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A COMMUTATIVITY CRITERION FOR PRESPECTRAL OPERATORS

WERNER RICKER

It is shown that if a bounded linear operator A commutes with a

prespectral operator T of class r , then A commutes with the

resolution of the identity of class r for T , say P(') , if and

only if A*(T) <= IP°1*T . Here A* is the dual operator of A and

[PC]*r is the linear span of the set {#*£; U e PC-)0, £ e V}

where P(-) denotes the commutant of the range of P(-) .

One of the fundamental results in the theory of spectral operators

is the commutativity theorem: a bounded operator commutes with a spectral

operator if and only if it commutes with its resolution of the identity

[7; Theorem 6.6]. This commutativity result is known to fail for pre-
a>

spectral operators. Indeed, U. Fixman showed that there exist on I a

prespectral operator T with a resolution of the identity P(') of class

F = I and a bounded operator A which commutes with T but not with

every value of P(-) [7; p.144]. The crucial point in this example is

that T is not mapped into [PC]*r by the dual operator A* of A .
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Here [P°]*r is the linear span of {£/*?; V e P(-)°, £ e T} and Pf-J0

denotes the commutant of the range of P(-) . The purpose of this note

is to establish the fact that if a bounded operator A commutes with a

prespectral operator T of class T , then A commutes with the

resolution of the identity of class T for T , say P(-) , if and only

if A*(T) c [pc]*r .

If X i s a Banach space, then L(X) denotes the space of al l

continuous linear operators of X into itself. The identity operator is

denoted by J . The space of al l continuous linear functionals on X is

denoted by X* . Let <F denote the complex number field and B the

cr-algebra of Borel subsets of <S .

Let r be a total subspace of X* . A set function P: B •*• L(X)

i s called a spectral measure of class T if and only if

(i) . PCS) = I 3

(ii) P(E n F) = PCE)P(F) for all E,F e 8, and

(ii i) for all x e X and all { e r the (T-valued set function

<PC-)xt£> is countably additive on B .

I t i s usually assumed, in addition, that sup{ | \P(E) | | ; E e 8} is finite,

but this already follows from the requirements ( i)-( i i i) [2; p.150]. Since

J belongs to the range of P(-) i t is clear that r £ [P°]*r c X* .

LEMMA 1. Let P: B •*• L(X) be a spectral measure of class r .

Then P(-) is also a spectral measure of class A = [P°]*r.

Proof. Let x e X and g e A . Then £ = tp=lUr^r f o r SOme

U e P(-)° and £, e r3 r = 13...,«. i t follows that

for each E e 8 . Accordingly, <P(-,7a:., £> is countably additive. D

An operator T e L(X) is called a prespectral operator of class r
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if there is a spectral measure P(-) of class r , necessarily unique

[/; Theorem 5.13], such that T e P(-)° and the spectrum of the

restriction of T to each closed invariant subspace P(E)X, E e 8 , is

contained in the closure of E in E . The measure P(-) is called the

resolution of the identity of class V for T . Spectral operators

correspond to the case when T = X* [/; Theorem 6.5]. An example of a

prespectral operator (of some class r) which is not a spectral operator

is given by Tf = gt f e X = L°(10,1V , where g(s) = sf(s), s e [0,1],

and r = L1 (10,1V.

PROPOSITION 1. Let T e L(X) be a prespectral operator of class

T and P(') be its resolution of the identity of class r . Then T is

also a prespectral operator of class A = [P°1*T with the same P(-)

being its resolution of the identity of class A .

Proof. It follows from Lemma 1 that P(.) is a spectral measure

of class A which also satisfies, if considered as being a class A

rather than class r , the properties T e P(-) and the spectrum of the

restriction of I7 to each closed invariant subspace P(E)X, E e B is

contained in the closure of E . Accordingly, P(.) is a resolution of

the identity of class A for T and so is the resolution of the identity

of class A for T 11; Theorem 5.13]. 0

If T e L(X) is a prespectral operator of class r with resolution

of the identity of class r / say P(-)t and A e L(X) commutes with

T , then it is known that

(1) A([ fdP) = ([ fdP)A , f e C(o(T)),
'o(T) >a(T)

where a(T) is the spectrum of T [7; Theorem 5.12]. The 'integral' is

defined via a process of continuous extension from the B-simple functions

[/; p.120].

The main result can now be published.

THEOREM 1. Let T e L(X) be a prespectral operator of class r
and A e L(X) commute with T. If P(.) is the resolution of the
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identity of class r for T , then A commutes with each value of P(-)

if and only if A*(T) c [Pc]*r .

Proof. If A commutes with each value of P(-) , then A e P(-)C

and hence, A*(T) £ [pc]*r by definition of [P°1*T .

Conversely, suppose that A*(T) c [P ]*r . Fix x e X and £ e r .

Define ff-valued se t functions y and v on B by v(-) = <P(-)Ax} £>

and y(-J = <4P(. ;#.,?> = <P(- )x,A*Z> . Then v i s a-additive by

defini t ion of P(•) being a spectral measure of class r and y i s

G

a-additive by the hypothesis A*E, s [P ]*r and Lemma 1. Since y and v

are regular i t follows from (1) that

f fdv = [ fdVt f e C(o(T)) t
}o(T) 'a(T)

and so the Riesz representation theorem implies that v = y . Since

x e X and £ e F are arbitrary it follows from the totality of r that

AP(E) = P(E)A for each E e B . D

COROLLARY 1.1. Let X be a Banach space and T e L(X*) be a

prespectral operator of class X . If A e L(X) satisfies A*T = TA* ,

then A* commutes with the resolution of the identity of class X for T.

The difficulty with Theorem 1 is that to apply it in practice it is

necessary to be able to identify the subspace [P ]*r which, in turn,

requires a specific knowledge of the resolution of the identity of class

T for T , say P(') , and its commutant P(-) . However, it is clear

that if r itself happens to be an invariant subspace of A* , then

certainly A commutes with P(-) . This sufficient condition, although

more stringent than the hypothesis A*(T) C [P ]*r and hence less likely

to be satisfied, nevertheless has the advantage that it is easier to

verify. Actually, under some reasonable topological assumptions it turns

out that the containment A*(T) c r is not too far from the condition

A*(T) c [Pc]*r .
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PROPOSITION 2. Let V be a total subspace of X* such that I is

sequentially closed for the weak topology o(Y,X) induced by the dual

pairing <T,X> . If P: 8 -»• L(X) is a spectral measure of class V such

that each operator P(E) } E e 8, is continuous from (X, o(X,T)) into

(X, aCXjV)) , then r coincides with the linear span LU(P)]*T3 of

{V*& V e U(P) , C e r} where U(P) denotes the closed algebra generated

by iPCE); E e 8} with respect to the uniform operator topology in L(X).

Remark. An operator S: X + X i s continuous from (X, o(X,T))

into (X3 o(XtV)) if and only if S*(T) 5 V .

Proof. The inclusion r c iU(P)]*T always holds. To show the

reverse inclusion i t suffices to show, by definition of LU(P)1*T and

the fact that r is a subspace, that V*£ e T whenever ? e F and

V £ U(P) . Noting that the range of P(-) is a T-a-complete Boolean

algebra in the sense of Definition 2 of [2] i t follows from [2; Lemma 2]

that if K is the maximal ideal space of U(P) , then there exist a

spectral measure Q: B^ -»• L(X) of class V and a function / e C(K)

such that V = f fdQ , where 8» is the a-algebra of Borel subsets of
>K K

K . In addition, the range of Q coincides with {P(E); E e 8} . Choose

a sequence of 8^-simple functions, say {/' } , such that /' -*• f

uniformly on K . Then V = lim f f dQ , where the limit exists in the
'K n

uniform operator topology of L(X) [1; p.120], Accordingly

(2) <x,V*Z> = <Vx,Z> = lim <([ fdQ)x,t,> = lim <xj( f^dQ)*Z> ,

)Kn )Kn

for each x e X . But, if g = £ -a Xp/ 1 is a 8^-simple function

then it follows from the identity (( gdQ)*C = JM ̂ a Q(F(r))*£ 3 the

inclusion {Q(.F(r))}^i_1 c {P(E)j E e 8} and the assumption that T is

invariant for each operator P(E)*, E e B, that ([ gdQ)*Z e T .
Accordingly, the sequence {({ f dQ)*£) , is contained in T and, by

J V ^—

(2), it converges to 7*£ with respect to the topology a(TjX) . Then
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the a(TtX)-sequential closedness of r implies that V* E, e T. Q

Remark. It is always the case that U(P) c p(.)° and hence, under

the assumptions of Proposition 2, the subspace r can be a proper sub-

space of IP°1*T only if the containment U(P) £ P(.)° is proper. Of

course, if it is known for some reason that U(P) = P(.) , then under the

assumptions of Proposition 2 it follows that a bounded operator A

commuting with a prespectral operator T of class r (having P(-) as

its resolution of the identity of class D commutes with P(-) if and

only if A*(T) £ r .

Example. Let X be a weakly sequentially complete Banach space

and T e L(X) be a spectral operator with a cyclic vector (that is if

Q: 8 •*• L(X) is the resolution of the identity for T , then there exists

a vector x in X such that the linear span of {Q(E)x ; E e 8} is

dense in X) . Then T* e L(X*) is a prespectral operator of class X

with the property that if AT* = T*A for some A e L(X*) , then A

commutes with the resolution of the identity of class X for T* if and

only if A*(X) £ X . Indeed, with V = X it follows from [2; Lemma 3]

that P(E) = Q(E)*3 E e B , is the resolution of the identity of class

r for T* . Since r with the afT^X*) topology is simply X with

its weak topology and P(E)* = Q(E)** has r = X £ X** as an invariant

subspace for each E e 8 , it suffices to show that U(P) = P(.)° (see

Proposition 2 and the Remark following it) . But, if x* e X* is any

Bade functional for x , then x* is a r=Y-cyclic vector for

{P(E)*J E e B} in the sense of Definition 3 of [2]; see the Remark on

page 153 of [2D. Accordingly, the Corollary on page 155 of [2] implies

that U(P) = P(.)° .

1 °°
For a specific example, let X = i (IN) and {X } _ be a bounded

Yl 71—1

sequence in E . Then X is weakly sequentially complete and the operator

T e L(X) defined by Tx = y, x e X, where yn = *n^Mj n = 13..., is a

-2 <*>
spectral operator with a cyclic vector Cfor example x = {n } .J .

O Yl—1
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