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A QUESTION OF GROSS AND THE UNIQUENESS OF
ENTIRE FUNCTIONS
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1. Introduction and main results

For any set S and any entire function f let

E(S) = U {z|f(d —a=0},
aes

where each zero of f — a with multiplicity m is repeated m times in E,(S) (cf.
[1]). It is assumed that the reader is familiar with the notations of the Nevanlinna
Theory (see, for example, [2]). It will be convenient to let £ denote any set of finite
linear measure on 0 < 7 < o not necessarily the same at each occurrence. We
denote by S(7, f) any quantity satisfying S(r, f) = o(T(», f)) (r— oo, r €E).

In 1976 Gross proved [3] that there exist three finite sets S; j = 1,2,3),
such that any two entire functions f and g satisfying E,(S;) = E,(S) for
7 =1,2,3 must be identical. In the same paper Gross posed the following open
question (Question 6): can one find two (or possible even one) finite set
S; G =1,2) such that any two entire functions f and g satisfying E,(S;) =
E (S,) (G = 1,2) must be identical ?

The present author [4] proved the following result which is partial answer of
the above question.

TueoreM A. Let S, = f{w|w —a)" —b" =0}, S,= {c}, where n>4, a, b
and ¢ are constants such that b+ 0, ¢ + a and (c — @)™ # b™". Suppose that f and g
are nonconstant entire functions satisfying E (S)) = E,(S)) forj=1,2. Thenf = g.

The set S such that for any two nonconstant entire funstions f and g the con-
dition E,(S) = E,(S) implies f = g is called a unique range set (URS in brief) of
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entire functions (cf. [5]). In 1982, F. Gross and C. C. Yang proved the following re-
sult.

THEOREM B [5]. The set S = {w| e” + w = 0} is a URS of entire functions.

Note that the set S = {wl ¢ + w = 0} contains infinite number of elements
and so Theorem B does not answer the question posed by Gross.

In this paper we give a positive answer to Gross’s question. In fact, we prove
more generally the following theorem.

THEOREM 1. Let # and m be two positive integers such that n and m have no
common factor and n > 2m + 4. Let a and b be two nonzero constants such that the
algebraic equation w" + aw"™" + b =0 has no multiple voots. Then the set S =
{w|w" + aw”™™ 4+ b= 0} is a URS of entire functions.

ExampLe. The set S= {w|w’ + w® + 1 =0} is a URS of entire functions
with 7 elements.

Now it is natural to ask the following question:

Can one find a URS of entire functions with less than 7 elements ?

Now we introduce the following notations:

U, = {S| Sis a URS of entire functions},
C, = min{n(S) | S € U},

i

where #(S) denotes the cardinal number of the set S.
The above example shows that C; < 7. In this paper we prove the following
result.

THEOREM 2. Cj = 4.

2. Some lemmas

The following lemmas will be needed in the proof of Theorem 1.

LemMMA 1 (see [6]). Let f and g be two nonconstant meromorphic functions, and
let ¢y, €, and ¢; be three nonzero constants. If

o f T .8 = ¢y,

then
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/1 /1 _
10, N<N(r, 7) + N7, 3) + 8o ) + 56, 7).
Lemma 2 (see [7)). Let fi, fo, . . ., |, be linearly independent meromorphic func-

tions satisfying
n
Sf=1.
=1

Then for k = 1,2,..., n we have

10, 1) < EN(r, 7) + NG, ) + NG, D) = £ NG, )

f;
1
—N(r, ) + 0T reB),
where D denotes the Wronskian of the functions fi, fy, . . ., f,, and T(¥) denotes the

maximum of T(r, f), 1= 1,2,..., n.

LEMMA 3 (see [8]). Let f,, f,(¥£ 0) and f; be three meromorphic functions satis-
fying it ot =1 and let = — f3/f,, & = 1/f, and g5 = — fi/fo. If 1, 1y

and f, ave linearly independent, then g,, g, and g, are linearly independent.
LEMMA 4 (see [9]). Let f be a nonconstant meromorphic function, and let P(f) be
a polynomial i f of the form
P(f) =af"+af" '+ +a,_f+a,
where ay(# 0), a,, ..., a, are constants. Then

T(r, P()) =uT(r, /) + S, 1).

3. Proof of Theorem 1

Let w,, w,, ..., w, be the roots of equation w" + aw"™™ + b = 0. Suppose
that f and g are nonconstant entire functions satisfying E,(S) = E,(S). From

Nevanlinna's second fundamental theorem, we have

1
g w

f~—1w> + S(r, 9

M (n= DTG, 9 < X N(r, w—=—) + Str, 9

j=1
n
=2

=1

N(r,
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<al(r,f) + S, g.
Thus
(2) T(r, g = 0(T(r, ) (r €E).

Again by E.(S) = E,(S), we obtain

fn+afn_m+b_eh

(3) n n—m -
g +ag + b

’

where /2 is an entire function. From Lemma 4, (1) and (3), we have

T(r, eh) < T(r, f" + afn—m + b)) + T(r, g” + ag"_m + b +001)
=ul(r, f) +ul(r, g + Sk, )

<=V 4 se .
n—1
Thus
(4) T(r, e = 0(T(r, ) (r£E).
Let us put
1 n—m m
(5) flz—gf (f" +a,
(6) h=d,
1 n—m m h
(7) =738 " +ae,

and T(») denote the maximum of T'(r, £,), j = 1,2,3. From (3), (5), (6) and (7), we
obtain

(8) Lt AT A=1
From (2), (4), (5), (6) and (7), we have
9) T = 0(T(, /) r&E).

Suppose that f, f, and f, are linearly independent. Applying Lemma 2 to the
functions f; G = 1,2,3), from (8) and (9) we have

10 100 < SN 7) = Nr ) + o0, ) ),

https://doi.org/10.1017/50027763000005225 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000005225

GROSS AND THE UNIQUENESS OF ENTIRE FUNCTIONS 173

where
fl f2 fé
(11) D= f{/ fz f3 :
1 2 3
From (5), (6) and (7), we have
(12) ,«‘é N(r, }—J) = (n— m)N(r, %) + N<r, P a)
+ (n— m)N(r, %) + N(r, g a)'

By looking at the zeros of f and g, from (5), (6), (7) and (11) we see that

(13) N(r, %) = (n— m)N(r, —}) - 2N<r, %) + (n— m)N(r, é) - 2N<r, —i;)

From Lemma 4, (5), (10), (12) and (13), we deduce

(14) nT(, /) <2N(r, %) +N(r, fm%) +2N(r, é;) +N(r, 1+ )+ o(Tr, 1)
a g +a

L2T(r, ) + T(r, "+ a) +2T(r, g + T(r, g" + a) + o(T(r, f))
=Q2+mTw, NH+Q+mT(, g +oT(r, H) (r£E).

1 n—m m -
Let &i=—f/fi=—738"¢"ta,&=1/f=¢" and g=—fi/f,=
1 n—m m - .
Zf (f” + a)e”". From (8) we obtain

&g t+tgtg=1

By Lemma 3 we know that g,, g, and g, are linearly independent. In the same
manner as above, we have

15 nT, < C+mTlr, g9+ QC+mT(r, ) +o(T(, ) rEE).
Combining (14) and (15) we get
(16) mn—2m—4) T, )+ T, ) <oll(r,)) r2E).

Since n > 2m + 4, (16) is absurd. Hence f, f, and f; are linearly dependent.
Then, there exist three constants (c,, ¢,, ¢;) # (0,0,0) such that

(17) afi tef,t e fs=0.
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If ¢, =0, from (17) we have ¢, # 0, ¢; # 0 and

c
h== gk
Hence, from (6) and (7) we obtain

g +ag"™" = —bey/c,,

which is impossible. Thus ¢; # 0 and

—_b,_ &
(18) h==th= ok
Now combining (8) and (18) we get

(19) (1—2—?)f2+(1—3>f3=1.

5]

We discuss the following three cases.
(a) Assume ¢, # ¢, and ¢, # ¢;. From (6), (7) and (19) we have

_l< _£g> n-m m )
(20) b 1 Clg g'+a)+e'= x
By Lemma 1, Lemma 4 and (20) we obtain
nT(r, g < N(r, —m—> + S(r, 2
g "g"+a
_ 1 _
= N(r, v) + N(r, - ) + S(r, 2
g g ta
<A+mT(r, 9 + S0, 9,
which is impossible.
(b) Assume ¢, = ¢, From (19) we have ¢, # ¢, and
__ G
(21) s
From (7) and (21) we get
_ be -
(22) gt ="
€L — G
Let a,, a,,. .., a, be the roots of equation w™ + a = 0. From (22) we know that
0, a,, a,,..., a, are Picard exceptional values of g, which is impossible.
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(c) Assume ¢, = ¢;. From (19) we have ¢; # ¢, and

__ &

£= (ST
that is

n_ G
(23) e = _Cl .
From (5), (7), (8) and (23) we get

. l n—m, ,m ¢y n-m, m _ G

(24) b/ (f +a)+b(cl-—cz)g (¢ +a)—cz—cl‘

If ¢, # 0, by Lemma 1 and Lemma 4, we have from (24),

nT(r, ) < N(r, Nr, ;:”TLW> + SCr, f)

“7_;_1,7_>+ m
7T+ a g tTa

< ]\7(7', ~1};> + N(r, f‘m:,_() + N(r, %) + 1\_/<r, gm1+ a) + S(r,

<A+mT, H+A+mT0, g + Sk, f.
In the same manner as above, we have
nT(r,e9 <A +mT, g + Q+mT(r, f) + Sk, f).
Hence,
n=2m—2)Tr, )+ m—2m—2)T(r, g < S, f),
which is impossible. Thus ¢, = 0. From (24) we deduce
(25) ff=g"=—a(f"" = g"".

If f" % g", from (25) we obtain

(26)

27
where # = exp(7> and v = exp <

2mi f .
n__m>. From (26) we know that g is a

nonconstant meromorphic function. Since # and m have no common factors,
again from (26) we know that #’ (G =1,2,...,#n — 1) are Picard exceptional
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values of —2— which is impossible. Thus f” = g”" and f* " = g"~". However, since

n and m have no common factors, we get f = g. This completes the proof of
Theorem 1.

4. Proof of Theorem 2

Let S = {a,, a,, a;}, where a, G = 1,2,3) are any three finite distinct com-
plex numbers. If a, + a; — 2a, = 0, let

g(2) = 2a, — f(2),
where f(2) is a nonconstant entire function. If @, + a; — 2a, # 0, let
_ (a,a, — a’) + (a, — a) (a, — a)e"”

a,+ a, — 2a, ’
—h(2)

f(2)

_ (aa;,— a)) + (@, — a) (@, — a)e
B a, + a; — 2a,

g (2)

where 4(z) is @ nonconstant entire function. It is easy to show that E,(S) =
E,(S), but f# g Hence Cy = 4, which proves Theorem 2.
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