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Abstract
In urban systems, there is an interdependency between neighborhood roles and transportation patterns
between neighborhoods. In this paper, we classify docking stations in bicycle-sharing networks to gain
insight into the human mobility patterns of three major cities in the United States. We propose novel
time-dependent stochastic block models, with degree-heterogeneous blocks and either mixed or discrete
block membership, which classify nodes based on their time-dependent activity patterns. We apply these
models to (1) detect the roles of bicycle-sharing stations and (2) describe the traffic within and between
blocks of stations over the course of a day. Our models successfully uncover work blocks, home blocks, and
other blocks; they also reveal activity patterns that are specific to each city. Our work gives insights for the
design and maintenance of bicycle-sharing systems, and it contributes new methodology for community
detection in temporal and multilayer networks with heterogeneous degrees.

Keywords: stochastic blockmodels, bicycle-sharing networks, multilayer networks, time-dependent networks, transportation
systems

1. Introduction
Transportation systems and commuting patterns shape and reveal functional regions in a city
(Barbosa et al., 2018; Barthelemy, 2019). The continuing development of network-analysis meth-
ods and the increasing availability of transportation data (from a multitude of transportation
modes) give exciting opportunities to improve understanding of urban dynamics at both large
and small scales. One prominent type of transportation service is bicycle-sharing systems, which
can adapt quickly to the needs of travelers. The number of bicycle-sharing programs worldwide
has grown rapidly, from 5 in 2005 to 1571 in 2018 (Schmidt, 2018). Over 50 systems were launched
in the United States alone between 2010 and 2016, and over 20 bicycle-sharing systems have been
launched in France since 2005 (Etienne and Latifa, 2014; Bike share in the U.S, 2018). Many exist-
ing bicycle-sharing systems are also growing. For example, the number of stations in New York
City’s “Citi Bike” system has more than doubled since it debuted in 2013.
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Docked bicycle-sharing systems follow a general structure: Groups of bicycles are parked at
“stations” (which are also called “docks” or “hubs”) throughout a coverage area, and users with-
draw and return bicycles to these stations on demand, with a cost that depends on usage time.
A growing number of bicycle-sharing systems are dockless (as are the increasingly prominent e-
scooters), so users can park bicycles at any location in a coverage area. In the present paper, we
analyze docked systems, but we consider how to adapt ourmodels to dockless systems in Section 7.

Data from bicycle-sharing systems are available from many cities throughout the world
(Austwick et al., 2013; Romanillos and Zaltz Austwick, 2016; Wergin and Buehler, 2017; Munoz-
Mendez et al., 2018; Romanillos et al., 2018). Such data, which include detailed temporal records
and GPS-tracked routes in some cases, are helpful for capturing commuting behavior (Fishman
et al., 2013). Analyzing bicycle-sharing data can increase our understanding of urban flows and
human commuting. Bicycle-sharing is often used for “last-mile” transportation, bridging the gap
between public transportation and a final destination (Griffin and Sener, 2016), and insights into
the dynamics of bicycle-sharing systems can help transit systems evolve to meet the needs of
changing cities (Ashqar, 2019; Natera Orozco, 2020). Studying bicycle-sharing systems is also
helpful for maintaining and expanding them (Ashqar, 2021). For example, it can yield helpful
ideas for the efficient redistribution of bicycles, a problem that has received much attention (Shu
et al., 2013; Pfrommer et al., 2014; Forma et al., 2015; Singhvi et al., 2015).

In the present paper, we propose two models of time-dependent networks to capture the
functional roles of bicycle-sharing stations. We use the lens of mesoscale-structure detection in
time-dependent networks (Holme and Saramäki, 2012; Holme, 2015; Fortunato and Hric, 2016).
We examine trip histories from bicycle-sharing systems in the form ofmultilayer networks (Kivelä
et al., 2014; Aleta and Moreno, 2019; Porter, 2018) in which each layer is a network of trips that
start in a given hour.

We aim to partition each of our networks based on a relational equivalence of nodes (a per-
spective with a rich history in the social-networks literature (Lorrain and White, 1971; Rossi and
Ahmed, 2015)), rather than on high internal traffic within sets of nodes (Munoz-Mendez et al.,
2018). The analysis of time-aggregated data can shed light on “community” membership in the
latter sense (Austwick et al., 2013) through a partition of a network into contiguous spatial clus-
ters (Munoz-Mendez et al., 2018). However, such an approach ignores how bicycle-sharing usage
relates to travel patterns during a day (Fishman et al., 2013). By contrast, our models are designed
to detect functional roles of bicycle-sharing stations based on time-dependent usage patterns.

The models that we introduce in this paper are time-dependent extensions of stochastic block
models (SBMs) (Snijders and Nowicki, 1997; Nowicki and Snijders, 2001; Karrer and Newman,
2011; Peixoto, 2019). We include parameters to describe intra-block and inter-block traffic that
starts in each hour, but we fix the block assignment of each node over time. That is, we treat a
bicycle-sharing network as a temporal multilayer network with fixed node identities across lay-
ers (Kivelä et al., 2014; Aleta and Moreno, 2019). We use the terminology “time-dependent” to
emphasize the time-dependent nature of our application and the associated interpretations of
our results, but our models are relevant for studying any multilayer network with the same set of
nodes across layers and no interlayer edges.We also note that the layers do not need to be ordered.

We formulate both mixed-membership and discrete-membership models, where nodes can be
members of multiple blocks or exactly one block, respectively. Our models are degree-corrected.
In an SBM without degree-correction, the expected weight of an edge is determined by the block
memberships of its incident nodes. By contrast, in a degree-corrected SBM, the expected weight of
an edge also depends on the activity levels (i.e., the degrees) of its incident nodes. We extend the
degree-correction that was introduced by Karrer and Newman (2011) to our multilayer SBMs (see
Section 3). Incorporating degree-correction whenmodeling networks with heterogeneous degrees
can increase the performance of a model while only slightly increasing its complexity (Karrer and
Newman, 2011).
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In Section 6, we illustrate that degree-correction enables us to identify blocks based on their
functional roles in a network, rather than based on their levels of activity. This is important for
bicycle-sharing networks, as stations have heterogeneous numbers of parking spaces for bicy-
cles and different neighborhoods have different baseline levels of bicycle usage. Our models are
applicable to directed networks and are easily extendable to undirected networks. Additionally,
although our models are inspired by the analysis of bicycle-sharing systems, they are applicable
more generally to multilayer networks in which nodes have heterogeneous degrees and belong to
fixed classes.

Community detection in multilayer networks is a very active research area, and it has yielded
insights into many problems in diverse disciplines (Cranmer et al., 2015; Valdano et al., 2015;
Barbillon et al., 2017; Papadopoulos et al., 2018; Kobayashi et al., 2019; Bazzi et al., 2020).
Many algorithms for community detection have been generalized to multilayer networks. See,
for example, Mucha et al. (2010), Yang et al. (2011), Paul and Chen (2016), Stanley et al. (2016),
Valles-Catala et al. (2016), Barbillon et al. (2017), Jeub et al. (2017), and Zhang et al. (2017).

The SBMs that we introduce have parameters for block-to-block activity that are distinct for
different departing hours; however, the block-membership (i.e., community-membership) param-
eters are fixed across all hours. Most related SBMs that have been introduced differ in one or both
of these features. Yang et al. (2011) introduced a discrete-membership SBM in which the parame-
ters for block-to-block activity are fixed with respect to time but block memberships evolve with
time. Xu and Hero (2014) and Matias and Miele (2017) proposed related models (for unweighted
and weighted networks, respectively). However, unlike in the model of Yang et al., their models
do not fix block-to-block activity parameters over time. Zhang et al. (2017) developed a time-
dependent block model with degree-correction in which block membership does not change with
time and the edge dynamics are described by a continuous-time Markov process, with edges that
are added or removed between block pairs at constant rates. Mixed-membership SBMs with time-
evolving communities have also been developed (Xing et al., 2010; Ho et al., 2011). See Rossetti
and Cazabet (2018) for a survey of community-detection methods for time-dependent networks.

Community detection has been applied to urban bicycle-sharing systems using a variety of
approaches (Rosvall et al., 2009; Borgnat et al., 2011; Austwick et al., 2013; Akbarzadeh et al., 2018;
Munoz-Mendez et al., 2018; Xie andWang, 2018; He et al., 2019; Kobayashi et al., 2019). Zhu et al.
(2018) applied k-means clustering to undirected, time-dependent usage data from bicycle-sharing
systems and other urban systems in New York City. Austwick et al. (2013) examined modular-
ity optimization with a directed and spatially-corrected null model to identify communities of
bicycle-sharing stations in several cities. However, they detected communities in time-aggregated
networks; as they pointed out, there are significant limitations in bicycle-sharing applications
when examining community structure while ignoring time-dependent usage patterns. Munoz-
Mendez et al. (2018) identified communities in hourly slices of bicycle-sharing data from London
using an INFOMAP algorithm (Rosvall et al., 2009) that respects the directed nature of edges
in the underlying bicycle-trip networks. The changes with time that they discovered in those
communities highlight the importance of time of day in the usage patterns of bicycle-sharing
systems.

There is some recent work that is closely related to ours. Matias et al. (2018) constructed a
time-dependent, discrete-membership SBM with fixed blocks over time and applied it to bicycle-
sharing networks in London. They detected some functional blocks, but their approach does not
incorporate degree-correction. Xie and Wang (2018) employed an approach that does not use an
SBM directly, but they were able to successfully partition a bicycle-sharing network to find home
and work roles of bicycle-sharing stations. They used the ratio of in-degree to out-degree at dif-
ferent times to discover home–work splits during peak commute times. In the present paper, we
observe such splits using our two-blockmodels. A similarity of their approach to ours is that it cor-
rects for degree; a key difference is that they relied on human supervision to determine peak hours,
whereas our models implicitly increase the weights of more-active hours in our likelihood func-
tion. Etienne and Latifa (2014) used a Poisson mixture model to cluster bicycle-sharing stations in
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Paris based on their time-dependent usage profiles. They were able to capture the time-dependent
activity patterns of each group of stations, distinguish between arrival and departure activity, con-
trol for the overall activity level of a given station (via degree-correction), and associate the groups
that they identified with their roles in the city. Amajor difference between their approach and ours
is that we distinguish activity between blocks, which allows us to detect behavior like last-mile
commuting that occurs within blocks. We also consider mixed membership, which they proposed
as a subject for future work.

Our paper proceeds as follows. In Section 2, we list our data sources and present basic statistical
analysis of the data. In Section 3, we introduce our time-dependent SBMs—a mixed-membership
model and a discrete-membership model—and we show that they are equivalent up to a con-
straint. In Section 4, we describe estimation algorithms for our SBMs. In Section 5, we generate
synthetic networks using both of our models; we evaluate the fits of our models and a model
by Matias et al. (2018) to the generated data. In Section 6, we present the results of fitting our
models to bicycle-sharing networks in Los Angeles, San Francisco, and New York City. We
summarize our results, discuss their implications for bicycle-sharing systems, and suggest areas
of further study in Section 7. We show some additional details of our work in the Appendix.
We provide code and data to implement our models and replicate the results in our paper at
https://github.com/jcarlen/tdsbm_supplementary_material.

2. Data
We examine bicycle-sharing systems in Los Angeles, the Bay Area, and New York City. For Los
Angeles, we study only the system’s downtown region, which is self-contained in the sense that
very few trips connect it to stations that are not downtown. Similarly, for the Bay Area, we consider
only the San Francisco network and exclude stations in Mountain View, Palo Alto, and San Jose.
(If we applied our models to these nearly disconnected portions of the Bay Area bicycle-sharing
network, it would be better to treat them as separate networks than to model them jointly.) Each
of our three focal systems covers a dense urban area, but they vary in their sizes and daily usage.
Because of this variability and how the data were reported, we study different time periods for
each system. We also select our time periods to exclude days that are likely to be extremely hot or
extremely cold. Each of the bicycle-sharing systems that we study has an open-data portal, from
which we downloaded our data. After cleaning (see our discussion in the next paragraph), our
data consist of the following:

• Downtown Los Angeles: October–December 2016; there are 61 stations and 40,130 trips, of
which 73.4% are during weekdays (NYCBS, 2017).

• San Francisco: September 2015–August 2016; there are 35 stations and 267,412 trips, of which
92.1% are during weekdays (Bay Area Bike Share, 2017).

• New York City: October 2016; there are 601 stations and 1,551,692 trips, of which 75.6% are
during weekdays (LA Metro, 2017).

A trip consists of a user checking out a bicycle from a fixed location (a station that includes
multiple parking spaces) and returning it to a station. The data for each trip include the starting
time; the ending time; and the starting and ending locations by station ID, latitude, and longitude.
Each data set also has a few additional fields about the users; these details include whether or
not they have memberships in the bicycle-sharing system, but we do not use this information in
our investigation. We clean the data by removing anomalous trips, including extremely short and
extremely long trips,1 and trips that were for testing or maintenance (as indicated in the data).
We also exclude a very small number of stations (two in Los Angeles and six in New York City)
that did not have at least one departure and at least one arrival during the examined time period.
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Figure 1. (Top) Total bicycle trips by departing hour for weekdays, weekends, and overall in New York City, San Francisco,
and Los Angeles. Hour 0 designatesmidnight. (Bottom) Trips that arrive (solid curves) and depart (dashed curves) by hour in
the six San Francisco stations with the most trips.

Finally, we exclude one station in New York City that was accessible to other stations only by ferry;
it was involved in only nine trips during the examined time period. In total, cleaning removes 7.1%
of the trips in Los Angeles, 4.5% of the trips in San Francisco, and 1.4% of the trips in New York
City.

We retain self-edges, which represent trips that start and end at the same station. Although it
is common to remove self-edges when analyzing networks (Newman, 2018), we expect the self-
edges in our data to have a very similar data-generating mechanism as trips to nearby stations.
As in Karrer and Newman (2011), including self-edges also simplifies some aspects of parameter
estimation. When fitting our models, we include only weekday trips, as we observe that weekday
and weekend activity follow distinct patterns (see Figure 1). Moreover, weekend activity does not
reflect daily commuting behavior. From the data sets, we construct multilayer networks that are
both weighted and directed. In our networks, nodes represent stations, edge values encode the
number of directed trips from one station to another that begin in a specified hour, and each of
the 24 layers encompasses the trips that start in a certain hour.

2.1 Preliminary data analysis
When examining the bicycle-sharing data sets, we observe strong daily usage patterns, which
motivate the development of our time-dependent SBMs. In Figure 1, we illustrate these usage
patterns by plotting the number of trips by starting hour for each city. In each city, weekday activ-
ity spikes during morning and evening commuting hours (and Los Angeles also has a mid-day
spike), whereas weekend trips peak in early afternoon. Similar patterns have been observed previ-
ously for bicycle-sharing systems in New York City and many other cities (Austwick et al., 2013;
Etienne and Latifa, 2014; Taiyeb, 2014; Xie and Wang, 2018; Zhu et al., 2018).

For individual stations, the morning and evening peaks for arriving trips (i.e., in-edges) and
departing trips (i.e., out-edges) are often unbalanced. One direction has a stronger morning peak,
and the opposite direction has a stronger evening peak. In the bottom panel of Figure 1, we show

https://doi.org/10.1017/nws.2021.21 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2021.21


Network Science 51

examples of this imbalance for the six busiest stations in San Francisco. (In Appendix A.1, we
further explore this issue using singular-value decompositions of the trip data.) These patterns
suggest how stations are used in commuting, and theymotivate our time-dependent identification
of stations into “home” and “work” types.

Another characteristic of our data that we incorporate into the design of our models is the
strong positive Pearson correlation coefficient between the total (summed over all hours) in-
degree and out-degree of each station; it is 0.99 in New York City, 0.98 in San Francisco, and
0.91 in Los Angeles. Accordingly, we apply degree-correction to the overall degree of each station,
rather than to the in-degrees and out-degrees separately (see Section 3.1). This correlation is an
intrinsic feature of docked bicycle-sharing systems; at some point, bicycles must be returned to a
station before any new trips can originate from it. (The use of trucks to redistribute bicycles within
a system can loosen this requirement.) More generally, the strong correlation also relates to a
famous axiom of human mobility: for each current of travel, there is an associated countercurrent
(Ravenstein, 1885).

3. Our stochastic block models
In this section, we introduce our time-dependent mixed-membership stochastic block model
(TDMM-SBM) and time-dependent discrete stochastic block model (TDD-SBM).

SBMs are a popular class of statistical network models (Peixoto, 2019). The motivating prin-
ciple of SBMs is a notion of stochastic equivalence in which edges whose incident nodes have the
same block membership are identically distributed. It is a standard assumption of SBMs that edge
weights are independent, given the block memberships of their associated nodes. More formally,
an unweighted (i.e., Bernoulli) random graph Y (with adjacency matrix A) from an SBM with K
blocks is defined by

P(Aij = 1|G)= ηgigj , (1)
where G (with entries gi ∈ {1, . . . ,K}, with i ∈ {1, . . . ,N}) is a vector of block assignments for the
nodes of Y and η is a K ×K matrix of block-to-block edge probabilities. This definition allows
directed graphs, in which η can be asymmetric. For early presentations of SBMs, see Holland
(1983), Faust and Wasserman et al. (1992), Snijders and Nowicki (1997), and Nowicki and
Snijders (2001). More recent advances have added flexibility to SBMs. Examples include mixed-
membership and overlapping-membership SBMs (Airoldi et al., 2008; Latouche et al., 2011),
models with covariates (Leger et al., 2020), degree-corrected SBMs (Karrer and Newman, 2011),
and Bayesian implementations (Peixoto, 2019). Applications of SBMs to time-dependent net-
works include discrete-membership (Yang et al., 2011; Zhang et al., 2017) andmixed-membership
(Xing et al., 2010; Ho et al., 2011) models in which the block assignments of nodes are time-
dependent and discrete-membership models (without degree-correction) with fixed blocks over
time (Xu and Hero, 2014; Matias et al., 2018).

3.1 Time-dependent mixed-membership stochastic blockmodel (TDMM-SBM)
We now describe the framework for our mixed-membership SBM. Let i, j ∈N (with |N | =N) be
nodes, which represent bicycle-sharing stations; let g, h ∈K (with |K| =K) be blocks. We treat
both the number of nodes and the number of blocks as fixed and given. To each bicycle-sharing
network, we associate a three-dimensional array of size (N,N, T), where T is the number of time
slices (i.e., time layers). Our model is also valid when layers have meanings other than time slices.
However, because of our application to bicycle-sharing systems, we describe the layers as time
layers for convenience.We consider hourly groupings of bicycle trips based on their starting times,
and we do not include interlayer edges.2 The array entry Aijt is the observed number of trips
from station i to station j with a starting time that is at least t and less than t + 1. Our networks
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are directed, so we count each trip that starts at node i in hour t and ends at node i (i.e., self-
edges) exactly once in Aiit . We use Ãij =∑23

t=0 Aijt to denote the edge weights of the associated
time-aggregated matrix.

For each node i, there is a latent length-K vector of real numbers Cig ∈ [0, 1]. These vectors,
which we will estimate, signify the mixed-membership block assignments of the nodes. The block-
assignment parameterCig indicates the “strength” of node i in block g. For each ordered pair g, h of
blocks and each time t ∈ {0, 1, . . . , 23} (where t = 0 represents the hour that starts at midnight),
there is a parameter ωght , which we call the “block-connectivity” parameter (i.e., the “block-to-
block” activity parameter), that represents the directed activity from block g to block h in layer t.
Note that ωght need not be equal to ωhgt for a directed network; in our application, this captures
asymmetries in the numbers of trips with respect to reversing origins and destinations. We also
define the notation ω̃gh =∑23

t=0 ωght for our time-aggregated matrix.
For each pair of nodes, i and j, we assume that the number of trips that depart from i in hour

t and arrive at j at any time is Poisson-distributed with mean μijt =∑
g,h CigωghtCjh. Our use

of the Poisson distribution follows Karrer and Newman (2011) and Peixoto (2019), facilitates
computation, and is standard for modeling count data (although overdispersion is a concern).

For identifiability (i.e., to allow unambiguous inference), we apply the constraint
∑

i Cig = 1
for all g. This does not constrain the set of possible models in terms of realizable mean edge activi-
ties μijt . Consider a model with unconstrained parameters ωght and Cig . A model with parameters
ω′
ght andC

′
ig such thatC′

ig = Cig∑
j Cjg

andω′
ght = ωght

(∑
j Cjg

) (∑
j Cjh

)
gives an equivalent param-

eterization, because the means of the distributions of edge weights are equal to the those of the
model with unconstrained parameters. That is, μ′

ijt =
∑

g,h C′
igω

′
ghtC

′
jh =∑

g,h CigωghtCjh = μijt .
Given that

∑
i Cig = 1, we can think of Cig as the proportion of the total activity of block g

from the activity of node i. We interpret Cig relative to Cih as how strongly block g is associated
with node i relative to how strongly block h is associated with node i. The expected total number
of trips at node i is

∑
g Cig

∑
h,t (ωght + ωhgt). By contrast,

∑
g Cig is a measure of the activity

of node i in which we do not weight Cig by the total activity of its corresponding block. We use∑
g Cig to determine the size of node i when plotting the block assignments that we infer using

the TDMM-SBM (see the left panels of Figures 3 and 6) because it helps ensure that we do not
overlook blocks with important usage patterns but relatively low activity. The parametersCig , with
i fixed and g ∈K, extend the degree-correction parameter for SBMs that was introduced by Karrer
and Newman (2011) to mixed block membership. We elaborate on this connection in Section 3.2,
where we introduce a model that specifies that nodes are assigned to only one block.

We now compute the likelihood function that we will optimize to obtain maximum-likelihood
estimates (MLEs) of parameters. We assume conditional independence between the Poisson-
distributed hourly numbers of trips along each edge, given model parameters, so the likelihood
of the data is

L(G;ω,C)=
23∏
t=0

∏
i,j∈N

(μijt)Aijt

Aijt! exp
(−μijt

)
, (2)

where ω and C are the model parameters (i.e., ω = {ωght} and C= {Cig}). Note that μijt =∑
g,h CigωghtCjh is a function of these parameters, the set N of nodes of the network is fixed and

given, and the number K of blocks is also fixed and given. The unnormalized log-likelihood is

�(G;ω,C)=
23∑
t=0

∑
i,j∈N

[
Aijt log

(
μijt

)− μijt
]
, (3)
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where we omit the constant −∑i,j,t log
(
Aijt!

)
because it does not affect the maximum of the

function. In (3) and throughout this paper, we use “log” to denote the natural logarithm.

3.2 Time-dependent discrete stochastic block model (TDD-SBM)
We derive a single-membership SBM from our mixed-membership SBM by making the extra
assumption, for each node i ∈N , that Cig > 0 for only one block g ∈K. For our single-
membership SBM, we introduce some new notation to aid our description and promote con-
sistency with the notation in other work (Karrer and Newman, 2011; Zhu et al., 2013). For a given
node i, the block g for which Cig > 0 is the block gi that is associated with node i. Therefore, we
describe this model as a discrete-membershipmodel.We introduce a scalar parameter θi = Cigi for
each node i; it is a multilayer extension of the degree-correction parameter in Karrer and Newman
(2011). The expectation of the Poisson distribution of the value of an edge from node i to node j at
time t is θiθjωgigjt = Cigiωgi,gjtCjgj= μijt . We retain the sum constraints of our mixed-membership
model, so

∑
i∈g θi = 1 for all g.

We compute optimal values of the parameters ω and θ = {θi}i∈N . As in our TDMM-SBM, we
take N and K to be fixed and given. Again dropping the constant term −∑i,j,t log

(
Aijt!

)
, the

log-likelihood of our discrete-membership SBM is

�(G;ω, θ)=
∑
t

∑
g,h

∑
i∈g,j∈h

[
Aijt log θi +Ajit log θj +Aijt logωght − θiθjωght

]
. (4)

This resembles the degree-corrected SBM in equation (14) of Karrer and Newman (2011), but we
have adapted it to directed networks and summed over time layers.

We find explicit formulas for the conditionalMLEs of θi andωght , given the blockmemberships
{gi}i∈N . In the following calculations, the absence of t in the subscript of a parameter and the
presence of a tilde designates a sum over all t. Specifically, we define Ãij =∑23

t=0 Aijt and ω̃gh =∑23
t=0 ωght . We differentiate � with respect to ωght to obtain

∂

∂ωght
� =

∑
i∈g,j∈h Aijt

ωght
− 1 ,

where we have used the blockwise sum constraints on θ to simplify
∑

i∈g,j∈h θiθj to 1. Therefore,
the conditional MLE for ωght is

ω̂ght =mght , (5)

where mght is the sum of the weights of the edges from nodes in block g to nodes in block h in
layer t. That is,mght =

∑
i∈g,j∈h Aijt .

We then differentiate � with respect to θi to obtain

∂

∂θi
� =

∑
j Ãij +∑

j Ãji

θi
−
∑
h

ω̃gih −
∑
h

ω̃hgi .

At ω̂ght , the conditional MLE for θi is

θ̂i =
∑

j
(
Ãij + Ãji

)
∑

g
(
m̃ggi + m̃gig

) = ki
κgi

, (6)

where ki =∑
j
(
Ãij + Ãji

)
is the degree of node i (i.e., the sum of the in-degree and the out-degree3

of i) over all time layers, m̃gh =∑23
t=0 mght , and κg =∑

h
(
m̃gh + m̃hg

)
is the sum of the in-degrees

and out-degrees of all nodes in block g over all time layers. The term 2m̃gg in the equation for κg
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implies that we count each intra-block edge twice: once for departing from g and once for arriving
at g. Similarly, ki includes the term 2Ãii, so we count self-edges twice in this term.

The parameter MLE θ̂i in our TDD-SBM for directed, multilayer networks is analogous to the
MLE of a degree-correction parameter in a degree-corrected SBM for undirected networks with
one layer (Karrer and Newman, 2011). Indeed, the MLE for the degree-correction parameter of
a node in the latter model is the degree of that node divided by the sum of the degrees of all
nodes in its block. Another similarity between the degree-corrected SBM of Karrer and Newman
(2011) and our TDD-SBM is that at the MLE of the TDD-SBM, the expectation of the (time-
aggregated) degree of a node i is equal to the degree of node i from the observed data. That is,∑

t
∑

j
(
μijt + μjit

)= ki. (See Appendix A.2 for the proof.) For our mixed-membership SBM, we
are not aware of such a precise relationship between the data and the expected value of any model
statistics.

We now substitute the above conditional parameter estimates into the unnormalized log-
likelihood of the TDD-SBM to obtain

∑
t

⎡
⎣∑

i,j

(
Aijt log

(
ki
κgi

)
+Ajit log

(
kj
κgj

))
+
∑
g,h

mght logmght −
∑
g,h

mght

⎤
⎦

=
∑
i

ki log ki −
∑
i

ki log κgi +
∑
t

∑
g,h

mght logmght − m̃ ,

where m̃ is the total number of edges in the network. We do a similar calculation as one in Karrer
and Newman (2011) and write∑

i
ki log κgi =

∑
t

∑
g

∑
i∈g

kit log κg

=
∑
t

∑
g

∑
i∈g

(
kin,it log κg + kout,it log κg

)

=
∑
t

∑
g

κout,gt log κg +
∑
t

∑
h

κin,ht log κh

=
∑
t

∑
g

∑
h

mght log κg +
∑
t

∑
g

∑
h

mght log κh

=
∑
t

∑
g,h

mght log κgκh ,

where kin,it and kout,it are the in-degrees and out-degrees of node i in layer t, the quantity κin,gt =∑
i∈g kin,it is the number of edges that arrive at g in hour t, and κout,gt =∑

i∈g kout,it is the number
of edges that depart from g in hour t. Including only the terms that depend on block assignments
yields the objective function ∑

t

∑
g,h

mght log
(mght

κgκh

)
, (7)

which we maximize to obtain the MLE of the block assignments.
Unlike the directed SBM of Zhu et al. (2013), our TDD-SBM does not have two degree-

correction parameters for each station. Their directed SBM includes a parameter θ ini to modify
in-degree and a parameter θouti to modify out-degree. The validity of using undirected degree-
correction parameters {θi}i∈N to model directed networks depends on the presence of a large
correlation between the time-aggregated in-degrees and time-aggregated out-degrees of the nodes.
In this situation, including distinct θ ini and θouti parameters would lead to overfitting. The Pearson
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correlations between in-degree and out-degree are larger than 0.9 for all of our bicycle-sharing
networks (see Section 2). To increase the applicability of our work to other networks (which may
not have such large correlations), we provide estimation code in our implementation materials
(see Section 4.2) for a version of our TDD-SBM with directed degree-correction parameters θ ini
and θouti .

4. Computations
In this section, we describe the algorithms that we use to estimate the parameters of our TDMM-
SBM and our TDD-SBM.

4.1 Inference using the TDMM-SBM
Let ω = {ωght} be the K ×K × T array of block-connectivity parameters, and let C= {Cig} be the
matrix of node-strength parameters. We estimate the model parameters using a two-step gradient
descent.4 First, we move in the direction of the gradient with respect to ω and update the block-
connectivity parameters. Second, we move along the direction of the gradient with respect to C
and update the node-strength parameters.

In our algorithm, ω(n) and C(n) denote the nth updates of the block-connectivity and node-
strength parameters, respectively. We initialize the algorithm with random values ω(0) and C(0)

with entries that are distributed according to exp (X), where X is a Gaussian random variable
with mean 0 and variance 1. (That is, we draw random values from a log-normal distribution.)
We denote the mean activity along edge (i, j) with initial parameters ω(0) and C(0) by μ

(0)
ijt . We

scale the initial parameters so that the TDMM-SBM at the starting point of the optimization
procedure has the same mean total number of trips as the data. Specifically, we multiply the

block-connectivity parameters ω
(0)
ght by

(∑
t ω

(0)
ght

)−1 (∑
i,j,t Aijt

)/
K2 and normalize C0 to sat-

isfy the constraint
∑

i C
(0)
ig = 1 for each block g. This yields

∑
ijt μ

(0)
ijt =∑

i,j,t
∑

g,h C
(0)
ig ω

(0)
ghtC

(0)
jh =∑

g,h,t ω
(0)
ght =

∑
g,h

(∑
i,j,t Aijt

) /
K2 =∑

i,j,t Aijt , which is the total number of edges in the net-
work. Without this scaling, the initial parameters can have very small magnitudes, such that the
mean total number of trips from the TDMM-SBM with these initial parameters is much smaller
than the total number of trips in the data. In that situation, the initial likelihood is much smaller
than the likelihood at the MLE.

To ensure that our estimated parameters are nonnegative, we use the following change of
variables: exp (ω̃(n))= ω(n) and exp (C̃(n))=C(n), where the exponential of a matrix or a vector
signifies componentwise exponentiation of each of its entries. We can then write the gradient
descent as

ω̃(n+1) = ω̃(n) + η(n)∇ω�
(
C(n),ω(n)

)
exp

(
ω̃(n)

)
,

C̃(n+1) = C̃(n) + h(n)∇C�
(
C(n),ω(n+1)

)
exp

(
C̃(n)

)
,

where h(n) and η(n) are small positive numbers. From the definitions of C̃(n) and ω̃(n), we write

ω(n+1) = ω(n) exp
(
η(n)∇ω�

(
C(n),ω(n)

)
ω(n)

)
,

C(n+1) =C(n) exp
(
h(n)∇C�(C(n),ω(n+1))C(n)

)
.

Let h(0) = η(0) = � > 0 be the fixed initial step size. For our application, we choose � = 10−4. We
generate two candidate updates forω(n+1) for the first step in our algorithm using h(n+1) = 1.2 h(n)
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and h(n+1) = 0.8 h(n), and we choose the one that gives the ω(n+1) value that yields the larger
�(C(n),ω(n+1)). Similarly, we choose the one of η(n+1) = 1.2 η(n) and η(n+1) = 0.8 η(n) that gives
the C(n+1) value that yields the larger �(C(n+1),ω(n+1)).

We compute the gradient of the log-likelihood function � using the chain rule. Recall that
we compute the log-likelihood in two parts. One part is the computation of the mean μijt =∑

g,h Cigω
t
ghCjh of the number of trips from node i to node j at time t. We then insert the expres-

sion for the mean into � =∑
t
∑

i,j
(
Aijt log (μijt)− μijt

)
. We compute the derivative of � with

respect to μijt to obtain

∂�

∂μijt
= Aijt

μijt
− 1 .

The derivative of μijt with respect to Ckg is

∂μijt

∂Ckg
=δki

∑
h

ωghtCjh + δkj
∑
h

Cihωhgt ,

where δab denotes the Kronecker delta (i.e., δab = 1 if a= b and δab = 0 if a �= b). The derivative of
μijt with respect to ωght is

∂μijt

∂ωght
= CigCjh .

Using the above calculations, we see that the derivatives of � with respect to Ckg and ωght are

∂�

∂Ckg
=

23∑
t=0

∑
i,j∈N

∂�

∂μijt

∂μijt

∂Ckg

=
23∑
t=0

⎛
⎝∑

j∈N

(
Akjt

μkjt
− 1

)∑
h

ωghtCjh +
∑
i∈N

(
Aikt
μikt

− 1
)∑

h
Cihωhgt

⎞
⎠ ,

∂�

∂ωght
=
∑
i,j∈N

∂�

∂μijt

∂μijt

∂ωght

=
∑
i,j∈N

(Aijt

μijt
− 1

)
CigCjh .

We run gradient descent until four significant digits of the base-10 floating-point representa-
tion of the log-likelihood (3) do not change for 600 consecutive steps. For the networks that we
examine, this usually takes between 600 and 5,000 iterations, with models with more blocks gen-
erally needing more iterations to reach this stopping criterion. Because of the nonconvexity of the
log-likelihood function (3), we are not guaranteed to reach a global optimum. Most of the time,
our method converges to an interesting local optimum (which may also be a global optimum) that
appears to reveal functional roles of bicycle-sharing stations (see Section 6). Our results produce
recognizable block-connectivity parameters ωght (e.g., reflecting home–work commute patterns
and leisure patterns) and the parameters Cig indicate known spatial divisions of the stations (e.g.,
residential versus commercial districts). In some cases, however, our algorithm converges to an
uninteresting local optimum; for example, sometimes the block-assignment parameters Cig for
each station appear as if they were assigned independently at random. To improve our results, we
run our algorithm several times (specifically, 10 times for each network) and store the estimate
with the largest likelihood.

https://doi.org/10.1017/nws.2021.21 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2021.21


Network Science 57

For several examples, we compare the parameters that we obtain from gradient descent to
those that we obtain by running a Hamiltonian Monte Carlo (HMC) sampling method in a
Bayesian framework with weak priors. (We implement this sampling method in Stan (Carpenter
et al., 2017; Stan Development Team, 2018).) The log-likelihoods that result from our gradient-
descent method are as good or better than those that we obtain with the HMC method. The
HMCmethod ismore computationally intensive andmemory intensive than our gradient-descent
method, although it may be preferable in applications in which one has meaningful prior informa-
tion about parameters. Improving our optimization method and investigating trade-offs between
accuracy and efficiency are worthwhile topics for future work. For instance, it likely will be ben-
eficial to adapt optimization methods for related time-dependent SBMs (Xing et al., 2010; Ho
et al., 2011; Yang et al., 2011; Xu and Hero, 2014; Matias et al., 2018) to the optimization of
our SBMs.

The repository at https://github.com/jcarlen/tdsbm_supplementary_material has our Python
implementation of our gradient-descent method and code for our inference using Stan in R.

4.2 Inference using the TDD-SBM
To fit our TDD-SBM, we use a Kernighan–Lin-type (KL-type) algorithm (Kernighan and Lin,
1970) that we base on the one in Karrer and Newman (2011). (Karrer and Newman (2011) noted
for their time-independent degree-corrected SBM that their KL-type algorithm is faster than
node-switching algorithms and that it achieves results that are similar to those from such algo-
rithms.) Given K blocks, we initialize the KL-type algorithm by assigning each node to a block
uniformly at random, so each node has probability 1/K of being assigned to a given block. The
algorithm then calculates the best possible block reassignment for any single node with respect
to the associated change in log-likelihood (either the largest increase or the smallest decrease). It
then chooses a new node uniformly at random and determines its best reassignment with respect
to change in log-likelihood. The algorithm cycles through all nodes; a key feature of the algorithm
is that a node that has been reassigned cannot change blocks again until all other nodes have been
reassigned. A sequential reassignment of all nodes constitutes one step of the algorithm. The algo-
rithm then searches all of the states that occurred during the step, and it selects the state with the
maximum log-likelihood of any state in that step. This state is the starting point of the next step
of the algorithm. A single run of the algorithm finishes when a step does not increase the log-
likelihood beyond a preset tolerance value near 0. (In practice, we use 1× 10−4.) To find block
assignments that are as good as possible, we do many runs of the algorithm for each network; this
process is easily parallelizable. In our examples, we use 50 runs per network. We initialize each
run randomly as described above.

Another key feature of the KL-type algorithm is that changes in the block memberships of
nodes affect only the terms of the objective function that involve the origin and destination blocks
of the changes. The simplified objective function (7) is a sum over block-pair terms over T time
layers. Consequently, we do not need to recalculate the full objective function for each node reas-
signment. This estimation method is practical for networks with up to a few thousand nodes and
a small number of blocks, depending on available computing resources.

We implement our KL-type algorithm for our TDD-SBM in an R package using Rcpp
(Eddelbuettel and François, 2011; R Core Team, 2018). The back-end calculations are in C++ for
speed, and we return results in R to enable visualization and other downstream tasks. One can
also use our R package to estimate the parameters of time-independent SBMs (including directed
and/or degree-corrected ones), a variant of our TDD-SBM without degree-correction, and a vari-
ant of our TDD-SBM with directed degree-correction parameters θ ini and θouti . This facilitates
comparisons of inferences from various related SBMs. See https://github.com/jcarlen/sbm for our
R package sbmt for parameter estimation for our TDD-SBM.
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Figure 2. In the TDD-SBM networks that we construct, the red dots indicate the mean weights of the edges from block g to
block h in time layer t, where g, h ∈ {1, 2, 3} and t ∈ {0, 1, . . . , 15}. The title of each panel indicates the blocks g and h (e.g., “1
to 2”).

5. Evaluation of model fitting for synthetic networks
In this section, we generate networks using three models: our TDD-SBM, a variant of our TDD-
SBM without degree-correction, and our TDMM-SBM. Unless we specify otherwise, we use
the term TDD-SBM to refer to our time-dependent discrete-membership SBM with degree-
correction. For networks that we generate using discrete-membership models, we estimate
model parameters using the TDD-SBM, the TDD-SBM variant without degree-correction, and
the Poisson-process SBM (PPSBM) of Matias et al. (2018),5 which also does not have degree-
correction. For the networks that we generate using our TDMM-SBM, we estimate model
parameters using our TDMM-SBM and our TDD-SBM. We compare how well these estimated
models fit the generated data. We illustrate three key points. First, our estimation methods are
able to recover data-generating parameters for generated examples. Second, incorporating degree-
correction in our models facilitates the identification of blocks with similar temporal activity
patterns, as opposed to ones with similar activity levels (i.e., similar degrees), when nodes have
heterogeneous degrees. Third, fitting our discrete-membership model (TDD-SBM) to networks
that are generated by our mixed-membership model (TDMM-SBM) can result in smaller likeli-
hoods of the observed data than when fitting to these data using our TDMM-SBM. That is, one can
lose information whenmodelingmixed-membership networks as discrete-membership networks.

We now discuss how we generate TDD-SBM networks. We construct networks with 16 time
layers to facilitate comparison to the PPSBM. In Figure 2, we show themean edge weights between
nodes in the block pairs for each time layer of the TDD-SBM. We design the underlying curves
to resemble patterns that we observed in the urban bicycle-sharing networks. Using these mean
edge weights and a specified number of nodes in each block, we calculate the expected sums of the
edge weights from one block to another for each layer. In other words, we calculate the MLE ω̂

(see (5)), given this information. We set the parameter ω = {ωght} = ω̂ to generate our networks.
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We construct both two-block and three-block networks, where the former only uses val-
ues in the upper 2× 2 panel of Figure 2. For simplicity, we divide block membership equally
between blocks in the TDD-SBM. For example, if there are 30 nodes and two blocks, 15 nodes
belong to each block. We assume that the degree-correction parameters θ take one of five distinct
values {1x, 2x, . . . , 5x}, which are distributed evenly within each block; the value of x satisfies the
blockwise sum constraints on θ .

Using the above setup, we generate multilayer networks from our TDD-SBM.We also generate
and fit networks using a version of our TDD-SBMwithout degree-correction. A discussion of this
model is beyond the scope of this paper, but we implemented parameter estimation for it in our
sbmt package. The log-likelihood of this model is

�(G;ω)=
∑
t

∑
g,h

∑
i∈g,j∈h

[
Aijt log (ωght)− ωght − log

(
Aijt!

)]
,

which is the log-likelihood of the TDD-SBMwithout the degree-correction parameter θ . For each
experiment, we produce 100 instantiations of the networks. All of the networks that we generate
are directed, and we allow self-edges.

For the networks that we generate using the TDD-SBM or the TDD-SBM without degree-
correction, we estimate model parameters by fitting them using our TDD-SBM, our TDD-SBM
without degree-correction, and the PPSBM of Matias et al. (2018) (which is implemented in the
ppsbm package in R (Giorgi et al., 2018)). Their PPSBM is a time-dependent SBM that is similar to
our TDD-SBM without degree-correction. It differs in that it assumes continuous-time networks
and either adaptively splits data into equal-sized bins (to use a nonparametric histogram-based
estimator) or uses a kernel estimator of time-dependent intensity functions. For our compari-
son, we implement the former approach because the data input structure aligns well with our
preprocessed data. We estimate the parameters of the PPSBM using the variational expectation-
maximization (EM) algorithm from the ppsbm package. The package includes a method to select
the number of blocks using integrated classification likelihood (ICL).

In Table 1, we show the results for networks that we generate using our TDD-SBM and our
TDD-SBM without degree-correction. The first two columns give the number of blocks (K) and
number of nodes (N) that we use to construct the networks. (Recall that we predetermine these
values in our models, so they are given.) We indicate in the “Gen DC” column whether or not
the data-generating TDD-SBM has degree-correction. We indicate the model type that we use to
fit the data in the “Fit Method” column, and we indicate whether or not it incorporates degree-
correction in the “Fit DC” column.

We evaluate the success of each estimation method at detecting the true block assignments by
calculating the adjusted Rand index (ARI) using the fossil package in R (Vavrek, 2011). We
report the mean ARI values of 100 network instantiations in the “ARI” column of Table 1. The
ARI is a function of two group-membership vectors and achieves its maximum value of 1 when
they match perfectly (up to label permutations). We expect an ARI of 0 when we compare two
uniformly random permutations of block assignments that preserve the block sizes.

We evaluate the ability of the estimation methods to recover the true value of the parameter ω

using themean absolute-percentage error (MAPE) between ω̂ andω. The formula for theMAPE is
MAPE(ω̂)= 1

ght
∑

ght
∣∣ ω̂ght−ωght

ωght

∣∣; we report the mean MAPE values of 100 network instantiations
in the “MAPE(ω̂)” column of Table 1. We also compare the unnormalized log-likelihoods of the
generated networks under the data-generating model (we show their means in the “Gen LLIK”
column) to the unnormalized log-likelihoods under the estimated model. Given the similarities
of the candidate models, this yields an overall measure of how well we estimate the means of
the Poisson distributions that describe the edge weights. We show the means of the differences
between these two quantities in the “Diff LLIK” column, where positive values signify that the
data are more likely under the estimated model.
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Table 1. Evaluation of parameter-estimation methods for networks that we generate using our TDD-SBM and our
TDD-SBM without degree-correction. We estimate parameters using both of these models and the PPSBM of Matias
et al. (2018). For each experiment, we indicate the number of blocks (K) and the number of nodes (N) in the networks.
The “Gen DC” column indicates whether or not we use degree-correction when generating the networks, and the
“Fit DC” column indicates whether or not we use degree-correction when we fit the networks. The “Fit Method” col-
umn indicates which model we use for fitting. To the right of the vertical line, we show the means of several statistics
over 100 instantiations of the networks, with the associated standard deviations in parentheses. “ARI” is the adjusted
Rand index between the inferred block assignments and the ground-truth assignments. The quantity MAPE(ω̂) is
the mean absolute-percentage error, expressed as a fraction, between the block-connectivity parameters ω̂ and ω.
“Gen LLIK” is the unnormalized log-likelihood of a generated network under the data-generating model. “Diff LLIK”
is the result of subtracting the unnormalized log-likelihood of a generated network under the data-generating model
from its unnormalized log-likelihood under the estimated model

K N Gen DC Fit DC Fit Method ARI MAPE(ω̂) Gen LLIK Diff LLIK

2 30 F F TDD-SBM 1 (0) 0.03 (0) 174,414 (713) 32 (6)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 30 F F TDD-SBM 1 (0) 0.03 (0) 169,917 (784) 70 (9)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 30 T F TDD-SBM 1 (0) 0.03 (0) 204,808 (952) −30,390 (221)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 30 T F TDD-SBM 0.67 (0) 1.80 (0.02) 200,581 (878) −16,673 (151)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 30 F T TDD-SBM 1 (0) 0.03 (0) 174,467 (861) 45 (7)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 30 F T TDD-SBM 1 (0) 0.03 (0) 169,776 (855) 86 (9)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 30 T T TDD-SBM 1 (0) 0.03 (0) 204,964 (941) 32 (6)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 30 T T TDD-SBM 1 (0) 0.03 (0) 200,687 (1,022) 71 (8)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 30 F F PPSBM 1 (0) 0.03 (0) 174,475 (827) 31 (5)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 30 F F PPSBM 1 (0) 0.03 (0) 169,928 (983) 59 (11)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 30 T F PPSBM 0.04 (0.06) 2.71 (0.36) 204,907 (887) −31,342 (310)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 30 T F PPSBM 0.16 (0.04) 1.05 (0.22) 200,551 (899) −18,325 (951)
2 90 F F TDD-SBM 1 (0) 0.01 (0) 1,569,720 (2,702) 33 (6)

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 90 F F TDD-SBM 1 (0) 0.01 (0) 1,529,181 (2,512) 72 (9)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 90 T F TDD-SBM 1 (0.04) 0.04 (0.29) 1,843,773 (2,548) −273,917 (993)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 90 T F TDD-SBM 0.70 (0) 1.80 (0.01) 1,805,703 (2,600) −150,714 (479)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 90 F T TDD-SBM 1 (0) 0.01 (0) 1,569,907 (2,851) 76 (8)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 90 F T TDD-SBM 1 (0) 0.01 (0) 1,528,897 (2,574) 115 (10)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 90 T T TDD-SBM 1 (0) 0.01 (0) 1,843,215 (2,921) 32 (5)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 90 T T TDD-SBM 1 (0) 0.01 (0) 1,806,107 (3,201) 74 (9)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 90 F F PPSBM 1 (0) 0.01 (0) 1,569,564 (2,489) 32 (5)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 90 F F PPSBM 1 (0) 0.01 (0) 1,528,835 (2,333) 63 (9)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 90 T F PPSBM 0.01 (0) 2.77 (0.01) 1,843,826 (3,099) −281,730 (755)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 90 T F PPSBM 0.20 (0) 1.10 (0.1) 1,806,072 (2,952) −167,642 (3,864)

We find perfect matches (i.e., an ARI of 1 with standard deviation of 0) between the true
and estimated block-membership assignments whenever the network-generation and estima-
tion methods match or the estimation model (TDD-SBM) is a generalization of the network-
generation model (TDD-SBMwithout degree-correction). We also find perfect matches when the
networks are generated by our TDD-SBM without degree-correction and are estimated by the
PPSBM; this illustrates the similarity between these two models. In all of those cases, there is very
little error in ω̂, as indicated by the small MAPE values, and the likelihoods of the generated net-
works under the estimatedmodel are slightly larger than the likelihoods under the data-generating
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Table 2. Evaluation of parameter-estimation methods for networks that we generate using our TDMM-SBM. For
each experiment, we indicate the number of blocks (K) and the number of nodes (N) in the networks. To the right
of the vertical line, we show the means of several statistics over 100 instantiations of the networks, with associated
standard deviations in parentheses. “BAE” is the blockwise absolute error of the block-membership parameters. The
quantity MAPE(ω̂) is the mean absolute-percentage error, expressed as a fraction, between the block-connectivity
parameters ω̂ and ω. We show “–” in this column when the result is extremely large due to values of ωght near 0. The
quantity MAPEp(ω̂) is the pairwise MAPE of ω̂. “Gen LLIK” is the unnormalized log-likelihood of a generated network
under the data-generating TDMM-SBM. “Diff LLIK” is the result of subtracting the unnormalized log-likelihood of
a generated network under the data-generating model from its unnormalized log-likelihood under the estimated
TDMM-SBM. “Diff LLIK Discrete” is the result of subtracting the unnormalized log-likelihood of a generated network
under the data-generating model from its unnormalized log-likelihood under the degree-corrected TDD-SBM

K N BAE(Ĉ) MAPE(ω̂) MAPEp(ω̂) Gen LLIK Diff LLIK Diff LLIK Discrete

2 30 0.02 (0.004) 0.10 (0.01) 0.04 (0.01) 198,447 (969) 58 (8) −2,243 (58)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 30 0.22 (0.054) 0.74 (0.21) 0.52 (0.10) 168,880 (729) 94 (23) −241 (25)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 90 0.02 (0.001) 0.09 (0.01) 0.02 (0.01) 1,651,845 (2,806) 117 (11) −22,830 (195)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 90 0.21 (0.077) 0.48 (0.19) 0.39 (0.09) 1,581,507 (2,343) 135 (109) −4,221 (82)
2 61 0.05 (0.004) – 0.08 (0.01) −37,351 (233) 105 (10) −597 (38)

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 61 0.06 (0.005) – 0.29 (0.03) −35,214 (211) 168 (11) −1,569 (54)

model. (Recall that we fit the former to the generated networks.) This indicates that our TDD-SBM
estimation method is effective in these examples.

When we generate networks using our TDD-SBM with degree-correction, the two methods
without degree-correction (i.e., the TDD-SBM variant and PPSBM) do a poor job of fitting the
data. In these cases, we obtain large values of both ARI and MAPE for three-block networks.
Even in the two-block examples, for which we recover the blocks effectively, we obtain much
smaller log-likelihoods of the generated networks under their estimated models than under the
data-generating model. This is the case because using a model without degree-correction implies
that all edges between a given pair of blocks are identically distributed, regardless of the nodes to
which the edges are attached. This does not accurately reflect our generated networks, which have
heterogeneous degrees within blocks.

For estimation using PPSBM, the results in Table 1 reflect the fact that we set the number of
blocks to be equal to the value (which is two or three in our examples) in our data-generating
model. When we apply the block-selection method of Matias et al. (2018) to models with between
one and four blocks (using the implementation in the ppsbm package), we identify the true num-
ber of blocks for models without degree-correction. However, when we apply it to networks that
we generate using our TDD-SBM with degree-correction and let it search for up to four blocks,
we overestimate the number of blocks. The PPSBMmethod attempts to classify nodes based both
on their roles and on their activity levels, so it requires extra blocks.

We generate TDMM-SBM networks using the same values of ω, with corresponding numbers
of blocks and nodes, that we used to generate TDD-SBM networks. We are interested in how well
our mixed-membership model (i.e., TDMM-SBM) is able to recover data-generating parameters
and how much log-likelihood we lose when we use a TDD-SBM to fit a network that we generate
using the TDMM-SBM. For each combination of number of blocks (K) and number of nodes (N),
we draw values ofC uniformly at random from {0, 1, . . . , 5} and then normalize each block so that∑

i Cig = 1. We also include results for networks that we generate with our TDMM-SBM using
parameters that we determine by fitting to the Los Angeles bicycle-sharing network (see Section
6.1) with two and three blocks. In these examples, N = 61 because that is the number bicycle-
sharing stations in that network. As with the TDD-SBM, we produce 100 network instantiations
for each case. We summarize our results in Table 2.

Because block membership is mixed, we do not use ARI to compare Ĉ with C. Instead, we
calculate the blockwise absolute error (BAE), which is the sum of the absolute errors divided by the
number of blocks. That is, BAE(Ĉ)= 1

K
∑

i,g |Ĉig − Cig |. To evaluate the error in ω̂, we calculate
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the MAPE.We also calculate a “pairwise” MAPE of ω̂ (which we denote byMAPEp(ω̂) in Table 2),
in which we average the absolute percentage error over each pair of blocks. That is, MAPEp(ω̂)=
1
K2
∑

g,h

∑
t |ω̂ght−ωght |∑

t ωght
. The pairwise MAPE is less susceptible than MAPE to having very large

values when individual values of ωght are near 0.
We compare the log-likelihoods of the generated networks under the data-generating TDMM-

SBM (“Gen LLIK”) to their log-likelihoods under the estimated parameters, and we report the
means of the differences (the latter minus the former) in the “Diff LLIK” column of Table 2.
Finally, we fit our TDD-SBM to the generated networks and calculate the log-likelihoods of the
networks under that model. We report the means of these log-likelihoods minus those that we
averaged for the “Gen LLIK” column in the “Diff LLIK Discrete” column.

We find that the likelihoods of the generated networks when we use the estimated parameters
are slightly larger on average than the likelihoods of the networks when we use the data-generating
parameters. (Because of the randomness in the networks that we generate, we expect that a
network that we generate using a givenmodel will have a larger likelihood when we use the param-
eters that we fit to that network than when we use the data-generating parameters.) Additionally,
the mean likelihoods of the generated networks under parameters that we estimate using our
TDD-SBM are significantly smaller than those that we obtain under the data-generating TDMM-
SBM parameters. (See the “Diff LLIK Discrete” column of Table 2.) In short, we gain a lot of
information by employing our mixed-membership model in this case.

The BAE, MAPE, andMAPEp values (i.e., the “error values”) tend to be small for the two-block
models, indicating that we are recovering the data-generating parameters fairly well in these cases.
(We do not report MAPE values for generated networks when we use the estimated parameters of
our TDMM-SBM for Los Angeles, which hasN = 61 bicycle-sharing stations, because a few values
of ω that are very close to 0 drastically inflate those values.) However, the values of BAE, MAPE,
and MAPEp are much larger for the three-block models (except for the BAE for Los Angeles).
The fact that the estimated parameters achieve similar likelihoods as the data-generating parame-
ters despite fairly large values of BAE, MAPE, and MAPEp suggests that our TDMM-SBM is not
completely identifiable. It is important to be aware of this identifiability limitation when interpret-
ing the parameters of our TDMM-SBM. This is especially true for ω, given the large MAPE and
MAPEp values for all three-block TDMM-SBMs.

The identifiability of time-dependent SBMs is a relatively unexplored research topic. Matias
and Miele (2017) pointed out that the time-dependent SBM of Xu and Hero (2014) is not
fully identifiable, and they introduced a demonstrably identifiable (up to label permutations)
time-dependent SBM. They also established that identifiability is an inherent limitation of time-
dependent SBMs in which block-membership parameters and block-connectivity parameters vary
with time, unless one applies additional constraints or penalization. As we described in Section 3,
our models allow only the block-connectivity parameters to vary. Further research is necessary to
establish what conditions ensure the identifiability of our time-dependent SBMs.

6. Results on bicycle-sharing networks
We apply our models to bicycle-sharing networks in Los Angeles, San Francisco, and New York
City. (See Section 2 for full descriptions of these data sets.) The networks that we examine in
downtown Los Angeles and San Francisco are relatively small; they have 61 stations and 35 sta-
tions, respectively. The stations in these networks are concentrated in downtown areas, where
residential buildings and high-rise office buildings are interspersed. The New York City network
is much larger than the other two networks. It has about 600 stations, which encompass a range
of commercial areas, residential neighborhoods, parks, and manufacturing areas.

Before discussing our results in detail, we highlight some of our key insights.We present results
for two-block models for the Los Angeles (see Section 6.1) and San Francisco (see Section 6.2)
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Figure 3. Classification of bicycle-sharing stations in downtown Los Angeles using (left) a two-block TDMM-SBM and (right)
a two-block TDD-SBM. The sizes of the nodes take continuous values. In the left panel, we scale the size of each node based
on its value of

∑
g Cig. In the right panel, we scale the size of each node based on its degree.

bicycle-sharing networks that illustrate the ability of our models to detect functional roles in the
form of “home” and “work” roles of bicycle-sharing stations. These results enable us to compare
bicycle-sharing systems across cities. We fit discrete-membership andmixed-membership models
with two, three, and four blocks to each of our data sets; we also fit five-block and six-blockmodels
in several cases. We provide the outputs of these models and all code to recreate our results at
https://github.com/jcarlen/tdsbm_supplementary_material. In most cases, we find that additional
blocks do not illuminate new functional roles beyond the home and work roles. For example,
using models with additional blocks for Los Angeles and San Francisco results in small variations
of these roles but increases the noise in the block-connectivity parameters ω̂ght . In Section 6.3,
we present five-block TDMM-SBM and TDD-SBM fits of a subset of the New York City bicycle-
sharing network that illustrate another role (a “park” block) that does not appear distinctly when
we employmodels with fewer blocks. Amethod to select the number of blocks is beyond the scope
of our paper, but we discuss aspects of this model-selection problem in Appendix A.4 and illustrate
it by fitting mixed-membership models with up to 10 blocks on the Los Angeles bicycle-sharing
network.

6.1 Downtown Los Angeles
In Figure 3, we show the mixed-membership (TDMM-SBM) and discrete-membership (TDD-
SBM) block assignments of two-block models for the downtown Los Angeles bicycle-sharing
network. For the TDMM-SBM, we scale the size of each node i in our plots based on its value
of
∑

g Cig . We refer to these sums as “C total” values. These values correlate strongly with node
degree (specifically, with the sum of the in-degrees and out-degrees of all layers), which is evi-
dent in the similarity of node sizes in the left and right panels of Figure 3. For both models, we
observe that home and work blocks are interspersed geographically. As part of our discussion in
this subsection, we will describe our method for determining the block labels in Figure 3.

The TDMM-SBM output reveals a group of stations in the left panel of Figure 3 that are neither
strongly home-identified nor strongly work-identified. Instead, they possess a roughly even mix-
ture of the two types. For this network, the TDD-SBM output is very similar to what we obtain
from a discretization of the TDMM-SBM output (where we discretize by assigning each node
i to the block with the maximum value of its Cig parameter), but this is not true for all of our
bicycle-sharing networks.

Our model does not yield “home” and “work” labels for each block on its own, so we use the
time-dependent block-connectivity parameter estimates ω̂ght to assign these labels. We assign the
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Figure 4. Estimated time-dependent block-connectivity parameters ω̂ght for (left) the two-block TDMM-SBM and (right) the
two-block TDD-SBM for the downtown Los Angeles bicycle-sharing network.

labels heuristically under the assumption that the “home” block is the origin of many trips to the
work block in the morning and the “work” block is the origin of many trips to the home block
in the evening. Figure 4, which shows ω̂ght for each possible value of g and h, with the hour t on
the horizontal axis, supports our labeling. Given our labeling, we observe a clear peak in home-to-
work traffic in the mornings and work-to-home traffic in the evenings. We make similar “home”
and “work” assignments for San Francisco and New York City. In Los Angeles, the traffic within
the work block peaks in the middle of the day. This may represent lunchtime errands, leisure
activity, or touristic activity. (There aremany tourist attractions in the downtown area.) The traffic
from the home block to itself has a mild evening peak and is the lowest overall among the block
pairs.

To further evaluate our block labels, we use the zoning map for downtown Los Angeles from
the Los Angeles Department of City Planning (Department of City Planning, City of Los Angeles,
2015).6 Zoning ordinances determine the allowable uses of city land. These ordinances dis-
tinguish between land that is available for commercial uses, industrial uses, residential uses,
park districts, and other uses. In the background of Figure 5, we show a simplified version
of the underlying zoning map in which we have grouped similar designations. The indus-
trial areas include a mixture of manufacturing and commercial uses. Public facilities include
government buildings, public schools, parking under freeways, and police and fire stations
(Department of City Planning, City of Los Angeles, 2022). In downtown Los Angeles, manufac-
turing and industrial areas are split cleanly from residential areas, whereas residential and
commercial areas are intermixed across the bicycle-sharing system’s coverage area.

Figure 5 illustrates that most stations that are strongly home-identified are in or near zones
for pure residential use or mixed residential and commercial use. We find that many stations
that are not predominantly home-identified or work-identified align with mixed-use residen-
tial/commercial zones. The discrete-role plot (see the right panel of Figure 3) has a stripe of
“home” stations that cut diagonally through the “work” stations. In Figure 5, we see that this
aligns roughly with areas that are zoned for purely residential use. By contrast, industrial and
public-facility zones tend to have stations that are primarily work-identified, although some of
the most strongly work-identified stations are in mixed-used areas.

One station that seems to deviate from the overall pattern is the heavily trafficked station at
Union Station. Although it is adjacent to a public facility zone with many government buildings,
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Figure 5. Two-block TDMM-SBM assignments of downtown Los Angeles bicycle-sharing stations overlaid on a simplified LA
zoningmap. The industrial zones includemanufacturing and commercial areas. As in Figure 3, we scale the size of each node
based on its value of

∑
g Cig.

it is also strongly home-identified. This may seem surprising on its surface, but this classification
is consistent with those of other home-identified stations because Union Station is a major transit
hub for the Los Angeles metropolitan area. Many morning trips originate there as commuters
transition from other modes of transportation, and many evening trips conclude there. This
type of activity pattern is sensibly associated with home-identified stations. Such idiosyncrasies
of transit hubs also arise in our results for San Francisco and New York City.

6.2 San Francisco
In Figure 6, we compare our two-block TDMM-SBM and two-block TDD-SBM for San Francisco.
As we saw for Los Angeles, the San Francisco blocks are interspersed geographically and stations
vary from strongly home-identified to strongly work-identified. The two most strongly home-
identified stations are located at a major transit hub (the San Francisco Caltrain Station on 4th
Street).

In Figure 7, we show the estimated traffic between the “home” and “work” blocks for the two-
block TDMM-SBM and the two-block TDD-SBM. As in the downtown Los Angeles network, we
observe inter-block commuting. However, unlike in downtown LA, the TDD-SBM reveals intra-
block morning and evening peaks in both the home and work blocks. This may be due to last-mile
commuting, such as using bicycle-sharing facilities to get to or from a transit station. The 10most-
popular trips within blocks (i.e., home-to-home travel or work-to-work travel when there are two
blocks) that originate during the heavy commuting hours of 7–9 am and 4–6 pm all begin at major
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Figure 6. Classification of bicycle-sharing stations in San Francisco using (left) a two-block TDMM-SBM and (right) a
two-block TDD-SBM. The sizes of the nodes take continuous values. In the left panel, we scale the size of each node based on
its value of

∑
g Cig. In the right panel, we scale the size of each node based on its degree.

Figure 7. Estimated time-dependent block-connectivity parameters ω̂ght for (left) the two-block TDMM-SBM and (right) the
two-block TDD-SBM for the San Francisco bicycle-sharing network.

public transportation stops in themorning and end at those stops in the evening. Recognizing last-
mile usage is important for integrating bicycle-sharing systems with nearby public transportation.
One possible reason that we do not observe a similar phenomenon in downtown LA is that San
Franciscans are more likely than residents of Los Angeles to use public transportation (Weikel
and Karlamangla, 2015). The intra-block morning and evening peaks may also arise from the
intermixing of commercial and residential uses of land. In other words, some travel within blocks
may also constitute commuting.

6.2.1 Comparison to SBM variants
We briefly compare our above results for the Los Angeles and San Francisco bicycle-sharing
networks to results that we obtain for these networks using a time-independent SBM and a time-
dependent SBM without degree-correction. We do this to illustrate that both time-dependence
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Figure 8. Estimated blocks from two-block TDD-SBMs for time-aggregated bicycle-sharing networks in (left) downtown
Los Angeles and (right) San Francisco.

Figure 9. Estimated blocks from two-blocks TDD-SBMs without degree-correction for bicycle-sharing networks in (left)
downtown Los Angeles and (right) San Francisco. We scale the size of each node based on its degree.

and degree-correction are important for achieving our goal of detecting functional roles of
bicycle-sharing stations.

To fit the time-independent SBM, we construct the time-independent adjacency matrix with
entries Ãij =∑23

t=0 Aijt and fit a two-block TDD-SBM to the associated time-aggregated network
with a single layer. For the downtown Los Angeles network, we observe a clear geographical divi-
sion in the output of the time-independent SBM (see Figure 8). For the San Francisco network, the
differences between the blocks of the time-dependent SBM and time-independent SBM are less
noticeable, although they are still present. This confirms that our time-dependent SBMs detect
usage patterns that are not evident in the time-aggregated data.

We now fit the variant of our two-block TDD-SBM without degree-correction (see Section 5)
to the Los Angeles and San Francisco bicycle-sharing networks. In Figure 9, we see that stations
are now divided into one group of small-degree stations and one group of large-degree stations,
where the “degree” is the sum over all layers of the in-degrees and out-degrees. These blocks differ
significantly from those that we obtained using the TDD-SBMwith degree-correction (see Figures
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Figure 10. Comparison of the blocks that we infer in the Manhattan subnetwork (i.e., the “Manhattan (home)” block in
the right panel of Figure A.4) of the New York City bicycle-sharing network using (left) a five-block TDMM-SBM and (right) a
five-block TDD-SBM.

3 and 6). For example, for Los Angeles, the TDD-SBM with degree-correction classifies the high-
traffic node at Union Station as a “home” station because of its frequent departures in the morning
and frequent arrivals in the evening, whereas the TDD-SBM without degree-correction groups
Union Station with other high-traffic stations that are classified predominantly as “work” stations
in the degree-corrected TDD-SBM.

6.3 New York City
We fit our TDMM-SBM and our TDD-SBM to the New York City bicycle-sharing network with
2–6 blocks. Our results suggest that there is a limit to the size of networks for which our time-
dependent SBMs can recover blocks that are based on functional roles of stations (rather than on
geographical proximity). Therefore, in the present subsection, we apply our models to a subset of
the New York City bicycle-sharing network to gain insight about the functional roles of stations in
this subset. We select this subset based on the results of applying our three-block TDD-SBM to the
entire NewYork City network.We examine the subnetwork that is induced by the stations that are
in one of these three blocks. We explore three-block SBMs of the entire New York City network
in Appendix A.3. In those results, we infer that stations are assigned to blocks along geographical
lines, rather than to blocks with distinct functions.

6.3.1 Manhattan subnetwork
We examine the New York City bicycle-sharing network on a scale that is smaller than the full
system and fit models to the subset of stations and trips that lie within the Manhattan (home)
block of the three-block TDD-SBM (see Figure A.4) that we examine in Appendix A.3.We refer to
this subnetwork as the “Manhattan” network, even though it does not include all of the stations in
the borough of Manhattan. This network consists of 166 stations and 256,840 trips. In Figure 10,
we show our results for a five-block TDMM-SBM and five-block TDD-SBM for the Manhattan
network. The area without stations in the middle of each panel of Figure 10 is Central Park, which
has stations on its perimeter but not in its interior.

The blocks that we infer using the five-block TDMM-SBM and five-block TDD-SBM outline
similar regions. These models yield block-membership parameters that capture residential and
commercial zones much better than the three-block TDMM-SBM and TDD-SBM do for the full
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Figure 11. Estimated time-dependent block-connectivity parameters ω̂ght for (left) the five-block TDMM-SBM and (right) the
five-block TDD-SBM for the Manhattan subnetwork of the New York City bicycle-sharing network.

New York City network. One can see this by comparing the five-block results with the underlying
zoning map of the area in Figure A.6. The stations in residential zones tend to have larger block-
membership parameters for “home” blocks than for “work” blocks, and the opposite is true for
stations in commercial zones. We label the five detected blocks as (clockwise from the top left in
each panel of Figure 10) “home (west),” “park,” “home (east),” “work,” and “mixed.” We base these
labels on the land use of the underlying areas and the time-dependent block-connectivity param-
eters ω̂ght (see Figure 11). When we use the TDMM-SBM, the regions tend to blend together; they
have sharp boundaries in the TDD-SBM (see Figure 10).

We highlight the appearance of the “park” block, which we have not observed in previous
examples and has distinctive usage patterns. The park block is similar to a residential block in its
spike in morning traffic to the work block and its spike in evening traffic from the work block, but
it has distinctive intra-block activity that peaks in the afternoon. The intra-block activity resem-
bles weekend activity in the New York City bicycle-sharing system as a whole (see Figure 1); this
reflects leisure use of the bicycles. Bicycles near Central Park (which also places them near several
major museums) are likely to be used by tourists and other non-commuters during the day for
leisure or for travel to nearby attractions.

In Figure 11, we show the values of the block-connectivity parameters ω̂ght for the five-block
TDMM-SBM and the five-block TDD-SBM. Our estimates of ω̂ght for these models illustrate
important differences in the usage patterns of different blocks that we observe only when we
employ a time-dependent model.7 We observe some overlap in the time-dependent usage pat-
terns of the blocks, so there is potential overfitting. For example, the home (east), home (west),
andmixed blocks have traffic that is similar to that in blocks other than their own. However, exam-
ining theManhattan network usingmodels with fewer than five blocks does not clearly distinguish
the “park” block of stations from other stations in residential zones.

One reason that our time-dependent SBMs for the Manhattan network perform better (with
respect to detecting functionally meaningful blocks) than models that we apply to the entire
New York City network (see Appendix A.3) is the dependence of station-to-station trip counts
on the distances between stations. Although our SBMs correct for the overall activity of each sta-
tion, they do not normalize expected edge values by the distances between stations. In a small
geographical area, such as the coverage areas of the Los Angeles and San Francisco networks, this
is a reasonable choice, as all stations are within “biking distance” of each other. However, when
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examining a system as large as New York City’s, the lack of distance correction weakens the func-
tional roles that we obtain using our time-dependent SBMs. Intra-block trips dwarf inter-block
trips (see Figure A.5), and it seems more reasonable to interpret each block as its own ecosystem.

7. Conclusions and discussion
We introduced two types of time-dependent stochastic block models (SBMs) and used them
to reveal interesting patterns in urban bicycle-sharing networks. We formulated these SBMs to
account both for degree heterogeneity and for a balance between cumulative in-degrees and out-
degrees of bicycle-sharing stations over the course of a day. (The latter feature reflects a classical
axiom of Ravenstein (1885) that every current of humanmobility has an associated countercurrent
(Barbosa et al., 2018).) Our SBMs group stations based on their time-dependent usage patterns;
this allows us to identify them with home and work roles. Work stations are characterized by
inflow from home stations in the morning and outflow to home stations in the afternoon and
evening, and residential stations have the opposite flows. It is also sometimes possible to iden-
tify other roles, such as a Manhattan park block that combines residential and leisure/touristic
behavior.

We illustrated through case studies of Los Angeles, San Francisco, and New York City how our
mixed-membership and discrete-membership SBMs can provide complementary insights about
transportation patterns in bicycle-sharing systems. We found that many bicycle-sharing stations
in our three focal cities have a mixture of roles, which we captured with our mixed-membership
SBM.However, in some cases, we observed that a discrete-membership SBMgives a clearer picture
of the usage patterns that are associated with each block. We also demonstrated the importance
of time-dependence and degree-correction in our models by comparing our results to those from
time-independent SBMs and time-dependent SBMs without degree-correction.

We evaluated our block labels by comparing them to city zoning maps. The home–work
dichotomies that we detected generally align well with the underlying zones, but there are impor-
tant deviations near major transit hubs. It is common to evaluate the results of community
detection through comparisons with so-called “ground-truth” communities (Fortunato and Hric,
2016; Barbillon et al., 2017) (although it is crucial to be cautious in such evaluations (Peel et al.,
2017)). The time-dependent commuting flows that we detected using our SBMs enabled us to
identify and label the functional roles of blocks of bicycle-sharing stations even without a corre-
sponding zoning map. In the future, it will be beneficial to compare the activity patterns that we
detected to activity patterns from other mobility data, such as taxis, subway systems, e-scooters,
and geo-tagged mobile apps (Zhu et al., 2018).

There are several worthwhile ways to improve our models and algorithms. One valuable exten-
sion is to allow distributions other than the Poisson distribution for the numbers of trips between
stations. Additionally, although it is a convenient simplification to assume independence between
the numbers of trips that start in each hour, it may be beneficial to relax this assumption. For
example, these numbers are not independent if there are stations that run out of bicycles at some
point. As we have discussed, mixed-membership and discrete-membership SBMs can reveal dif-
ferent insights, as can examining SBMs with different numbers of blocks. This helps illustrate why
it is important to consider model selection in greater depth. It is also worth considering other
estimation techniques for both our mixed-membership and discrete-membership models, espe-
cially if one alters the assumption of conditionally independent Poisson edge distributions that
we used to simplify our parameter estimation. Variational inference has been employed for many
related models (Xing et al., 2010; Yang et al., 2011; Matias and Miele, 2017; Matias et al., 2018),
and it is likely that it can also be used in our setting to improve performance (especially for large
networks).

Another important direction for future work is the exploration of different methods of pre-
processing data to include only the most important edges. The two most apparent ways to do this
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are (1) eliminating potentially insignificant edges by thresholding and (2) choosing time layers
that reduce variance. The preferential-attachment model of Zhu et al. (2013) gives one possible
approach for eliminating insignificant edges. The way that one splits the times of a day can
improve both accuracy and computational efficiency by reducing the total number of parame-
ters. For example, in the cities that we studied, bicycle trips occurred sporadically between 1 am
and 5 am, so it may be desirable to aggregate all of the associated time layers into one time layer
to decrease the number of parameters and thereby decrease variance. There exist methods that
aim to find suitable ways to segment time periods (Caceres and Berger-Wolf, 2013), and trying to
determine the best ones to use in different situations is an active area of research.

Broadening our models to control explicitly for spatial relationships (Barthelemy, 2018) is
another natural direction to build on our work. For example, it may enable one to identify func-
tional blocks in geographically diffuse networks such the New York City bicycle-sharing network.
The radiation, intervening-opportunities, and gravity models have had some success at describing
human mobility over various distances (Barbosa et al., 2018). These mobility models put more
weight on longer trips, and some mobility models account for opportunities that lie between ori-
gin and destination locations. Some mobility models also possess statistical justification based on
entropy arguments, and it is worthwhile to investigate methods to incorporate them into SBMs.
Mobility models were incorporated into null models in time-dependent modularity objective
functions in Sarzynska et al. (2016), who found that radiation and gravity null models are more
appropriate than the usual Newman–Girvan null model (which is a variant of a configuration
model (Fosdick et al., 2018)) for spatial networks. One can use similar ideas to incorporate spatial
information into SBMs. The value of using spatial null models in studies of bicycle-sharing systems
has been examined previously (Austwick et al., 2013; Taiyeb, 2014), so this is a very interesting
direction to pursue.

It is also worthwhile to use our time time-dependent SBMs and extensions of them to study
other types of mobility data. One example is dockless vehicle-sharing networks, such as those
from e-scooter-sharing services. To make the data from such systems amenable to analysis using
our models, one can partition a city into a grid and measure the usage in each region, taking care
to recognize irregularities from transit hubs. Depending on how heavily these systems are used
in commuting, one may discover functional blocks other than ones for “home” and “work.” We
expect that it will also be possible to tailor our methods to analyze multimodal transportation sys-
tems and other urban flows, which are particularly suitable for analysis using multilayer networks
(Kivelä et al., 2014; Aleta and Moreno, 2019; Natera Orozco, 2020; Gallotti et al., 2021).
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Notes
1 We take extremely short trips to be those that last 2 minutes or less. We take extremely long trips to be those that last 90
minutes or more in Los Angeles and San Francisco and 120minutes or more in New York City (because of the larger coverage
areas of stations in New York City).
2 In the bicycle-sharing networks that motivate our work, interlayer edges (which start in one time layer and end in another)
can help capture trip lengths, which are already captured in the inter-station distances that are associated with the edges in our
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networks. Including interlayer edges is unlikely to add to the insights that we gain from our models, and it would significantly
increase their complexity.
3 When describing weighted networks, we use the term “degree” to refer to the weighted degree.We use the terms “in-degree”
and “out-degree” to describe the weighted in-degree and weighted out-degree, respectively.
4 Although we are maximizing a function and thus technically performing gradient ascent, we refer to this method by its
more common monicker of “gradient descent.”
5 We also apply our TDD-SBM to the London bicycle-sharing network that was studied by Matias et al. (2018) in the code
at https://github.com/jcarlen/tdsbm_supplementary_material.
6 Permission for use of these proprietary data is granted by the City of Los Angeles Department of City Planning. Copyright
© 2015 City of Los Angeles. All Rights Reserved.
7 We obtain similar blocks for this network using a discrete, directed, degree-corrected, time-independent SBM as we do
using a TDD-SBM with the same number of blocks. We do not show our results from this time-independent SBM, but one
can produce them using the code that we provide at https://github.com/jcarlen/tdsbm_supplementary_material.
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Appendix
A.1 Singular vectors for bicycle-sharing data
To inform our modeling approach, we explore the imbalances between morning and evening
activity in the stations of each network. We calculate singular-value decompositions (SVDs) of
the matrices of the hourly in-degree and out-degree of each station. To be explicit, entry i, j of
the matrix of in-degrees is equal to the total number of trips that arrive at station i in hour j,
and we construct the matrix of out-degrees analogously for departing trips. We show results for
Los Angeles, San Francisco, and New York City in Figures A.1, A.2, and A.3, respectively. The
first two principle components either strengthen both observed peaks or weaken one peak while
strengthening the other. Across the three data sets, the first two singular vectors explain between
88% and 97% of the variation in the corresponding matrix, supporting the importance of peak
morning and peak evening commutes for classifying stations.

A.2 Proof that the expected node degrees of the MLE of the TDD-SBM equal the observed node
degrees

Suppose that we generate a network from the MLE of our time-dependent discrete-membership
stochastic block model (TDD-SBM). We prove that the expected value of the degree of a node
(i.e., the sum of its in-degree and its out-degree over all time layers) is the same as the degree of
the node in the observed data. That is, we prove that

∑
j
∑23

t=0
(
μijt + μjit

)= ki =∑
j
∑23

t=0 Aijt .
Let i and j be nodes of the network, and let t ∈ {0, 1, . . . , 23} index the time layers. Additionally,

recall that g denotes block g in the TDD-SBM and that κg is the sum of the in-degrees and the
out-degrees of all nodes in block g over all time layers. We calculate
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Figure A.1. The first two singular vectors of the in-degree matrix and the out-degree matrix of the downtown Los Angeles
bicycle-sharing network.

Figure A.2. The first two singular vectors of the in-degreematrix and the out-degreematrix of the San Francisco bicycle-shar-
ing network.

A.3 TDMM-SBM and TDD-SBM for the entire New York City bicycle-sharing network
In Figure A.4, we compare our results from a three-block TDMM-SBM and a three-block
TDD-SBM for the New York City bicycle-sharing network. In initial calculations, we found
that a two-block TDD-SBM divides the network along the East River into a Manhattan
block and Brooklyn block and that a two-block TDMM-SBM divides the network slightly
farther north in Lower Manhattan. We do not show the outputs of the two-block models,
but we provide the replication code, estimated parameters, and associated visualizations at
https://github.com/jcarlen/tdsbm_supplementary_material.
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Figure A.3. The first two singular vectors of the in-degree matrix and the out-degree matrix of the New York City
bicycle-sharing network.

Figure A.4. Classification of New York City bicycle-sharing stations using (left) a three-block TDMM-SBM and (right) a three-
-block TDD-SBM. The sizes of the nodes take continuous values. In the left panel, we scale the area of each node based on
the value of

∑
g Cig. In the right panel, we scale the area of each node based on its degree.
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Figure A.5. Estimated time-dependent block-connectivity parameters ω̂ght for (left) the three-block TDMM-SBM and (right)
the three-block TDD-SBM for the New York City bicycle-sharing network. We use “M” to signify Manhattan and “BK” to signify
Brooklyn.

In Figure A.5, we compare the inferred inter-block traffic, as captured by the values of ω̂ght , for
the three-block TDMM-SBM and three-block TDD-SBM. We observe prominently that all intra-
block traffic has two peaks andmuch higher hourly trip counts than inter-block traffic. The double
peaks are reminiscent of the overall system activity in Figure 1. This may be due in part to last-mile
commuting, as we saw in the San Francisco bicycle-sharing network. However, for a system that is
this geographically large, the two peaks andminimal inter-block traffic suggest that it is useful (and
important) to consider each block as its own ecosystem. There is also a strong similarity between
the results from our TDD-SBM and the results (not shown) from a three-block time-independent
SBM for a time-aggregated New York City network, providing further evidence that our time-
dependent SBMs are not capturing time-dependent roles for New York City when we consider its
entire bicycle-sharing system. Consequently, we choose the labels of these blocks (see Figures A.4
and A.5) based on the primary borough and zone type of each block’s stations, as indicated in the
zoning map for this part of New York City (Department of City Planning, New York City, 2018)
in Figure A.6.

In Figure A.6, we illustrate that there is general overlap, although it is far from perfect, between
(1) the UpperManhattan (“home”) block and residential areas or parks and between (2) the Lower
Manhattan (“work”) block and commercial or manufacturing areas. All stations in Brooklyn are
in the third block, which mostly has residential areas. We show only the blocks that we infer using
our TDD-SBM in Figure A.6, but the same reasoning motivates our labels for the three-block
TDMM-SBM. No block has exclusively commercial or residential areas.

We examined several time-dependent SBMs for New York City with more than three
blocks to try to discover functional blocks, but we found that the blocks were still primar-
ily geographical. In some cases, the TDMM-SBM with four or more blocks yielded functional
divisions within smaller geographical areas (subdividing the blocks in Figure A.4), but none
of our models detected system-wide “home” or “work” blocks. See our code and figures at
https://github.com/jcarlen/tdsbm_supplementary_material to generate and view the results of
applying time-dependent SBMs with 2–6 blocks to the New York City bicycle-sharing network.

Across ourmodels, we find that the distance between two stations in the NewYork City bicycle-
sharing network is the feature that is associated most strongly with whether or not those stations
belong to the same block. As we noted above, the detected blocks represent primarily geographical
divisions, with most of the traffic occurring within blocks. This contrasts with our results for the
Los Angeles and San Francisco networks. We believe that this occurs because the New York City
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Figure A.6. Three-block TDD-SBM station roles versus the coverage-area zoning map of New York City.

bicycle-sharing network is geographically larger than the San Francisco and Los Angeles bicycle-
sharing networks. Our models are useful for detecting functional blocks only when the distances
between stations are not the main determinant of inter-station traffic over time.

A.4 Model selection
Although statistically rigorous model selection is outside the scope of our paper, we briefly
compare the number of parameters in our mixed-membership SBM (TDMM-SBM) and
discrete-membership SBM (TDD-SBM). This is valuable for considering model-selection crite-
ria, such as the Akaike information criterion (AIC) and Bayesian information criterion (BIC),
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Table A.1. Comparison of log-likelihoods and numbers of parameters (Np)
in SBMs for the Manhattan network, which has N= 166 nodes

TDMM-SBM TDD-SBM

Blocks Np log-likelihood Np log-likelihood

2 426 −260,625 426 −270,809
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 711 −235,162 545 −254,779
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 1,044 −212,295 712 −236,198
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 1,425 −198,489 927 −222,539
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 1,854 −189,670 1,190 −216,468

that penalize a model based on its number of parameters. For a network with N nodes, K blocks,
and T time layers, the number of parameters in the TDMM-SBM is

KN −K + TK2 (8)

and the number of parameters in the TDD-SBM is

2N −K + TK2 . (9)

The first term of (8) comes from the fact that each node in the TDMM-SBM has K parameters
(Cig , with g ∈ {1, . . . ,K}) that express the strength of membership in each block. By contrast,
each node in the TDD-SBM has one parameter for block membership and one degree-correction
parameter. Therefore, given a value of N, the first term in (8) increases linearly with the number
of blocks, whereas the corresponding term in (9) is fixed. Otherwise, formulas (8) and (9) are
identical. The −K term in each formula arises from the identifiability constraints in each model.
As we described in Section 3, these constraints are

∑
i Cig = 1 (for each block g) for the TDMM-

SBM and
∑

i∈g θi = 1 (for each block g) for TDD-SBM. The last term (i.e., TK2) in each formula
is the total number of ωght terms in the model (see Section 3.1).

We show the unnormalized log-likelihoods and numbers of parameters (Np) in the TDMM-
SBM and TDD-SBM for the Manhattan (home) subnetwork (which has N = 166 nodes) with
2–6 blocks (see Table A.1). In this example, the TDMM-SBM outperforms the TDD-SBM with
respect to log-likelihood when the two models have the same number of parameters. This result
makes sense because of the additional constraint of the TDD-SBM that each station must belong
to exactly one block.

In Figure A.7, we plot the Akaike information criterion (AIC) (Akaike, 1974), which is given
by

AIC= (2×Np)− (2× log-likelihood) ,

versus the number of blocks in our TDMM-SBM for the Los Angeles bicycle-sharing network with
2–10 blocks.We consider models with a larger numbers of blocks in the Los Angeles network than
we did in the Manhattan network because the former’s smaller number of stations allows faster
computations.

The AIC is a cost function for comparing the relative qualities of statistical models. Given two
models, one regards the model with a smaller AIC as the “better” model. The AIC accounts for
both the likelihood and the complexity of a model, where one measures the latter based on the
number of parameters in the model. In Figure A.7, we see that the AIC of the TDMM-SBM for
the Los Angeles bicycle-sharing network decreases as we increase the number of blocks from 2 to
10. Based on the AIC criterion, one would select the 10-block model. However, plots of the block-
connectivity parameters ω̂ght for the TDMM-SBM for the Los Angeles network with 7 or more
blocks are noisier and no more informative than ones from the TDMM-SBM with fewer blocks.
These plots suggest strongly that there is overfitting in these cases. This is in line with experiments
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Figure A.7. Values of the Akaike information criterion for the MLE of the TDMM-SBM with 2–10 blocks for the Los Angeles
bicycle-sharing network.

by Funke and Becker (2019), who found that the AIC overestimates the number of blocks for
several types of SBMs.

Our time-dependent SBMs are incomplete descriptions of the data-generating process in
bicycle-sharing networks. For example, they do not account for the distances between stations.
The AIC tends to recommend a model with more blocks to compensate for this incompleteness,
but (as we just discussed) visual inspection reveals the likely overfitting that results from including
too many blocks. We seek to gain insight into bicycle-sharing systems, and we prefer models with
fewer blocks that describe station roles in broad but interpretable terms over less-interpretable
models with more blocks but smaller AIC values. Choosing appropriate model-selection criteria
for SBMs deserves additional consideration and is an active research area (Yan et al., 2014; Yan,
2016; Saldaña et al., 2017; Wang and Bickel, 2017; Hu et al., 2020). We leave such investigations
for future work.
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