BULL. AUSTRAL. MATH. SOC. VOL. 36 (1987) 113-119

A COMMUTATIVITY CRITERION FOR PRESPECTRAL OPERATORS

WERNER RICKER

It is shown that if a bounded linear operator A commutes with a prespectral operator T of class Γ , then A commutes with the resolution of the identity of class Γ for T, say $P(\cdot)$, if and only if $A^*(\Gamma) \subseteq [P^C]^*\Gamma$. Here A^* is the dual operator of A and $[P^C]^*\Gamma$ is the linear span of the set $\{U^*\xi; U \in P(\cdot)^C, \xi \in \Gamma\}$ where $P(\cdot)^C$ denotes the commutant of the range of $P(\cdot)$.

One of the fundamental results in the theory of spectral operators is the commutativity theorem: a bounded operator commutes with a spectral operator if and only if it commutes with its resolution of the identity [1; Theorem 6.6]. This commutativity result is known to fail for prespectral operators. Indeed, U. Fixman showed that there exist on ℓ^{∞} a prespectral operator T with a resolution of the identity $P(\cdot)$ of class $\Gamma = \ell^{1}$ and a bounded operator A which commutes with T but not with every value of $P(\cdot)$ [1; p.144]. The crucial point in this example is that Γ is not mapped into $[P^{2}]^{*}\Gamma$ by the dual operator A^{*} of A.

Received 4 September 1986. The support of a Queen Elizabeth II Fellowship is gratefully acknowledged.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/87 \$A2.00 + 0.00.

W. Ricker

Here $[P^{\mathcal{C}}]^*\Gamma$ is the linear span of $\{U^*\xi; \ U \in P(\cdot)^{\mathcal{C}}, \ \xi \in \Gamma\}$ and $P(\cdot)^{\mathcal{C}}$ denotes the commutant of the range of $P(\cdot)$. The purpose of this note is to establish the fact that if a bounded operator A commutes with a prespectral operator T of class Γ , then A commutes with the resolution of the identity of class Γ for T, say $P(\cdot)$, if and only if $A^*(\Gamma) \in [P^{\mathcal{C}}]^*\Gamma$.

If X is a Banach space, then L(X) denotes the space of all continuous linear operators of X into itself. The identity operator is denoted by I. The space of all continuous linear functionals on X is denoted by X^* . Let C denote the complex number field and B the σ -algebra of Borel subsets of C.

Let Γ be a total subspace of X^* . A set function $P: B \rightarrow L(X)$ is called a *spectral measure of class* Γ if and only if

(i) $P(\Phi) = I$,

(ii)
$$P(E \cap F) = P(E)P(F)$$
 for all $E, F \in B$, and

(iii) for all $x \in X$ and all $\xi \in \Gamma$ the C-valued set function $\langle P(\cdot)x, \xi \rangle$ is countably additive on B.

It is usually assumed, in addition, that $\sup\{||P(E)|| ; E \in B\}$ is finite, but this already follows from the requirements (i)-(iii) [2; p.150]. Since *I* belongs to the range of $P(\cdot)$ it is clear that $\Gamma \subseteq [P^{\mathcal{O}}]^*\Gamma \subseteq X^*$.

LEMMA 1. Let $P: B \rightarrow L(X)$ be a spectral measure of class Γ . Then $P(\cdot)$ is also a spectral measure of class $\Lambda = [P^{C}]^{*}\Gamma$.

Proof. Let $x \in X$ and $\xi \in \Lambda$. Then $\xi = \sum_{r=1}^{n} U_{r}^{*} \xi_{r}$ for some $U_{r} \in P(\cdot)^{C}$ and $\xi_{r} \in \Gamma$, r = 1, ..., n. It follows that

$$\langle P(E)x,\xi \rangle = \sum_{r=1}^{n} \langle P(E)x,U_{r}^{*}\xi_{r} \rangle = \sum_{r=1}^{n} \langle U_{r}P(E)x,\xi_{r} \rangle = \sum_{r=1}^{n} \langle P(E)U_{r}x,\xi_{r} \rangle ,$$

for each $E \in B$. Accordingly, $\langle P(\cdot)x, \xi \rangle$ is countably additive. An operator $T \in L(X)$ is called a prespectral operator of class Γ if there is a spectral measure $P(\cdot)$ of class Γ , necessarily unique [1; Theorem 5.13], such that $T \in P(\cdot)^{C}$ and the spectrum of the restriction of T to each closed invariant subspace P(E)X, $E \in B$, is contained in the closure of E in E. The measure $P(\cdot)$ is called the resolution of the identity of class Γ for T. Spectral operators correspond to the case when $\Gamma = X^*$ [1; Theorem 6.5]. An example of a prespectral operator (of some class Γ) which is not a spectral operator is given by Tf = g, $f \in X = L^{\infty}([0,1])$, where g(s) = sf(s), $s \in [0,1]$, and $\Gamma = L^{1}([0,1])$.

PROPOSITION 1. Let $T \in L(X)$ be a prespectral operator of class Γ and $P(\cdot)$ be its resolution of the identity of class Γ . Then T is also a prespectral operator of class $\Lambda = [P^{C}]^{*}\Gamma$ with the same $P(\cdot)$ being its resolution of the identity of class Λ .

Proof. It follows from Lemma 1 that $P(\cdot)$ is a spectral measure of class Λ which also satisfies, if considered as being a class Λ rather than class Γ , the properties $T \in P(\cdot)^{C}$ and the spectrum of the restriction of T to each closed invariant subspace P(E)X, $E \in B$ is contained in the closure of E. Accordingly, $P(\cdot)$ is a resolution of the identity of class Λ for T and so is *the* resolution of the identity of class Λ for T [1; Theorem 5.13].

If $T \in L(X)$ is a prespectral operator of class Γ with resolution of the identity of class Γ , say $P(\cdot)$, and $A \in L(X)$ commutes with T, then it is known that

(1)
$$A(\int_{\sigma(T)} f dP) = (\int_{\sigma(T)} f dP) A, \quad f \in C(\sigma(T)),$$

where $\sigma(T)$ is the spectrum of T [1; Theorem 5.12]. The 'integral' is defined via a process of continuous extension from the B-simple functions [1; p.120].

The main result can now be published.

THEOREM 1. Let $T \in L(X)$ be a prespectral operator of class Γ and $A \in L(X)$ commute with T. If $P(\cdot)$ is the resolution of the identity of class Γ for T, then A commutes with each value of $P(\cdot)$ if and only if $A^*(\Gamma) \subset [P^2]^*\Gamma$.

Proof. If A commutes with each value of $P(\cdot)$, then $A \in P(\cdot)^{c}$ and hence, $A^{*}(\Gamma) \subseteq [P^{c}]^{*}\Gamma$ by definition of $[P^{c}]^{*}\Gamma$.

Conversely, suppose that $A^*(\Gamma) \subseteq [P^{\mathcal{O}}]^*\Gamma$. Fix $x \in X$ and $\xi \in \Gamma$. Define \mathbb{Z} -valued set functions μ and ν on \mathcal{B} by $\nu(\cdot) = \langle P(\cdot)Ax, \xi \rangle$ and $\mu(\cdot) = \langle AP(\cdot)x, \xi \rangle = \langle P(\cdot)x, A^*\xi \rangle$. Then ν is σ -additive by definition of $P(\cdot)$ being a spectral measure of class Γ and μ is σ -additive by the hypothesis $A^*\xi \in [P^{\mathcal{O}}]^*\Gamma$ and Lemma 1. Since μ and ν are regular it follows from (1) that

$$\int_{\sigma(T)} f dv = \int_{\sigma(T)} f d\mu , \quad f \in C(\sigma(T)) ,$$

and so the Riesz representation theorem implies that $v = \mu$. Since $x \in X$ and $\xi \in \Gamma$ are arbitrary it follows from the totality of Γ that AP(E) = P(E)A for each $E \in B$.

COROLLARY 1.1. Let X be a Banach space and $T \in L(X^*)$ be a prespectral operator of class X. If $A \in L(X)$ satisfies $A^*T = TA^*$, then A^* commutes with the resolution of the identity of class X for T.

The difficulty with Theorem 1 is that to apply it in practice it is necessary to be able to identify the subspace $[P^{\mathcal{C}}]^*\Gamma$ which, in turn, requires a specific knowledge of the resolution of the identity of class Γ for T, say $P(\cdot)$, and its commutant $P(\cdot)^{\mathcal{C}}$. However, it is clear that if Γ itself happens to be an invariant subspace of A^* , then certainly A commutes with $P(\cdot)$. This sufficient condition, although more stringent than the hypothesis $A^*(\Gamma) \subseteq [P^{\mathcal{C}}]^*\Gamma$ and hence less likely to be satisfied, nevertheless has the advantage that it is easier to verify. Actually, under some reasonable topological assumptions it turns out that the containment $A^*(\Gamma) \subseteq \Gamma$ is not too far from the condition $A^*(\Gamma) \in [P^{\mathcal{C}}]^*\Gamma$. **PROPOSITION** 2. Let Γ be a total subspace of X^* such that Γ is sequentially closed for the weak topology $\sigma(\Gamma, X)$ induced by the dual pairing $\langle \Gamma, X \rangle$. If $P: B \to L(X)$ is a spectral measure of class Γ such that each operator P(E), $E \in B$, is continuous from $(X, \sigma(X, \Gamma))$ into $(X, \sigma(X, \Gamma))$, then Γ coincides with the linear span $[U(P)]^*\Gamma$, of $\{V^*\xi; V \in U(P), \xi \in \Gamma\}$ where U(P) denotes the closed algebra generated by $\{P(E); E \in B\}$ with respect to the uniform operator topology in L(X).

Remark. An operator $S: X \to X$ is continuous from $(X, \sigma(X, \Gamma))$ into $(X, \sigma(X, \Gamma))$ if and only if $S^*(\Gamma) \subseteq \Gamma$.

Proof. The inclusion $\Gamma \subseteq [U(P)]^*\Gamma$ always holds. To show the reverse inclusion it suffices to show, by definition of $[U(P)]^*\Gamma$ and the fact that Γ is a subspace, that $V^*\xi \in \Gamma$ whenever $\xi \in \Gamma$ and $V \in U(P)$. Noting that the range of $P(\cdot)$ is a Γ - σ -complete Boolean algebra in the sense of Definition 2 of [2] it follows from [2; Lemma 2] that if K is the maximal ideal space of U(P), then there exist a spectral measure $Q: B_K \to L(X)$ of class Γ and a function $f \in C(K)$ such that $V = \int_K f dQ$, where B_K is the σ -algebra of Borel subsets of K. In addition, the range of Q coincides with $\{P(E); E \in B\}$. Choose a sequence of B_K -simple functions, say $\{f_n\}$, such that $f_n \to f$ uniformly on K. Then $V = \lim_{K \to 0} \int_K f dQ$, where the limit exists in the uniform operator topology of L(X) [1; p.120]. Accordingly

(2)
$$\langle x, V^*\xi \rangle = \langle Vx, \xi \rangle = \lim \langle (\int_K f_n dQ)x, \xi \rangle = \lim \langle x, (\int_K f_n dQ)^*\xi \rangle$$

for each $x \in X$. But, if $g = \sum_{r=1}^{n} \alpha_r \chi_{F(r)}$ is a \mathcal{B}_{K} -simple function then it follows from the identity $(\int_{K} g dQ)^* \xi = \sum_{r=1}^{n} \alpha_r Q(F(r))^* \xi$, the inclusion $\{Q(F(r))\}_{r=1}^{n} \subseteq \{P(E); E \in B\}$ and the assumption that Γ is invariant for each operator $P(E)^*, E \in B$, that $(\int_{K} g dQ)^* \xi \in \Gamma$. Accordingly, the sequence $\{(\int_{K} f_n dQ)^* \xi\}_{n=1}^{\infty}$ is contained in Γ and, by (2), it converges to $V^* \xi$ with respect to the topology $\sigma(\Gamma, X)$. Then

Ο

the $\sigma(\Gamma, X)$ -sequential closedness of Γ implies that $V^* \xi \in \Gamma$.

Remark. It is always the case that $U(P) \subseteq P(\cdot)^{C}$ and hence, under the assumptions of Proposition 2, the subspace Γ can be a proper subspace of $[P^{C}]^{*}\Gamma$ only if the containment $U(P) \subseteq P(\cdot)^{C}$ is proper. Of course, if it is known for some reason that $U(P) = P(\cdot)^{C}$, then under the assumptions of Proposition 2 it follows that a bounded operator Acommuting with a prespectral operator T of class Γ (having $P(\cdot)$ as its resolution of the identity of class Γ) commutes with $P(\cdot)$ if and only if $A^{*}(\Gamma) \subseteq \Gamma$.

Example. Let X be a weakly sequentially complete Banach space and $T \in L(X)$ be a spectral operator with a cyclic vector (that is if $Q: \mathcal{B} \rightarrow L(X)$ is the resolution of the identity for T , then there exists a vector x_{α} in X such that the linear span of $\{Q(E)x_{\alpha}; E \in B\}$ is dense in X). Then $T^* \in L(X^*)$ is a prespectral operator of class X with the property that if $AT^* = T^*A$ for some $A \in L(X^*)$, then A commutes with the resolution of the identity of class X for T^* if and only if $A^*(X) \subseteq X$. Indeed, with $\Gamma = X$ it follows from [2; Lemma 3] that $P(E) = Q(E)^*$, $E \in B$, is the resolution of the identity of class Γ for T^* . Since Γ with the $\sigma(\Gamma, X^*)$ topology is simply X with its weak topology and $P(E)^* = Q(E)^{**}$ has $\Gamma = X \subseteq X^{**}$ as an invariant subspace for each $E \in \mathcal{B}$, it suffices to show that $\mathcal{U}(P) = P(\cdot)^{\mathcal{C}}$ (see Proposition 2 and the Remark following it). But, if $x_{\alpha}^{\star} \in X^{\star}$ is any Bade functional for $x_{
ho}$, then $x_{
ho}^{\star}$ is a $\Gamma=X-$ cyclic vector for $\{P(E)^*; E \in B\}$ in the sense of Definition 3 of [2]; see the Remark on page 153 of [2]. Accordingly, the Corollary on page 155 of [2] implies that $U(P) = P(\cdot)^{C}$.

For a specific example, let $X = \ell^1(\mathbb{I} \mathbb{V})$ and $\{\lambda_n\}_{n=1}^{\infty}$ be a bounded sequence in \mathbb{I} . Then X is weakly sequentially complete and the operator $T \in L(X)$ defined by Tx = y, $x \in X$, where $y_n = \lambda_n x_n$, $n = 1, \ldots$, is a spectral operator with a cyclic vector (for example $x_o = \{n^{-2}\}_{n=1}^{\infty}$).

References

- H.R. Dowson, Spectral theory of linear operators, London Math.
 Soc. Monograph No. 12 (Academic Press, London, 1978).
- B. Nagy, On Boolean algebras of projections and prespectral operators, Operator Theory: Advances and Applications Vol. 6 (Birkhauser Verlag, Basel, 1982) 145-162.

Centre for Mathematical Analysis, Australian National University, Canberra, Australian Capital Territory, 2600

Australia.

119