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Hypersonic flows over a compression ramp with different leading-edge radii are
numerically investigated. Flow separation occurs on the cold-wall compression ramp with
a free-stream Mach number of 7.7 and a unit Reynolds number of 4.2 × 106 m−1. By
performing direct numerical simulations (DNS), it is shown that the separation bubble
enlarges when the leading-edge radius is increased from zero up to a critical value.
Beyond the critical radius, the separation bubble conversely shrinks as the radius is further
increased. Global stability analysis (GSA) is employed to investigate the three-dimensional
instability of the two-dimensional base flows. It is found that the inherent instability
in the flow field also exhibits a reversal trend, that is, the flow system firstly becomes
more unstable and then tends to be more stable with increasing leading-edge radius.
The growth rate and spanwise wavelength of the unstable modes identified by GSA
are verified by DNS. Accompanying the occurrence of three-dimensionality, streamwise
heat-flux streaks are formed on the ramp surface downstream of reattachment. The
present study demonstrates that a proper blunting of the leading edge can suppress flow
separation, reduce aerodynamic heating and stabilise the flow system for a hypersonic
compression-ramp flow.
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1. Introduction

A compression ramp configuration (i.e. a flat plate followed by a ramp) is representative
of many components for high-speed vehicles, such as air inlets, junctions, control
surfaces, etc. Fundamental studies of supersonic and hypersonic flows over a compression
ramp contribute to an effective design of high-speed vehicles. On the other hand,
for hypersonic flight, the vehicle requires blunted leading edges to reduce the high
stagnation-point heating loads. Hence, it is of practical importance to investigate
hypersonic compression-ramp flows with leading-edge bluntness. Essentially, a hypersonic
compression-ramp flow is dominated by shock-wave/boundary-layer interaction (SWBLI).
However, the presence of a blunt leading edge complicates the flow phenomenon. Firstly,
owing to the formation of a strong bow shock ahead of the leading edge, the flow
conditions encountered by the compression ramp, such as Mach number and Reynolds
number, are modified with respect to the sharp leading-edge case. As a result, aerodynamic
effects such as friction drag and surface heating are inevitably altered. Secondly, an
entropy layer is generated behind the curved leading-edge shock. This entropy layer
interacts with the downstream boundary layer over the compression ramp and therefore
affects flow separation.

Studies concerning leading-edge bluntness effects mainly focus on the two-dimensional
(2-D) flow structure. In terms of SWBLI on a compression ramp, a strong adverse pressure
gradient induced by the ramp shock can lead to boundary-layer separation upstream of
the corner. By conducting extensive experimental studies, Holden (1971) and Gray &
Rhudy (1973) found that the size of the separated region was increased by applying a
small blunting to the leading edge, whereas the length of the separated region dropped
as the leading-edge bluntness was further increased. This phenomenon is referred to
as the reversal trend of flow separation. Holden (1971) related the reversal trend to the
bluntness–viscous interaction theoretically described by Cheng et al. (1961). According to
their studies, the boundary-layer displacement effects are dominant prior to the reversal
point, while the leading-edge bluntness effects dominate the region where the size of the
separated flow drops. In addition to experimental studies, recent numerical investigations
highlighted that the relative thickness of the boundary layer and entropy layer upstream
of separation is responsible for the variation in separation-bubble size (John & Kulkarni
2014). It is further noted that the reversal trend of flow separation is not restricted
to compression-ramp flows, but also occurs for other cases of SWBLI, such as shock
impingement on a flat plate (Sriram et al. 2016), a double cone (Hao & Wen 2020) and a
double wedge (Neuenhahn & Olivier 2006).

In contrast to the well documented 2-D phenomena, studies concerning the occurrence
of three-dimensionality in hypersonic compression-ramp flows are relatively sparse.
Although three-dimensionality has been observed for compression-ramp flows, the
physical mechanism underlying the observed phenomena is only partially understood. The
most remarkable phenomenon is the streamwise heat-flux streaks formed on the ramp
surface, which has been reported in numerous experimental (Ginoux 1971; Simeonides
& Haase 1995; Roghelia et al. 2017b; Chuvakhov & Radchenko 2020) and numerical
(Ohmichi & Suzuki 2013; Cao, Klioutchnikov & Olivier 2019; Dwivedi et al. 2019)
studies. Conventionally, the streamwise streaks are attributed to the formation of Görtler
vortices supported by the concave flow curvature in the reattaching flow regions (Ginoux
1971; Simeonides & Haase 1995). However, recent numerical studies demonstrated
the formation of heat-flux streaks on the ramp even without introducing any artificial
disturbances (Ohmichi & Suzuki 2013; Klioutchnikov, Cao & Olivier 2017). Moreover,
Cao et al. (2021) identified a low-frequency unsteadiness for the heat-flux streaks in a
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Leading-edge bluntness effects on compression-ramp flow

compression-ramp flow without upstream disturbances. These facts indicate the presence
of a mechanism intrinsic to the flow system.

It is known that a 2-D separated flow has the potential to support self-excited global
instability (Theofilis 2011). Global stability analysis (GSA) is used to study the linear
stability of small-amplitude perturbations superposed on a steady base flow without
assumptions on the spatial variation of the base flow and the directionality of perturbation
waves. This makes GSA suitable for studying the stability of flows with separation
(Sidharth et al. 2018). By performing GSA for a double-wedge flow, Sidharth et al. (2018)
identified the onset of three-dimensionality in the separated region, which was induced by
intrinsic instabilities and resulted in temperature streaks on an adiabatic wall. The revealed
global unstable mode was shown to originate from the streamwise deceleration of the
recirculating flow, rather than centrifugal effects. More recently, Cao et al. (2021) studied
a hypersonic compression-ramp flow with a sharp leading edge (Roghelia et al. 2017b)
using direct numerical simulation (DNS) and GSA. The temporal growth rate, the length
scale of heat-flux streaks and the spatial structure of the global modes (both stationary and
oscillatory) identified by the DNS were well predicted by the GSA. The aforementioned
work provides evidence for the significance of intrinsic instability to the occurrence of
three-dimensionality.

The present study considers the hypersonic compression-ramp flows experimentally
investigated by Roghelia et al. (2017a,b), where streamwise heat-flux streaks were
observed on the ramp surface for small leading-edge radii. Interestingly, as mentioned
by Roghelia et al. (2017a), heat-flux streaks disappeared when the leading-edge radius
was sufficiently large. Based on the aforementioned information, it is conjectured that
the presence and absence of the heat-flux streaks are connected to the intrinsic instability
which varies with the leading-edge radius. To verify this hypothesis, we employ GSA and
DNS to investigate the hypersonic compression-ramp flows in Roghelia et al. (2017a).
A wide range of leading-edge radii is considered to examine its influence on flow
separation and global instability, as well as surface heat transfer.

The reminder of the paper is organised as follows. Numerical methodology including
DNS and GSA is described in § 2. The reversal trend of the flow separation as a
result of varying leading-edge radius is discussed in § 3. In § 4, GSA and DNS are
performed to examine the effects of leading-edge bluntness on the global instability of
the compression-ramp flows. Leading-edge bluntness effects on surface heat transfer are
provided in § 5. Conclusions are given in § 6.

2. Numerical methodology

2.1. DNS
Direct numerical simulations achieved by a finite-difference method of high-order
accuracy in space and time and with shock capturing ability is applied to study the
hypersonic compression-ramp flow problem. The three-dimensional (3-D) Navier–Stokes
equations for unsteady, compressible flow are employed in a conservative form, and can
be written as

∂U
∂t

+ ∂F
∂x

+ ∂G
∂y

+ ∂H
∂z

= ∂Fν

∂x
+ ∂Gν

∂y
+ ∂Hν

∂z
, (2.1)

where U = (ρ, ρu, ρv, ρw, ρe)T is the vector of conservative variables, ρ is the density,
u, v and w are the flow velocities and e is the total energy per unit mass. The equation
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system is closed by the perfect gas law relating pressure, density and temperature, as well
as Sutherland’s law for calculating the viscosity.

In terms of the numerical methods, time integration is performed by an explicit
third-order total variation diminishing Runge–Kutta scheme. A weighted, essentially
non-oscillatory, fifth-order finite-difference scheme is applied for the discretisation of the
inviscid fluxes, based on the work of Jiang & Shu (1996). A sixth-order central-difference
scheme is used to approximate the viscous fluxes. The DNS solver has been validated and
successfully applied to study hypersonic compression-ramp flows (Cao et al. 2019; Cao,
Klioutchnikov & Olivier 2020; Cao et al. 2021).

As for the boundary conditions, free-stream parameters are prescribed at the upper
boundary (blunt leading-edge cases). A zero-gradient extrapolation condition is used for
the out-flow boundary. For the no-slip wall, isothermal conditions are specified with the
wall temperature being 293 K. Periodic boundary conditions are applied in the spanwise
direction.

2.2. GSA
The governing equations (2.1) are linearised by decomposing U into a 2-D base flow U2-D
and a 3-D small-amplitude perturbation U′ as

U(x, y, z, t) = U2-D(x, y) + U′(x, y, z, t). (2.2)

It is also assumed that U2-D satisfies the 2-D Navier–Stokes equations. The linearised
governing equations are then discretised using a second-order finite-volume method. The
inviscid fluxes are evaluated using the modified Steger–Warming scheme (MacCormack
2014) near discontinuities to eliminate numerical noise and a simple arithmetic average
in smooth regions to reduce numerical dissipation, respectively. The viscous fluxes are
calculated using a second-order central-difference scheme. Details of the inviscid and
viscous fluxes were provided by Sidharth et al. (2018).

In this study, we consider the temporal stability of a spanwise periodic perturbation in
the following harmonic-wave form:

U′(x, y, z, t) = Û(x, y) exp[−i(ωr + iωi)t + iβz] + complex conjugate, (2.3)

where Û is the eigenfunction, ωr is the angular frequency, ωi is the growth rate and β

is the spanwise wavenumber. The corresponding frequency and spanwise wavelength are
defined by f = ωr/2π and λz = 2π/β, respectively.

Substituting (2.3) into the linearised Navier–Stokes equations results in an eigenvalue
problem, which is solved using the implicit restarted Arnoldi method implemented in
ARPACK (Sorensen et al. 1996). A shift-invert approach is adopted to efficiently explore
the eigenvalue spectrum for a given β.

3. Reversal trend of flow separation

3.1. Flow conditions and geometry
The numerically considered flow conditions and compression-ramp geometry are based
on those used in the experimental campaign carried out in the hypersonic Aachen Shock
Tunnel TH2 at the Shock Wave Laboratory of RWTH Aachen University (Roghelia et al.
2017a,b). A comprehensive study, involving experiments (Roghelia et al. 2017b) and
numerical simulations (Cao et al. 2021) has provided a detailed description for the case
of a sharp leading edge. Hence, the same flow conditions as for the sharp leading-edge
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0 7.7M:

(e)

(b)(a) (c)

(d ) ( f )

Figure 1. Mach number contour for cases with different leading-edge radii. (a) R = 0; (b) R = 0.15 mm
(c) R = 0.5 mm; (d) R = 1 mm; (e) R = 1.5 mm; ( f ) R = 2 mm.

case are used for the blunt leading-edge cases. The free-stream Mach number (M∞)
and unit Reynolds number (Re∞) are 7.7 and 4.2 × 106 m−1, respectively. The inflow
(air) is assumed to be a calorically perfect gas owing to a relatively low total enthalpy
(h0 = 1.7 MJ kg−1), that is, the specific heat ratio equals 1.4. The constant wall
temperature (Tw) is given by 293 K, which corresponds to a wall-to-total temperature ratio
of 0.18.

For the compression-ramp geometry, a flat plate of length (L) 100 mm is followed by
a ramp with a deflection angle of 15◦. The length of the ramp for the blunt leading-edge
cases equals 120 mm. The leading-edge radius ranges from 0.15 to 2.5 mm. In particular,
11 cases are considered in the present study, for which the radii are 0.15, 0.3, 0.5, 0.7,
1, 1.3, 1.4, 1.5, 1.7, 2 and 2.5 mm. For convenience, these cases, together with the sharp
leading-edge case, are labelled as R0, R015, R03, R05, R07, R1, R13, R14, R15, R17, R2
and R25, respectively.

In terms of mesh distribution, the number of grid points in streamwise (x) and
wall-normal (y) directions is 1600 and 300, respectively. The mesh is clustered at the
leading edge and near the wall, yielding a non-dimensional wall distance of Δywall/L ≈
9 × 10−5 at the separation position for all cases. Note that the boundary-layer flow
upstream of separation is laminar. Based on the set-up described above, the time step is set
as 3 × 10−9 s to ensure that the Courant–Friedrichs–Lewy number remains less than one.
It is important to note that the mesh resolution in the x–y plane for the blunt leading-edge
cases is higher than that for the sharp leading-edge case (1080 × 240), which has been
shown to be sufficient to capture the flow separation (Cao et al. 2021). Nevertheless,
preliminary simulations have been performed to verify the grid independence of our
present results.

3.2. Reversal trend of the separation-bubble length
The reversal trend of flow separation caused by the leading-edge bluntness is shown in the
following on the basis of the DNS results. Figure 1 presents the Mach number contour
for cases R0, R015, R05, R1, R15 and R2. As can be observed, the size of the separation
bubble (the blue region) increases when the leading-edge radius is increased from 0 to
0.15 mm. A further growth of the separation bubble is found when the radius is increased
to 0.5 mm. However, as the radius rises from 1 to 2 mm, the size of the separation bubble
decreases monotonically.

To better illustrate the reversal trend of flow separation, the variation of separation and
reattachment positions together with the variation of separation-bubble length (Lb), which
is defined as the streamwise distance between the separation and reattachment positions,
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R (mm)

x/L

0 0.5 1.0 1.5 2.0 2.5

R (mm)
0 0.5 1.0 1.5 2.0 2.5

0.5

1.0

1.5

(a)

Lb/L

0.5

1.0

1.5(b)

Figure 2. Variation of (a) the separation (square) and reattachment (diamond) positions and (b) the
separation-bubble length with leading-edge radius.

with the leading-edge radius are presented in figure 2. It is seen from figure 2(a) that
the separation point reaches its most upstream position when R = 0.3 mm. However, the
farthest downstream position for the reattachment point occurs for case R07. The combined
variation of separation and reattachment positions results in a reversal trend for the
separation-bubble length, as shown in figure 2(b). The critical radius for the reversal trend
is R = 0.5 mm. This reversal trend and the observed critical radius are consistent with
experimental measurements (Roghelia et al. 2017a). In the following, a comprehensive
study aiming to reveal the occurrence of three-dimensionality in the compression-ramp
flows is conducted.

4. Effect of leading-edge bluntness on global instability

4.1. Global stability analysis with respect to the 2-D base flows
In this section, GSA is performed to reveal the effect of leading-edge bluntness on the
intrinsic instability of the compression-ramp flow. The 2-D solutions for different nose
radii obtained in § 3 are used as the base flows of GSA. To reduce the computational cost,
especially memory usage, the numerical solutions are interpolated on a coarse grid (600 ×
200). Grid independence was verified by using a finer grid (800 × 300). To facilitate a clear
comparison, the GSA results for case R0 obtained in our previous study (Cao et al. 2021)
are also presented.

Figure 3 shows the growth rates of the most unstable modes as a function of λz for cases
R0, R05, R1 and R2. In each subfigure, the vertical line indicates the spanwise wavelength
where the largest growth rate occurs. The eigenvalue spectra at these wavelengths are
plotted in figure 4. For case R0, three branches of unstable modes were identified. Here,
the leading stationary and oscillatory unstable modes are denoted by modes 1 and 2, with
their growth rates peaking at λz/L = 0.066 and 0.070, respectively. The third branch is
also an oscillatory mode, which is insignificant because of its low growth rate. When the
leading-edge bluntness is increased to 0.5 mm, i.e. the critical radius, the flow system is
substantially destabilised, a feature highlighted by the coexistence of multiple unstable
modes (see figure 4b). The largest growth rate is increased by a factor of 2 with the
corresponding wavelength shifted to λz/L = 0.105. In addition, two further stationary
unstable modes can be observed. For case R1, the flow system is stabilised compared
with case R05. The wavelength corresponding to the largest growth rate is reduced to
λz/L = 0.084. For case R2, only one stationary unstable mode can be identified. Its low
growth rate indicates that the flow system is marginally unstable. Although not shown
here, further increasing the nose radius monotonically stabilises the compression-ramp
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Figure 3. Growth rates of the most unstable modes as a function of spanwise wavelength for cases (a) R0;
(b) R05; (c) R1 and (d) R2. The vertical dash-dotted lines correspond to λz/L = 0.066, 0.105, 0.084 and 0.180,
respectively.
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Figure 4. Eigenvalue spectra for cases (a) R0 at λz/L = 0.066; (b) R05 at λz/L = 0.105; (c) R1 at
λz/L = 0.084; (d) R2 at λz/L = 0.180.

flow until the system becomes globally stable. It is also interesting to note that the
non-dimensional frequency of the leading oscillatory mode (mode 2) is largely unchanged,
which is approximately 0.2 for different nose radii.

By comparing the growth rates of the most unstable modes (mode 1) for cases R0, R05,
R1 and R2, which are ωiL/U∞ = 0.51, 1.04, 0.82 and 0.05, respectively, it is clear that
the growth rate exhibits a reversal trend. In other words, the amplification rate of 3-D
perturbations initially increases and then decreases with increasing leading-edge radius.
In summary, the GSA results demonstrate a reversal trend for the intrinsic instability of
the considered compression-ramp flows.
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4.2. Verification by DNS
In the following, DNS is performed to verify the intrinsic instability revealed by the GSA.
For the 3-D simulations, the width of the physical domain equals 50 mm for the blunt
leading-edge cases (R05, R1 and R2). Note that the spanwise width of the physical domain
for the sharp leading-edge case was 100 mm (Cao et al. 2021), whereas in experiments
models of 200 mm width were used for both sharp and blunt leading-edge cases (Roghelia
et al. 2017a). As shown by Cao et al. (2021), when the spanwise width was reduced from
100 to 30 mm, both saturated flows exhibit similar surface heat-flux streaks and almost
identical wall parameters (pressure, Stanton number). This is expected because a periodic
boundary condition is used in the spanwise direction. Therefore, a width of 50 mm is
chosen for the blunt leading-edge cases in order to reduce the computational costs. In
the spanwise direction (z), 300 grid points are placed with a constant spacing Δz/L =
1.67 × 10−3. This resolution is slightly higher than that for the sharp leading-edge case
(Δz/L = 2.08 × 10−3).

The initial 3-D flow fields are generated by duplicating the 2-D solutions discussed
in § 3, in the spanwise direction. For case R0, initial values for the spanwise velocity
(randomised between −0.01 ≤ w/U∞ ≤ 0.01) are introduced on the first twenty grid
points normal to the wall between 0.5 < x/L < 1.5 (Cao et al. 2021), while the initial
spanwise velocity is set to zero for the blunt leading-edge cases. It is demonstrated in
Appendix that the introduction of initial randomised spanwise velocity has no remarkable
influence on the occurrence of the unstable modes, and that the growth of instability waves
can arise from the extremely low-level perturbations provided by numerical round-off
error. No external disturbances are introduced at the inflow or at the wall, which enables
the examination of intrinsic instabilities in the fluid-dynamic system.

To capture the growth of three-dimensionality, we consider the temporal evolution of
the absolute value of spanwise velocity at a streamwise position, which is defined as

w̄ =

√√√√√ 1
NyNz

Ny∑
j=1

Nz∑
k=1

(w/U∞)2
j,k, (4.1)

where Ny and Nz denote the number of grid points in wall-normal and spanwise directions,
respectively. Figure 5 shows the temporal history of w̄ at x/L = 1.04 for case R0, at
x/L = 1.13 for case R05, at x/L = 1.16 for case R1 and at x/L = 1.05 for case R2. These
streamwise positions were chosen because w̄ is largest here for all streamwise positions.
It should be mentioned that these positions are located in the separated region as the
instability core lies inside the separation bubble (Sidharth et al. 2018; Cao et al. 2021).
The slope of the dotted lines shown in figure 5 corresponds to the growth rate of the most
unstable mode identified by GSA (i.e. mode 1 in figure 4a–c).

For cases R0, R05 and R1, after an initial adaption, w̄ experiences an exponential
growth, and the growth rates are close to those predicted by GSA. Subsequent to the linear
growth stage, a nonlinear saturation takes place until the quasi-steady state is achieved.
It should be mentioned that the relatively long adaption period for case R05 may be
attributed to the large separation-bubble size and the multiple recirculating vortices inside
the primary bubble induced by the secondary separation near the corner (Gai & Khraibut
2019).

The previous GSA revealed that the growth rate of the global mode for case R2 is close
to zero. As seen in figure 5, the magnitude of w̄ remains at a very low level corresponding
to the numerical noise. In other words, the flow field for case R2 remains stable during the
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0 10
10–6

10–4
w̄

10–2

20 30 40

R0
R05
R1
R2

tU∞/L

Figure 5. Temporal evolution of the absolute spanwise velocity (4.1) at a streamwise position for cases R0,
R05, R1 and R2. The slope of the dotted lines represents the growth rates of the most unstable modes predicted
by GSA (mode 1 in figure 4a–c).

simulated time period. Although the simulation is run up to tU∞/L = 32, and a further
simulation is not considered owing to the limitation of computing resources, the stabilising
effect for large leading-edge radii is in line with experimental results. As mentioned by
Roghelia et al. (2017a), surface heat-flux streaks were not visible for large leading-edge
radii.

Figure 6 shows instantaneous spanwise velocity fields (w/U∞) in the x–y and z–y planes
for cases R0, R05 and R1. The corresponding time instants are tU∞/L = 9, 17 and 10,
respectively, which are located at the exponential growth stage (see figure 5). Note that
for case R0 (figure 6b), only half the spanwise length is shown in order to be consistent
with figure 6(d, f ). It is apparent that the onset of three-dimensionality lies inside the
separation bubble, and that the flow fields are characterised by a spanwise periodicity,
with the dominant spanwise wavelengths being λz/L ≈ 0.067, 0.1 and 0.083, respectively.
These wavelengths coincide with those of the most unstable modes identified by GSA
(see figure 3). It should be mentioned that the instability waves do not exhibit a strict
uniformity, i.e. the wavelength of each wave is not identical, especially for case R05. The
reasons are twofold. Firstly, the spanwise width of the physical domain does not fit in with
the whole-number multiples of the wavelength of the most unstable global mode revealed
by the GSA (i.e. Lz/λz is not an integer). As shown in Appendix, letting Lz/λz = 4, a
better match in the wavelength is achieved between GSA and DNS. However, a similar
non-uniformity is still present for cases A1 and A2 (see Appendix). Secondly, and more
importantly, as uncovered by the GSA, for cases R0, R05 and R1, there exist several
unstable modes whose growth rates peak at different wavelengths. Although the mode
with the largest growth rate dominates the growth of perturbations, other modes can also
be present and affect the spanwise periodicity. As shown in Cao et al. (2021) (case R0),
the footprint of mode 2 could be identified in the exponential growth stage. In the present
simulations, a fixed but relatively large spanwise width is used allowing the competition or
interaction of different unstable modes, which also facilitates the later discussion for the
saturated flows.

In general, the matching growth rates and spanwise wavelengths between GSA and DNS
results provide firm support for the fact that the occurrence of three-dimensionality in the
compression-ramp flows is triggered by the instabilities intrinsic to the flow system. In the
following, we focus on the leading-edge bluntness effects on the surface heat transfer with
respect to the saturated flow.

923 A27-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

55
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.552


S. Cao and others

0.5

0

0.2

1.0 1.5 0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 0.5

0.001

0.002

–0.002

–0.001

–0.005

0.005

0 0.1 0.2 0.3 0.4 0.5

0.1

0.1

0.1

0.5 1.0 1.5

0.5 1.0 1.5

x/L z/L

y/L

0

0.2y/L

0

0.2y/L

(e)

(b)(a)

(c) (d )

( f )

Figure 6. Instantaneous distribution of spanwise velocity for case R0 at tU∞/L = 9 in (a) x–y plane at z/L =
0.24 and (b) z–y plane at x/L = 1.04; for case R05 at tU∞/L = 17 in (c) x–y plane at z/L = 0.35 and (d) z–y
plane at x/L = 1.13; for case R1 at tU∞/L = 10 in (e) x–y plane at z/L = 0.13 and ( f ) z–y plane at x/L = 1.16.
The solid circles highlight the separation and reattachment positions. Flow fields are obtained from DNS data.

5. Leading-edge bluntness effects on surface heat transfer

Instantaneous distributions of wall Stanton number for cases R0, R05, R1 and R2 are
presented in Figure 7, the dimensionless number is defined as

St = qw

ρ∞U∞cp(Taw − Tw)
. (5.1)

Here, qw denotes the surface heat flux, cp is the specific heat capacity and Taw is
the adiabatic wall temperature. We emphasise that the chosen flow fields are in the
quasi-steady state (see figure 5), where the flow has fully saturated and deviates from that
at the exponential growth stage. Separation and reattachment positions are highlighted
by iso-lines of zero skin-friction coefficient (Cf ). The meandering reattachment line
is indicative of a 3-D reattaching process. As a consequence of the flow unsteadiness
originating from the intrinsic instability (Cao et al. 2021), a non-uniform spanwise
distribution of heat-flux streaks is present on the ramp surface for cases R0, R05 and
R1. As expected, there exists no spanwise variation for the wall Stanton number for case
R2 as the flow remains 2-D at this time instant.

To summarise the effects of leading-edge bluntness on the aerodynamic heating on the
ramp surface, figure 8(a) shows the streamwise distribution of the spanwise-averaged wall
Stanton number obtained from figure 7. The dashed lines represent the values obtained
from the 2-D base flows. Interestingly, the heating loads downstream of reattachment
exhibit a monotonic decrease as the leading-edge radius is increased, although a reversal
trend is present for the separation-bubble length and the intrinsic instability. The decrease
in the peak heating value is consistent with experimental results (Roghelia et al. 2017a).
Compared with the 2-D solutions, an increase in the Stanton number is present downstream
of reattachment for the 3-D results. Specifically, the peak Stanton number increases by
3 %, 35 % and 36 % for cases R0, R05 and R1, respectively. It should be noted that the
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Figure 7. Instantaneous distribution of wall Stanton number for cases (a) R0 at tU∞/L = 60, (b) R05 at
tU∞/L = 32, (c) R1 at tU∞/L = 32 and (d) R2 at tU∞/L = 32. Black solid lines denote iso-lines of Cf = 0.
Flow from left to right.
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Figure 8. (a) The solid lines represent the streamwise distribution of spanwise-averaged wall Stanton number
corresponding to figure 7. The dashed lines correspond to the 2-D base flow. (b) Variation of heating peak near
reattachment with leading-edge radius. The vertical bar provides the root-mean-square value of the spanwise
variation of wall Stanton number at the peak heating position.

3-D values are spanwise-averaged. In figure 8(b), the peak heating value along with its
spanwise variation obtained from figure 7 are plotted against the leading-edge radius. The
root-mean-square value for the spanwise variation is approximately 7.5 × 10−4 for cases
R0, R05 and R1. In short, the presence of three-dimensionality in the flow field causes an
elevated heating level downstream of reattachment in comparison with 2-D solutions.

6. Conclusions

In this work, hypersonic compression-ramp flows with different leading-edge radii were
considered with a free-stream Mach number of 7.7 and a unit Reynolds number of
4.2 × 106 m−1. The DNS and GSA were performed to study the effects of leading-edge
bluntness on flow separation, the intrinsic instability and surface heat transfer. Similar to
the well known reversal trend of flow separation, a reversal trend was revealed for the
intrinsic instability. When the leading-edge radius is increased from zero to the critical
value (0.5 mm), the compression-ramp flow becomes more unstable, with the unstable
modes being characterised by higher growth rates. Then, when the leading-edge radius is
further increased, the flow tends to be more stable.
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As a result of the three-dimensionality triggered by the intrinsic instability, streamwise
heat-flux streaks are formed on the ramp surface downstream of reattachment. Unlike
the reversal trend of the flow separation and intrinsic instability, the peak heating
value exhibits a monotonic decrease as the leading-edge radius is increased. More
importantly, because the flow becomes globally stable when the leading-edge radius
is sufficiently large, the spanwise variation of surface heat flux disappears, which
accounts for the experimental observations (Roghelia et al. 2017a). Therefore, the
present study demonstrates that a proper blunting of the leading edge can suppress flow
separation, reduce aerodynamic heating and stabilise the flow system for a hypersonic
compression-ramp flow.

It is interesting to note that the present work shows the formation of heat-flux streaks
in the absence of external disturbances. This scenario highlights the importance of
the intrinsic instability in the compression-ramp flow system, as addressed by Sidharth
et al. (2018) and Cao et al. (2021). On the other hand, convective mechanisms such as
baroclinic effects can play a role in the amplification of extrinsic disturbances, resulting
in the formation of heat-flux streaks in an intrinsically stable compression-ramp flow, as
demonstrated by Dwivedi et al. (2019). Furthermore, the role of convective mechanisms in
an inherently unstable compression-ramp flow is still not fully understood. In experiments
involving supersonic and hypersonic flows, it is hard to exclude external disturbances (e.g.
free-stream disturbances, surface roughness). Therefore, the observed 3-D phenomena
may be triggered by either intrinsic or convective mechanisms or both, which may hinder
thorough and rigorous explanations for these phenomena. Because much experimental
work has already provided a wealth data, further theoretical and numerical work is required
to study these case-dependent scenarios.
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Appendix. Influence of the initial spanwise velocity and the spanwise width on
numerical solutions

To clarify the influence of initial spanwise velocity and spanwise width on the numerical
results, we performed two additional simulations (cases A1 and A2) for the sharp
leading-edge case, which are listed in table 1. The spanwise width equals Lz/L = 0.2667,
which is equal to four times the wavelength of the most unstable mode (mode 1 in
figure 3a), i.e. Lz/λz = 4. Similar to case R0, randomised initial values for the spanwise
velocity (ranging at −0.01 ≤ w/U∞ ≤ 0.01) are introduced on the first twenty grid points
normal to the wall between 0.5 < x/L < 1.5 for case A1. For case A2, the initial spanwise
velocity is zero, and the numerical round-off error provides a low-level perturbation for
the growth of instability modes.

Figure 9 presents the temporal evolution of w̄ at x/L = 1.04 for cases A1 and A2, in
comparison with case R0. As an initial spanwise velocity is introduced for case A1, the
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Case Mesh Lz/L Initial w/U∞

R0 1080 × 240 × 480 1 Random
A1 1080 × 240 × 120 0.2667 Random
A2 1080 × 240 × 120 0.2667 0

Table 1. Cases for clarifying the influence of initial spanwise velocity and spanwise width on the numerical
solutions.

0 10
10–6

10–4
w̄

10–2

20 30 40

R0
A1
A2

tU∞/L

Figure 9. Temporal evolution of the absolute spanwise velocity (4.1) at x/L = 1.04 for cases R0, A1 and A2.
The slope of the dotted lines represents the growth rates of the most unstable modes predicted by GSA.

value of w̄ for case A1 is of the order of 10−4 at tU∞/L = 0. The subsequent growth
of w̄ is quite similar to that for case R0, and the growth rate is in line with the GSA
prediction. For case A2, however, the value of w̄ at the very beginning is of the order of
10−6. After a relatively long adaption period (0 < tU∞/L < 7), the exponential growth
of unstable modes commences. The growth rate also agrees with the GSA result. It
is worth mentioning that the introduction of an initial value for the spanwise velocity
leads to an earlier start of the exponential growth, thus a shorter computational time and
fewer computing resources. Furthermore, the comparison between cases R0 and A1 also
demonstrates that the spanwise width of the physical domain has no influence on the
growth rate.

The occurrence of instability waves for cases A1 and A2 is addressed in the following.
Figure 10 compares the spanwise velocity fields extracted from the exponential growth
stage. The distribution of spanwise velocity in the x–y plane is nearly identical for cases
A1 and A2, and it also matches the distribution of spanwise velocity for case R0 (see
figure 6a). Obviously, there exist four waves in the spanwise direction, although their
wavelengths are not absolutely the same. Therefore, allowing the spanwise width to
be the whole-number multiple of the wavelength of the unstable modes can lead to a
better agreement between the GSA and DNS results regarding the spanwise wavelength.
However, the non-uniformity of instability waves in the spanwise direction is still present
and may be supposed to be mainly influenced by the co-existence of several unstable
modes. The situation is more severe for case R05 (see figure 6d) because a large number
of unstable modes are found by the GSA. One may expect that a uniform distribution
of instability waves is present for a case with only one unstable mode, e.g. as shown in
Sidharth et al. (2018).

In summary, the previous discussion shows that the introduction of an initial
spanwise velocity field with the chosen spanwise width of the physical domain has no
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Figure 10. Instantaneous distribution of spanwise velocity for case A1 at tU∞/L = 9 in (a) x–y plane at
z/L = 0.13 and (b) z–y plane at x/L = 1.04; for case A2 at tU∞/L = 15 in (c) x–y plane at z/L = 0.10 and (d)
z–y plane at x/L = 1.04. The solid circles highlight the separation and reattachment positions.

remarkable influence on the occurrence and growth of instability modes in the considered
compression-ramp flow.
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