S32-01 - DYSFUNCTION IN REWARD LEARNING AND THERAPEUTIC CONSEQUENCES

A. Heinz

Dept. of Psychiatry and Psychotherapy, Campus Charité Mitte, Berlin, Germany

Alcohol stimulates dopamine release and chronic intake is associated with neuroadaptation in the brain reward system. Previous studies described

- 1) increased brain activation following the presentation of alcohol-associated stimuli, which was directly correlated with dopamine D2 receptor reductions in the ventral striatum, and
- 2) a decreased response to stimuli that predict non-alcohol (e.g. monetary) rewards.

This alteration of brain responses to alcohol-associated versus non-alcohol cues may result from altered reward-associated learning in alcoholism. Indeed, alcohol-dependent patients displayed a decreased learning rate and performeance in a probabilistic reversal task. A brain imaging study revealed that the decreased learning rate was associated with impaired prefrontal-striatal connectivity during reward-dependent reversal learning. These results point to deficits in reward-associated learning, which contribute to alcohol craving. Since such reward-associated learning deficits can interfere with learning of new, non-alcohol associated behavior, cognitive behavior therapy may profit from taking such learning speed impairments into account.