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Algebraic Markov equivalence for links in

three-manifolds

S. Lambropoulou and C. P. Rourke

Abstract

Let Bn denote the classical braid group on n strands and let the mixed braid group Bm,n

be the subgroup of Bm+n comprising braids for which the first m strands form the iden-
tity braid. Let Bm,∞ =

⋃
n Bm,n. We describe explicit algebraic moves on Bm,∞ such that

equivalence classes under these moves classify oriented links up to isotopy in a link com-
plement or in a closed, connected, oriented three-manifold. The moves depend on a fixed
link representing the manifold in S3. More precisely, for link complements the moves are
the two familiar moves of the classical Markov equivalence together with ‘twisted’ conju-
gation by certain loops ai. This means premultiplication by a−1

i and postmultiplication by
a ‘combed’ version of ai. For closed three-manifolds there is an additional set of ‘combed’
band moves that correspond to sliding moves over the surgery link. The main tool in the
proofs is the one-move Markov theorem using L-moves (adding in-box crossings). The
resulting algebraic classification is a direct extension of the classical Markov theorem that
classifies links in S3 up to isotopy, and potentially leads to powerful new link invariants,
which have been explored in special cases by the first author. It also provides a controlled
range of isotopy moves, useful for studying skein modules of three-manifolds.

1. Introduction and overview

By a classic result of Brunn [Bru97] and Alexander [Ale23], any oriented knot in S3 is isotopic
to the closure of a braid and, by a theorem of Markov (and an improvement due to Weinberg)
[Mar35, Wei39, Bir74], there is a bijection (induced by ‘closing’ the braid) between isotopy classes
of oriented links and equivalence classes of braids, the equivalence being generated by braid isotopy
and by two moves between braids: Markov conjugation (conjugating by a crossing) and the Markov
move or M -move (adding an extra crossing at a rightmost point). In [LR97] a new type of braid move
was introduced, the L-move (adding an in-box crossing; see Figure 5 below for abstract illustrations),
and it was shown that the equivalence relation generated by L-moves and braid isotopy gives the
same bijection. Consequently, Markov moves and Markov conjugation can be produced by L-moves
(see Figures 13 and 14 below).

The Markov theorem can be regarded as a geometrical result (by thinking of braids as geometrical
objects) or as an algebraic result (by thinking of braids as elements of the classical braid group Bn).
In the latter case, the two moves of the Markov equivalence have the two well-known algebraic
formulations. Similarly, the L-moves have analogous algebraic formulations (cf. [LR97, Remark 2.2]).
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Figure 1. A mixed link and a mixed braid.

Now let V be the complement of a link. By ‘link complements’ we mean complements of both
knots and links and by ‘links’ we always mean knots and links. All links are considered oriented and
piecewise linear (PL), but will be mostly illustrated as smooth for convenience. By the Alexander
theorem, this link is isotopic to the closure B̂ of a braid B. So, we can write V = S3\B̂ and V can
be represented in S3 by B̂. Further, let V be a closed, connected, oriented three-manifold (we shall
simply write ‘closed three-manifold’). By classic results of Lickorish [Lic62] and Wallace [Wal60],
V can be obtained from S3 by surgery along a framed link with integral framings. Without loss of
generality, the surgery link can be assumed to be the closure B̂ of a surgery braid B. (Note that
the framing of B̂ induces a framing on the surgery braid B.) So, we can write V = χ(S3, B̂) and
V can be represented in S3 by B̂. Moreover, by the proof in [Lic62], all components of the surgery
link can be assumed unknotted and, as can be easily seen, they can be isotoped to the closure of a
pure braid. Thus, for closed three-manifolds we may assume B to be a pure braid.

Now let L be an oriented link in V = S3\B̂ or χ(S3, B̂). Fixing B̂ pointwise we may represent L
in S3 unambiguously by the mixed link B̂ ∪L, which consists of the fixed part B̂ and the ‘moving’
part L that links with B̂ (see Figure 1 for an example). A mixed link diagram is a diagram B̂ ∪ L̃
of B̂ ∪ L on the plane of B̂. This plane is equipped with the top-to-bottom direction of B. By the
Alexander theorem and as explained in [LR97, Theorem 5.3], a diagram B̂ ∪ L̃ of B̂ ∪ L may be
turned into a mixed braid B∪β with isotopic closure. (The closure of a braid is obtained by joining
each pair of corresponding endpoints by a simple arc.) This is a braid in S3 with two different sets
of strands, abstractly represented by a braid box with two differently coloured sets of strands. The
point here is that one of the two sets comprises the fixed subbraid B and not any other Markov
equivalent one. The other set of strands representing the link in the manifold V is called the moving
subbraid. See Figure 1 for an example. So, V may be represented in S3 by the open braid B.

Consider now an isotopy of L in V . It follows from standard results of PL topology that L1 and
L2 are two instances of an isotopy in S3\B̂ if and only if the corresponding mixed links B̂ ∪L1 and
B̂ ∪L2 are isotopic in S3 by an ambient isotopy that keeps B̂ pointwise fixed. See [RS72]. In terms
of diagrams, the mixed link isotopy will not involve Reidemeister moves of the fixed part.

The first stage of surgery along a framed link B̂ is to pass from S3 to the link complement
S3\B̂. Thus, an isotopy of L in χ(S3, B̂) can be viewed as an isotopy in S3\B̂, but with the extra
freedom for L to slide across the disc that the parallel curve of a framed component of B̂ bounds in
χ(S3, B̂). This isotopy move is similar to the second move of the Kirby calculus. As noted in [LR97],
the first part of the move is just isotopy in S3\B̂, so we only need to consider the essential part,
where a little band of L very close to the surgery component slides over the component, according
to the framing and orientation conventions. We shall call this move a band move. A band move
takes place in an arbitrarily thin tubular neighbourhood of the component of the surgery link, so
by ‘band move’ we may unambiguously refer to both the move in the three-space and its projection
on the plane of B̂. In terms of diagrams, the mixed link equivalence in S3 includes the band moves
(two types, depending on the orientation of the little band, which are related by a twist of the little
band; see Figure 2). For more details the reader is referred to [LR97, Theorems 5.2 and 5.8].
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Figure 2. The two types of band moves and their relation.
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Figure 3. The band move for mixed braids.

Let us see now how the mixed link isotopy translates on the level of mixed braids.

Definition 1. A braid band move is a move between mixed braids, which is a band move between
their closures. It starts with a little band oriented downwards, which, before sliding along a surgery
strand, gets one twist positive or negative. See Figure 3. In the sequel we shall omit the word ‘braid’
and we shall just say ‘band move’.

Definition 2 (L-moves for mixed braids). Let B ∪ β be a mixed braid in S3 and P a point of an
arc of the moving subbraid β, such that P is not vertically aligned with any crossing or endpoint
of a braid strand. Doing an L-move at P means breaking the arc at P , bending the two resulting
smaller arcs slightly apart by a small isotopy and stretching them vertically, the upper downwards
and the lower upwards, and both over or under all other arcs of the diagram, so as to introduce
two new corresponding strands with endpoints on the vertical line of P . Stretching the new strands
over will give rise to an Lo-move and under to an Lu-move. See Figure 4.

Using a small braid isotopy, an L-move can be equivalently seen with a crossing (positive or
negative) formed. See Figure 5.

Clearly, two mixed braids that differ by an L-move have isotopic closures, since the L-move
corresponds to introducing a twist in the mixed link. L-moves and mixed braid isotopy generate
an equivalence relation on mixed braids called L-equivalence. Our method of proving the one-move

L  -move

new
strands

new
strands

breakpoint

pull pull

under over

L  -move
u

o

Figure 4. The two types of L-moves.
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Figure 5. An L-move introduces a crossing.
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Figure 6. An algebraic mixed braid.

(and the classical) Markov theorem [LR97, Theorem 2.3] ensures that the arcs of the diagram that
are oriented downwards do not participate in the proof. This led us to the following result [LR97,
Theorems 5.5 and 5.10], which is our starting point in this paper.

Theorem 1 (Geometric Markov theorem for V = S3\B̂ or χ(S3, B̂)). Two oriented links in S3\B̂
are isotopic if and only if any two corresponding mixed braids in S3 differ by mixed braid isotopy
and a finite sequence of L-moves that do not touch the fixed subbraid B.

Moreover, if the two links lie in χ(S3, B̂), the mixed braids differ by mixed braid isotopy, by
L-moves that do not touch the fixed subbraid B and by braid band moves.

The paper is concerned with the corresponding algebraic formulation.
The braid structures for links in these manifolds (as well as for links in handlebodies) have

been established and studied in [Lam00]. These are either the extended braid groups Bm,n, whose
elements are called algebraic mixed braids and they have the first m strands forming the identity
subbraid (see Figure 6 for an example), or appropriate cosets Cm,n of these groups, that depend on
the specific manifold. More precisely, Bm,n has the presentation:

Bm,n =

〈
a1, . . . , am,
σ1, . . . , σn−1

∣∣∣∣∣∣∣∣∣∣

σkσj = σjσk, |k − j| > 1
σkσk+1σk = σk+1σkσk+1, 1 � k � n− 1
aiσk = σkai, k � 2, 1 � i � m
aiσ1aiσ1 = σ1aiσ1ai, 1 � i � m

ai(σ1arσ
−1
1 ) = (σ1arσ

−1
1 )ai, r < i

〉

where the generators ai and σj are as illustrated in Figure 7.
The groups Bm,n are the appropriate braid structures for studying knots and links in the comple-

ment of the m-unlink or a connected sum of m lens spaces of type L(p, 1) or a handlebody of genus
m. For the first two cases of manifolds it is easy to formulate the analogue of the Markov theorem
algebraically (see the first two examples of § 4). In [HL02] an algebraic formulation of the Markov
theorem for handlebodies was proven in terms of the groups Bm,n, one version using algebraic
L-moves and another using Markov equivalence (cf. [HL02, Theorems 4 and 5]). In that case there
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Figure 7. The ‘loops’ ai, a−1
i and the crossings σj.
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Figure 8. Parting a mixed braid – the standard parting.

was no surgery involved. The conceptual difficulty there was related to the fact that conjugations
by the ai were not permitted.

For a generic V = S3\B̂ or χ(S3, B̂) the fixed subbraid B is not the identity braid. Parting
a mixed braid means to separate its endpoints into two different sets, so that the resulting braids
have isotopic closures. Figure 8 illustrates different partings of an abstract mixed braid. Combing a
parted mixed braid means to separate the fixed subbraid from the moving part, using mixed braid
isotopy. See Figure 9 for an abstract illustration. These operations are discussed in detail in §§ 2
and 3. By parting and combing mixed braids, it was shown in [Lam00, § 6], that knots and links in
V may be represented by mixed braids in the groups Bm,n followed by the natural embeddings of B
in the groups Bm+n. Hence, that the braid structures related to V are the cosets of the subgroups
Bm,n in the groups Bm+n (n ∈ N), containing the embedded fixed subbraid B.

The main results

The main results of this paper are Theorems 4 and 5 in § 3. Theorem 4 gives the algebraic braid equiv-
alence of combed mixed braids for knot complements and Theorem 5 gives the algebraic braid
equivalence of combed mixed braids for closed three-manifolds. Our strategy for proving these
theorems is the following. We first part the mixed braids and we translate the L-equivalence and

...

...

n1
...

1 m

Cm,n

...

Bm,n

B

...

...

n1m1
...

...
B

braid

isotopy

Figure 9. An abstract parted and combed mixed braid.
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the braid band moves of Theorem 1 to an equivalence of parted mixed braids. Here the generators
of the groups Bm,n become apparent in the equivalence. Also, the braid band moves assume a special
form. These are done in § 2. See Theorem 2 for link complements, and Lemma 5 and Theorem 3 for
closed three-manifolds.

In § 3 we comb the parted mixed braids and we translate the parted mixed braid equivalence to
an equivalence of algebraic mixed braids. For both link complements and closed three-manifolds,
Markov move and Markov conjugation remain equivalence moves between combed and algebraic
mixed braids. However, in place of the conjugation by a ‘loop’ ai we need to introduce the twisted
conjugation, which takes into account the combing of the loop through the fixed subbraid:

β ∼ a∓1
i βρ±1

i

where ρi is the combing of the loop ai through B, for β, ai, ρi ∈ Bm,n. See Figure 19 below for
illustrations.

Moreover, a parted band move after combing is the composition of an algebraic band move with
the combing of the parallel strand through the surgery subbraid. An algebraic band move is a braid
band move between elements of the groups Bm,n and it has the algebraic expression

β1β2 ∼ β′
1t

pk
k,nσ±1

n β′
2

where β1, β2 ∈ Bm,n, tk,n is a Markov conjugate of the loop ak, pk ∈ Z is the framing of the kth
surgery component of the surgery link and β′

1, β
′
2 ∈ Bm,n+1 are the words β1, β2, but with certain

substitutions that indicate the pulling of the parallel strand to the right of the braid. See Definition 7
and Figure 20 below. Then, a combed band move has the algebraic expression

β1β2 ∼ β′
1t

pk
k,nσ±1

n β′
2rk

where rk is the combing of the parted parallel strand to the kth surgery strand through the surgery
braid. For an illustration here see Figure 21 below.

Finally, in § 4 we give explicit examples, including complements of daisy chains, the lens spaces,
the complement of the Borromean rings or a closed three-manifold obtained by surgery along them.
We also discuss the case where the surgery braid is not a pure braid (Lemma 9) and we present as
an example the complement of a trefoil or a manifold obtained by surgery along it.

This paper is a sequel to [LR97, Lam00, HL02]. It sets out the necessary algebraic formalism for
constructing knot invariants in three-manifolds using braid machinery, for example via constructing
Markov traces on appropriate algebras, quotients of the group algebras of the braid groups Bm,n.
(See [Jon87] for the classical case of links in S3). In the case m = 1, B1,n is the Artin group of
type B. See, for example, [Lam99] and references therein for the construction of the analogues of the
two-variable Jones polynomial (homflypt) for links in the solid torus. The case of L(p, 1) is being
studied by the first author with J. H. Przytycki. Theorem 5 gives very good control over the band
moves of links in closed three-manifolds, and this is very useful for the study of skein modules
of three-manifolds. For skein modules of three-manifolds see, for example, [Prz06] and references
therein.

A final comment is now due. In our set-up the manifold is represented in S3 by a fixed link. In
the case of a closed three-manifold the surgery link is not unique up to isotopy. In fact, it may be
altered via the Kirby calculus [Kir78]. Then the corresponding surgery braids are equivalent under
moves described in [KS92]. One could then consider combining the mixed braid equivalence given
in the present paper with the braid equivalence of [KS92]. This will be the subject of a subsequent
paper.
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Figure 10. Crossing the arc k.

2. Markov equivalence for parted mixed braids

This section is an intermediate step towards the algebrization of Theorem 1. Here the mixed braids
resulting from the mixed links have all, say m, strands of the fixed part B occupying the first m
positions of the mixed braid.

Definition 3. A parted mixed braid is a mixed braid B ∪ β on m + n strands, such that the first
m endpoints are those of the subbraid B and the last n endpoints are those of β. Parted mixed
braids are denoted in the same way as mixed braids. We number their fixed strands from 1 up to m
and their moving strands from 1 up to n. (See the left-hand side of Figure 14 below for an abstract
illustration.)

Lemma 1. Every mixed braid may be represented by a parted mixed braid with isotopic closure
(cf. [Lam00, § 6], compare with [HL02, Lemma 1]).

Proof. Indeed, let B ∪ β be a mixed braid. To see this we simply attach arbitrarily arrays of labels
‘o’ or ‘u’ to corresponding pairs of endpoints of the moving subbraid β, with as many entries as
the number of fixed strands on their right, and we pull the strands of corresponding endpoints to
the right, over or under each strand of B that lies on their right, according to the label in the array
of the pulled strands. We start from the rightmost pair respecting the position of the endpoints.
View the first two illustrations of Figure 8 for the parting of an abstract mixed braid. Obviously,
the closures of the initial and of the parted mixed braid are isotopic (they differ by planar isotopy
and by mixed Reidemeister II moves).

It follows that two different partings of a mixed braid give rise, upon closure, to isotopic mixed
links. For this reason we could fix the pulling of the moving strands during the parting process to
be always over or always under each strand of B that lies on its right. If the pulling is always over
we shall refer to it as the standard parting. See the two illustrations on the right of Figure 8.

Pulling a moving strand ‘under’ a fixed strand instead of ‘over’ it simply corresponds to the
fact that the closure of the moving strand crosses a hypothetical closing arc k of the fixed subbraid
B, and this is an allowed isotopy move in the manifolds considered here. See Figure 10. (We note
that this is not true in the case of handlebodies and this is the reason why conjugation by the
generators ai is not permitted; see [HL02] for a detailed analysis.)

Lemma 2 below gives the relation of an arbitrary parting with the corresponding standard
parting, and it is very instructive, as it brings the ‘loops’ ai into the parted braid equivalence. Note
that the elementary algebraic mixed braids ai and their inverses, together with the crossings σj

(all defined in Figure 7) are clearly the geometric generators of the moving part of a parted mixed
braid.

Now let Cm,n denote the set of parted mixed braids on n moving strands related to V = S3\B̂
or χ(S3, B̂). By adding an extra moving strand on the right of a parted mixed braid on n moving
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strands, Cm,n embeds naturally into Cm,n+1. Let Cm,∞ := ∪∞n=1Cm,n denote the disjoint union of
all sets Cm,n. We define below some moves in Cm,∞.

Definition 4.

(1) Loop conjugation of a parted mixed braid in Cm,n is its concatenation from above by a loop
ai (or by a−1

i ) and from below by a−1
i (respectively ai).

(2) Markov conjugation of a parted mixed braid in Cm,n is its concatenation from above by a
crossings σj (or by σ−1

j ) and from below by σ−1
j (respectively σj).

(3) A parted L-move is defined to be an L-move between parted mixed braids. (See the left-hand
illustration of Figure 15 below.)

(4) An M -move is the insertion of a crossing σ±1
n at the right-hand side of a parted mixed braid

on n moving strands. Undoing an M -move is the reverse operation. See Figure 13 below.

Lemma 2. Consider a mixed braid on m + n strands and an arbitrary parting of it in Cm,n. Then,
up to Markov conjugation, this parting differs from its corresponding standard parting by a finite
sequence of loop conjugations.

Proof. By an inductive argument we may assume that all moving strands from the first up to the
(j − 1)th are pulled ‘over’ all the fixed strands that lie on their right. Consider now the jth moving
strand. Upon parting, this lands on the jth position of the moving part of the resulting parted
mixed braid. See Figure 11. By a mixed braid isotopy we bring the jth moving strand on top of
the other moving strands. Note that the braid isotopy is independent of the parting labels attached
to the jth moving strand. Then by Markov conjugation by the word (σ1 . . . σj−1) we bring the jth
moving strand to the first position of the moving subbraid. See the top row of Figure 11.

Now let the parting label of the original jth moving strand for the ith fixed strand be ‘under’.
By a second inductive argument we may assume that the parting labels of the original jth strand
are all ‘over’ for the (i+1)th up to the mth fixed strand. Then, conjugation by ai changes the label
‘under’ to ‘over’. By applying once more mixed braid isotopy and Markov conjugation by the word
(σ−1

j−1 . . . σ−1
1 ) we obtain a parted mixed braid identical to the initial one except for the place of the

one crossing in question, which is switched. See the second row of Figure 11. Continuing backwards
with the remaining parting labels of the jth moving strand we change them all in this manner to
‘over’, and this ends the proof.

Remark 1. It follows from the proof of Lemma 2 that changing a parting label from ‘under’ to ‘over’
corresponds in Cm,∞ to conjugation by some ai.

Lemma 3. A mixed braid with an L-move performed can be parted to a parted mixed braid with
a parted L-move performed. (Compare with [HL02, Lemma 2].)

Proof. If the L-move is an Lo-move, we part its strands by pulling them to the right and over all
other strands in between. Then the crossing of the L-move slides over to the right by a braid isotopy.
See Figure 12. The case of an Lu-move is analogous: here we pull the two strands under the fixed
strands in between.

Lemma 4. Markov conjugation and M -moves can be realized by a sequence of parted L-moves.
Conversely, a parted L-move is a composition of an M -move and Markov conjugation.

Proof. It is clear that an M -move is a special case of a parted L-move. The one-move Markov
theorem in S3 implies that Markov conjugation in S3 can be realized by a sequence of L-moves
(cf. [LR97, § 4.1]). The same arguments apply to both link complements and closed three-manifolds.
However, we would like to give a second direct proof of Lemma 4, which is an adaptation for
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Figure 11. Change of parting labels ←→ conjugation by ai.
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Figure 12. Sliding an Lo-move to the right.
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Figure 13. The M -move.
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Figure 14. Conjugation by σ−1
j is a composition of L-moves.

the case of knot complements and closed three-manifolds of a direct proof for the classical case
of S3, given by Häring-Oldenburg. In Figure 14 we start with a parted mixed braid conjugated by σj.
After performing an appropriate parted Lo-move, braid isotopy and undoing another parted Lo-
move, we end up with the original mixed braid free of conjugation by the σj. Conversely, as it
becomes clear from Figure 15, a parted L-move is a composition of an M -move and Markov
conjugation.

We are now in a position to state two versions of the analogue of the Markov theorem for parted
mixed braids in S3\B̂.

Theorem 2 (Parted version of Markov theorem for V = S3\B̂). Two oriented links in S3\B̂ are
isotopic if and only if any two corresponding parted mixed braids in Cm,∞ differ by a finite sequence
of parted L-moves and loop conjugations.

Equivalently, two oriented links in S3\B̂ are isotopic if and only if any two corresponding
parted mixed braids in Cm,∞ differ by a finite sequence of M -moves, Markov conjugations and loop
conjugations.

Proof. This follows immediately from Theorem 1 for V = S3\B̂ and from Lemmas 2, 3 and 4.

n+11 i n+11

braid

isotopy

1 m 1 m

B B

... ...

... ...

... ...

......

Figure 15. Parted L-move ←→ M -move and Markov conjugation.
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p p

Figure 16. A parted band move.

We would like to extend Theorem 2 to parted mixed braids in closed three-manifolds. Lemma 5
below sharpens the band moves of Theorem 1 for χ(S3, B̂) and it shows the effect of parting on
band moves.

Definition 5. A parted band move is defined to be a band move between parted mixed braids, such
that: it takes place at the top part of the braid (before any surgery braid crossings are encountered)
and the little band starts from the last strand of the moving subbraid and it moves over each
moving strand and each component of the surgery braid, until it reaches from the right the specific
component. After the band move is performed we apply to the resulting mixed braid the standard
parting bringing the new strands over to the last position of the moving part.

See Figure 16 for an example of a parted positive band move, where the moving part has been
simplified to the identity braid.

Lemma 5. A band move may be always assumed, up to L-equivalence, to take place at the top part
of a mixed braid and on the right of the specific surgery strand.

Moreover, performing a band move on a parted mixed braid and then parting, the result is
equivalent, up to L-moves and loop conjugation, to performing a parted band move.

Proof. In a mixed braid B ∪β1 consider a little band that has approached a specific surgery strand
of B from the right and is about to perform a band move. Pull the little band up to the top along
the surgery strand. See illustrations 1 and 3 of Figure 17. Then perform braiding to obtain a mixed
braid B ∪ β2. This is L-equivalent to B ∪ β1. Note that the edge arc of the little band is still there
in B ∪ β2, because it is a down-arc. Now, using this arc, perform a top band move in B ∪ β2 and
call the resulting mixed braid B ∪ α2. See illustration 4 of Figure 17. Let also B ∪ α1 be the mixed
braid obtained after performing the band move in the first mixed braid B ∪β1. See illustration 2 of
Figure 17, but consider only the braid between the dotted lines. Then B∪α1 differs from B∪α2 by
exactly the same sequence of L-moves, L1, . . . , Lk say, that separate B ∪ β1 and B ∪ β2, since the
isotopies separating the corresponding closures are identical. Compare the corresponding diagrams
of Figure 17. Thus, we have shown that

B ∪ β1
general band move∼ B ∪ α1

⇐⇒
B ∪ β1

L1,...,Lk∼ B ∪ β2
top band move∼ B ∪ α2

L1
−1,...,Lk

−1

∼ B ∪ α1.

The first statement of the lemma is proved. Consider now the same setting as above, but with
B ∪ β1 being a parted mixed braid. Perform on it a band move and part the resulting new mixed
braid by pulling the two new strands over all strands in between to the last position of the moving
part. See illustration 2 of Figure 17, where the parting is now included. At the same time pull the
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Figure 17. The proof of Lemma 5.

little band of B ∪ β1 up to the top and then horizontally to the right, over all strands in between,
until it reaches the last position of the moving part. Then do a similar pull-back to the left up to
the specified surgery strand. See illustration 5 of Figure 17. Now perform a parted band move at
the place marked with a shaded disc. See illustration 6 of Figure 17. As above, this last mixed braid
operation does not create any new up-arcs and it does not interfere with the band move. Finally,
part by the standard parting the new strands created by braiding the up-arcs from the pulling along
the surgery strand, and part the new strands created from the parted band move last, by pulling
them over all strands in between to the last position of the moving part. Clearly, the two pairs
(related to (1, 5) and (2, 6) of Figure 17) of parted mixed braids involved differ by the same parted
L-moves together with loop conjugation that comes from the parting.

Further note that, by braid isotopy and loop conjugation, the p twists of a general band move
may take place anywhere along the surgery strand, so just as well at the top, as in Definition 5 of a
parted band move. Thus, we showed that a band move on a parted mixed braid can be accomplished
with a parted band move, up to L-moves and loop conjugation.

Finally, if the little band lies on the left of the surgery component we pull it horizontally over the
surgery strand and to the right and then we pull it slightly back to the left, so that it approaches
the surgery strand from the right. Up to here it is only braid isotopy. We now perform a band move
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. .
 .

B

Figure 18. Artin’s combing separates the fixed part from the moving part.

before and a band move after and we notice that the two final mixed braids differ by conjugating
a half twist of the framing. In any case, after parting the two final mixed braids are the same.

Then Theorem 1 for χ(S3, B̂) and Lemma 5 extend Theorem 2 to the following.

Theorem 3 (Parted version of Markov theorem for χ(S3, B̂)). Two oriented links in χ(S3, B̂) are
isotopic if and only if any two corresponding parted mixed braids in Cm,∞ differ by a finite sequence
of parted L-moves, loop conjugations and parted band moves.

Equivalently, two oriented links in χ(S3, B̂) are isotopic if and only if any two corresponding
parted mixed braids in Cm,∞ differ by a finite sequence of M -moves, Markov conjugations, loop
conjugations and parted band moves.

3. Markov equivalence for combed and algebraic mixed braids

In this section we explain the combing of parted mixed braids and we translate the equivalence of
Theorems 2 and 3 to equivalence of algebraic mixed braids.

Let V = S3\B̂ or χ(S3, B̂). Unless V is the complement of the m-unlink or a connected sum
of m lens spaces of type L(p, 1), where the fixed subbraid B is the identity braid on m strands,
concatenating two elements of Cm,n is not a closed operation, since it alters the braid description
of the manifold. So, the set Cm,n of parted mixed braids is not a subgroup of Bm+n. Yet, as shown
in [Lam00, § 6], using Artin’s combing for pure braids, the moving part of a parted mixed braid can
be combed away from the fixed subbraid, so that this latter remains free of mixed linking at the
bottom of the parted mixed braid. Thus, the parted mixed braid splits into the concatenation of
two parted mixed braids: the ‘algebraic’ part at the top, which has as fixed subbraid the identity
braid on m strands and the ‘coset’ part at the bottom consisting of the fixed braid B embedded
naturally in Bm+n. See Figure 18 for an abstract illustration. The result will be called a combed
mixed braid.

Recall that the algebraic part of a combed mixed braid is called algebraic mixed braid and it is
an element of Bm,n. (Recall Figure 6 for an example.) The set Bm,n of all algebraic mixed braids on
m fixed strands and n moving strands is closed under the usual concatenation and with respect to
inverses. Thus, it is a subgroup of Bm+n. The set Cm,n of combed mixed braids is a coset of Bm,n

in Bm+n (cf. [Lam00, Proposition 1]). Thus, for a fixed manifold V , an element in Bm,n represents
unambiguously an element in Cm,n, hence an oriented link in V . The braid group Bm,n embeds
naturally into the group Bm,n+1 and we shall denote by Bm,∞ :=

⋃∞
n=1 Bm,n the disjoint union of

all braid groups Bm,n.
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We would like to restate the Markov equivalence in Theorems 2 and 3 for parted mixed braids in
terms of their corresponding algebraic mixed braids after combing. For this we need to understand
exactly how the combing is done and how it affects the parted braid equivalence moves.

Note that, if we regard a parted mixed braid as an element of the classical braid group Bm+n,
then the crossings σj of the moving part commute with the crossings of the fixed part, so they
are not affected by combing. More precisely, if Σk denotes the crossing between the kth and the
(k + 1)th strand of the fixed subbraid, then for all j = 1, 2, . . . , n − 1 and k = 1, 2, . . . ,m − 1 we
have the relations

Σkσj = σjΣk.

Thus, the only generating elements of the moving part that are affected by the combing are the
loops ai. In Lemma 6 below we give formuli for the effect of combing on the ai.

Lemma 6. The crossings Σk, for k = 1, . . . ,m − 1, and the loops ai, for i = 1, . . . ,m, satisfy the
following ‘combing’ relations:

• Σka
±1
k = a±1

k+1Σk;

• Σka
±1
k+1 = a−1

k+1a
±1
k ak+1Σk;

• Σka
±1
i = a±1

i Σk, if i �= k, k + 1;
• Σ−1

k a±1
k = aka

±1
k+1a

−1
k Σ−1

k ;

• Σ−1
k a±1

k+1 = a±1
k Σ−1

k ;

• Σ−1
k a±1

i = a±1
i Σ−1

k , if i �= k, k + 1.

Moreover, since B is assumed to be a pure braid for V = χ(S3, B̂), it is useful to give the ‘combing’
relations between the crossings Σ2

k and the loops ai. Indeed we have:

• Σ2
ka

±1
k = a−1

k+1a
±1
k ak+1Σ2

k;

• Σ2
ka

±1
k+1 = a−1

k+1a
−1
k a±1

k+1akak+1Σ2
k;

• Σ2
ka

±1
i = a±1

i Σ2
k, if i �= k, k + 1;

• Σ−2
k a±1

k = akak+1a
±1
k a−1

k+1a
−1
k Σ−2

k ;

• Σ−2
k a±1

k+1 = aka
±1
k+1a

−1
k Σ−2

k ;

• Σ−2
k a±1

i = a±1
i Σ−2

k , if i �= k, k + 1.

Proof. We illustrate in Figure 19 the first three principal relations for Σ1. For arbitrary Σk the
proof is obviously analogous. The relations for the crossings Σ−1

k and for Σ2
k follow easily from those

for Σk.

In Bm,∞ we now define the following moves.

Definition 6.

(1) Twisted loop conjugation is defined to be a combed loop conjugation and it has the algebraic
expressions

β ∼ a∓1
i βρ±1

i

for β, ai, ρi ∈ Bm,n, where ρi is the combing of the loop ai through the fixed braid B. (Note
that the combing of the loop a−1

i through the fixed braid B is ρi
−1.)

(2) Algebraic Markov conjugation is Markov conjugation between elements of Bm,∞ and it has the
algebraic expression

α ∼ σ±1
j ασ∓1

j

where α, σj ∈ Bm,n.
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Figure 19. The relations between Σ1 and the ai.

(3) An algebraic L-move is a parted L-move between elements of Bm,∞. From Figure 15 one can
easily derive the following algebraic expressions for algebraic Lo-moves and algebraic Lu-moves,
respectively.

α = α1α2 ∼ σ−1
i . . . σ−1

n α1σ
−1
i−1 . . . σ−1

n−1σ
±1
n σn−1 . . . σiα2σn . . . σi

α = α1α2 ∼ σi . . . σnα1σi−1 . . . σn−1σ
±1
n σ−1

n−1 . . . σ−1
i α̃2σ

−1
n . . . σ−1

i

where α1, α2 ∈ Bm,n.
(4) An algebraic M -move is an M -move between elements of Bm,∞ and it has the algebraic

expression

α1α2 ∼ α1σ
±1
n α2

where α1, α2 ∈ Bm,n.

Lemma 7. Two parted mixed braids that differ by Markov conjugation by some σj , respectively
by an M -move, respectively by a parted L-move, after combing they give rise to algebraic mixed
braids that differ by algebraic Markov conjugation by the σj, respectively by an algebraic M -move,
respectively by an algebraic L-move.

Proof. As observed earlier, the crossings of the moving part commute with the crossings of the fixed
part. Thus, Markov conjugation, the M -moves and the parted L-moves all commute with combing.
Moreover, the two parted mixed braids are otherwise identical, so they are both combed in exactly
the same manner. Therefore, after combing, the combed mixed braids as well as their corresponding
algebraic mixed braids will just differ by algebraic Markov conjugation, respectively an algebraic
M -move, respectively an algebraic L-move.

We are now in a position to restate Theorem 2 in terms of algebraic mixed braids.
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Theorem 4 (Algebraic Markov theorem for S3\B̂). Two oriented links in S3\B̂ are isotopic if
and only if any two corresponding algebraic mixed braid representatives in Bm,∞ differ by a finite
sequence of the following moves:

(1) algebraic M -moves: α1α2 ∼ α1σ
±1
n α2, for α1, α2 ∈ Bm,n;

(2) algebraic Markov conjugation: α ∼ σ±1
j ασ∓1

j , for α, σj ∈ Bm,n;

(3) twisted loop conjugation: β ∼ a∓1
i βρ±1

i , for β, ai, ρi ∈ Bm,n, where ρi is the combing of the
loop ai through B;

or, equivalently, by a finite sequence of the following moves:

(1′) algebraic L-moves (see the algebraic expressions in Definition 6);

(2′) twisted loop conjugation.

Proof. By Lemma 7, M -moves and Markov conjugation get combed to algebraic M -moves and
algebraic Markov conjugation. Thus, by Theorem 2, we only have to observe that conjugating
a parted mixed braid by a loop ai induces after combing the twisted conjugation on the level
of the corresponding algebraic braids. Lemma 6 explains how to efficiently perform the combing of
the loops a±1

i .

In order to extend Theorem 4 to mixed braids in χ(S3, B̂) we need to understand how a parted
band move is combed through the surgery braid B and to give algebraic expressions for parted band
moves between algebraic mixed braids.

Definition 7. An algebraic band move is defined to be a parted band move between elements of
Bm,∞. See Figure 20 for an abstract example. Setting

λn−1 := σn−1 · · · σ1 and tk,n := σn · · · σ1akσ
−1
1 · · · σ−1

n ,

an algebraic band move has the following algebraic expression:

β1β2 ∼ β′
1t

pk
k,nσ±1

n β′
2,

for β1, β2 ∈ Bm,n, where β′
1, β

′
2 ∈ Bm,n+1 are the words β1, β2 respectively, with the substitutions

a±1
k ←→ [(λ−1

n−1σ
2
nλn−1)ak]

±1

a±1
i ←→ (λ−1

n−1σ
2
nλn−1)a±1

i (λ−1
n−1σ

2
nλn−1)−1, if i < k

a±1
i ←→ a±1

i , if i > k.

Moreover, a combed algebraic band move is a parted band move that is the composition of an
algebraic band move with the combing of the parallel strand

β1β2 ∼ β′
1t

pk
k,nσ±1

n β′
2rk

where rk is the combing of the parted parallel strand to the kth surgery strand through the surgery
braid.

In Figure 20 note that the isotopy of the little band in the dotted box is treated as ‘invisible’,
that is, as identity in the braid group.

Lemma 8. Performing a parted band move on a parted mixed braid and then combing, the result
is the same as combing the mixed braid and then performing an algebraic band move.

Proof. The parted band move takes place at the top part of the braid, so it resembles an algebraic
band move. Therefore, we just have to consider the behaviour of the parallel strand with respect to
combing. On the other hand, the fact that a band move takes place very close to the surgery strand

1054

https://doi.org/10.1112/S0010437X06002144 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002144


Algebraic Markov equivalence for links in three-manifolds

...

...

...

...

k 1 n

1 n+1n
...

k

p
k

=

p
k

p
k

1 n+1k n

...

Figure 20. An algebraic band move and its algebraic expression.
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Figure 21. Parted band move = algebraic band move + combing.

ensures that the loops a±1
k around the specific surgery strand get combed in the same way before

and after the band move.
So, when we perform a parted band move on a parted mixed braid we comb away all of the loops

a±1
k and we leave last the combing of the parallel moving strand. This combing will be the same in

either case of the statement of the lemma. In Figure 21 we show that using a small braid isotopy
at the bottom of the algebraic part we create an algebraic band move followed by the combing
through the dotted box P of the parted parallel strand. Note, finally, that the combing of the
parallel strand leaves clear the fixed braid at the bottom. Thus, the proof is concluded.

We are now in the position to state the following result.

Theorem 5 (Algebraic Markov theorem for χ(S3, B̂)). Two oriented links in χ(S3, B̂) are isotopic
if and only if any two corresponding algebraic mixed braid representatives in Bm,∞ differ by a finite
sequence of the following moves:

(1) algebraic M -moves: α1α2 ∼ α1σ
±1
n α2, for α1, α2 ∈ Bm,n;

(2) algebraic Markov conjugation: α ∼ σ±1
j ασ∓1

j , for α, σj ∈ Bm,n;
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(3) twisted loop conjugation: β ∼ a∓1
i βρ±1

i , for β, ai, ρi ∈ Bm,n, where ρi is the combing of the
loop ai through B;

(4) combed algebraic band moves: for every k = 1, . . . ,m we have

β1β2 ∼ β′
1t

pk
k,nσ±1

n β′
2rk,

where β1, β2 ∈ Bm,n and β′
1, β

′
2 ∈ Bm,n+1 are as in Definition 7 and where rk is the combing of

the parted parallel strand to the kth surgery strand through B;

or, equivalently, by a finite sequence of the following moves:

(1′) algebraic L-moves (see algebraic expressions in Definition 6);

(2′) twisted loop conjugation;

(3′) Combed algebraic band moves.

Proof. By Theorem 4, we only have to consider the case where a parted band move takes place
and, by Theorem 3, we only have to consider the behaviour of a parted band move with respect to
combing. This is done in Lemma 8, in the proof of which it is also explained that the combing of
the parallel strand gives rise to a combed algebraic band move on the level of Bm,∞.

Remark 2. We remark that tpk
k,n in Definition 7 of an algebraic band move is just a Markov conjugate

of the loop ak
pk and that these are the appropriate words for defining inductive Markov traces on

quotient algebras of group algebras of Bm,n. Note also that the words in the parentheses of the
substitutions of the loops get significantly simplified if we apply a quadratic relation on the σi.
Moreover, in Theorem 5 we obtain the best possible control over the band moves of links in closed
three-manifolds, and this is very useful for the study of skein modules of closed three-manifolds
[Prz06].

4. Special cases and examples

In this section we give the braid equivalences described in Theorems 4 and 5 for specific examples
of knot complements and closed three-manifolds. We also discuss the adaptation of the band move
and braid equivalence for the case where the fixed braid B describing the manifold is not a pure
braid, and we study the example where B is the closure of a trefoil.

Example 1. Let V be the solid torus or the lens space L(p, 1), for a framing p ∈ Z. Then the
description of V in S3 is the unknot, and so for t := a1 and tn := σn · · · σ1tσ

−1
1 · · · σ−1

n we have
the following. Two oriented links in a solid torus are isotopic if and only if any two corresponding
mixed braids in B1,∞ differ by a finite sequence of the following moves:

(1) algebraic M -moves: α ∼ ασ±1
n , α ∈ B1,n;

(2) algebraic Markov conjugation: α ∼ σ∓1
i ασ±1

i , α, σi ∈ B1,n;

(3) loop conjugation: β ∼ t∓1βt±1, β ∈ B1,n.

Moreover, if the two links lie in L(p, 1) then the corresponding algebraic mixed braids differ by a
finite sequence of the above moves together with the following:

(4) algebraic band moves: for β ∈ B1,n we have

β ∼ tpnσ±1
n β′,

where β′ ∈ B1,n+1 is the word β with the substitutions

t±1 ←→ [(λ−1
n−1σ

2
nλn−1)t]

±1
.
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Remark 3. Constructing all analogues of the two-variable Jones polynomial in the solid torus via
braids has been completely studied, see [Lam99] and references therein. These invariants are related
to the third skein module of the solid torus [HK90, Tur88]. Moreover, this last move (4) is used
by the first author and J. H. Przytycki in order to investigate the third skein module of the lens
spaces L(p, 1).

Example 2. Let V be the complement of the m-unlink or a connected sum of m lens spaces of
type L(p, 1). Then the fixed braid representing V is the identity braid, Im, and so we have the
following. Two oriented links in the complement of the m-unlink are isotopic if and only if any two
corresponding mixed braids in Bm,∞ differ by a finite sequence of the following moves:

(1) algebraic M -moves: α ∼ ασ±1
n , α ∈ Bm,n;

(2) algebraic Markov conjugation: α ∼ σ∓1
i ασ±1

i , α, σi ∈ Bm,n;

(3) algebraic loop conjugation: β ∼ a∓1
i βa±1

i , β ∈ Bm,n, i = 1, . . . ,m.

(Compare with [HL02, Theorem 5] about braid equivalence in handlebodies.)
Moreover, if the two links lie in the connected sum L(p1, 1)# · · ·#L(pm, 1), where p1, . . . , pm ∈ Z,

then the corresponding algebraic mixed braids differ by a finite sequence of the above moves together
with the following:

(4) algebraic band moves: for β ∈ Bm,n and for k = 1, . . . ,m we have

β ∼ tpk
k,nσ±1

n β′,

where β′ ∈ Bm,n+1 is the word β with the substitutions

a±1
k ←→ [(λ−1

n−1σ
2
nλn−1)ak]

±1

a±1
i ←→ (λ−1

n−1σ
2
nλn−1) a±1

i (λ−1
n−1σ

2
nλn−1)−1, if i < k

a±1
i ←→ a±1

i , if i > k.

Example 3. Let V be the complement of the Hopf link or a lens space L(p, q) obtained by doing
surgery along the Hopf link with framings p1, p2 ∈ Z (obtained from the numerical equation p/q =
p1 + 1/p2). The fixed braid representing V is Σ2

1 and we have the following.

• Relations for the twisted conjugation:

Σ2
1 · a±1

1 = a−1
2 a±1

1 a2 · Σ2
1,

Σ2
1 · a±1

2 = a−1
2 a−1

1 a±1
2 a1a2 · Σ2

1.

• Combed algebraic band moves: for β1, β2 ∈ B2,n and k = 1, 2 we have

β1β2 ∼ β′
1t

pk
k,nσ±1

n β′
2rk

where rk is the combing through the fixed braid of the parted moving strand parallel to the
kth surgery strand. For λn := σn · · · σ1, r1, r2 are given by the relations:

r1 = λna2λ
−1
n

r2 = λna−1
2 a1a2λ

−1
n .

The words β′
1, β

′
2 ∈ B2,n+1 are the words β1, β2 with the following changes, depending on

whether the band move is taking place along the first surgery strand or along the second. That
is, if k = 1, then β′

1, β
′
2 are obtained from β1, β2 by doing the substitutions:

a±1
1 ←→ [(λ−1

n−1σ
2
nλn−1)a1]

±1

a±1
2 ←→ a±1

2 .
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If k = 2, then β′
1, β

′
2 are obtained from β1, β2 by doing the substitutions:

a±1
1 ←→ (λ−1

n−1σ
2
nλn−1)a±1

1 (λ−1
n−1σ

2
nλn−1)−1

a±1
2 ←→ [(λ−1

n−1σ
2
nλn−1)a2]

±1
.

Example 4. Now let V be in general the complement of a daisy chain on m rings or a lens space of
type L(p, q) obtained by doing surgery along the components, with framings p1, . . . , pm ∈ Z (which
are obtained from the continued fraction expansion of the rational number p/q). The basic manifolds
of this series are described in the previous example. A fixed braid representing V is

Σ2
1Σ

2
3 . . . Σ2

2k−1Σ
2
2Σ

2
4 . . . Σ2

2k−2 := DC2k,

if the daisy chain consists of m = 2k rings, and

Σ2
1Σ

2
3 . . . Σ2

2k−1Σ
2
2Σ

2
4 . . . Σ2

2k := DC2k+1,

if the daisy chain consists of m = 2k + 1 rings. It is easy to verify the above braid words by closing
the odd-numbered strands by simple arcs that run under the braid and the even-numbered strands
by simple arcs that run over the braid.

• Relations for the twisted conjugation: we give relations for 2k and 2k + 1 rings by inductive
formulas. For m = 2 the relations for a±1

1 and a±1
2 are given in the previous example. For

m = 3 we have the ‘twisted’ relations:

[Σ2
1Σ

2
2] · a±1

1 = a−1
2 a±1

1 a2 · [Σ2
1Σ

2
2],

[Σ2
1Σ

2
2] · a±1

2 = (a1a2a3)−1a±1
2 (a1a2a3) · [Σ2

1Σ
2
2],

[Σ2
1Σ

2
2] · a±1

3 = (a−1
2 a−1

1 a2a1a2a3)−1a±1
3 (a−1

2 a−1
1 a2a1a2a3) · [Σ2

1Σ
2
2].

Note that the relation for a±1
1 is the same as for two rings.

Suppose now that the twisted conjugation relations are known for 2k− 2 and 2k− 1 rings and
consider 2k rings. For 1 � i � 2k − 3 the twisted relations for DC2k · a±1

i are the same as
those for DC2k−2 ·a±1

i . For i = 2k−2, 2k−1, 2k we have the following relations, that are easy
consequences of Lemma 6:

DC2k · a±1
2k−2 = (a2k−3a2k−2a

−1
2k a2k−1a2k)−1a±1

2k−2(a2k−3a2k−2a
−1
2k a2k−1a2k) · DC2k,

DC2k · a±1
2k−1 = (a2ka

−1
2k−2a

−1
2k−3a2k−2a2k−3a2k−2a

−1
2k a2k−1a2k)−1

· (a2ka−1
2k−2a

−1
2k−3a2k−2a2k−3a2k−2a

−1
2k a2k−1a2k) · DC2k,

DC2k · a±1
2k = (a2k−1a2k)−1a±1

2k (a2k−1a2k) · DC2k.

Finally, if we have 2k + 1 rings, then for 1 � i � 2k − 1 the twisted relations for DC2k+1 · a±1
i

are the same as those for DC2k ·a±1
i . For i = 2k, 2k+1 we have the following relations, that are

also easy consequences of Lemma 6:

DC2k+1 · a±1
2k = (a2k−1a2ka2k+1)−1a±1

2k (a2k−1a2ka2k+1) · DC2k+1,

DC2k+1 · a±1
2k+1 = (a−1

2k a−1
2k−1a2ka2k−1a2ka2k+1)−1a±1

2k+1

· (a−1
2k a−1

2k−1a2ka2k−1a2ka2k+1) · DC2k+1.

• Combed algebraic band moves: for β1, β2 ∈ Bm,n and for s = 1, . . . ,m we have

β1β2 ∼ β′
1t

ps
s,nσ±1

n β′
2rs
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where β′
1, β

′
2 ∈ Bm,n+1 are the words β1, β2 with the substitutions

a±1
s ←→ [(λ−1

n−1σ
2
nλn−1)as]

±1

a±1
i ←→ (λ−1

n−1σ
2
nλn−1)a±1

i (λ−1
n−1σ

2
nλn−1)−1, if i < s

a±1
i ←→ a±1

i , if i > s

and where rs ∈ Bm,n+1 is the combing through DCm of the parted moving strand parallel to
the sth surgery strand. For any index m of DCm the combings r1, . . . , rm are given by the
following relations:

r1 = λna2λ
−1
n .

The combings r2, . . . , rm−2 are given by the following paired formulas:

r2k = λn(a−1
2k a2k−1a2ka

−1
2k+2a2k+1a2k+2)λ−1

n

r2k+1 = λn(a−1
2k+1a2k+2a

−1
2k a−1

2k−1a2ka2k−1a2ka
−1
2k+2a2k+1a2k+2)λ−1

n .

The final combings rm−1, rm depend on whether m is even or odd. For m even we have

rm−1 = as above for odd index

rm = λn(a−1
m am−1am)λ−1

n .

For m odd we have

rm−1 = λn(a−1
m−1am−2am−1am)λ−1

n

rm = λn(a−1
m a−1

m−1a
−1
m−2am−1am−2am−1am)λ−1

n .

Example 5. Let V be the complement of the Borromean rings or a closed manifold obtained by
doing surgery along them, with framings p1, p2, p3 ∈ Z. In particular, with framings +1 we obtain
dodecahedral space. The fixed braid representing V is

Σ−1
1 Σ2Σ−1

1 Σ2Σ−1
1 Σ2 := BR.

• Relations for the twisted conjugation:

BR · a±1
1 = (a3a1a2a

−1
1 a−1

3 a1a
−1
2 a−1

1 )−1a±1
1 (a3a1a2a

−1
1 a−1

3 a1a
−1
2 a−1

1 ) · BR

BR · a±1
2 = (a−1

1 a−1
3 a1a3)−1a±1

2 (a−1
1 a−1

3 a1a3) · BR

BR · a±1
3 = (a1a

−1
2 a−1

1 a−1
3 a−1

1 a3a1a2a
−1
1 a−1

3 a1a3)−1a±1
3

· (a1a
−1
2 a−1

1 a−1
3 a−1

1 a3a1a2a
−1
1 a−1

3 a1a3) · BR.

• Combed algebraic band moves: for β1, β2 ∈ B3,n and for k = 1, 2, 3 we have

β1β2 ∼ β′
1t

pk
k,nσ±1

n β′
2rk

where β′
1, β

′
2 ∈ B3,n+1 are the words β1, β2 with the substitutions

a±1
k ←→ [(λ−1

n−1σ
2
nλn−1)ak]

±1

a±1
i ←→ (λ−1

n−1σ
2
nλn−1)a±1

i (λ−1
n−1σ

2
nλn−1)−1, if i < k

a±1
i ←→ a±1

i , if i > k

and where rk ∈ B3,n+1 is the combing through BR of the parted moving strand parallel to the
kth surgery strand. The combings r1, r2, r3 are given by the following relations, which are easy
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p
p

Figure 22. The band move for a non-pure surgery braid.

~ ~or

Figure 23. Passing the little band to the right.

consequences of Lemma 6.

r1 = λn(a3a1a2a
−1
1 a−1

3 a1a
−1
2 a−1

1 )λ−1
n ,

r2 = λn(a−1
1 a−1

3 a1a3)λ−1
n ,

r1 = λn(a1a
−1
2 a−1

1 a−1
3 a−1

1 a3a1a2a
−1
1 a−1

3 a1a3)λ−1
n .

The case of non-pure surgery braids
A closed three-manifold may be easier described by a non-pure surgery braid. As noted in [LR97,
Remark 5.11], in this case Theorem 1 and consequently Theorems 3 and 5 still apply, but now the
band moves are more complicated to express: in this case a band move is modified so that the
replacement of the little band only twists around one of the strands of the same surgery component
and it runs in parallel to all other strands of that surgery component. See Figure 22. In Lemma 9
below we show that such a band move may be always assumed to have a specific form. We part
such a band move at the top by pulling all parallel strands to the last positions of the moving part,
over all strands in between and respecting their order.

Lemma 9. If the surgery braid B is not a pure braid, then, up to L-equivalence, a band move may
always be assumed to take place at the top part of the braid and on the right of the rightmost
strand of the specific surgery component.

Moreover, performing a band move at the top part of a mixed braid and then parting, yields
the same, up to L-equivalence and loop conjugation, as performing a parted band move on a parted
mixed braid.

Proof. Assume that the little band does not attach to the rightmost strand of the specific surgery
component. Then, as in the proof of Lemma 5, stretch the little band and its replacement in
parallel to the surgery strand and to the top or to the bottom of the mixed braid, depending on
which direction brings it to the right. See Figure 23.

If we have landed at the bottom we do appropriate L-moves to transfer the crossing of the band
move to the top. Recall Figure 14. If we have reached the rightmost strand we stop. If not, we
continue sliding the little band and its replacement until the rightmost strand is reached. Similarly,
by loop conjugations we bring the framing twists to the top of the rightmost strand of the specific
component.
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If, moreover, the two mixed braids that differ by the band move are parted we apply the same
strategy as in the proof of Lemma 5 but adapted here.

Example 6. As an application of the above lemma consider V to be the complement of the right-
handed trefoil or a closed manifold obtained by doing surgery along it with framing k ∈ Z. In
particular, with framing −1 we obtain the dodecahedral space. The fixed braid representing V is
Σ3

1 and we have the following.

• Relations for the twisted conjugation:

Σ3
1 · a±1

1 = (a1a2)−1a±1
2 (a1a2) · Σ3

1

Σ3
1 · a±1

2 = (a2a1a2)−1a±1
1 (a2a1a2) · Σ3

1

• Combed algebraic band moves: for β1, β2 ∈ B2,n we have

β1β2 ∼ β′
1σ

−1
n+1t

k
2,nσ±1

n σn+1β
′
2r

where r = λn(a2)σn+1λn(a−1
2 a1a2)σ2

1λ
−1
n σ−1

n+1(a
−1
2 a−1

1 a2a1a2)λ−1
n σn+1 is the combing

through the fixed braid of the parted moving strands parallel to the two surgery strands,
t2,n = λnakλ

−1
n , and where β′

1, β
′
2 ∈ B2,n+2 are the words β1, β2 with the substitutions

a±1
1 ←→ ([λ−1

n−1(σnσ2
n+1σn)λn−1]a1[λ−1

n−1(σnσ2
n+1σ

−1
n )−1λn−1])

±1
,

a±1
2 ←→ ([λ−1

n−1(σnσ2
n+1σ

−1
n )λn−1]a2)

±1
.
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