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An embedding theorem for fields

J.W.S. Cassels

It is shown that every finitely generated field K of

characteristic 0 may be embedded in infinitely many p-adic

fields in such a way that the images of any given finite set C

of non-zero elements of K are p-adic units. The result is

suggested by Lech's proof of his generalization of Mahler's

theorem on recurrent sequences. It also provides a simple proof

of SeI berg's theorem about torsion-free normal subgroups of

matrix groups.

THEOREM I. Let K be a finitely generated extension of the rational

field Q and let C be a finite set of non-zero elements of K . Then

there exist infinitely many primes p such that there is an embedding

« : K - Qp

of K into the p-adio numbers 0 for which

| ae | = 1 (all c£C).

Here \ \ denotes the p-adic valuation.

This theorem does not appear to have been stated explicitly before.

The paper of Lech [3] contains implicitly a weaker form in which 0 is

replaced by some algebraic extension of a p-adic field.

Lech uses his result to generalize Mahler's theorem [4] about the

values taken by recurrent sequences to any field of characteristic 0 .

Indeed Mahler's proof works in a p-adic field and so the generalization is

an immediate consequence of'the original theorem and the embedding.
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Another application is :

THEOREM II (Selberg [6]; see also Borel [/]). Let G be a
finitely generated group, of matrices in a field k of characteristic 0 .
Then G contains a normal torsion-free subgroup of finite index.

Proof. We can take for C the set of non-zero elements of A, A~ ,

where A runs through a set of generators of G , and for K the subfield

of k generated by C . We can also suppose that p + 2 . If a is as

given by Theorem I, the elements of the matrices in aG are all in the

p-adic integers Z . The subgroup of aC consisting of the matrices of

the type I + pB , where B has elements in Z , is clearly normal and is

torsion-free. [For we have to show that (J+pS)n I I whenever B t 0 and

it is enough to show this when n is a prime. But then

(I+pB)n = I + npB + ... + pnBn and the largest element of npB is

p-adically greater than the elements of the subsequent terms. The

condition p # 2 is needed when n = p .]

The proof given below of Theorem I follows Lech's argument quite

closely. There is an additional twist, but that is also familiar from

other contexts. We require three simple lemmas.

LEMMA 1. Let

t 0

be a finite set of non-zero polynomials in the indeterminates X., . . . , X

with rational integral coefficients. Then there are rational integers

a. , — , a such that

fj{ax, • - . , an) * 0 (1 < j 5 J) .

Proof. If n = 1 pick a distinct from the finitely many roots of

the f . . If n > 1 use induction to pick au, . . . , a so that

f'• [X-. , <z_, • • • , a J # 0 and then pick a. .
3 •!- ^ n JL

LEMMA 2. Let g{X) € Z[X] be a non-constant polynomial in the

single indeterminate X with rational integral coefficients. Then there
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are infinitely many primes p for which there is a solution b € Z of the
congruence

g(b) i 0 (mod p) .

Proof. Let 3 be a root of <?(@) = 0 . Then it is enough to show

that there are infinitely many first-degree primes in Q(3) ; and this

follows from elementary analytic number-theory. (See, for example,

Borevich and Shafarevich [2], Chapter V, §3.1.)

LEMMA 3. Q has infinite transcendence degree over Q .

Proof. For Q is uncountable but the algebraic closure of any

extension of Q of finite transcendence degree is countable.

Proof of Theorem I. We note first that, by taking a larger set for C

if necessary, we may suppose that c € C whenever c € C . It will thus

be enough to find primes p and embeddings a for which

(1) |ac| 5 1 (all a € C ).

Let x, , ..•, x (m 2 0) be a transcendence base of K over Q .

Then x, , ..., x are independent transcendentals and
1 m

K=Q[y,xv ...,xj

for some y € K which i s a lgeb ra i c over Q(x_, . . . , x ) . We can thus put

each c£C i n t o t h e shape

where

(Y Y y \ f 7 VY Y y 1

(2) I 3**
V (Y y 1 f 7 fy y I

# o

Here Z denotes the rational integers and I, X, , ..., X are
-L m

indeterminates.

We can select an irreducible equation G(l) = 0 for y over
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Q[x±, . . . , i r j of the shape

G(Y) = fl(JT, x 1 , . . . , xj

where

*(*• *i *J,f Z[*. *i *J •

If H is of degree s in y we denote the coefficient of 7 s by

flo(*l* •••• Xn) ' S°

HQ{XX, ...,xm) ez[xx xj

* 0 .

The discriminant of G{l) is of the shape A (a;,, . .. , a; ) , where

0 .

By Lemma 1 we can pick a-. > • • •» a € Z such that

x m

(3)

(5) F
c ( a i ' •••' a J * ° ( e a l e € c )-

By (U) and Lemma 2 there are inf ini te ly many primes p # 2 for which there

i s a solution b € Z of the congruence

(6) #(Z>, a ; L , . . . , a j HO (mod p) .

On excluding finitely many of these primes we may also suppose by (3), (h),

(5), that

(7) A(ax, •-., aj $ 0 (mod p) ,

(8) EQ{a± aJ $ 0 (mod p) ,

(9) 7
c(

ai' •••' a J $ ° (mod PJ (al1 e € C )-

By Lemma 3 we can select m independent transcendentals 6., .... 9
1 m

in Q . O n replacing the 9 . by p 8. with large positive integral t
P 3 3
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i f necessary, we may suppose that

| 6 . | < 1 (1 5 3 5 m) .
d

Then

£ . = a. + 9 . (1 < 3 2 m)
3 3 3

is a set of independent transcendentals in Q with

do) I V ^ I < i .

Now by ( 6 ) , (7)> (10) and Hense l ' s Lemma t h e r e i s an n € 0 wi th

\x\-b\ < 1 and

B{r\, ?!, . . . . 5 j = 0 .

Thus

x. -* £ . (1 5 j < m) ,

y ->• n

defines an isomorphism a of X = Q(j, I i j with

Q(n. 5 r .... g

Further,

! " > , cx, •••» g i = i , \vo[^ ..., g i s

"by ( 2 ) a n d s i n c e | £ . | £ 1 , | n | - l ; and- i n d e e d

= 1

by (9) and (10). Hence

icei = \uo(n, 5 X , . . . , g i / i ^ ^ . •••» g i
£ 1 .

This completes the proof.
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