Mζ(ψ0)+ MΘ̄) = 0 and ψ̄1 = ±ε ′(ψ0)/ι

′
0(ψ0) =

O(ε), where we have used cos(Mζ(ψ0)+ MΘ̄) = ∓1. Introducing magnetic coordinates
relative to a closed magnetic field line, δψ = ψ − ψ0 − ψ̄1 and δΘ = Θ − Θ̄ , (2.14) and
(2.15) linearized near the closed magnetic field give

d
dϕ

(
δψ

δΘ

)
=
(

O(ε̂) ∓ε(ψ0)M2 + O(εψ̂1)

ι′0(ψ0)+ O(ι′0(ψ0)ε̂) O(ε̂)

)(
δψ

δΘ

)
. (2.16)

As will be shown explicitly by expanding the Hamiltonian near the closed field line, the
error terms in (2.16), which arise from the diagonal elements of the matrix, are negligible
because the only self-consistent ordering relating the characteristic sizes of δψ and δΘ
is |ι′0|δψ ∼ M

√
ε̂δΘ . Trajectories neighbouring the island centre (O point) are described

when the signs of the off-diagonal elements in the matrix in (2.16) are opposite, because
in this case, the eigenvalues are purely imaginary and the trajectories are periodic. The
other sign choice corresponds to the trajectories passing close to the crossing point of the

https://doi.org/10.1017/S0022377821000428 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821000428


Adjoint method for sensitivity of magnetic island size 7

island separatrices (X point). Thus, we can replace ± everywhere with ±sgn(ι′0(ψ0)), with
the top and bottom signs understood to correspond to O and X points, respectively. The
motion sufficiently close to the centre is thus always described by

d
dϕ

(
δψ

δΘ

)
=
(

O(ε̂) −sgn
(
ι′0(ψ0)

)
ε(ψ0)M2(1 + O(ε̂))

ι′0(ψ0)(1 + O(ε̂)) O(ε̂)

)(
δψ

δΘ

)
, (2.17)

where we have set cos(Mζ(ψ0)+ MΘ̄) = −sgn(ι′0(ψ0)) at an O point. Solving this linear
system gives (

δψ(ϕ)

δΘ(ϕ)

)
= T

(
δψ(0)
δΘ(0)

)
, (2.18)

where the tangent map T is given by

T �
(

cos(ωϕ) − (
ω/ι′0(ψ0)

)
sin(ωϕ)(

ι′0(ψ0)/ω
)

sin(ωϕ) cos(ωϕ)

)
, (2.19)

and the frequency at which neighbouring points rotate around the O point is

ω � M
√

|ι′0(ψ0)|ε(ψ0). (2.20)

Note that, from (2.17), each element of the tangent map in (2.19) has an error of O(ε̂) and
the frequency ω in (2.20) has an error of O(ε̂

√|ι′0(ψ0)|ε(ψ0)) (Cary & Hanson 1991).
To relate the linearized motion along a field line neighbouring the island centre,

described by (2.18)–(2.20), to the island width, the motion along the island separatrix
is studied. The Hamiltonian on the separatrix is constant and equal to its value at the X
point,

K(ψ̄, Θ̄) = χ0(ψ)− ι0(ψ)ψ0 + sgn
(
ι′0(ψ0)

)
ε(ψ0)+ O(ε̂ε), (2.21)

where we inserted ψ̄ = −ε ′(ψ0)/|ι′0(ψ0)| (X point), sin(Mζ(ψ0)+ MΘ̄) = 0 (fixed point)
and cos(Mζ(ψ0)+ MΘ̄) = sgn(ι′0(ψ0)) (X point) in (2.13). From (2.13) and ε(ψ0) > 0,
the value of ψ2

1 is largest when cos(Mζ(ψ0)+ MΘ) = −sgn(ι′0(ψ0)) on the separatrix,
and so by evaluating K(ψ,Θ) at this point and equating it to (2.21), we obtain

1
2 |ι′0(ψ0)|ψ2

1 = 2ε(ψ0)+ O(εψ̂1, ε̂ε). (2.22)

Hence, the values of ψ1 at the separatrix at the point where the island is largest are ψ1 =
±2

√
ε(ψ0)/|ι′0(ψ0)| + O(ε) ∼ √

ε̂/ι′0(ψ0) and the full island width, denoted Υ , is

Υ = 4

√
ε(ψ0)∣∣ι′0(ψ0)

∣∣ . (2.23)

Note that Υ is approximately equal to the full island width in the magnetic coordinate ψ
with an absolute error of O(ε), equivalent to a relative error of O(ε̂1/2). Note also that
|ψ̄ | � Υ and so the island centre is equidistant from the two branches of the separatrix to
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the lowest order in ε̂. From (2.20) and (2.23), the matrix T in (2.19) can be rewritten with
Υ in place of ι′0 to obtain

T �
(

cos(ωϕ) −sgn
(
ι′0(ψ0)

)
(MΥ/4) sin(ωϕ)

sgn
(
ι′0(ψ0)

)
(4/MΥ ) sin(ωϕ) cos(ωϕ)

)
. (2.24)

When linearizing the equations for the magnetic field line near the island centre, the
associated Hamiltonian is (2.10) expanded near the island centre up to quadratic terms in
δψ and δΘ . Retaining only the lowest-order terms in ε gives

K = const + 1
2 ι

′
0(ψ0)δψ

2 + 1
2 sgn

(
ι′0(ψ0)

)
M2εδΘ2

+ O(ε̂δψ2ι′0(ψ0),M2ε̂δψδΘ,M2ε̂εδΘ,M2ε̂εδΘ2), (2.25)

where we have deduced that the only self-consistent ordering is ι′0(ψ0)δψ ∼ M
√
ε̂δΘ .

Note that (2.25) can be made to be exactly quadratic: the linear term in the error in (2.25)
could be cancelled by calculating the first-order correction in ε̂ of the value of Θ at the
island centre and redefining δΘ relative to this more accurate coordinate. The neglected
O(M2ε̂δψδΘ) cross-term in (2.25) gives rise to the diagonal terms in the matrix in (2.16),
which have a negligible contribution once the ordering ι′0(ψ0)δψ ∼ M

√
ε̂δΘ is taken into

account. The magnitude of the quadratic perturbation to the Hamiltonian,

|δK| = δu · K · δu = (
δψ, δΘ

) ( 1
2 |ι′0(ψ0)| + O(ε̂ι′0(ψ0)) O(M2ε̂)

O(M2ε̂) 1
2 M2ε + O(M2ε̂ε)

)(
δψ

δΘ

)
,

(2.26)

is a scalar invariant, as it is conserved following the field lines neighbouring the O point.
To the lowest order in ε̂, K is diagonal and thus the trajectories infinitesimally close to the
island centre in magnetic coordinates are ellipses that are approximately aligned with the
magnetic coordinate directions and elongated in the Θ direction. The angle between the
characteristic directions of the ellipses and the magnetic coordinate axes is small, O(ε̂).
Note that if we diagonalized the matrix K exactly, we would obtain additional error terms
of the same order in the diagonal terms.

2.2. Relating magnetic coordinates to lengths at the island centre
The relationship between the displacement from the island centre, measured as a length in
the poloidal cross-section at a given ϕ, and the same displacement, measured in magnetic
coordinates, must be linear if the displacement is infinitesimal (as the relationship between
the two sets of coordinates must be locally described by a Taylor expansion). Thus,
we define the local linear change of variables δu = (δψ, δΘ) → δξ = (δξ⊥, δξ‖), where
δξ⊥(ϕ) and δξ‖(ϕ) are displacements from the island centre in two orthogonal directions
(yet unspecified) in the poloidal plane with toroidal angle ϕ. The two sets of coordinates
are related by δu(ϕ) = Q(ϕ) · δξ(ϕ) for any ϕ, where

Q(ϕ) =

⎛
⎜⎜⎜⎝
∂ψ

∂ξ⊥
(ϕ)

∂ψ

∂ξ‖
(ϕ)

∂Θ

∂ξ⊥
(ϕ)

∂Θ

∂ξ‖
(ϕ)

⎞
⎟⎟⎟⎠ . (2.27)

For each value of ϕ, the scalar invariant can be cast in the new coordinates, |δK| =
δξ(ϕ) · Qᵀ(ϕ) · K · Q(ϕ) · δξ(ϕ), where Qᵀ denotes the transpose of Q and the local
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laboratory invariant matrix Qᵀ(ϕ) · K · Q(ϕ) is symmetric because K is symmetric. Thus,
the eigenvectors of the local laboratory invariant matrix are orthogonal and the points
of intersection of a trajectory, infinitesimally close to the island centre, with any given
poloidal plane ϕ lie on an ellipse.

The dependence of the scalar invariant on ϕ expresses the fact that, when viewing
the motion continuously in different ϕ-planes, the poloidal displacement of a field line
infinitesimally close to the island centre lies on a continuously varying ellipse. This is
a consequence of the fact that in a stellarator, the poloidal cross-section of flux surfaces
taken at different toroidal angles is generally different, and thus the shape of the island
continuously changes and rotates poloidally as the island centre is followed around.
Nonetheless, a set of equivalent flux surface sections always exists for values of ϕ that
differ by an integer multiple of a field period, 2π/n0, where n0 � 1. The flux surface
sections are, in general, only equivalent to the lowest order in the island-producing
perturbation, ε, because an island chain may break the field periodicity (n0 = 1 is a
special case where the field periodicity is never broken). The closed field line intersects
the set of approximately equivalent poloidal planes a finite number of times, L, before
returning to the original position. Therefore, when snapshots of the position along a
field line neighbouring the island centre are taken at ϕ = ϕk + 2πQL/n0 for any positive
integer Q and initial toroidal angle ϕk, the motion appears to be around the same ellipse.
In this work, we choose one set of an infinite number of possible sets of symmetry
planes by specifying the toroidal plane corresponding to ϕ = 0 and considering the set
of symmetry planes given by ϕk = 2πk/n0, where k is a positive integer. For stellarators
with stellarator symmetry, the magnetic configuration in the plane ϕ = 0 is chosen to be
up–down symmetric. Henceforth, any quantity that is a function of ϕk will be denoted with
a subscript k, e.g. Qk = Q(ϕk).

As the matrix K is (approximately) diagonal, the diagonalization of the invariant matrix
Qᵀ

k · K · Qk is achieved (approximately) by choosing the coordinates δξ‖,k and δξ⊥,k such
that ∂ψ/∂ξ‖,k = ∂Θ/∂ξ⊥,k = 0 for all k and thus

δψk = ∂ψ

∂ξ⊥,k
δξ⊥,k, (2.28)

δΘk = ∂Θ

∂ξ‖,k
δξ‖,k. (2.29)

With this choice, the coordinates δξ⊥,k and δξ‖,k quantify the displacement (as a length)
from the island centre in the poloidal plane ϕ = 2πk/n0, measured in the directions
associated with δψ (across the flux surface) and δΘ (along the flux surface), respectively.
In the new coordinates, the displacement from the fixed point satisfies the equation

δξ k+q(ϕ) = Sq
R,k · δξ k, (2.30)

where the tangent map in the rotating frame, Sq
R,k = Q−1

k+q · T k+q · Qk, is given by

Sq
R,k �

⎛
⎜⎜⎜⎝

∂ξ⊥,k+q

∂ψ

∂ψ

∂ξ⊥,k
cos

(
2πωq

n0

)
−∂ξ⊥,k+q

∂ψ

∂Θ

∂ξ‖,k

MΥ
4

sin
(

2πωq
n0

)
∂ξ‖,k+q

∂Θ

∂ψ

∂ξ⊥,k

4
MΥ

sin
(

2πωq
n0

)
∂ξ‖,k+q

∂Θ

∂Θ

∂ξ‖,k
cos

(
2πωq

n0

)
⎞
⎟⎟⎟⎠ . (2.31)

Note that

w̄⊥,k = Υ
∂ξ⊥,k
∂ψ

(2.32)
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10 A. Geraldini, M. Landreman and E. Paul

is approximately equal to the island width measured at ϕ = 2πk/n0, with an absolute error
of O(Υ 2∂2ξ⊥,k/∂ψ2), which gives rise to a relative error of O(ε̂1/2). This relative error is
to be added to the equally large error in approximating the island width in the coordinate
ψ as Υ in (2.23). Using (2.32), the off-diagonal elements of Sq

R,k explicitly include the
island width. Upon imposing δξ‖,k = 0 as an initial condition, we obtain the equation

δξ‖,k+q

δξ⊥,k
� ∂ξ‖,k+q

∂Θ

4
Mw̄⊥,k

sin
(

2πωq
n0

)
, (2.33)

where only the bottom-left element of (2.31) appears.
Because the derivative in ∂ξ‖,k+q/∂Θ is taken at fixed ϕ, the definition of Θ in (2.8)

implies that
∂ξ‖,k+q

∂θ
= ∂ξ‖,k+q

∂Θ
. (2.34)

Integrating in θ at fixed ϕ = ϕk+q gives the circumference C̄ around the unperturbed flux
surface,

C̄ =
∫ π

−π

∂ξ‖,k+q

∂θ
dθ. (2.35)

Because each plane under consideration, given by ϕ = 2π(k + q)/n0, has the same
unperturbed flux surface independent of the value of k + q, the circumference is
independent of the index and thus C̄ = C̄k+q. Consider the definition of Θ in (2.8).
Following the island centre, Θk+q = Θk = θk − Nϕk/M is conserved and therefore the
poloidal angle changes according to the equation θk+q − θk = 2πNq/(n0M). Because we
are only considering the set of equivalent planes separated by intervals of 2π/n0 in ϕ, the
poloidal angles θk+q correspond to the same flux surface poloidal cross-section. The field
line first returns to the same poloidal location in an equivalent plane when NL/(n0M) = n̄,
where L and n̄ are the smallest possible integers that satisfy this relation. Thus, the number
of distinct islands crossed by a unique island centre magnetic field line in an equivalent
poloidal plane is

L = n̄n0

N
M. (2.36)

The interval in poloidal angle θ , when defined from −π to π, between the fixed points in
a given plane is 2π/L, as there are L equally-spaced fixed points. Thus, if L is sufficiently
large, L � 1, the integral in (2.35) can be replaced by a sum, and the circumference can
be approximated by

C̄ � 2π

L

q0+L−1∑
q=q0

∂ξ‖,k+q

∂θ
�

q0+L−1∑
q=q0

π(δξ‖,k+q/δξ⊥,k)Mw̄⊥,k
2L sin (2πωq/n0 )

. (2.37)

The error made in approximating the integral over the periodic function θ as a sum with
equally-spaced integration points is exponentially small in 1/L, O(exp(−L)).

The integer q0 can be chosen arbitrarily, although a convenient choice is made as
follows. If sin(2πω(k + q)/n0) = 0, the denominator in the summand with index q is zero.
However, no matter how precise, a numerical calculation of δξ‖,k+q will not give exactly
zero, owing to the fact that the elliptical motion described using the tangent map (2.24)
has small errors both in the aspect ratio and in the axes directions (the higher-order terms
in ε̂ that were neglected). To avoid the resulting divergence of the error, the first index
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of the summand is chosen such that the the sum is centred around sin(2πωq/n0) = 1,
2πω(q0 + L/2)/n0 = π/2, which gives

q0 = int
(

−L
2

+ n0

4ω

)
, (2.38)

where int denotes a function that rounds to the nearest integer. This amounts to following
the linearized trajectory for a large number, q0/L, of closed magnetic field line periods.
With this choice, the linearized trajectory is followed until it has rotated by as close as
possible to π/2 in magnetic coordinates for values of q in the middle of the summation
interval. Moreover, we assume that the frequency of rotation, ω in (2.20), is sufficiently
small that the change in the quantity 2πω(k + q)/n0 in the summation interval q0 � q <
q0 + L is also small, 2πωL/n0 � 1, which gives sin(2πωq/n0) � 1 for all values of q in
the sum and thus

C � Mπ

2L

q0+L−1∑
q=q0

δξ‖,k+q

δξ⊥,k
w̄⊥,k. (2.39)

In Cary & Hanson (1991), this assumption is not made and the sine function in (2.37) is
kept. Using (2.20) and the pessimistic ordering in which L/n0 is largest, L ∼ n0M, this
assumption requires the modestly stricter ordering 2πM2

√
ι′0ε ∼ 2πM2

√
ε̂ � 1.1

2.3. Cylindrical coordinates
Because stellarators are toroidal devices, we choose the right-handed cylindrical
coordinates (R, ϕ,Z) as a convenient fixed coordinate system. Here, ϕ is the toroidal
coordinate, R is the smallest distance of a point from the axis through the centre of the
torus and Z is the displacement of a point from the mid-plane of the device.

In the following, we study the equations describing the magnetic field line poloidal
position, X = (R,Z), as a function of toroidal angle ϕ. Considering the magnetic field
line as a streamline of the flow field B, the streamline trajectory satisfies

Rdϕ
Bϕ

= dR
BR

= dZ
BZ
, (2.40)

and thus
dX
dϕ

= V (X , ϕ) ≡ RBp(X , ϕ)
Bϕ(X , ϕ)

, (2.41)

where we have denoted the component of the magnetic field vector in the poloidal plane
as Bp = (BR,BZ). To obtain the position of a magnetic field line at ϕ = ϕk+q, we integrate
(2.41) in ϕ from an initial poloidal position X k = X (ϕk),

X k+q = Fq
k (X k) ≡ X k +

∫ ϕk+q

ϕk

V (X (ϕ), ϕ) dϕ. (2.42)

A closed magnetic field line X̄ , such as the island centre, satisfies

X̄ k+L = FL
k (X k) = X̄ k. (2.43)

1Cary & Hanson (1991) point out that – according to Greene (1979) – the rotation angle of points near the stable
fixed point of a standard map (that resembles the full-orbit map Mk considered here) has a threshold of approximately
60◦ above which chaos ensues. Therefore, if 2πωL/n0 is not small, it is likely that the concept of island width has broken
down. The footnote in page 299 of Rosenbluth et al. (1966) argues that ε must decrease with M more rapidly than M−3

to have non-overlapping islands, further justifying the stricter ordering.
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12 A. Geraldini, M. Landreman and E. Paul

For an initial condition that is infinitesimally close to the island centre, X (ϕk) = X̄ k +
δX (ϕk), the displacement from the closed field line as a function of toroidal angle satisfies
the linearized equation

dδX
dϕ

= [∇X V
(
X̄ , ϕ

)]ᵀ · δX , (2.44)

where the Jacobian of the field-line-following equation is

∇X V = êRBp(X̄ , ϕ)

Bϕ(X̄ , ϕ)
+ R∇X Bp(X̄ , ϕ)

Bϕ(X̄ , ϕ)
− R(∇X Bϕ(X̄ , ϕ))Bp(X̄ , ϕ)

Bϕ(X̄ , ϕ)2
. (2.45)

We have denoted [∇X V ]ᵀ · δX̄ = δR̄∂V/∂R + δZ̄∂V/∂Z, and êR = ∇X R. It is useful to
introduce a 2 × 2 matrix Sk(ϕ) that solves a similar equation to (2.44),

dSk

dϕ
= [∇X V

(
X̄ , ϕ

)]ᵀ · Sk(ϕ), (2.46)

with initial condition Sk(ϕk) = I. Then, any solution to (2.44) can be found from δX (ϕ) =
Sk(ϕ)δX (ϕk), as can be verified by substituting this expression into (2.44). Denoting
Sk(ϕk+q) = Sq

k gives the equation

δX k+q = Sq
kδX k, (2.47)

so we can identify Sq
k with Sq

R,k in (2.30)–(2.31). The tangent map Sq
k is obtained from the

integral

Sq
k ≡ I +

∫ ϕk+q

ϕk

[∇X V
(
X̄ , ϕ

)]ᵀ · Sk(ϕ) dϕ. (2.48)

To carry out this integration, the function X̄ (ϕ) must be calculated separately from (2.41).
As the tangent map is linear in δX , it satisfies the property

Sq
k ≡ S1

k+q−1S1
k+q−2 . . .S

1
k+1S1

k . (2.49)

The full-orbit tangent map is denoted as

Mk = SL
k . (2.50)

An important property of the full-orbit tangent map is that it has exactly unit determinant,
det(Mk) = 1 for all k (Cary & Hanson 1986). This follows from the underlying
Hamiltonian nature of the magnetic field line trajectory (Meiss 1992). Thus, the
characteristic equation for the eigenvalues of Mk is λ2 − λTr(Mk)+ 1 = 0, which gives

λ = 1
2 Tr(Mk)±

√(
1
2 Tr(Mk)

)2 − 1. (2.51)

Hence, for |Tr(Mk)| < 2, the eigenvalues are complex numbers on the unit circle, λ± =
exp(±iα), with

α = arccos
(

1
2 Tr(Mk)

)
. (2.52)

The angle α is the average angle of rotation around the island centre of a neighbouring
trajectory after the island centre returns to its original poloidal position. For this reason, it
takes the same value irrespective of the fixed point k used to calculate it. From (2.19), the
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average angle of rotation after following around the island centre is 2πωL/n0. Hence, we
obtain an expression for the average frequency of rotation of linearized trajectories about
the island centre,

ω = n0

2πL
arccos

(
1
2

Tr(Mk)

)
. (2.53)

It is useful to recall that a closed magnetic field line is not necessarily an island centre.
Because the relation det(Mk) = 1 always holds, the closed field line can be elliptic or
hyperbolic: it can be an O point or an X point, respectively. When the closed field line
is not an O point, the concept of a rotation frequency breaks down. A quantity that can
be used to determine whether the closed field line is a centre or an X point is the residue
(Greene 1968) of the full-orbit tangent map,

R = 1
2 − 1

4 Tr(Mk). (2.54)

For 0 < R < 1, a rotation frequency can be calculated from (2.53) and thus the closed
field line is a centre. If R < 0 or R > 1, the closed field line is an X point, as the
magnitude of the trace is greater than unity and (2.53) does not have a real solution for ω.
In the island width calculation of this section, it is not only assumed that 0 < R < 1, but
also that R � 1 such that 2πωL/n0 � 1.

Two-dimensional matrices with unit determinant, such as Mk, satisfy the equation

MT
k σMk = MkσMT

k = σ , (2.55)

with

σ =
(

0 1
−1 0

)
. (2.56)

From (2.55), we get MT
k (σMk)Mk = σMk. Therefore, the matrix σMk is an invariant of the

full-orbit tangent map. The symmetrized matrix

W k = 1
2

(
σMk + Mᵀ

k σ
ᵀ) (2.57)

satisfies the same property that the unsymmetrized counterpart σMk satisfies,

MT
k · W k · Mk = W k. (2.58)

Consider the scalar invariant discussed after (2.27) calculated at ϕ = ϕk, |δK| =
δξ

ᵀ
k · Qᵀ

k · K · Qk · δξ k. This quantity is constant on a trajectory that crosses the planes
ϕ = 2π(k + LQ)/n0, where Q is an integer, as it directly follows from the quadratic
perturbation to the Hamiltonian (in the magnetic coordinate analysis) about the island
centre, |δK| = δuᵀ · K · δu. Similarly, the quantity δX ᵀ

k · W k · δX is constant on a
trajectory that crosses the plane ϕ = 2π(k + LQ)/n0, because δX ᵀ

k · Mᵀ
k · W k · Mk ·

δX k = δX ᵀ
k · W k · δX k. The vectors δX k and δξ k are equivalent displacement vectors

expressed in two different coordinate systems that are rotated with respect to one another.
Because the scalar invariant remains unchanged after a rotation, the two invariants can only
be related by an overall constant, δX ᵀ

k · W k · δX k = γk|δK| (Cary & Hanson 1991). Hence,
the symmetric invariant matrix W k has the same unit eigenvectors as the (approximately
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diagonal) matrix

Qᵀ
k · K · Qk =

⎛
⎜⎜⎜⎝

1
2
ι′0(ψ0)

(
∂ψ

∂ξ⊥

)2

+ O
(
ε

C̄2

)
O
(

M2ε

C̄2

)

O
(

M2ε

C̄2

)
1
2

M2ε

(
∂ξ‖
∂Θ

)2

+ O
(

M2ε̂ε

C̄2

)
⎞
⎟⎟⎟⎠ ,

(2.59)

where, in the error terms, we have assumed that |∂ξ/∂Θ| ∼ C̄ and |∂ξ/∂ψ | ∼ C̄ι′0(ψ0).
Moreover, the eigenvalues of W k are equal to the eigenvalues of Qᵀ

k · K · Qk multiplied by
a factor of γk. From (2.59), the smallest eigenvalue of Qᵀ

k · K · Qk is approximately equal to
the bottom-right element associated with the eigenvector (δξ⊥, δξ‖) � (O(ε̂), 1 + O(ε̂)),
and the largest eigenvalue is approximately equal to the top-left element associated
with the eigenvector (δξ⊥, δξ‖) = (1 + O(ε̂),O(ε̂)). Therefore, the eigenvector of W k
corresponding to the smallest eigenvalue is approximately tangent to the flux surface,
and is denoted as êk‖, and the eigenvector corresponding to the largest eigenvalue is
approximately normal to the flux surface, and is denoted as êk⊥. Because êk‖ and êk⊥
are simply defined as eigenvectors of W k, their sign is yet unspecified. We impose the
constraint ê‖,k · Mk · ê⊥,k > 0 for all k to fix the relative sign of the eigenvectors.

2.4. Island width
An expression for the island width at ϕ = ϕk = 2πk/n0 can be obtained by rearranging
(2.39),

w̄⊥,k = 2LC̄
Mπ

(
q0+L−1∑

q=q0

δξ‖,k+q

δξ⊥,k

)−1

. (2.60)

Recall that δξ‖,k = 0 and q0 is chosen for convenience according to (2.38), such that
δξ⊥,k+q � 0 for all q in the sum. An accurate calculation of the island width thus rests
upon an accurate calculation of C̄ and δξ‖,k+q/δξ⊥,k.

To calculate δξ‖,k+q/δξ⊥,k, we follow the linearized magnetic field with initial condition
δX k · ê‖k = 0, which corresponds to δξ‖,k � 0 and δξ⊥,k � δX k · ê⊥,k. Using (2.46), or
repeated application of partial tangent maps as in (2.49), we obtain δX k+q = Sq

k · δX k.
The final displacement from the fixed point in the direction parallel to the flux surface is
δξ‖,k+q � ê‖,k+q · δX k+q, which gives

δξ‖,k+q

δξ⊥,k
� ê‖,k+q · Sq

k · ê⊥,k. (2.61)

Equation (2.61) is defined to be positive for all k and q, which provides a second constraint
to fix the sign of the vectors ê⊥,k and ê‖,k. With this additional constraint, the signs of
the eigenvectors ê⊥,k, ê‖,k, ê⊥,k+q and ê‖,k+q for all k and q are specified with respect to
one another. Note that the two constraints can only both be self-consistently applied if the
small island width approximation is valid; if attempting to apply both constraints leads to
a contradiction, the islands are too wide. We then have

q0+L−1∑
q=q0

δξ‖,k+q

δξ⊥,k
� Σk ≡

q0+L−1∑
q=q0

ê‖,k+q · Sq
k · ê⊥,k, (2.62)

where we have defined the positive quantity Σk.
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The circumference C̄ can be approximated, for a sufficiently large number of fixed
points, from the sum of the chords in the poloidal plane. However, to obtain the appropriate
chords, the fixed points must first be reordered to proceed monotonically around the flux
surface. To do so, we consider a reordering function ρ(k) such that p = ρ(k) is the index
labelling the reordered fixed points. We define ρ(0) = 0 such that p = 0 for k = 0, i.e. the
set of reordered fixed points have the same point indexed as zero as the set of fixed points
ordered by following the field line. Moreover, we reorder the fixed points to monotonically
circulate the magnetic axis in the same direction that they appear to circulate when ordered
following the magnetic field. The inverse of the reordering function is denoted as ρ−1 and
is defined such that ρ−1(ρ(k)) = k, i.e. the field-line-following index k is returned for a
given reordered index p. It can be shown that

ρ(k) = (nturnsk) mod L (2.63)

and

ρ−1( p) = ( p mod nturns)L + p
nturns

mod L, (2.64)

where nturns is the total number of poloidal turns around the magnetic axis when following
the field-line-ordered fixed points X k (i.e. the number of times that the magnetic axis
appears to have been circulated poloidally). Here, k mod q indicates the remainder of k/q,
equal to an integer between 0 and q − 1. The circumference C̄ is approximated by the sum
of the chords obtained by joining the reordered fixed points,

C̄ � C ≡
L−1∑
k=0

|ck| , (2.65)

where
ck = X k − X k−, (2.66)

and X k− is the fixed point preceding X k in the reordered set, such that

k−=ρ−1(ρ(k)− 1). (2.67)

The relative error in the chord approximation, i.e. C̄ � C, is O(1/L).
Using (2.60), (2.62) and (2.65), the analytical small island width w̄⊥,k can be

approximated by w̄⊥,k � w⊥,k, where

w⊥,k ≡ 2LC
MπΣk

. (2.68)

The value of M is obtained by counting how many of the L fixed points X̄ k are also fixed
points in the plane ϕ = 0, i.e. X (2πL/n0) = X (0) = X̄ k is satisfied. The relative error in
the island width w⊥,k compared with the true island width is O(ε̂1/2,L−1). The O(ε̂1/2) part
comes from the error in approximating the width in the coordinate ψ using Υ in (2.23)
and the additional error in relating changes in ψ to lengths in (2.32). The O(L−1) part
comes from the chord approximation. Considering instead the relative error between w⊥,k
in (2.68) and w̄⊥,k in (2.32), this is O(ε̂,L−1). Here, the O(ε̂) part comes from the error
in (2.61), which in turn comes from the O(ε̂) error in the bottom-left matrix element of
(2.31) owing to the matrix K in (2.26) only being approximately diagonal.
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3. Island size and residue variation using adjoint equations

Here we consider the variation of the different quantities – including the width – related
to magnetic islands following the infinitesimal variation of the magnetic field configuration
from B(R) to B(R)+�B(R). From (2.68), the variation of the island width is

�w⊥,k
w⊥,k

� �C
C

− �Σk

Σk
, (3.1)

where �C is the variation of the circumference, approximated by the sum of chords in
(2.65), and �Σk is the variation of the sum in (2.62). Most of this section is devoted to
deriving expressions for�C and�Σk, in terms of�B(R), using an adjoint method. In the
final subsection, an expression for �R is derived. Note that the variation of the on-axis
rotational transform is directly related to �R if one considers the magnetic axis as the
periodic field line instead of an island chain O or X point.

3.1. Circumference variation
A result of the change in magnetic configuration from B(R) to B(R)+�B(R) is that
the periodic field line position changes from X̄ (ϕ) to X̄ (ϕ)+�X̄ (ϕ). For the purpose
of the island width calculation, the variation of the periodic field line position affects the
circumference. This changes from C in (2.65) to C +�C, where �C is given by

�C(X̄ (ϕ);�X̄ (ϕ)) =
L∑

k=1

(
�X̄ k −�X̄ k−

) · ĉk, (3.2)

where ĉk = ck/|ck|. Equation (3.2) can be re-expressed as

�C(X̄ (ϕ);�X̄ (ϕ)) =
∫ 2πL/n0

0
dϕ�X̄ (ϕ) ·

[
L−1∑
k=0

ĉk(δ(ϕ − ϕk)− δ(ϕ − ϕk−))

]
. (3.3)

Notice that the second sum in (3.3) can be re-cast as

L−1∑
k′=0

ĉk′δ(ϕ − ϕk′−) =
L−1∑
k=0

ĉk+δ(ϕ − ϕk), (3.4)

where
k+=ρ−1(ρ(k)+ 1), (3.5)

because the order in which the sum is taken is not important. Re-expressing (3.3) using
(3.4) gives the more convenient expression

�C(X̄ (ϕ);�X̄ (ϕ)) =
∫ 2πL/n0

0
dϕ�X̄ (ϕ) ·

[
L−1∑
k=0

(
ĉk − ĉk+

)
δ(ϕ − ϕk)

]
. (3.6)

We impose the constraint that X̄ (ϕ)+�X̄ (ϕ) remain a point along a closed magnetic
field by introducing a Lagrangian

LC = C +
〈
λ,

dX
dϕ

− V (X , ϕ)
〉
, (3.7)
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where we have defined an inner product such that

〈A1,A2〉 =
∫ 2πL/n0

0
dϕA1 · A2. (3.8)

Extremization of L, with respect to λ, leads to the constraint that X (ϕ) is the position along
a magnetic field line, i.e. that X (ϕ) satisfies (2.41). We have already found the periodic
field line X̄ (ϕ) that satisfies (2.41) with periodic boundary conditions. Now consider
extrema of L with respect to changes in X (ϕ),

�LC = �C +
〈
λ,

d�X
dϕ

− [∇X V ]ᵀ ·�X
〉

= 0, (3.9)

which can be re-expressed as

�C −
〈
�X ,

dλ
dϕ

+ ∇X V · λ
〉
+ λ(2πL/n0) ·�X (2πL/n0)− λ(0) ·�X (0) = 0. (3.10)

By definition, the island centre maintains its periodicity after the perturbation, so we
impose �X (2πL/n0) = �X (0). Additionally, imposing the periodic boundary condition
λ(0) = λ(2πL/n0), one obtains the equation

〈
�X ,

[
L−1∑
k=0

(
ĉk − ĉk+

)
δ(ϕ − ϕk)

]
− dλ

dϕ
− ∇X V · λ

〉
= 0, (3.11)

which leads to the differential equation

dλ
dϕ

+ ∇X V · λ =
L−1∑
k=0

(
ĉk − ĉk+

)
δ(ϕ − ϕk). (3.12)

Equation (3.12) is the adjoint equation that is useful for finding derivatives of the
circumference.

If X̄ (ϕ) is a periodic solution of (2.41) and λ̄(ϕ) is a periodic solution of (3.12), then
LC is stationary with respect to changes in X̄ (ϕ) and λ̄(ϕ), which arise from changes in
the magnetic field B(R). Therefore, LC is only affected by terms containing changes in
the magnetic field explicitly, �LC = 〈λ̄(ϕ),−�V (X̄ , ϕ)〉. Furthermore, because X̄ (ϕ) is
a magnetic field line trajectory, the equation dX̄/dϕ = V (X̄ (ϕ), ϕ) is always satisfied and
�C = �LC (from (3.7)), which gives

�C = −
∫ 2πL/n0

0
dϕλ̄ ·�V (X̄ , ϕ), (3.13)

where

�V (X̄ , ϕ) = R̄�Bp(X̄ , ϕ)

Bϕ(X̄ , ϕ)
− R̄Bp(X̄ , ϕ)�Bϕ(X̄ , ϕ)

Bϕ(X̄ , ϕ)2
. (3.14)
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3.2. Variation of Σk

Upon varying the magnetic field from B(R) to B(R)+�B(R), the quantity Σk in (2.62)
varies owing to the variation of the eigenvectors ê⊥k and ê‖k+q, and of the tangent map Sq

k ,

�Σk =
q0+L−1∑

q=q0

(
ê‖,k+q ·�Sq

k · ê⊥,k +�e‖,k+qê⊥k+q · Sq
k · ê⊥,k +�e⊥,kê‖,k+q · Sq

k · ê‖,k
)
.

(3.15)

In (3.15), we have used the fact that the variation of a unit vector is perpendicular to
the unit vector itself to re-express the variation of the normalized eigenvectors of W k
as �ê⊥,k = �e⊥,kê‖,k and �ê‖,k = �e‖,kê⊥,k. The slow rotation of nearby points around
the O point gives sin(2πωk/n0) � 1 and cos(2πωk/n0) � 0. Thus, the matrix elements
ê⊥,k+q · Sq

k · ê⊥,k and ê‖,k+q · Sq
k · ê‖,k, equal to the diagonal matrix elements in Sq

R,k ((2.31)),
are both small in 2πωL/n0. This gives

�Σk �
q0+L−1∑

q=q0

ê‖,k+q ·�Sq
k · ê⊥,k =

q0+L−1∑
q=q0

ê‖,k+q ·�sq
k; (3.16)

here, we have introduced the variable sk(ϕ) = δX (ϕ)/|δX (2πk/n0)|, which satisfies the
differential equation (2.44),

dsk

dϕ
= sk · ∇X V , (3.17)

with boundary condition sk(2πk/n0) = s0
k = ê⊥,k, and defined the variation �sk(ϕ). We

re-express (3.16) as

�Σk �
Q0−1∑
Q=0

∫ 2π(k+LQ+L)/n0

2π(k+LQ)/n0

�sk(ϕ) · ê‖,k+qδ(ϕ − ϕk+q) dϕ, (3.18)

where the integer Q0 = �q0/L� + 2, with the brackets � and � denoting the floor function,
is chosen such that all values of q in the sum in (3.16) are counted. Introducing the notation

〈A1 · A2〉k,Q =
∫ 2π(k+LQ+L)/n0

2π(k+LQ)/n0

A1 · A2 dϕ, (3.19)

we define the Lagrangian of Σk,

LΣk = Σk +
Q0−1∑
Q=0

(〈
λk,Q,

dX
dϕ

− V (X , ϕ)
〉

k,Q

+
〈
μk,

dsk

dϕ
− sk · ∇X V (X , ϕ)

〉
k,Q

)
.

(3.20)

In (3.20), we have introduced two constraints using the adjoint variables λk,Q(ϕ) and
μk(ϕ). With these constraints, the quantities LΣk and Σk are only equal to each other if
X (ϕ) is a field line trajectory, which satisfies (2.41), and sk satisfies the linearized equation
(3.17) for small displacements about the field line.2

2Note that the calculation could be carried out without replacing Sk by sk if the vector adjoint variable μk were
replaced by a matrix.
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Extremization with respect to variations in X (ϕ) gives

�LΣk = −
Q0−1∑
Q=0

〈
�X ,

dλk,Q

dϕ
+ ∇X V · λk,Q + sk · ∇X ∇X V · μk

〉

+
Q0−1∑
Q=0

[
�X (2π(k + QL + L)/n0) · λk,Q(2π(k + QL + L)/n0)

− �X (2π(k + QL)/n0) · λk,Q(2π(k + QL)/n0)
] = 0, (3.21)

where the Hessian of the field-line-following equation (2.41) is

∇X ∇X V (X , ϕ) = 2êR∇X Bp(X , ϕ)
Bϕ(X , ϕ)

− 2êR(∇X Bϕ(X , ϕ))Bp(X , ϕ)
Bϕ(X , ϕ)2

+ R∇X ∇X Bp(X , ϕ)
Bϕ(X , ϕ)

− 2R(∇X Bϕ(X , ϕ))(∇X Bp(X , ϕ))
Bϕ(X , ϕ)2

− R(∇X ∇X Bϕ(X p, ϕ))Bp(X , ϕ)
Bϕ(X , ϕ)2

+ 2R(∇X Bϕ(X , ϕ))(∇X Bϕ(X , ϕ))Bp(X , ϕ)
Bϕ(X , ϕ)3

. (3.22)

We consider X (ϕ) to be a periodic field line X̄ (ϕ) (an island centre) after the variation
of the magnetic field configuration, such that �X (2π(k + QL)/n0) = �X (2π(k + QL +
L)/n0). Therefore, all the boundary terms in (3.21) vanish if λk,Q(2π(k + QL)/n0) =
λk,Q(2π(k + QL + L)/n0). The adjoint equations for λk,Q(ϕ) are thus

dλk,Q

dϕ
+ ∇X V · λk,Q + sk · ∇X ∇X V · μk = 0, (3.23)

to be solved for periodic solutions λ̄k,Q(ϕ) in the interval 2πQL/n0 � ϕ − 2πk/n0 �
2π(QL + L)/n0 for all k and Q.

Extremizing LΣk , with respect to variations in sk(ϕ), gives an equation for μk,

�LΣk =
Q0−1∑
Q=0

⎡
⎣〈�sk,

q0+L−1∑
q=q0

ê‖k+qδ(ϕ − ϕk+q)− dμk

dϕ
− ∇X V · μk

〉
Q

⎤
⎦

+ μk(2π(k + LQ0)/n0) ·�sk(2π(k + LQ0)/n0)

− μk(2πk/n0) ·�sk(2πk/n0) = 0, (3.24)

where all boundary terms at ϕ = 2π(k + LQ)/n0 for Q �= 0 and Q �= Q0 have vanished
because μk is a continuous variable in the interval 2πk/n0 � ϕ � 2π(k + Q0L)/n0. When
considering variations in sk, the initial condition sk(2πk/n0) = s0

k = ê⊥k can be assumed to
be unchanged and therefore�sk(2πk/n0) = 0. Hence, the boundary terms in (3.24) vanish
by imposing μk(2π(k + LQ0)/n0) = 0, which results in the differential equation

dμk

dϕ
=

q0+L−1∑
q=q0

ê‖k+qδ(ϕ − ϕk+q)− ∇X V · μk. (3.25)

Note that μk(2πk/n0) can be obtained from μk(2π(k + LQ0)/n0) = 0 using (3.25). This
can be solved by repeated applications of appropriate partial tangent maps and jump
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conditions at the angles ϕk+q; as shown in Appendix C, the linear mapping from μk to μk+1
that follows from the homogeneous term on the right-hand side of (3.25) is the adjoint of
the partial tangent map S1

k , such that μk(2π(k + q)/L) = (S1
k+q)

ᵀ · μk(2π(k + q + 1)/L).
The adjoint variables λk,Q(ϕ) can be obtained from (3.23) once the the adjoint variables
μk(ϕ) are obtained from (3.25).

The magnetic field configuration is varied while considering X̄ (ϕ) to be the magnetic
field line trajectory at the island centre, which satisfies (2.41) with a periodic boundary
condition, and while constraining sk(ϕ) to satisfy (3.17) for linearized trajectories about
the island centre. We thus conclude that Σk = LΣk and thus �Σk = �LΣk . Therefore, the
variation of Σk is given by

�Σk = −
Q0−1∑
Q=0

∫ 2π(k+QL)/n0

2πk/n0

dϕ(λ̄k,Q ·�V (X̄ , ϕ)+ sk · ∇X�V (X̄ , ϕ) · μk), (3.26)

where λ̄k,Q is a periodic solution of (3.23) and μk is the solution of (3.25), which
satisfies the boundary condition μk(2π(k + LQ0)/n0) = 0. The function ∇X�V (X̄ , ϕ)
can be written explicitly in terms of variations of the magnetic field and its gradients by
differentiating (3.14),

∇X�V (X̄ , ϕ) = êR�Bp(X̄ , ϕ)

Bϕ(X̄ , ϕ)
− êRBp(X̄ , ϕ)�Bϕ(X̄ , ϕ)

Bϕ(X̄ , ϕ)2
+ R∇X�Bp(X̄ , ϕ)

Bϕ(X̄ , ϕ)

− R(∇X Bp(X̄ , ϕ))�Bϕ(X̄ , ϕ)
Bϕ(X̄ , ϕ)2

− R∇X Bϕ(X̄ , ϕ)�Bp(X̄ , ϕ)

Bϕ(X̄ , ϕ)2

− R∇X (�Bϕ(X̄ , ϕ))Bp(X̄ , ϕ)

Bϕ(X̄ , ϕ)2
+ 2R(∇X Bϕ)Bp�Bϕ

B3
ϕ

. (3.27)

3.3. Residue variation
The residue R varies owing to the variation of the full-orbit tangent map Mk. We re-express
the trace of the full-orbit tangent map as

Tr(M0) = I : M0, (3.28)

where the operation denoted by the colon : corresponds to multiplying each matrix element
of one matrix with the corresponding matrix element of the other matrix and adding the
results together. Note that k = 0 was chosen in (3.28), as the residue is independent of k.
From (2.54) and (3.28), we obtain

�R = − 1
4 I : �M0. (3.29)

Recall that M0 = S0(2πL/n0) and that the tangent map S0 satisfies the differential equation
(2.46) with boundary condition S0(0) = I. We define the Lagrangian of R,

LR = R +
∫ 2πL/n0

0
dϕ

[
λR ·

(
dX
dϕ

− V (X , ϕ)
)

+ μR :
(

dS0

dϕ
− (∇X V (X , ϕ))ᵀ · S0

)]
.

(3.30)

In (3.30), we have introduced two constraints using the adjoint variables λR(ϕ) (a vector)
and μR(ϕ) (a matrix). With these constraints, the quantities LR and R are equal to each
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other if X (ϕ) is a field line trajectory, which satisfies (2.41), and S0 satisfies (2.46) for the
tangent map.

Extremization with respect to variations in X (ϕ) gives

�LR = −
〈
�X ,

dλR
dϕ

+ ∇X V · λR + (∇X ∇X V · μR) : S0

〉
+�X (2πL/n0) · λR(2πL/n0)−�X (0) · λR(0) = 0, (3.31)

Again, all the boundary terms in (3.31) vanish if λR(2πL/n0) = λR(0). The adjoint
equation for λR(ϕ) is thus

dλR
dϕ

+ ∇X V · λR + (∇X ∇X V · μR) : S0 = 0, (3.32)

to be solved in the interval 0 � ϕ � 2πL/n0 for periodic solutions, denoted λ̄R(ϕ).
Extremizing LR with respect to variations in S0(ϕ) gives an equation for μR,

�LR = −1
4

I : �M0 +
〈
μR,

d�S0

dϕ
− (∇X V )ᵀ ·�S0

〉
= 0. (3.33)

Note that we have used the following definition for the inner product of two matrix
quantities,

〈A1,A2〉 =
∫ 2πL/n0

0
dϕA1 : A2. (3.34)

We re-express (3.33) as

−1
4

I : �M0 −
〈
�S0,

dμR
dϕ

+ ∇X V · μR

〉
+ μR(2πL/n0) : �S0(2πL/n0)

−μR(0) : �S0(0) = 0. (3.35)

Noting that �S0(0) = 0 and �S0(2πL/n0) = �M0 both hold true by definition, the
boundary terms are zero provided μR(2πL/n0) = I/4 is chosen. Thus, the adjoint
equation for μR is

dμR
dϕ

= −∇X V · μR, (3.36)

with μR(2πL/n0) = I/4 as a boundary condition. From Appendix C, an equivalent form
of this boundary condition is μR(0) = (Mᵀ

0 )/4.
As before, the variation of the residue is given by

�R = −
∫ 2πL/n0

0

(
λ̄R ·�V (X̄ , ϕ)+ (∇X�V (X̄ , ϕ) · μR) : S0

)
dϕ, (3.37)

where λ̄R and μR are the solutions of the adjoint equations (3.23) and (3.25) with the
appropriate boundary conditions.

To conclude this section, we briefly discuss a subsidiary result of the preceding analysis.
The trace of the full-orbit tangent map calculated at the magnetic axis is related the rotation
angle of nearby trajectories about the magnetic axis. By definition, this is proportional to
the on-axis rotational transform. Equating (2.52) (with k = 0) to the product of the interval
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in toroidal angle, 2π/n0, and the on-axis rotational transform, ῑ, and re-arranging for ῑ,
gives

ῑ = n0

2π
arccos

(
1
2

Tr (M0)

)
. (3.38)

Note that this equation is correct provided ῑ < n0/2, a condition which is satisfied in most
stellarators. Remembering the definition (2.54) of the residue, the variation of the on-axis
rotational transform is given by

�ῑ = n0

π sin (2πῑ/n0)
�R. (3.39)

4. Numerical results

In this section, we present the numerical results obtained for the gradients of the island
width and of other properties of the periodic field line. In § 4.1, we briefly explain the
numerical scheme used to obtain our results. We then present, in § 4.2, numerical results
for the island width, its gradient and the gradient of other island-related quantities in an
analytical magnetic configuration studied by Reiman & Greenside (1986). In § 4.3, we
present results for the shape gradient of the width of a magnetic island in NCSX with
respect to the positions on a type-A modular coil. Finally, in § 4.4, we apply the gradient
of the residue of a periodic field line to optimize a helical magnetic configuration of the
kind studied by Cary & Hanson (1986) and Hanson & Cary (1984).

4.1. Numerical scheme
A Runge–Kutta fourth-order explicit scheme is used to integrate equations (2.41), (2.46),
(3.12), (3.23) and (3.25) in toroidal angle ϕ. The number of grid points in ϕ per field period
is denoted Nϕ , such that the number of grid points per toroidal turn is n0Nϕ .

A Newton method is used to search for periodic solutions of the magnetic field
line such as the magnetic axis and a magnetic island centre. The search proceeds
as follows. The position of the periodic field line is initially guessed as X 0(0) and
equation (2.41) is integrated in ϕ from ϕ = 0 to ϕ = 2πL/n0, where L is an integer
(= 1 for the magnetic axis). The tangent map is also integrated following the magnetic
field line. The final position X (2πL/n0) and tangent map S(2πL/n0) are used to
evaluate a next guess for the magnetic axis as follows. The step X step(0) in position
necessary to move closer to the periodic solution at the next iteration, X i+1(0) = X i(0)+
X i

step(0), is calculated by imposing X i(0)+ X i
step(0) = X i(2πL/n0)+ X i

step(2πL/n0) on
the linearized equations. This leads to X i(0)+ X i

step(0) = X i(2πL/n0)+ Si(2πL/n0) ·
X i

step(0) and, upon rearranging, to

X i
step(0) = (I − Si(2πL/n0))

−1 · (X i(2πL/n0)− X i(0)). (4.1)

The error is calculated from

Ei =
∣∣X i(2πL/n0)− X i(0)

∣∣∣∣X i(0)
∣∣ (4.2)

where the magnitude of the poloidal vector X = (R,Z) is defined as |X | = √
R2 + Z2.

A periodic field line solution is found if Ei falls below a threshold value Ethresh = 10−13; we
then consider X̄ (ϕ) = X i(ϕ).
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(a) (b)

FIGURE 1. Poincaré plots showing magnetic field lines near the island separatrix in the Reiman
magnetic field configuration with ιax = 0.15, ι′ax = 0.38 and εi = 0 for i �= 6, for ε6 = 0.001 (a)
and ε6 = 0.01 (b).

Once a periodic field line is found, the values of the magnetic field and its first and
second derivatives on the toroidal grid points and in the intermediate Runge–Kutta steps
are stored to accelerate subsequent parts of the code such as the solutions of the adjoint
equations and the calculations of the gradients.

4.2. Island width and gradient calculation: Reiman model
We study the magnetic configurations of a form similar to the model field used in § 5 of
Reiman & Greenside (1986), given by (2.1) with

ψ = 1
2 r2, (4.3)

χ = ιaxψ + ι′axψ
2 −

kmax∑
k=1

εk(2ψ)k/2 cos (kθ − ϕ) , (4.4)

where kmax is the largest value of k for which εk �= 0. Here, r and θ are chosen to be the
poloidal minor radius and the geometric poloidal angle, such that

r =
√
(R − 1)2 + Z2, (4.5)

and

tan θ = Z
R − 1

. (4.6)

The explicit expressions for the magnetic field and its derivatives are derived from (2.1)
and (4.3)–(4.6), and are given in Appendix D. The unperturbed configuration (εk = 0 for
all k) is symmetric in the geometric poloidal and toroidal angles (it is not curl-free and
is therefore not a vacuum magnetic configuration). For the scope of this paper, we focus
on the set of parameters ιax = 0.15, ι′ax = 0.38 and εk = 0 for k �= 6. In figure 1, we show
a Poincaré plot of the island chain in the plane ϕ = 0, which results from the parameters
ε6 = 0.01 and ε6 = 0.001.

Although the Reiman magnetic field configuration is an experimentally unrealistic
one, it is extremely useful and convenient to test the island width calculation presented
in § 2. Taking εk = 0 for k �= 6 in (4.4) results in (2.2) with χ0 = ιaxψ + ι′axψ

2 and
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χ1 = ε6(2ψ)3 cos(kθ − ϕ + π). The (unperturbed) minor radius of the island chain is
obtained by calculating r = r̄ at the resonance, ιres = 1/6 = ιax + ι′axr̄2, which gives
r̄ = √

(ιres − ιax)/ι′ax and ψ0 = (ιres − ιax)/(2ι′ax). Therefore, the circumference of the
unperturbed resonant flux surface section in the Reiman model is

C̄ = 2π

√
ιres − ιax

ι′ax
. (4.7)

The width of the island chain expressed in the magnetic coordinate ψ , obtained by
inserting ε(ψ0) = ε6((ιres − ιax)/ι

′
ax)

3 and ι′0(ψ0) = 2ι′ax into (2.23), is

Υ = 4
√
ε6

2ι′ax

(
ιres − ιax

ι′ax

)3/2

. (4.8)

From (2.32) and the equality ∂ξ⊥/∂ψ = dr/dψ = 1/r̄, the expression for the island width
in terms of the parameters of the Reiman model is

w̄⊥ = 4
√
ε6

2ι′ax

ιres − ιax

ι′ax
. (4.9)

Note that the subscript k in w⊥,k is unnecessary here, because the poloidal symmetry of
the Reiman model implies that the width of all islands in the chain is identical.

In figure 2, we plot the island width calculated using (2.68) and compare it with that
calculated using (4.9). The discrepancy between the two equations is almost entirely a
result of the chord approximation for the circumference in (2.65).3 This can be seen by
comparing the island width calculated using the two methods with the quantity C̄w⊥/C, a
corrected island width where the sum of chords in (2.65) is replaced with the more accurate
measure of the circumference in (4.7). The corrected island width has a near-perfect
overlap with the width calculated from (4.9). The error between the two quantities
decreases with ε6 – consistent with the discussion in the final paragraph of § 2 (recall that
(4.9) comes from (2.32)) – and is thus limited by the accuracy of the small island analysis.
Conversely, the uncorrected island width w⊥ is a less accurate approximation, as seen by
the saturation of the error with decreasing ε6. This arises from the chord approximation
of the circumference limiting the accuracy of the island width evaluation, as the O(L−1)
error is dominant at sufficiently small ε6 ∝ ε̂.

The gradient of the island width with respect to the parameters κ ∈ {ιax, ι
′
ax, ε6} is

calculated using the method derived in this paper. When one such parameter is varied
infinitesimally, the infinitesimal magnetic field variation can be expressed as �B =
�κ∂B/∂κ , where ∂B/∂κ is the gradient of the magnetic field with respect to κ . The
infinitesimal variation of the magnetic field gradient can be expressed as �∇X B =
�κ∂(∇X B)/∂κ . Both ∂B/∂κ and ∂(∇X B)/∂κ are straightforwardly obtained from the
equations in Appendix D. The variation of the circumference and of the tangent map can
also be expressed as �C = �κ∂C/∂κ and �Σk = �κ∂Σk/∂κ . Thus, the gradient of the
circumference, with respect to κ , is

∂C
∂κ

= −
∫ 2πL/n0

0
dϕ
∂V
∂κ

· λ, (4.10)

3Note that the other approximation (2.37) is exact in the Reiman model owing to the unperturbed configuration being
poloidally symmetric.
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(a)

(b)

FIGURE 2. Width of magnetic islands at the resonant flux surface with rotational transform
ιres = 1/6 calculated for the Reiman model magnetic field with ιax = 0.15, ι′ax = 0.38 and εi = 0
for i �= 6, shown as a function of ε6. (a) Uncorrected w⊥ (×) and corrected w⊥C̄/C (+) computed
values of width are compared with the analytical value w̄⊥ in (4.9) (solid line). Here, w⊥ is
calculated from (2.68), C from (2.65) and C̄ from (4.7). (b) Normalized error |1 − w⊥/w̄⊥| (×)
and |1 − w⊥C̄/(w̄⊥C)| (+). For ε6 > 10−7, the error in the corrected width decreases linearly
with ε6, as expected from the discussion at the end of § 2. For smaller values of ε6, this error
changes sign and increases with ε−2

6 , most likely owing to round-off error propagation. One in
five markers are shown in both plots. The toroidal angle resolution is Nϕ = 80.

and the gradient of Σk is

∂Σk

∂κ
= −

Q0−1∑
Q=0

∫ 2π(k+LQ+L)/n0

2π(k+LQ)/n0

(
∂V
∂κ

· λQ + s⊥k ·
(
∂∇X V
∂κ

)
· μ

)
, (4.11)

where

∂V
∂κ

= R
Bϕ

∂Bp

∂κ
− RBp

B2
ϕ

∂Bϕ
∂κ

, (4.12)

∇X
∂V
∂κ

= êR

Bϕ

∂B
∂κ

− êRBp

B2
ϕ

∂Bϕ
∂κ

+ R∇X

Bϕ

∂Bp

∂κ
− R(∇X Bp)

B2
ϕ

∂Bϕ
∂κ

− R(∇X Bϕ)
B2
ϕ

∂B
∂κ

−
(

∇X
∂Bϕ
∂κ

)
RBp

B2
ϕ

+ 2R(∇X Bϕ)Bp

B3
ϕ

∂Bϕ
∂κ

. (4.13)
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Hence, and by using (3.1), the gradient of the island width is given by

∂ ln wk

∂κ
= ∂ ln C

∂κ
− ∂ lnΣk

∂κ
, (4.14)

with ∂C/∂κ and ∂Σk/∂κ given by (4.10) and (4.11), respectively. The gradient of the
residue of a periodic field line follows from (3.37),

∂R
∂κ

= −
∫ 2πL/n0

0

(
λR · ∂V

∂κ
+
(
∂∇X V
∂κ

· μ
)

: S0

)
dϕ. (4.15)

Considering the residue at the magnetic axis, the gradient of the on-axis rotational
transform follows from (3.39),

∂ῑ

∂κ
= n0

π sin (2πῑ/n0)

∂R
∂κ
. (4.16)

where ῑ is obtained from (3.38) and is found to be equal to ιax, as expected.
The results of (4.10), (4.11), (4.14) and (4.15) can be compared with a numerical

derivative of the quantities C, Σk, w⊥,k and R calculated using finite differences. To this
end, we calculate centred difference (CD) derivatives of the form

∂CD ln f
∂κ

(κ, δ) = ln
[

f (κ + δ)
] − ln

[
f (κ − δ)

]
2δ

. (4.17)

The error with respect to the adjoint calculation of the derivative in (4.17) is

Ef (δ) =
∣∣∣∣∂CD ln f
∂κ

(κ, δ)− ∂ ln f
∂κ

(κ)

∣∣∣∣ (4.18)

In (4.17)–(4.18), f ∈ {R,C,Σk,w⊥,k}. We expect the centred difference derivative of the
numerically calculated island width to approach the numerically calculated derivative as
δ is decreased. Having ignored the parts of the derivative of Σk that are small in ε̂ in
(3.15), one might expect that E(δ) ∼ δ2 for δ larger than a threshold value and E(δ) ∼ ε̂
for smaller δ. However, comparing the Reiman model to the derivation of the island width,
the quantity ζ0(ψ) is independent of ψ in the Reiman model. Thus, the diagonal elements
of the tangent map in (2.17), and correspondingly the off-diagonal elements of the scalar
invariant matrix in (2.26), are exactly zero. Hence, the eigenvectors ê⊥ and ê‖ are exactly
aligned with ∇Xψ and ∇Xθ , respectively, for any value of the parameters ιax, ι′ax and ε6.
Thus, the small terms in ε̂ that were neglected in the derivation of the gradient of the island
width are exactly zero in the Reiman model, and E(δ) ∼ δ2 should hold for all values of δ.
In figure 3, the quantity Ef (δ) for f ∈ {R,C,Σ,w⊥} is shown for derivatives with respect
to κ ∈ (ιax, ι

′
ax, ε6) for ιax = 0.15, ι′ax = 0.38 and ε6 = 0.01. The proportionality Ef (δ) ∝ δ2

for all κ is strong evidence that the gradient calculation is accurate for all quantities. In
addition, the gradient of the on-axis rotational transform ῑ calculated from (4.16) is, as
expected, unity for κ = ιax and zero for κ ∈ {ι′ax, ε6}.

4.3. Shape gradient calculation: explicit coils
In this section, it will be useful to denote the position along a magnetic field line, expressed
in a set of right-handed Cartesian coordinates, as R = (X,Y,Z). The coordinate Z is the
same as in the two-dimensional vector X = (R,Z), while X = R cosϕ and Y = R sinϕ.
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(b)

(a)

(c)

(d )

FIGURE 3. Errors, relative to a centred difference approximation, in the gradients of residue
R, circumference C, Σ and island width w⊥ calculated with respect to the on-axis rotational
transform ιax, its first derivative ι′ax and the amplitude of the resonant perturbation ε6 in the
Reiman model. The errors E(δ), defined in (4.18), are shown as a function of a normalized
finite-difference step size R−1(∂R/∂κ)δ. The configuration parameters are ιax = 0.15, ι′ax =
0.38, ε6 = 0.01 and εi = 0 for i �= 6. The resonant flux surface has the rotational transform
ιres = 1/6. The dashed line is E(δ) = δ2. The toroidal angle resolution is Nϕ = 80.

The magnetic field produced by explicit coils is calculated using the Biot–Savart law.
The number of inputs required for an explicit coil calculation is simply the number of
field periods and a set of (sufficiently resolved) positions along the coils. Because the
coils producing the magnetic field are continuous (even though they are numerically
approximated as discrete), the magnetic field is a functional of the continuous periodic
function rc(lc) = (xc, yc, zc) specifying the coil shape. Lowercase letters and a c subscript
distinguish coil positions from positions along a magnetic field line. Here, lc is the arc
length along the coil measured from some reference point, lc ∈ [0,Lc), where Lc is the
total coil length. The magnetic field is specified by the Biot–Savart law

Bcoil = −
N∑

c=1

μ0Ic

4π

∫
dlc

R − rc

|R − rc|3 × drc

dlc
. (4.19)

The poloidal gradient of the magnetic field is

∇X Bcoil =
N∑

c=1

μ0Ic

4π

∫
dlc

1
|R − rc|3

[
−Ip + 3

(X − xc)(R − rc)

|R − rc|2
]

× drc

dlc
, (4.20)
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where we introduce the poloidal identity matrix Ip = êRêR + êZ êZ , with êZ = ∇X Z, and
the position vector of the coil projected in the poloidal plane, xc = rc · (êRêR + êZ êZ). The
second derivative of the magnetic field is

∇X ∇X Bcoil =
N∑

c=1

μ0Ic

4π

∫
dlc

1
|R − rc|5

[
3
(

Ip − 5
(X − xc)(X − xc)

|R − rc|2
)
(R − rc)

+ 3 (X − xc) Ip + 3
(
êR (X − xc) êR + êZ (X − xc) êZ

)] × drc

dlc
. (4.21)

The variation �B of a coil-produced magnetic field is conveniently expressed in terms
of the shape gradient Grc B of the magnetic field with respect to coils (Landreman & Paul
2018). The shape gradient Grc is a vector operator which, like ∇X , is meaningful only when
acting on a (scalar or tensor) quantity to its right. It is defined via

�f =
N∑

c=1

∫
dlc

(
�rc × drc

dlc

)
· Grc f . (4.22)

The shape gradient of the magnetic field can be extracted from the Biot–Savart law and
(4.22) as shown in Appendix E, which gives

Grc Bcoil = μ0Ic

4π|R − rc|3
[
−I + 3(R − rc) (R − rc)

|R − rc|2
]
, (4.23)

where I = êX êX + êY êY + êZ êZ .
The shape gradient of the island width with respect to the coils producing the magnetic

field is
Grc ln wk = Grc ln C − Grc lnΣk. (4.24)

Here Grc C is given by

Grc C = −
∫ 2πL/n0

0
dϕGrc V · λ, (4.25)

with

Grc V = RGrc Bp

Bϕ
− R(Grc Bϕ)Bp

B2
ϕ

, (4.26)

and GrcΣk is given by

GrcΣk = −
Q0−1∑
Q=0

∫ 2πL(Q+1)/n0

2πLQ/n0

dϕ
((Grc V

) · λQ + s⊥k · (∇X Grc V
) · μ

)
, (4.27)

with

∇X Grc V = êRGrc B
Bϕ

− êRB
B2
ϕ

Grc Bϕ + R∇X Grc B
Bϕ

− R(∇X B)Grc Bϕ
B2
ϕ

− R(∇X Bϕ)Grc B
B2
ϕ

− R(∇X Grc Bϕ)B
B2
ϕ

+ 2R(∇X Bϕ)BGrc Bϕ
B3
ϕ

. (4.28)
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The spatial derivative (in the poloidal plane) of the shape gradient of the magnetic field is

∇X Grc B = μ0Ic

4π|R − rc|5
[

3 (X − xc)

(
I − 5

(R − rc) (R − rc)

|R − rc|2
)

+ 3êR (R − rc) êR + 3êRêR (R − rc)+ 3êZ (R − rc) êZ + 3êZ êZ (R − rc)

]
.

(4.29)

Using these equations, a numerical approximation to the shape gradient of the width
of an island in an NCSX vacuum configuration, shown in figure 4, was calculated for a
type-A modular coil. The magnetic field from the toroidal field coils and from most of
the poloidal field coils is included. The resonant rotational transform of the island chain is
ιres = 1/4. The shape gradient calculation is compared in figure 5 with a finite-difference
approximation calculated by perturbing the discrete coil positions at certain locations.
In figures 4 and 5, all plotted quantities are in SI units. For simplicity, in figure 5, we
have plotted an alternative definition of the shape gradient Gcf = (drc/dlc)× Grc f , which
satisfies

�f =
N∑

c=1

∫
dlc�rc · Ḡrc f , (4.30)

and thus has a more intuitive geometric interpretation. In the adjoint calculation, the shape
gradient is calculated by evaluating Grc f using the adjoint expressions outlined in this
section and a numerical approximation of drc/dlc,

Grc f = rc(lc + δlc)− rc(lc − δlc)

2δlc
× Grc f , (4.31)

where δlc is the separation between equally-spaced positions on the coil. Using a centred
difference approximation instead, the components of the shape gradient, ḠCD

κc
f for κc ∈

{xc, yc, zc}, are calculated from

ḠCD
κc

f = f (κc + δκc)− f (κ − δκc)

2δκcδlc
. (4.32)

For the coil considered in this study, the centred difference shape gradient, taken with
δκc = 10−4, has a good overlap with the shape gradient calculated using the adjoint
method, as shown in figure 5. The direct adjoint calculation is, however, over a hundred
times faster. This is because the adjoint approach requires solving a few equations along
the same periodic magnetic field line, so that the magnetic field and its gradients do
not need to be re-evaluated when computing the shape gradient with respect to all
coil positions. Conversely, the finite-difference calculation requires searching for a new
periodic field line after each finite-difference step, which is expensive because it requires
re-computing the magnetic field at new locations for each coil perturbation.

4.4. Optimization of helical coils via gradient of residue
We proceed to consider a model magnetic field studied by Hanson & Cary (1984), which
consists of two pieces: a toroidal magnetic field generated by a long current-carrying wire
passing through the centre of the torus, and a magnetic field generated by a pair of helical
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FIGURE 4. Poincaré plot for the configuration produced by NCSX coils. The island for which
the shape gradient of the width is calculated in figure 5 is shown enlarged in the inset; its width
using (2.68) is w⊥ = 0.0106 (R = 0.0149).

coils with opposite current (±Iheli). The helical coil positions are specified by the poloidal
angle η± as a function of the toroidal angle ϕ,

η±=n0ϕ

l0
+

kmax∑
k=0

[
A±,k cos

(
kn0ϕ

l0

)
+ B±,k sin

(
kn0ϕ

l0

)]
. (4.33)

The position of the coils r± = (x±, y±, z±) is then obtained using the equations

x± = (R0 + r0 cos η±) cosϕ, (4.34)

y±= (R0 + r0 cos η±) sinϕ, (4.35)

z±=−r0 sin η±. (4.36)

Here we have introduced the major and minor radius of the toroidal surface in which the
helical coils lie, R0 and r0 respectively. The magnetic field configuration is obtained by
adding the toroidal magnetic field êϕR0Bt/R to the magnetic field obtained by applying the
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(b)

(a)

(c)

FIGURE 5. Shape gradient of the width of one of the magnetic islands in the NCSX
configuration (figure 4) with respect to the positions along a type-A modular coil (length Lc =
7.29), calculated using Nϕ = 30 with: the adjoint method (solid lines); the centred difference
scheme with δκc = 10−4 (dashed lines). For each component, the mean residual between the
two calculations is approximately 2 % of the mean absolute value. The adjoint calculation is over
a hundred times faster.

Biot–Savart law to the helical coils,

Bheli(R) = R0Bt

R
êϕ +

∑
±

±μ0Iheli

4π

∫
dϕ

1
|R − r±|3

dr±
dϕ

× (R − r±). (4.37)

Upon fixing R0, r0, Iheli and Bt, as done in Hanson & Cary (1984), the continuous
parameters that can be used to perturb the magnetic field configuration are Ak for
0 � k � kmax and Bk for 1 � k � kmax. Perturbing any one parameter of any one coil
(carrying a current ±Iheli), denoted as κ±, such that the variation in the coil position
is r±(ϕ) → r±(ϕ)+�κ±∂r±(ϕ)/∂κ±, causes the magnetic field to change such that
B(R) → B(R)+�κ±∂B(R)/∂κ±. From the expressions (4.22) and (4.23), we get

∂B
∂κ±

= ±μ0Iheli

4π

∫
dϕ

1
|R − r±|3

[
−I + 3(R − r±) (R − r±)

|R − r±|2
]

·
(
∂r±
∂κ

× dr±
dϕ

)
. (4.38)
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(b)

(a)

FIGURE 6. Poincaré plots of unoptimized (a) and optimized (b) helical coil configurations.
The squares indicate fixed points with residue R1, while the crosses are those with residue R2.

The gradient of the magnetic field changes according to ∇X B(R) → ∇X B(R)+
�κ±∂∇X B(R)/∂κ±; from (4.22) and (4.29), we deduce

∂∇X B
∂κ±

= ±μ0Iheli

4π

∫
dϕ

1
|R − r±|5

[
3(R − r±)I − 5(R − r±)(R − r±) (R − r±)

|R − r±|2

+ I (R − r±)+ êR (R − r±) êR + êZ (R − r±) êZ
] ·

(
∂r±
∂κ

× dr±
dϕ

)
. (4.39)

A gradient-based optimization scheme to demonstrate an application of the adjoint
gradient formulation was performed on the system with R0 = 1, r0 = 0.3, μ0Iheli/4π =
0.0307 and Bt = 1. This was previously optimized by Cary & Hanson (1986) using a
derivative-free algorithm. The fixed parameters are A+,0 = π/2, A−,0 = A−,1 = B+,1 = 0,
and A±,k = B±,k = 0 for k � 2. The vector p = (A+,1,B−,1) is composed of the only
parameters that are varied during the optimization. Two fixed points are initially located
and their residues are used in the optimization. A priori, an infinite choice of appropriate
objective functions exist: the sensible properties are that they be functions of the residues
of all the periodic field lines and that they be zero when all the residues are zero. The
island width can only be used in the objective function if it is known that the periodic field
line is an O point instead of an X point. However, periodic field lines may switch from O
to X points during the optimization as p is varied. Moreover, the measure of island width
used in this work is only accurate if the island size is small. For these reasons, using the
residues in the optimization is preferable. We choose a linear combination P of the pairs
of residues,

P = 1
2 (R1 + R2) , (4.40)

and we seek configurations where P is as close as possible to zero. One could, in
principle, take the difference of the two residues or the mean square of the residues as
the objective function: the former converges to a non-optimal solution with R1 = R2,
where the objective function is zero yet the residues have not been sufficiently reduced; the
latter has a much slower convergence. The function |P| is minimized by using the gradient
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FIGURE 7. Helical coils corresponding to the initial unoptimized configuration (dotted line)
and to the optimized configuration (solid line). Coil 1 (red) carries the negative current (−Iheli).

direction to perform a line search for solutions of P = 0, with more details discussed in
Appendix F.

The initial configuration with p0 = (0.0, 0.0) has residues R1 = −0.143 and R2 =
79.9. Applying the optimization scheme, described above, results in p = (0.3414, 0.3066),
with R1 = 0.0160 and R2 = 0.0128. The values of the parameters are similar to those
obtained by Cary & Hanson (1986), but give a slightly more optimized configuration:
the small difference may be caused by different numerical resolutions in the Biot–Savart
integral around the helical coils. The optimized and unoptimized configurations are shown
in figure 6, and the helical coils that produce them are shown in figure 7. The quadratic
convergence of the errors of the gradients of the residue for an intermediate step during
the iteration is shown in figure 8.

5. Conclusion

In this paper, we have derived the equations for the gradients of several quantities
related to magnetic islands, which include the island width and the residue of the
periodic field line, using an adjoint method. The residue is a quantity that, when small
and positive, is strongly correlated with island size but that can be calculated for any
periodic field line, even X points in stochastic regions. Thus, although it does not
quantify the physical width of an island, it is more versatile and can be used to minimize
stochasticity in magnetic configurations. The gradient of the island width was obtained by
differentiating the measure of island width introduced by Cary & Hanson (1991). Although
the island width calculation is only accurate for small islands, optimized configurations
usually have small islands. Our adjoint approach thus provides an efficient and reliable
method to compute the sensitivity of the island size in optimized or near-optimized
stellarators.

We have performed and verified numerical gradient calculations on different magnetic
field configurations. The analytical configuration of Reiman & Greenside (1986), shown
in figure 1, provides the ideal system for efficiently and accurately verifying the island
width calculation and the gradient calculations. Figure 2 shows a comparison of different
measures of island width for this system. Figure 3 demonstrates the correct quadratic
convergence of centred difference gradient approximations to the adjoint gradient
calculations as the centred difference step is decreased. In figure 5, we show shape
gradients of the island width with respect to a discrete set of positions along a type-A
modular coil in an NCSX configuration, which highlights the overlap between the adjoint
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(b)

(a)

FIGURE 8. Error convergence of the centred difference approximation of the gradient of
the two residues to the adjoint calculation when B−,1 = 0.18079 and A+,1 = 0.25268. The
finite-difference step size on the horizontal axis is normalized to R−1(∂R/∂κ)δ for κ ∈
{A+,1,B−,1}. The legend labels with respect to which parameter the gradient was taken for the
different symbols, and in brackets is the value of Nϕ . The higher resolution, Nϕ = 80, has an
increased accuracy, although the optimization is carried out at Nϕ = 30 to make it faster. The
decrease of the converged error for larger Nϕ indicates a discretization error in the adjoint-based
approach.

and the centred difference calculation. For NCSX, where the magnetic field evaluation is
computationally expensive, a factor of over one hundred in computation time is gained by
calculating the shape gradient using the adjoint method. The gradient calculation using
adjoints has been successfully implemented also to a system composed of a toroidal field
coil and a pair of helical coils, which were previously optimized without derivatives in
Hanson & Cary (1984) and Cary & Hanson (1986). For one such configuration, the helical
coils were optimized using the adjoint calculation of the gradient of the residue, with a
result consistent with that of Cary and Hanson. The result of the optimization is shown in
figure 6.

The tool we have developed in this work can be applied in several areas of stellarator
design. First, shape-gradient calculations using the adjoint approach can be used to
efficiently calculate coil tolerances with respect to island size in stellarator configurations.
However, they can also be used in optimization, as demonstrated in § 4.4. Gradient-based
minimization of stochasticity and island size, as well as optimization of island width
sensitivity, are possible applications of this work.
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Appendix A. Magnetic field line trajectory as a Hamiltonian system

A fundamental property of the magnetic field, namely that it is divergenceless, is
imposed by defining B as the curl of a vector potential,

B = ∇ × A. (A 1)

Note that A is not uniquely defined: adding the gradient of a scalar function, ∇g, called
a gauge transformation, leaves B unchanged. The form of B we have adopted in (2.1)
corresponds to the vector potential

A = ψ∇θ − χ(ψ, θ, ϕ)∇ϕ, (A 2)

where we have chosen a particular gauge.
Considering R(ϕ) as the position vector following a field line, (A 1) can be derived by

extremizing the action

S =
∫ ϕ2

ϕ1

L (R(ϕ), ϕ) dϕ (A 3)

with respect to R(ϕ), where the end-points along the path, R(ϕ1) and R(ϕ2), are fixed, and
the Lagrangian L is

L = A(R) · dR
dϕ
. (A 4)

The choice (A 4) can be verified using the Euler–Lagrange equation resulting from the
extremization of the action,

d
dϕ

(
dL
∂Ṙ

)
= dL
∂R
, (A 5)

which leads to the equation B × dR/dϕ = 0, and implies that dR/dϕ is always parallel to
B. Upon inserting (A 2) into (A 4), the action S in (A 3) becomes

S =
∫ ϕ2

ϕ1

(
ψ

dθ
dϕ

− χ(ψ, θ, ϕ)

)
dϕ. (A 6)

The action expressed in the form (A 6) can be directly compared with the standard form
for the action of a Hamiltonian system,

S =
∫ t2

t1

(
p

dq
dt

− H(q, p, t)
)

dt. (A 7)

Hence, it follows that the trajectory of a magnetic field line as a function of toroidal angle
constitutes a Hamiltonian system where the canonical coordinate q is θ , the canonical
momentum p is ψ , the Hamiltonian H is χ and the time t is ϕ.

https://doi.org/10.1017/S0022377821000428 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821000428


36 A. Geraldini, M. Landreman and E. Paul

A.1. Hamiltonian after replacing θ with Θ
We proceed to obtain the Hamiltonian after the change of variables (θ, ψ) → (Θ,ψ),
where Θ = θ − ι0(ψ0)ϕ is the poloidal angle relative to the unperturbed magnetic field
line at the flux surface ψ = ψ0 crossing ϕ = θ = 0. To this end, we re-express dθ/dϕ by
applying the chain rule to the equation θ = Θ + ι0(ψ0)ϕ,

dθ
dϕ

=
(
∂θ

∂Θ

)
ϕ

dΘ
dϕ

+
(
∂θ

∂ϕ

)
Θ

= dΘ
dϕ

+ ι0(ψ0). (A 8)

Here, a subscript to the right of the parentheses indicates what variable is being kept
constant in the partial differentiation within the parentheses. By using (A 8), the action in
(A 6) becomes

S =
∫ ϕ2

ϕ1

(
ψ

dΘ
dϕ

+ ψι0(ψ0)− χ(ψ,Θ)

)
dϕ. (A 9)

Therefore, the Hamiltonian K in the new variables is given by (2.10). This is effectively the
result of a canonical transformation involving the independent variable (Goldstein, Poole
& Safko 2002).

Appendix B. Dominance of resonant perturbation

The equations of the magnetic field line trajectory including the perturbation are

dθ
dϕ

= ι0(ψ)+
∑
m,n

χ ′
m,n(ψ) exp (imθ − inϕ) , (B 1)

and
dψ
dϕ

= −
∑
m,n

χm,n(ψ)im exp (imθ − inϕ) . (B 2)

The solutions of (B 1) and (B 2) are assumed to be approximately given by the functions
obtained from (2.3)–(2.4),

ψ � ψ0 + ψ1(ϕ), (B 3)

and
θ � θi + ι0(ψ0)ϕ + θ1(ϕ), (B 4)

where ψ1 and θ1 are additional functions – assumed small – that depend on the
perturbation, and θi is the value of θ at ϕ = 0. Because |χ1| � χ0, we assume that ψ � ψ0
so that ψ1 and θ1 are small corrections, and calculate θ1 by neglecting it in the phase of the
perturbation,

dθ1

dϕ
�
∑
m,n

χ ′
m,n(ψ0) exp (imθi + imι0ϕ − inϕ) . (B 5)

This gives

θ1 �
∑
m,n

χ ′
m,n(ψ0)

imι0 − in
exp (imθi + imι0ϕ − inϕ) , (B 6)

which is divergent when n/m = ι0. Hence, we deduce that the effect of the perturbation is
dominated by the Fourier modes that coincide (resonate) with the rotational transform of
the unperturbed flux surface, n/m = ι0.
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Appendix C. Variation of periodic field line position

The periodic field line position changes owing to the variation of the magnetic field
configuration, which affects the circumference and in turn the island width, as discussed
in § 2. However, the gradient of the poloidal position vector X̄ k is itself useful to search
faster and more reliably for the new position of the periodic field line after a small change
in parameters, e.g. during the optimization considered in § 4.4. We thus proceed to derive
the variation �X̄ k.

We introduce the vector Lagrangian

LX̄ = X̄ k +
∫ 2π(k+L)/n0

2πk/n0

(
dX
dϕ

− V
)

· μX̄ k
dϕ. (C 1)

In (3.30), we have introduced a constraint using the adjoint variable μX̄ k
(a matrix).

Extremization with respect to variations in X (ϕ) gives

�LX̄ = �X̄ k +
∫ 2π(k+L)/n0

2πk/n0

�X ·
(

−dμX k

dϕ
− ∇X V · μX̄ k

)
dϕ

+�X (2π(k + L)/n0) · μX̄ k
(2π(k + L)/n0)

−�X (2πk/n0) · μX̄ k
(2πk/n0)) . (C 2)

Considering �X (2π(k + L)/n0) = �X (2πk/n0) = �X̄ k, the adjoint equation is

dμX̄ k

dϕ
= −∇X̄ V · μX̄ k

, (C 3)

and must be solved with the boundary condition μX̄ k
(2π(k + L)/n0) = μX̄ k

(2πk/n0)− I.
The boundary condition can be simplified as follows. The transpose of (2.46) is

dSᵀ
k

dϕ
= Sᵀ

k · ∇X V . (C 4)

Premultiplying and postmultiplying by the adjoint of Sk, S†
k = (Sᵀ

k )
−1, and noting that

S†
k · dSᵀ

k /dϕ = −(dS†
k/dϕ) · Sᵀ

k (from the chain rule and S†
k · Sᵀ

k = I), results in

dS†
k

dϕ
= −∇X V · S†

k . (C 5)

Comparing (C 3) and (C 5), and using Sk(2π(k + L)/n0) = Mk with Sk(2πk/n0) = I, gives

μX̄ k
(2π(k + L)/n0) = M†

k · μX̄ (2πk/n0) . (C 6)

Hence, the appropriate boundary condition for (C 3) is

μX̄ k
(2πk/n0) = [

I − M†
k

]−1
. (C 7)

The variation of X̄ k is then given by

�X̄ k = −
∫ 2π(k+L)/n0

2πk/n0

�V · μX̄ k
dϕ. (C 8)
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Appendix D. Formulae for the Reiman magnetic field configuration

The analytical magnetic field configuration is adapted from a model magnetic field
used in Reiman & Greenside (1986). The magnetic field components are, from (2.1) and
(4.3)–(4.6),

BR = Z
R

D0 + R − R0

R
D1, (D 1)

BZ = −R − R0

R
D0 + Z

R
D1, (D 2)

Bϕ = −1, (D 3)

where

D0 = ιax + ι′axr2 −
kmax∑
k=1

kεkrk−2 cos (kθ − ϕ) , (D 4)

D1 =
kmax∑
k=1

kεkrk−2 sin (kθ − ϕ) . (D 5)

From (D 1)–(D 3), the gradients of the magnetic field components with respect to the
poloidal coordinates R and Z are

∂RBR = − Z
R2

D0 + Z
R
∂RD0 + R0

R2
D1 + R − R0

R
∂RD1, (D 6)

∂ZBR = 1
R

D0 + Z
R
∂ZD0 + R − R0

R
∂ZD1, (D 7)

∂RBZ = −R0

R2
D0 − R − R0

R
∂RD0 − Z

R2
D1 + Z

R
∂RD1, (D 8)

∂ZBZ = −R − R0

R
∂ZD0 + 1

R
D1 + Z

R
∂ZD1, (D 9)

∂RBϕ = ∂ZBϕ = 0, (D 10)

where

∂RD0 = 2ι′ax (R − R0)−
kmax∑
k=1

kεkrk−4 ((k − 2) (R − R0) cos (kθ − ϕ)+ kZ sin (kθ − ϕ)) ,

(D 11)

∂RD1 =
kmax∑
k=1

kεkrk−4 ((k − 2) (R − R0) sin (kθ − ϕ)− kZ cos (kθ − ϕ)) , (D 12)

∂ZD0 = 2ι′axZ −
kmax∑
k=1

kεkrk−4 ((k − 2) Z cos (kθ − ϕ)− k (R − R0) sin (kθ − ϕ)) , (D 13)

∂ZD1 =
kmax∑
k=1

kεkrk−4 ((k − 2)Z sin (kθ − ϕ)+ k (R − R0) cos (kθ − ϕ)) . (D 14)
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From (D 6)–(D 10), the second derivatives of the magnetic field components with respect
to R and Z are

∂RRBR = 2Z
R3

D0 − 2R0

R3
D1 − 2Z

R2
∂RD0 + 2R0

R2
∂RD1 + Z

R
∂RRD0 + R − R0

R
∂RRD1, (D 15)

∂RZBR = − 1
R2

D0 − Z
R2
∂ZD0 + 1

R
∂RD0 + R0

R2
∂ZD1 + Z

R
∂RZD0 + R − R0

R
∂RZD1, (D 16)

∂ZZBR = 2
R
∂ZD0 + Z

R
∂ZZD0 + R − R0

R
∂ZZD1, (D 17)

∂RRBZ = 2R0

R3
D0 + 2Z

R3
D1 − 2R0

R2
∂RD0 − 2Z

R2
∂RD1 − R − R0

R
∂RRD0 + Z

R
∂RRD1, (D 18)

∂RZBZ = − 1
R2

D1 − R0

R2
∂ZD0 − Z

R2
∂ZD1 + 1

R
∂RD1 − R − R0

R
∂RZD0 + Z

R
∂RZD1, (D 19)

∂ZZBZ = 2
R
∂ZD1 − R − R0

R
∂ZZD0 + Z

R
∂ZZD1, (D 20)

∂RRBϕ = ∂RZBϕ = ∂ZZBϕ = 0, (D 21)

where ∂RZ = ∂ZR and

∂RRD0 = 2ι′ax −
kmax∑
k=1

kεkrk−6 [((k − 2)
(
r2 + (k − 4)(R − R0)

2) − k2Z2) cos (kθ − ϕ)

+ kZ(R − R0)(2k − 6) sin (kθ − ϕ)] , (D 22)

∂RZD0 = −
kmax∑
k=1

kεkrk−6 [k (r2 − (k − 2)(R − R0)
2 + (k − 4)Z2) sin (kθ − ϕ)

+ kZ(R − R0)(2k2 − 6k + 8) cos (kθ − ϕ)
]
, (D 23)

∂ZZD0 = 2ι′ax −
kmax∑
k=1

kεkrk−6 [((k − 2)
(
r2 + (k − 4)Z2) − k2(R − R0)

2) cos (kθ − ϕ)

− kZ(R − R0)(2k − 6) sin (kθ − ϕ)] , (D 24)

∂RRD1 =
kmax∑
k=1

kεkrk−6 [((k − 2)
(
r2 + (k − 4)(R − R0)

2) − k2Z2) sin (kθ − ϕ)

− kZ(R − R0) (2k − 6) cos (kθ − ϕ)] , (D 25)

∂RZD1 =
kmax∑
k=1

kεkrk−6 [k (−r2 + (k − 2)(R − R0)
2 − (k − 4)Z2) cos (kθ − ϕ)

+ kZ(R − R0)(2k2 − 6k + 8) sin (kθ − ϕ)
]
, (D 26)

∂ZZD1 =
kmax∑
k=1

kεkrk−6 [((k − 2)
(
r2 + (k − 4)Z2) − k2(R − R0)

2) sin (kθ − ϕ)

+ kZ(R − R0)(2k − 6) cos (kθ − ϕ)] . (D 27)
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All the equations in this appendix are linear in the parameters κ ∈ (ιax, ι
′
ax, ε). Hence,

the gradients of the magnetic field and its first poloidal derivatives can be straightforwardly
extracted.

Appendix E. Shape gradient of coil-produced magnetic field

The magnetic field produced by a set of N coils, indexed c, is given by the Biot–Savart
law (4.19). Perturbing the coils, such that rc(lc) → rc(lc)+�rc(lc), changes the magnetic
field, such that B(R) → B(R)+�B(R), where the change in magnetic field is given by

�Bcoil = −
N∑

c=1

μ0Ic

4π

∮
dlc

(
�rc · ∇rc

(
R − rc

|R − rc|3
)

× drc

dlc
+
(

R − rc

|R − rc|3
)

× d�rc

dlc

)
.

(E 1)

where

∇rc

(
R − rc

|R − rc|3
)

= 1
|R − rc|3

(
−I + 3 (R − rc) (R − rc)

|R − rc|3
)
. (E 2)

An important property of (E 2) is that

Tr
[
∇rc

(
R − rc

|R − rc|3
)]

= 0. (E 3)

The second term in (E 1) can be re-expressed using integration by parts as∮
dlc

(
R − rc

|R − rc|3
)

× d�rc

dlc
= −

∮
dlc

drc

dlc
· ∇rc

(
R − rc

|R − rc|3
)

×�rc, (E 4)

where the term involving an integral of a total derivative has vanished owing to the integral
being periodic. Inserting this into the previous equation gives

�Bcoil = −
N∑

c=1

μ0Ic

4π

∮
dlc

(
�rc · ∇rc

(
R − rc

|R − rc|3
)

× drc

dlc
− drc

dlc
· ∇rc

(
R − rc

|R − rc|3
)

×�rc

)
.

(E 5)
It is an exercise in vector identities to show that

�rc · ∇rc

(
R − rc

|R − rc|3
)

× drc

dlc
− drc

dlc
· ∇rc

(
R − rc

|R − rc|3
)

×�rc

= Tr
[
∇rc

(
R − rc

|R − rc|3
)]
�rc × drc

dlc
− ∇rc

(
R − rc

|R − rc|3
)

·�rc × drc

dlc
. (E 6)

Using (E 3), the first term on the right-hand side of (E 6) vanishes. Inserting (E 2), (E 3)
and (E 6) into (E 5) gives (4.23) for the shape gradient.

Appendix F. Optimization scheme

The iteration scheme used to search for solutions of P = 0 exploits the direction vector
dn obtained from the gradient of Pn with respect to the two variable parameters,

dn =
(
∂Pn

∂A+,1
,
∂Pn

∂B−,1

)
. (F 1)

Here, a subscript n denotes the value of the quantity at the nth step in the iteration. Starting
from an initial guess p0 = (0.0, 0.0), the next step in the iteration is tentatively specified
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by
pn+1 = pn + pn,step, (F 2)

where

pn,step = −gn

2r

Pndn

|dn|2 , (F 3)

and where gn > 0 is a number chosen at each iteration and r is the number of times the
move (F 2) is rejected at a particular iteration. The reference value of gn is denoted ḡn
and is specified as follows. Initially, we set ḡ0 = 1. Then, if at any particular iteration the
number of times r the move (F 2) gets rejected before being accepted exceeds a threshold
value rlimit = 3, we set ḡn+1 = ḡn/2, otherwise we keep the reference value unchanged,
ḡn+1 = ḡn. The move (F 2) is rejected if the step in parameter space leads to an increase in
the absolute value of the objective function, |Pn+1| � |Pn|.

There is an additional rejection criterion that is linked to a maximum value of the step
in the fixed-point position, |X̄ n+1 − X̄

n| (the subscript labelling the fixed point is omitted
to avoid clutter, and the superscript is the iteration step number). This is necessary to
ensure that the iteration proceeds successfully. At the iteration step n + 1, the scheme to
search for a periodic field line is applied with the initial guess equal to X̄

n − pn,step · ∇pX̄
n
.

The gradient of the fixed-point position with respect to the parameters, ∇pX̄
n = ∂X̄

n
/∂p,

is calculated from the equations of Appendix C. A common way for the search for the
new fixed-point position X n+1 to fail is by returning the magnetic axis (which is always
a periodic solution of the magnetic field line equations for any toroidal interval that is
a multiple of the the field periodicity). To avoid this, the maximum step size is set to
be a fraction u of the smallest distance between the fixed point and the magnetic axis
|X̄ n − X̄

n
axis|. The value u = 0.3 was used.

To summarize, the criterion for accepting or rejecting a step (F 2) is:

accept move if |Pn+1| < |Pn| and |X̄ n+1 − X̄
n| < u

∣∣X̄ n − X̄
n
axis

∣∣ ;
reject move if |Pn+1| � |Pn| or |X̄ n+1 − X̄

n| � u
∣∣X̄ n − X̄

n
axis

∣∣ .
⎫⎬
⎭ (F 4)

Once a move (F 2) is accepted, it becomes permanent and the following move pn+1,step is
calculated. The optimization is stopped when |Pn−1 − Pn| < 10−12.
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