
JFP 27, e11, 55 pages, 2017. c© Cambridge University Press 2017

doi:10.1017/S0956796817000016

1

Modular, higher order cardinality analysis in
theory and practice

ILYA SERGEY

University College London, London, UK

(e-mail: i.sergey@ucl.ac.uk)

DIMITRIOS VYTINIOTIS and SIMON L. PEYTON JONES

Microsoft Research, Cambridge, UK

(e-mail: dimitris@microsoft.com, simonpj@microsoft.com)

JOACHIM BREITNER

University of Pennsylvania, Pennsylvania, USA

(e-mail: joachim@cis.upenn.edu)

Abstract

Since the mid ’80s, compiler writers for functional languages (especially lazy ones) have been

writing papers about identifying and exploiting thunks and lambdas that are used only once.

However, it has proved difficult to achieve both power and simplicity in practice. In this

paper, we describe a new, modular analysis for a higher order language, which is both simple

and effective. We prove the analysis sound with respect to a standard call-by-need semantics,

and present measurements of its use in a full-scale, state-of-the-art optimising compiler.

The analysis finds many single-entry thunks and one-shot lambdas and enables a number

of program optimisations. This paper extends our preceding conference publication (Sergey

et al. 2014 Proceedings of the 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL 2014). ACM, pp. 335–348) with proofs, expanded report

on evaluation and a detailed examination of the factors causing the loss of precision in the

analysis.

1 Introduction

Consider these definitions, written in a purely functional language like Haskell:

wurble1, wurble2 :: (Int -> Int) -> Int

wurble1 k = sum (map k [1..10])

wurble2 k = 2 * k 0

f1 :: [Int] -> Int

f1 xs = let ys = map costly xs

in wurble (\n. sum (map (+ n) ys))

Here we assume that costly is some function that is expensive to compute and

wurble is either wurble1 or wurble2. If we replace ys by its definition, we could

transform f1 into f2:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

2 I. Sergey et al.

f2 xs = wurble (\n. sum (map (+ n) (map costly xs)))

An optimising compiler can now use short-cut deforestation to fuse the two maps

into one, eliminating the intermediate list altogether, and offering a substantial

performance gain (Gill et al. 1993).

Does this transformation make the program run faster or slower? It depends on

wurble! For example, wurble1 calls its function argument 10 times, so if wurble

= wurble1, function f2 would compute costly 10 times for each element of xs;

whereas f1 would do so only once. On the other hand, if wurble = wurble2, which

calls its argument exactly once, then f2 is just as efficient as f1, and short-cut

deforestation can improve it further.

The reverse is also true. If the programmer writes f2 in the first place, the

full laziness transformation (Peyton Jones et al. 1996) will float the sub-expression

(map costly xs) out of the \n-expression, so that it can be shared. That would be

good for wurble1 but bad for wurble2.

What is needed is an analysis that can provide a sound approximation of

how often a function is called – we refer to such an analysis as a cardinality

analysis. An optimising compiler can then use the results of the analysis to guide its

transformations. In this paper, we provide just such an analysis:

• We define two different, useful forms of cardinality, namely (a) how often a

function is called, and (b) how often a thunk is forced in a lazy language

(Section 2). Of these, the former is relevant under both call-by-need and call-by-

value, while the latter is specific to call-by-need.

• We present a backwards analysis that can soundly and efficiently approximate

both forms of cardinality for a non-strict, higher order language (Section 3). A

significant innovation is our use of call demands to model the usage of a function;

this makes the analysis both powerful and modular.

• We prove that our algorithm is sound; for example, if it claims that a function

is called at most once, then it really is (Section 4). This proof is not at all

straightforward, because it must take account of sharing – that is the whole

point! So we cannot use standard denotational techniques, but instead must use

an operational semantics that models sharing explicitly.

• We formalise a number of program optimisations enabled by the results of the

cardinality analysis, prove them sound and, what is equally important, improving

in the sense of Moran & Sands (1999) (Section 5).

• We have implemented our algorithm by extending the Glasgow Haskell Compiler

(GHC), a state-of-the-art optimising compiler for Haskell. Happily, the imple-

mentation builds directly on GHC’s current strictness and absence analyser, and

is both simple and efficient (Section 6).

• We measured how often the analysis finds one-shot lambdas and single-entry

thunks (Section 7); and how much this knowledge improved the performance

of real programs (Sections 7.1–7.2). The analysis proves quite effective in that

many one-shot lambdas and single-entry thunks are detected (in the range 0–

30%, depending on the program). Improvements in performance are modest but

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 3

consistent (a few percent): programs already optimised by GHC are a challenging

target!

• We also measure how precise the analysis is, by comparing the static results with

dynamic measurements using an instrumented runtime (Section 7.3), and explain

the typical cases where the analysis as designed cannot be more precise.

Before this work, GHC conservatively assumed that every thunk could be entered

more than once, and every lambda called more than once, thus losing useful

opportunities for optimisation, as quantified in Section 7. We discuss other related

work in Section 8. Distinctive features of our work are (a) the notion of call demands,

(b) a full implementation measured against a state-of-the-art optimising compiler,

and (c) the combination of simplicity with worthwhile performance improvements

due to enabled optimisations.

This is a longer version of a paper “Modular, Higher-Order Cardinality Analysis

in Theory and Practice” by Sergey et al. (2014), containing proofs, an expanded

report on evaluation, and detailed examination of the factors causing the loss of

precision in the analysis.

2 What is cardinality analysis?

Cardinality analysis answers three inter-related questions, in the setting of a non-

strict, pure functional language like Haskell:

• How many times is a particular, syntactic lambda-expression called (Section 2.1),

a question that is complicated by currying in a higher order language like Haskell

(Section 2.2)?

• Which components of a data structure are never evaluated ; that is, are absent

(Section 2.3)?

• How many times is a particular, syntactic thunk evaluated (Section 2.4)?

2.1 Call cardinality

We saw in the introduction an example where it is helpful to know when a function

calls its argument at most once. A lambda that is called at most once is called

a one-shot lambda, and they are fairly common in functional programming: for

example, a continuation is usually one-shot. So cardinality analysis can be a big win

when optimising continuation-heavy programs.

Nor is that all. As we saw in the Introduction, inlining under a one-shot lambda (to

transform f1 into f2) allows short-cut deforestation to fuse two otherwise-separate

calls of map. But short-cut deforestation itself introduces many calls of the function

build:

build :: (forall b. (a -> b -> b) -> b -> b) -> [a]

build g = g (:) []

You can see that build calls its argument exactly once, and inlining ys in calls like

(build (\cn. ...ys...)) turns out to be crucial to making short-cut deforestation

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

4 I. Sergey et al.

work in practice. Gill devotes a section of his thesis to elucidating this point

(Gill 1996, Chapter 4.3). Gill lacked an analysis for one-shot lambdas, so his

implementation (which was extant in GHC until recently) relied on a gross hack:

He taught GHC’s optimiser to behave specially for build itself, and a couple

of other functions. No user-defined function will have this good behaviour. Our

analysis subsumes the hack, by providing an analysis that deduces the correct

one-shot information for build, as well as many other functions.

2.2 Currying

In a higher order language with curried functions, we need to be careful about the

details. For example, consider

f3 a = zowzy a (\x.let t = costly x in \y. t+y)

zowzy1 a g = g 2 a + g 3 a

zowzy2 a g = sum (map (g a) [1..1000])

If zowzy was zowzy1, then in f3 it would be best to inline t at its use site, thus

f4 a = zowzy1 a (\x.\y. costly x + y)

The transformed f4 is much better than f3: It avoids allocating a thunk for t, and

avoids allocating a function closure for the \y. But if f3 called zowzy2 instead, such

a transformation would be disastrous. Why? Because zowzy2 applies its argument

g to one argument a, and the function thus computed is applied to each of 1,000

integers. In f3, we will compute (costly a) once, but f4 will compute it 1,000

times, which is arbitrarily bad.

So our analysis of zowzy2 must be able to report “zowzy2’s argument g is called1

once, and the result is called many times”. We formalise this by giving a usage

signature to zowzy, like this:

zowzy1 :: U → Cω(C 1(U)) → •
zowzy2 :: U → C 1(Cω(U)) → •

The notation Cω(C 1(U)) is a usage demand : It describes how a (function) value

is used. The demand type U → Cω(C 1(U)) → • describes how a function uses

its arguments, therefore it gives a usage demand for each argument.2 Informally,

the C 1(d) means “this argument is called once, and the result is used with usage

d”, whereas Cω(d) means “this argument may be called many times, with each

result used with usage d”. The U means “is used in some unknown way (which

includes not being used at all)”. Note that zowzy1’s second argument precise usage

is Cω(C 1(U)), not Cω(Cω(U)); that is, in all cases the result of applying g to one

argument is then called only once.

1 We will always use “called” to mean “applied to one argument”.
2 The “•” has no significance; we are just used to seeing something after the final arrow!

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 5

2.3 Absence

Consider this function

f x = case x of (p,q) -> <cbody>

A strictness analyser can see that f is strict in x, and so can use call-by-value.

Moreover, rather than allocate a pair that is passed to f, which immediately takes

it apart, GHC uses a worker/wrapper transformation to pass the pieces separately,

thus

f x = case x of (p,q) -> fw p q

fw p q = <cbody>

Now f (the “wrapper”) is small, and can be inlined at f’s call sites, often eliminating

the allocation of the pair; meanwhile fw (the “worker”) does the actual work.

Strictness analysis, and the worker/wrapper transform to exploit its results, are

hugely important to generating efficient code for lazy programs (Peyton Jones &

Partain 1994; Peyton Jones & Santos 1998).

In general, f’s right-hand side often does not have a syntactically visible case

expression. For example, what if f simply called another function g that was strict

in x? Fortunately, the worker/wrapper transform is easy to generalise. Suppose the

right-hand side of f was just <fbody>. Then we would transform to

f x = case x of (p,q) -> fw p q

fw p q = let x = (p,q) in <fbody>

Now we hope that the binding for x will cancel with case expressions in <fbody>,

and indeed it usually proves to be so (Peyton Jones & Santos 1998).

But what if <fbody> did not use q at all? Then it would be stupid to pass q to

fw. We would rather transform to

f x = case x of (p,q) -> fw p

fw p = let x = (p, error "urk") in <fbody>

This turns out to be very important in practice. Programmers seldom write functions

with wholly unused arguments, but they frequently write functions that use only

part of their argument, and ignoring this point leads to large numbers of unused

arguments being passed around in the “optimised” program after the worker–

wrapper transformation. Absence analysis has therefore been part of GHC since its

earliest days (Peyton Jones & Partain 1994), but it has never been formalised. In the

framework of this paper, we give f from the last code fragment a usage signature

like this:

f :: U (U ,A) → •

The U (U ,A) indicates that the argument is a product type; that is, a data type

with just one constructor. The A (for “absent”) indicates that f discards the second

component of the product. The top-level U indicates that the overall argument has

been used, and could have been omitted, but we keep it for the uniformity of the

notation.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

6 I. Sergey et al.

2.4 Thunk cardinality

Consider these definitions:

f :: Int -> Int -> Int

f x c = if x > 0 then c + 1 else

if x == 0 then 0 else c - 1

g y = f y (costly y)

Since f is not strict in c, g must build a thunk for (costly y) to pass to f. In

call-by-need evaluation, thunks are memoised. That is, when a thunk is evaluated at

run-time, it is overwritten with the value so that if it is evaluated a second time the

already-computed value can be returned immediately. But in this case, we can see

that f never evaluates its second argument more than once, so the memoisation step

is entirely wasted. We call these single-entry thunks.

Memoisation is not expensive, but it is certainly not free. Operationally, a pointer

to the thunk must be pushed on the stack when evaluation starts, it must be black-

holed to avoid space leaks (Jones 1992), and the update involves a memory write.

If cardinality analysis can identify single-entry thunks, as well as one-shot lambdas,

that would be a Good Thing. And so it can: we give f the usage signature:

f :: ω∗U → 1∗U → •

The “ω∗” modifier says that f may evaluate its first argument more than once, while

the “1∗” says that it evaluates its second argument at most once.

2.5 Call versus evaluation

For functions, there is a difference between being evaluated once and called once,

because of Haskell’s seq function. For example:

f1 g = g ‘seq‘ 1 -- f1 :: 1∗U → •
f2 g = g ‘seq‘ g 2 -- f2 :: ω∗C 1(U) → •
f3 g = g 3 -- f3 :: 1∗C 1(U) → •

The function seq evaluates its first argument (to head-normal form) and returns its

second argument. If its first argument is a function, the function is evaluated to a

lambda, but not called. Notice that f2’s usage type says that g is evaluated more

than once, but applied only once. For example, consider the call

f (\x. x + y)

How many times is y evaluated? It depends on f, indeed. For f equal to f1, the

answer is zero; for f2 and f3, it is one.

3 Formalising cardinality analysis

We now present our analysis in detail. The syntax of the language we analyse is

given in Figure 1. It is quite conventional: just lambda calculus with pairs and

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 7

Fig. 1. Syntax of terms, values, usage types, and usage environments.

(non-recursive) let-expressions. Constants κ include literals and primitive functions

over literals, as well as Haskell’s built-in seq. We use A-normal form (Sabry &

Felleisen 1992) so that the issues concerning thunks show up only for let and not

also for function arguments.

3.1 Usage demands

Our cardinality analysis is a backwards analysis over an abstract domain of usage

demands. As with any such analysis, the abstract domain embodies a balance between

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

8 I. Sergey et al.

the cost of the analysis and its precision. Our particular choices are expressed in

the syntax of usage demands, given in Figure 1. A usage demand d is one of the

following:

• U (d†
1 , d

†
2) applies to pairs. The pair itself is evaluated and its first component is

used as described by d†
1 and its second by d†

2 .

• C n(d) applies to functions. The function is called at most n times, and on each

call the result is used as described by d . Call demands are, to the best of our

knowledge, new.

• U , or “used”, indicating no information; the demand can use the value in an

arbitrary way.

• HU , or “head-used”, is a special case; it is the demand that seq places on its first

argument: seq ::HU → U → •.

A usage demand d always uses the root of the value exactly once; it cannot express

absence or multiple evaluation. That is done by d†, which is either A (absent), or

n∗d indicating that the value is used at most n times in a way described by d . In

both C n(d) and n∗d , the multiplicity n is either 1 or ω (meaning “many”). Notice

that a call demand C n(d) has a d inside it, not a d†: If a function is called, its body

is evaluated exactly once. This is different for pairs; the demand (d†
1 , d

†
2) must have

d† demands as the sub-components. For example, if we have

let x = (e1, e2) in fst x + fst x

then e1 is evaluated twice. So the usage demand for x is ω∗U (ω∗U ,A)

Both U and HU come with some non-syntactic equalities, denoted by ≡ in

Figure 1 and necessary for the proof of well-typedness (Section 4). For example,

U is equivalent to a pair demand whose components are used many times, or a

many-call-demand where the result is used in an arbitrary way. Similarly, for pairs

HU is equivalent to U (A,A), while for functions HU is equivalent to C 0(A), if

we had such a thing. In the rest of the paper, all definitions and metatheory are

modulo-≡ equivalence (checking that all our definitions respect ≡ is routine and,

hence, omitted).

3.2 Usage analysis

The analysis itself is shown in Figures 4 and 5. The main judgement form is written

thus

P �� e ↓ d ⇒ 〈τ ; ϕ〉� e′

which should be read thus: in signature environment P , and under usage demand d ,

the term e places demands 〈τ ; ϕ〉 on its components, and elaborates to an annotated

term e′. The syntax of each of these components is given in Figure 1, and their roles

in the judgement are the following:

• The signature environment P maps some of the free variables of e to their usage

signatures, ρ (Section 3.5). Any free variable outside the domain of P has an

uninformative signature.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 9

• The usage demand, d , describes the degree to which e is evaluated, including how

many times its sub-components are evaluated or called.

• Using P , the judgement transforms the incoming demand d into the demands

〈τ ; ϕ〉 that e places on its arguments and free variables, respectively:

— The usage that e places on its argument is given by τ, which gives a demand

d† for each argument.

— The usage that e places on its free variables is given by its free-variable

usage (fv-usage), ϕ, which is simply a finite mapping from variables to usage

demands.

• We will discuss the elaborated expressions e′ in Section 3.7.

For example, consider the expression

e = λx . case x of (p, q) → (p, f True)

Suppose we place demand C 1(U) on e , so that e is called, just once. What demand

does e then place on its arguments and free variables?

ε �� e ↓ C 1(U) ⇒ 〈1∗U (ω∗U ,A) → • ; {f �→ 1∗C 1(U)}〉

That is, e will use its argument once, its argument’s first component perhaps many

times, but will ignore its arguments second component (the A in the usage type).

Moreover, e will call f just once.

In short, we think of the analysis as describing a demand transformer, transforming

a demand on the result of e into demands on its arguments and free variables.

3.3 Pairs and case expressions

With these definitions in mind, we can look at some of the analysis rules in Figure 4.

Rule Pair explains how to analyse a pair under a demand U (d†
1 , d

†
2). We simply

analyse the two components, under d†
1 or d†

2 , respectively, and combine the results

with “&”. The auxiliary judgement ��∗ (Figure 4) deals with the multiplicity of the

argument demands d†
i .

The “&” operator, pronounced “both”, is defined for demands in Figure 2, and

for demand types and usage environments in Figure 3. It combines the free-variable

usages ϕ1 and ϕ2. For the most part, the definition is straightforward, but there is

a very important wrinkle for call demands:

C n1(d1) &C n2(d2) = Cω(d1
 d2)

The “ω” part is easy, since n1 and n2 are both at least 1. But note the switch from

& to the least upper bound
! To see why, consider what demand this expression

places on f:

f 1 2 + f 3 4

Each call gives a usage demand for f of 1∗C 1(C 1(U)), and if we use & to combine

that demand with itself, we get ω∗Cω(C 1(U)). The inner “1” is a consequence of the

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

10 I. Sergey et al.

Fig. 2. Demands and demand operations.

switch to
, and rightly expresses the fact that no partial application of f is called

more than once. That is, one can think of the & operator as of adding two multi-

demands, whereas
 is reminiscent to taking the maximum of two multi-demands.

The other rules for pairs PairU, PairHU, and case expressions Case should now

be readily comprehensible, (ϕr\x ,y stands for the removal of {x , y} from the domain

of ϕr). In these rules, as well as in LamU, the pressed demands are treated modulo

the syntactic equalities from Figure 1 (e.g., HU ≡ U (A,A)).

3.4 Lambda and application

Rule Lam for lambdas expects the incoming demand to be a call demand C n(de).

Then it analyses the body e with demand de to give 〈τ ; ϕ〉. If n = 1, the lambda is

called at most once, so we can return 〈ϕ(x) → τ ; ϕ\x 〉; but if n = ω, the lambda

may be called more than once, and each call will place a new demand on the free

variables. The n∗ϕ operation on the bottom line accounts for this multiplicity, and

is defined in Figure 3. Rule LamU handles an incoming demand of U by treating

it just like Cω(U), while LamHU deals with the head-used demand HU , where the

lambda is not even called so we do not need to analyse the body, and e is obtained

from e by adding arbitrary annotations. Similarly, the return type τ can be any type,

since the λ-abstraction is not going to be applied, but is only head-used. Dually,

given an application (e y), rule AppA analyses e with demand C 1(d), reflecting that

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 11

Fig. 3. Operations on demand types and usage environments, and generic partial order.

e is here called once. This returns the demand 〈d†
2 → τ2 ; ϕ1〉 on the context. Then

we can analyse the argument under demand d†
2 , using ��∗, yielding ϕ2; and combine

ϕ1 and ϕ2. Rule AppB applies when analysing e1 yields the less-informative usage

type •.

3.5 Usage signatures

Suppose we have the term

let f = \x.\y. x True in f p q

We would like to determine the correct demands on p and q, namely 1∗C 1(U) and

A, respectively. The gold standard would be to analyse f’s right-hand side at every

call site; that is, to behave as if f were inlined at each call site. But that is not very

modular; with deeply nested function definitions, it can be exponentially expensive

to analyse each function body afresh at each call site; and it does not work at all

for recursive functions. Instead, we want to analyse f, summarise its behaviour, and

then use that summary at each call site. This summary is called f’s usage signature.

Remember that the main judgement describes how a term transforms a demand for

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

12 I. Sergey et al.

Fig. 4. Algorithmic cardinality analysis specification, Part 1.

the value into demands on its context. So a usage signature must be a (conservative

approximation of this) demand transformer.

There are many ways in which one might approximate f’s demand transformer,

but rule LetDn (Figure 5) uses a particularly simple one:

• Look at f’s right-hand side λy1 . . . λyk. e1, where e1 is not a lambda-expression.

• Analyse e1 in demand U , giving 〈τ1 ; ϕ1〉.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 13

Fig. 5. Algorithmic cardinality analysis specification, Part 2 (let-rules).

• Record the triple 〈k ; ϕ(y) → τ1 ; ϕ1\y〉 as f’s usage signature in the environment

P when analysing the body of the let.

Now, at a call site of f, rule VarDn calls transform(ρ, d) to use the recorded usage

signature ρ to transform the demand d for this occurrence of f.

What does transform(〈k ;τ ;ϕ〉, d) do (Figure 1)? If the demand d on f is stronger

than C 1(. . .C 1(U)), where the call demands are nested k deep, we can safely unleash

〈τ ; ϕ〉 at the call site. If not, we simply treat the function as if it were called many

times, by unleashing 〈ω∗τ ;ω∗ϕ〉, multiplying both the demand type τ and the usage

environment ϕ (Figure 3), considering it to be the result of the transform . Rule

LetDnAbs handles the case when the variable is not used in the body, annotating

the corresponding lambda with one-shot demands, in order to enable let-in floating,

described in Section 5.2.

3.6 Thunks

The LetDn rule unleashes (an approximation to) the demands of the right-hand

side at each usage site. This is good if the right-hand side is a lambda, but not good

otherwise, for two reasons. Consider

let x = y + 1 in x + x

How many times is y demanded? Just once! The thunk x is demanded twice, but x’s

thunk is memoised, so the y + 1 is evaluated only once. So it is wrong to unleash

a demand on y at each of x’s occurrence sites. Contrast the situation where x is a

function

let x = \v. y + v in x 42 + x 239

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

14 I. Sergey et al.

Here y really is demanded twice, and LetDn does that. Another reason that LetDn

would be sub-optimal for thunks is shown here:

let x = (p, q) in case x of (a, b) -> a

The body of the let places usage demand 1 ∗ U (U ,A) on x, and if we analysed x’s

right-hand side in that demand we would see that q was unused. So we get more

information if we wait until we know the aggregated demand on x, and use it to

analyse its right-hand side.

This idea is embodied in the LetUp rule, used if LetDn does not apply (i.e.,

the right-hand side is not a lambda). Rule LetUp first analyses the body e2 to get

the demand ϕ2(x) on x ; then analyses the right-hand side e1 using that demand.

Notice that the multiplicity n of the demand that e2 places on x is ignored; that

is because the thunk is memoised. Otherwise the rule is quite straightforward. Rule

LetUpAbs deals with the case when the bound variable is unused in the body.

Instead of removing the binding x from the elaborated program, we preserve the

syntactic structure of the expressions, in order to simplify the proof of soundness of

the analysis in Section 4.

3.7 Elaboration

How are we to take advantage of our analysis? We do so by elaborating the term

during analysis, with annotations of two kinds, as described by the grammar in

Figure 1:

• let-bindings carry an annotation m ∈ {0, 1, ω}, to indicate how often the let

binding is evaluated.

• Lambdas λmx.e carry an annotation m ∈ {0, 1, ω}, to indicate how often the

lambda is called. The symbol 0 serves as an indicator that the lambda is not

supposed to be called at all.

Figures 4 and 5 show the elaborated terms after the “�”. The operational semantics

(Section 4) gets stuck if we use a thunk or lambda more often than its claimed usage;

and the optimising transformations (Section 5) are guided by the same annotations.

3.8 A more realistic language

The language of Figure 1 is stripped to its bare essentials. Our implementation

handles all of Haskell, or rather the Core language to which Haskell is translated

by GHC. In particular:

• Usage signatures for constants κ are predefined.

• All data types with a single constructor (i.e., simple products) are treated analo-

gously to pairs in the analysis.

• Recursive data types with more than one constructor and, correspondingly, case

expressions with more than one alternative (and hence also conditional statements)

are supported. The analysis is more approximate for such types: The only usage

demands that apply to such types are U and HU not U (d†
1 , d

†
2). Furthermore, case

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 15

expressions with multiple branches give rise to a least upper bound
 combination

of usage types, as usual.

• Recursive functions and let-bindings are handled, using the standard kind of

fixed-point iteration, with a conservative approximation in case of excessive

iterations (Section 6.5).

4 Soundness of the analysis

We establish the soundness of our analysis in a sequence of steps. Soundness means

that if the analysis claims that, say, a lambda is one-shot, then that lambda is only

called once; and similarly for single-entry thunks. We formalise this property as

follows:

• We present an operational semantics, written ↪−→, for the annotated language

that counts how many times thunks have been evaluated and λ-abstractions have

been applied. The semantics simply gets stuck when these counters reach zero and

then an associated thunk is accessed or lambda is invoked, which will happen

only if the claims of the analysis are false (Section 4.1).

• Our goal is to prove that if an expression e is elaborated to e by the analysis,

then e in the instrumented semantics behaves identically to e in a standard

uninstrumented call-by-need semantics (Section 4.3). For reasons of space, we

omit the rules for the uninstrumented call-by-need semantics which are completely

standard (Sestoft 1997), and are identical to the rules of Figure 6 if one simply

ignores all the annotations and the multiplicity side-conditions. We refer to this

semantics as −→.

• We prove soundness by giving a type system for the annotated terms, and showing

that for well-typed terms, the instrumented semantics ↪−→ simulates −→, in a

type-preserving way.

4.1 Counting operational semantics

We present a simple counting operational semantics for annotated terms in Figure 6.

This is a standard semantics for call-by-need, except for the fact that multiplicity

annotations decorate the terms, stacks, and heaps. The syntax for heaps, denoted

with H, contains two forms of bindings, one for expressions [x
m�→ Exp(e)] and

one for already evaluated expressions [x
m�→ Val(v)]. The multiplicity m ∈ {0, 1, ω}

denotes how many more times are we allowed to de-reference this particular binding.

The stacks, denoted with S, are just lists of frames. The syntax for frames includes

application frames (• y), which store a reference y to an argument, case-frames

((x , y) → e), which account for the execution of a case-branch, and update frames

of the form #(x ,m), which take care of updating the heap when the active expression

reduces to a value. The first component of an update frame is a name of a variable

to be updated, and the second one is its thunk cardinality.

Rule ELet allocates a new binding on the heap. The rule EBeta fires only if the

cardinality annotation is non-zero; it de-references an Exp(e) binding and emits an

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

16 I. Sergey et al.

Fig. 6. Heaps, stacks and a non-deterministic counting operational semantics. The guards

for counting restrictions are highlighted by grey boxes.

update frame. Rules EBeta, EApp, EPair, and EPRed are standard. Note that the

analysis does not assign zero-annotations to lambdas, but we need them for the

soundness result.

Rule ELkpV de-references a binding for an already-evaluated expression [x
m�→

Val(v)], and in a standard semantics would return v leaving the heap unaffected.

In our counting semantics however, we need to account for two things. First, we

decrease the multiplicity annotation on the binding (from m+1 to m in rule ELkpV).

Moreover, the value v can in the future be used both directly (since it is now the

active expression), and indirectly through a future de-reference of x . We express this

by non-deterministically splitting the value v, returning two values v1 and v2 whose

top-level λ-annotations sum up to the original (see split in Figure 6). Our proof

needs only ensure that among the non-deterministic choices there exists a choice

that simulates −→. Rule EUpd is similar except that the heap gets updated by an

update frame.

4.2 Checking well-annotated terms

We would like to prove that if we analyse a term e , producing an annotated term

e, then if e executes for a number of steps in the standard semantics −→, then

execution of e does not get stuck in the instrumented semantics ↪−→ of Figure 6.

To do this, we need to prove preservation and progress lemmas, showing that each

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 17

step takes a well-annotated term to a well-annotated term, and that well-annotated

terms do not get stuck.

Figure 7 says what it means to be “well-annotated”, using notation from Figures 1–

3. The rules look very similar to the analysis rules of Figures 4–5, except that we

check an annotated term, rather than producing one. For example, rule TLam checks

that the annotation on a λ-abstraction (m) is at least as large as the call cardinality

we press on this λ-abstraction (n). As evaluation progresses the situation clarifies,

so the annotations may become more conservative than the checker requires, but

that is fine.

A more substantial difference is that instead of holding concrete demand trans-

formers ρ as the analysis does (Figure 1), the environment P holds generalised

demand transformers ρ. A generalised demand transformer is simply a monotone

function from a demand to a pair 〈τ ; ϕ〉 of a type and a usage environment

(Figure 7). In the TLetDn rule, we make use of the auxiliary function μ (Figure 2)

and clairvoyantly choose any such transformer ρ, which is sound for the RHS

expression – denoted with P �t e1 : ρ. We still check that e1 can be type checked

with some demand d1 that comes from type-checking the body of the let (ϕ2(x)).

In rule TVarDn, we simply apply the transformer ρ to get a type and fv-usage

environment.

Rule WfTrans imposes two conditions necessary for the soundness of the

transformer. First, it has to be a monotone function on the demand argument.

Second, it has to soundly approximate any type and usage environment that we can

attribute to the expression. One can easily confirm that the intensional representation

used in the analysis satisfies both properties for the λ-expressions bound with

LetDn.

Because these rules conjure up functions ρ out of thin air, and have universally

quantified premises (in WfTrans), they do not constitute an algorithm. But for the

very same reasons, they are convenient to reason about in the metatheory, and that

is the only reason we need them. In effect, Figure 7 constitutes an elaborate invariant

for the operational semantics.

4.3 Soundness of the analysis

The first result is almost trivial.

Lemma 4.1 (Analysis produces well-typed terms)

If P �� e ↓ d ⇒ 〈τ ; ϕ〉� e, then P � e ↓ d ⇒ 〈τ ; ϕ〉.
We would next like to show that well-typed terms do not get stuck. To present

the main result, we need some notation first.

Definition 4.1 (Unannotated heaps and stacks and erasure)

We use H and S to refer to an uninstrumented heap and stack, respectively. We

use e
 = e to mean that the erasure of all annotations from e is e , and we define

S
 = S and H
 = H analogously.

We can show that annotated terms run for at least as many steps as their erasures

would run in the uninstrumented semantics:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

18 I. Sergey et al.

Fig. 7. Generalised demand transformers ρ, transformer environments P and well-annotated

terms with respect to a type τ and a usage environment ϕ.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 19

Theorem 4.1 (Safety for annotated terms)

If ε � e1 ↓ HU ⇒ 〈τ ; ε〉 and e1 = e

1 and 〈ε ; e1 ; ε〉 −→k 〈H ; e2 ; S 〉, then there exist

H, e2 and S, such that 〈ε ; e1 ; ε〉↪−→k 〈H ; e2 ; S〉, H
 = H , S
 = S , and e

2 = e2.

Unsurprisingly, to prove this theorem, we need to generalise the statement to talk

about a single-step reduction of a configuration with arbitrary (but well-annotated)

heap and stack. Hence, we introduce a well-annotated configuration relation, denoted

� 〈H ;e ;S〉, that extends the well-annotation invariant of Figure 7 to configurations.

For reasons of space, we only give the statement of the theorem below, and defer

the details of the well-annotation relation to Appendix A.

Lemma 4.2 (Single-step safety)

Assume that � 〈H1 ; e1 ; S1〉. If 〈H

1 ; e

1 ; S

1〉 −→ 〈H2 ; e2 ; S2〉 in the uninstrumented

semantics, then there exist H2, e2 and S2, such that 〈H1 ; e1 ; S1〉 ↪−→ 〈H2 ; e2 ; S2〉,
H

2 = H2, e

2 = e and S

2 = S2, and moreover � 〈H2 ; e2 ; S2〉.

Notice that the counting semantics is non-deterministic, so Lemma 4.2 simply

ensures that there exists a possible transition in the counting semantics that always

results in a well-typed configuration. Lemma 4.2 crucially relies on yet another

property, below.

Lemma 4.3 (Value demand splitting)

If P � v ↓ (d1 & d2) ⇒ 〈τ ; ϕ〉, then there exists a split split(v) = (v1, v2) such that:

P � v1 ↓ d1 ⇒ 〈τ1 ; ϕ1〉 and P � v2 ↓ d2 ⇒ 〈τ2 ; ϕ2〉 and moreover, τ1 � τ, τ2 � τ

and ϕ1 &ϕ2 � ϕ.

Why is Lemma 4.3 important? Consider the following:

let x = v in case x 3 of (y,z) -> x 4

The demand exercised on x from the body of the let-binding will be

C 1(U) &C 1(U) = Cω(U) and hence the value v will be checked against this demand

(using the LetUp rule), unleashing an environment ϕ. However, after substituting

v in the body (which is ultimately what call-by-need will do) we will have checked

it against C 1(U) and C 1(U) independently, unleashing ϕ1 and ϕ2 in each call site.

Lemma 4.3 ensures that reduction never increases the demand on the free variables

of the environment, and hence safety is not compromised. It is precisely the proof

of Lemma 4.3 that requires demand transformers to be monotone in the demand

arguments, ensured by WfTrans.

Theorem 4.2 (Safety of analysis)

If ε �� e1 ↓ HU ⇒ 〈τ ; ε〉� e1 and 〈ε ; e1 ; ε〉 −→k 〈H ; e2 ; S 〉, then there exist H, e2

and S, such that 〈ε ; e1 ; ε〉↪−→k 〈H ; e2 ; S〉, H
 = H , S
 = S and e

2 = e2.

The proof is just a combination of Lemma 4.1 and Theorem 4.1.

5 Optimisations

We discuss next the two optimisations enabled by our analysis.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

20 I. Sergey et al.

Fig. 8. Optimised counting semantics.

5.1 Optimised allocation for thunks

We show here that for 0-annotated bindings there is no need to allocate an entry

in the heap, and for 1-annotated ones we don’t have to emit an update frame on

the stack. Within the chosen operational model, this optimisation is of dynamic

flavour so we express this by providing a new, optimising small-step machine for

the annotated expressions. The new semantics is defined in Figure 8. We will show

that programs that can be evaluated via the counting semantics (Figure 6) can

be also evaluated via the optimised semantics in a smaller or equal number of

steps.

The proof is a simulation proof, hence we define relations between heaps/optimised

heaps, and stacks/optimised stacks that are preserved during evaluation.

Definition 5.1 (Auxiliary ∝-relations)

We write e1 ∝ e2 iff e1 and e2 differ only on the λ-annotations. H1 ∝ H2 and

S1 ∝ S2 are defined in Figure 9.

For this optimisation, the annotations on λ-abstractions play no role, hence we

relate any expressions that differ only on those.

Figure 9 tells us when a heap H is related with an optimised heap Hopt with the

relation H ∝ Hopt. As we have described, there are no
0�→ bindings in the optimised

heap. Moreover, notice that there are no bindings of the form [x
1�→ Val(v)] in either

the optimised or unoptimised heap. It is easy to see why: every heap binding starts

life as [x
m�→ Exp(e)]. By the time Exp(e) has become a value Val(v), we have already

used x once. Hence, if originally m = ω, then the value binding will also be ω (in

the optimised or unoptimised semantics). If it was m = 1, then it can only be 0 in

the unoptimised heap and non-existent in the optimised heap. If it was m = 0, then

no such bindings would have existed in the optimised heap anyway.

The relation between stacks is given with S ∝ Sopt. Rule SSim2 ensures that there

are no frames #(x , 1) in the optimised stack. In fact during evaluation, it is easy to

observe that there are not going to be any update frames #(x , 0) in the original or

optimised stack.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 21

Fig. 9. Auxiliary simulation relation ∝ for heaps and stacks.

We can now state the optimisation simulation theorem.

Theorem 5.1 (Optimised semantics)

If 〈H1 ; e1 ; S1〉 ∝ 〈H2 ; e2 ; S2〉 and 〈H1 ; e1 ; S1〉 ↪−→ 〈H′
1 ; e′

1 ; S′
1〉, then there exists

k ∈ {0, 1} such that 〈H2 ; e2 ; S2〉 =⇒k 〈H′
2 ; e′

2 ; S′
2〉 and 〈H′

1 ; e′
1 ; S′

1〉 ∝ 〈H′
2 ; e′

2 ; S′
2〉.

Proof

The proof is by case analysis on the ↪−→ relation:

• Case ELet. We have two cases to consider. If m � 1, then it is obvious. If m = 0,

then H′
1 = H1, [x

0�→ Exp(e1)] and H′
2 = H2 and H′

1 ∝ H2 as required.

• Case ELkpE. In this case, we have that

〈H1, [x
m�→ Exp(e1)] ; x ; S1〉 ↪−→ 〈H1 ; e ; #(x ,m) : S1〉

given that m � 1. Then either Opt-ELkpEM or Opt-ELkpEO will fire:

— If m = ω, the result follows trivially.

— If m = 1, then S′
1 = #(x , 1) : S1 and S′

2 = S2 and by rule SSim2 we are done.

• Case ELkpV. By the side condition m = m ′ + 1, it can only be that m = 1

or m = ω. By the heap invariant for H1 and an easy induction, it has to be

that m = ω. The corresponding rule that can fire in the optimised semantics is

Opt-ELkpV and the result is trivial.

• Case EUpd. We have that:

〈H1 ; v ; #(x ,n) : S1〉 ↪−→ 〈H1, [x
m�→ Val(v1)] ; v2 ; S1〉

where n = m + 1 and split(v) = (v1, v2). Therefore, since n = m + 1, it has to be

the case that n = ω or n = 1.

— If n = ω, then rule Opt-EUpd gives the result.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

22 I. Sergey et al.

— Let n = 1. Then, assume that 〈H1 ; v ; #(x ,n) : S1〉 ∝ 〈H2 ; v ; S2〉 which will

happen if S1 ∝ S2. However, in this case, m = 0, which means that it also

must be the case that 〈H1, [x
m�→ Val(v1)] ; v2 ; S1〉 ∝ 〈H2 ; v2 ; S2〉 so we are

done in 0 steps (hence we have =⇒k and not just =⇒ in the statement of the

theorem).

• Case EBeta follow directly from the rule Opt-EBeta.

• Case EApp follows by Opt-EApp.

• Cases EPRed and EPair follow directly from rules Opt-EPred and Opt-EPair.

�

Notice that the counting semantics may not be able to take a transition at some

point due to the wrong non-deterministic choice but in that case the statement of

Theorem 5.1 holds trivially. Finally, we tie together Theorems 5.1 and 4.2 to get the

following result.

Theorem 5.2 (Analysis is safe for optimised semantics)

If �� e1 ↓ HU ⇒ 〈τ;ε〉� e1 and 〈ε;e1;ε〉 −→n 〈H ;e2;S 〉, then 〈ε;e1;ε〉 =⇒m 〈H;e2;S〉
s. t. e

2 = e2, m � n , and there exist H2 and S2 such that H

2 = H and S

2 = S and

H2 ∝ H and S2 ∝ S.

Theorem 5.2 says that if a program e1 evaluates in n steps to e2 in the reference

semantics, then it also evaluates to the same e2 (modulo annotation) in the optimised

semantics in n steps or fewer; and the heaps and stacks are consistent. Moreover,

the theorem has informative content on infinite sequences. For example, it says that

for any point in the evaluation in the reference semantics, we will no later have

reached a corresponding intermediate configuration in the optimised semantics with

consistent heaps and stacks.

5.2 let-in floating into one-shot lambdas

As discussed in Section 2, we are interested in the particular case of let-floating (Pey-

ton Jones et al. 1996): moving the binder into the body of a lambda-expression. This

transformation is trivially safe, given obvious syntactic side conditions (Moran &

Sands 1999, Section 4.5), however, in general, it is not beneficial. Here we describe

the conditions under which let-in floating makes things better in terms of the length

of the program execution sequence.

We start by defining let-in floating in a form of syntactic rewriting:

Definition 5.2 (let-in floating for one-shot lambdas)

let z m1= e1 in (let f m2= λ1x . e in e2)

=⇒ let f m2= λ1x . (let z m1= e1 in e) in e2,

for any m1, m2 and z /∈ FV (e2).

Next, we provide a number of definitions necessary to formulate the so called

improvement result (Moran & Sands 1999). The improvement is formulated for

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 23

closed, well-formed configurations. For a configuration 〈H ; e ; S〉 to be closed, any

free variables in H, e and S must be contained in a union dom(H) ∪ dom(S), where

dom(H) is a set of variables bound by a heap H, and dom(S) is a set of variables

marked for update in a stack S. A configuration is well-formed if dom(H) and dom(S)

are disjoint.

Definition 5.3 (Convergence)

For a closed configuration 〈H ; e ; S〉,

〈H ; e ; S〉 ⇓N def
= ∃H′, v . 〈H ; e ; S〉 ↪−→N 〈H′ ; v ; ε〉

〈H ; e ; S〉 ⇓�N def
= ∃M . 〈H ; e ; S〉 ⇓M and M � N

The following theorem shows that local let-in floating into the body of a one-shot

lambda does not make the execution longer.

Theorem 5.3 (Let-in float improvement)

For any H and S, if

〈H ; let z m1= e1 in (let f m2= λ1x . e in e2) ; S〉 ⇓N

and z /∈ FV (e2), then

〈H ; let f m2= λ1x . (let z m1= e1 in e) in e2 ; S〉 ⇓�N .

Proof sketch: Let us refer to the first configuration as q and the second as q ′. We

say that two heaps, H1 and H2, are related (H1 � H2) iff they are of the form:

H1 = H0, [z
m�→ e1], [f1

m1�→ λn1x . e], . . . , [fk
mk�→ λnk x . e]

H2 = H0, [f1
m1�→ λn1x . ez], . . . , [fk

mk�→ λnk x . ez ,]

for some H0 and k , where ez = (let z m
= e1 in e); and e, e1 and z are from the

statement of the theorem, and
∑k

i=1 ni = 1.3

The proof goes in four stages.

1. It is the case that q evaluates in two steps to some q1 = 〈H1 ; e2 ; S〉 and q ′

evaluates in one step to some q2 = 〈H2 ;e2 ;S〉 such that H1 � H2. Now we need to

show that q2 will make at most one step more than q1 before they both terminate.

2. Taking (H1 � H2) and the stacks and expressions being the same for both

configurations as an invariant, we show that both configurations will make a step

simultaneously, so the invariant is preserved until some fk is in the configuration

focus. Then we pass to the next stage.

3. If fk is in the focus of both configurations, we consider the stack. If S = ε, the case

is done. (And so too if S contains a case alternative because both computations

will be stuck.) If S = #(x ,n) : S′, then we update the heap in both branches

in a �-preserving way, so we are back to stage (2). If S = (• y) : S′, then the

“optimised” program makes one additional step to allocate z , and we pass to the

last stage of the proof.

3 The Val(·)/Exp(·) distinction does not affect the core of the proof.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

24 I. Sergey et al.

4. For the rest of the execution, we can show that the programs will execute in

lockstep with a simulation argument taking the invariant almost as in stage (2),

but now with
∑k

i=1 ni = 0 and z being allocated in the second heap too.

�

Even though Theorem 5.3 gives a termination-dependent result, its proof goes via

a simulation argument, hence it is possible to state the theorem in a more general

way without requiring termination.

6 Implementation

We have implemented the cardinality analyser by extending the demand analysis

machinery of the GHC (version 7.8 and later), available publicly from its open-source

repository:

http://git.haskell.org/ghc

We elaborate on some implementation specifics in this section.

6.1 Analysis

The implementation of the analysis was straightforward, because GHC’s existing

strictness analyser is already cast as a backwards analysis, exactly like our new

cardinality analysis. So the existing analyser worked unchanged; all that was required

was to enrich the domains over which the analyser works.4 In total, the analyser

increased from 900 lines of code to 1,140 lines, an extremely modest change.

We run the analysis twice, once in the middle of the optimisation pipeline, and

once near the end. The purpose of the first run is to expose one-shot lambdas, which

in turn enable a cascade of subsequent transformations (Section 6.3). The second

analysis finds the single-entry thunks, which are exploited only by the code generator.

This second analysis is performed very late in the pipeline (a) so that it sees the

result of all previous inlining and optimisation and (b) because the single-entry

thunk information is not robust to certain other transformations (Section 6.4).

6.2 Absence

GHC exploits absence in the worker/wrapper split, as described in Section 2.3:

absent arguments are not passed from the wrapper to the worker.

6.3 One-shot lambdas

As shown in Section 5.2, there is no run-time payoff for one-shot lambdas. Rather,

the information enables some important compile-time transformations. Specifically,

4 This claim is true in spirit, but in practice we substantially refactored the existing analyser when adding
usage cardinalities.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 25

consider

let x = costly v in . . . (λy. . . . x . . .) . . .

If the λy is a one-shot lambda, the binding for x can be floated inside the lambda,

without risk of duplicating the computation of costly. Once the binding for x is

inside the λy , several other improvements may happen:

• It may be inlined at x ’s use site, perhaps entirely eliminating the allocation of a

thunk for x .

• It may enable a rewrite rule (eg foldr/build fusion) to fire.

• It may allow two lambdas to be replaced by one. For example:

f = λv. let x = costly v in λy. . . . x . . .

=⇒ f = λv.λy. . . . (costly v) . . .

The latter produces one function with two arguments, rather than a curried

function that returns a heap-allocated lambda (Marlow & Peyton Jones 2006).

6.4 Single-entry thunks

The code that GHC compiles for a thunk begins by pushing an update frame on

the stack, which includes a pointer to the thunk. Then the code for the thunk is

executed. When evaluation is complete, the value is returned, and the update frame

overwrites the thunk with an indirection to the value (Peyton Jones 1992). It is

easy to modify this mechanism to take advantage of single-entry thunks: we do

not generate the push-update-frame code for single-entry thunks. There is a modest

code size saving (fewer instructions generated) and a modest runtime saving (a

few store instructions saved on thunk entry, and a few more when evaluation is

complete).

Take care though! The single-entry property is not robust to program transforma-

tion. For example, common sub-expression elimination can combine two single-entry

thunks into one multiple-entry one, as can this sequence of transformations:

let y 1
= e in let x = y + 0 in x ∗ x

Identity of + =⇒ let y 1
= e in let x = y in x ∗ x

Inline x =⇒ let y 1
= e in y ∗ y Wrong!

This does not affect the formal results of the paper, but it is the reason that our

second run of the cardinality analysis is immediately before code generation.

6.5 Handling of recursive functions

For our formal presentation, we had the liberty to assume that let-expressions are

non-recursive, in rule LetDn in Figure 5. In reality, lets are recursive, and GHC has

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

26 I. Sergey et al.

to deal with them. Ideally, we would like to find the least usage signature ρ so that

P , f :ρ �� e1 ↓ U ⇒ 〈τ1 ; ϕ1〉� e1 ρ = 〈k ; ϕ1(y) → τ1 ; ϕ1\y〉
P , f :ρ �� e2 ↓ d ⇒ 〈τ ; ϕ2〉� e2 ϕ2(f) � n ∗ C n1 (. . . (C nk (. . .) . . .))

P �� let f = λy1 . . . yk.e1 in e2 ↓ d ⇒ 〈τ ; (ϕ2\f)〉� let f
n
= λn1y1 . . . λ

nk yk.e1 in e2

holds. But that is itself a recursive specification and hence non-executable.

Therefore, we employ a usual fixed-point iteration. We start with the most

optimistic signature ρ0 = 〈k ; A → · · · → A → • ; ε〉 which claims that f uses

neither any of its k arguments nor its free variables5 and calculate

P , f :ρi �� e1 ↓ U ⇒ 〈τ1 ; ϕ1〉� ei
1 ρi+1 = 〈k ; ϕ1(y) → τ1 ; ϕ1\y〉 .

If we have ρi = ρi+1 for some i , we found the desired fixed-point. We analyse the

body

P , f :ρi �� e2 ↓ d ⇒ 〈τ ; ϕ2〉� e2 ϕ2(f) � n ∗ C n1 (. . . (C nk (. . .) . . .))

and obtain

P �� let f = λy1 . . . yk.e1 in e2 ↓ d ⇒ 〈τ ; (ϕ2\f)〉� let f
n
= λn1y1 . . . λ

nk yk.e
i
1 in e2 .

Note that, unless the let is not actually recursive, e2 will put a demand on both

f and its other free variables. The strictness signature of f will (eventually) mention

the free variables of e2, so the demands put on the free variables are necessary

multiple-use, and no 1∗ annotation that is not hidden behind a C n() demand will

survive there, even when in fact there is only one use in the complete recursion. This

is one cause of imprecision (Section 7.3).

Unfortunately, our domain (i.e., the cpo of usage signatures ρ) does not have

finite height and therefore it is not guaranteed that this iteration terminates. If

no fixed-point is found after a finite number of steps (currently 10), we abort the

search. In order to obtain a sound result, we re-analyse e1 one final time, this time

with a most pessimistic signature ρ∞. If the domain of triples had a top element,

that would be a suitable choice, but such an element would have to mention all

variables in its usage of free variables, which is not expressible. Instead, we use ϕ10,

the free-variable usage component of ρ10, which mentions all free variables that are

relevant to e2, but possibly with a demand that is too good to be true, and adjust

that pessimistically:

ρ∞ = 〈k ; U → · · · → U → • ; {x :U | x ∈ dom(ϕ10)}〉

This signature is larger than any analysis result that we expect for e2 and hence a

conservative assumption.

After analysing e1 and e2 using ρ∞ as the signature for f , i.e.,

P , f :ρ∞ �� e1 ↓ U ⇒ 〈τ1 ; ϕ1〉� e1

P , f :ρ∞ �� e2 ↓ d ⇒ 〈τ ; ϕ2〉� e2 ϕ2(f) � n ∗ C n1 (. . . (C nk (. . .) . . .)),

5 In the implementation, which is combined with GHC’s strictness analysis, the initial signature is
actually “hyperstrict”, i.e., that of a bottoming function.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 27

we obtain

P �� let f = λy1 . . . yk.e1 in e2 ↓ d ⇒ 〈τ ; (ϕ2\f)〉� let f
n
= λn1y1 . . . λ

nk yk.e1 in e2 .

6.6 Accelerating fixed-point computation

Running the analyser on nested recursive definitions can be expensive at compile-

time. For instance, for two functions f and g, such that g is nested under f, the

analyser must find a fixed-point for the inner function g at each iteration of the

fixed-point computation for function f. To remedy this, we use the simple widening

strategy from the literature (Henglein 1994), based on the observation that iterations

of the fixed-point process for f generates a monotonically increasing sequence of

usage signatures for f. Therefore, each time we begin the fixed-point process for g,

the environment contains values that are no smaller (in the demand partial order)

than the corresponding values the previous time we encountered g. It follows that

the correct fixed-point for g will be greater than the correct fixed-point found on

the previous iteration of f. Therefore, we can begin the fixed-point process for g

not with the bottom value, but rather with the result of the previous analysis. In the

implementation, this result is conveniently available in the elaborated term e1.

We also improve it a bit more by splitting the environment component ϕ of a

usage signature, separating variables with multiple-use demands from the other ones.

The intuition is that multiple-use demands cannot be increased any further, and,

therefore, do not contribute to the fixed-point computation.

7 Evaluation

To measure the accuracy of the analysis, we counted the proportion of (a) one-shot

lambdas and (b) single-entry thunks. In both cases, these percentages are of the

syntactically occurring lambdas or thunks, respectively, measured over the code of

the benchmark program only, not library code. Table 1 shows the results reported

by our analysis for programs from the nofib benchmark suite (Partain 1993).

For the sake of presentation, in the table we show the most interesting programs

with non-trivial contributions to the overall analysis statistics. The numbers are

quite encouraging. One-shot lambdas account for 0–30% of all lambdas (with the

arithmetic mean being 10.3%), while single-entry thunks are 0–23% of all thunks

(with the arithmetic mean 12.6%).

The static (syntactic) frequency of single-entry thunks may be very different to

their dynamic frequency in a program execution, so we instrumented GHC to measure

the latter. (We did not measure the dynamic frequency of one-shot lambdas, because

they confer no direct performance benefit.) The “Runtime 1U-Thunks” column of

Table 1 gives the dynamic frequency of single-entry thunks in the same nofib

programs. Note that these statistics include single-entry thunks from libraries, as

well as the benchmark program code. The results vary widely. Most programs do

not appear to use single-entry thunks much, while a few use many, up to 74%

for cryptarithm2.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

28 I. Sergey et al.

Table 1. Analysis results for nofib: ratios of syntactic one-shot lambdas, syntactic

single-entry thunks and runtime entries into single-entry thunks

Program Syntactic 1S-λ Syntactic 1U-Thunks Runtime 1U-Thunks

anna 4.0% 7.2% 2.9%

banner 14.3% 20.0% 5.3%

boyer2 3.3% 20.0% 0.0%

bspt 5.0% 15.4% 1.5%

cacheprof 7.6% 11.9% 5.1%

calendar 5.7% 0.0% 0.2%

circsim 2.6% 4.0% 3.0%

constraints 2.0% 3.2% 4.5%

cryptarithm1 0.0% 0.0% 5.3%

cryptarithm2 0.6% 3.0% 74.0%

cse 4.2% 2.8% 1.8%

eliza 0.0% 0.0% 48.7%

expert 3.4% 4.3% 3.9%

fem 19.2% 17.6% 1.7%

fft2 6.6% 0.0% 0.4%

fluid 7.3% 4.6% 2.3%

fulsom 5.4% 7.3% 8.0%

gamteb 40.2% 22.0% 0.9%

gcd 12.5% 0.0% 0.0%

gen regexps 5.6% 0.0% 0.2%

hpg 5.2% 0.0% 4.1%

integer 8.3% 0.0% 0.0%

knights 10.4% 23.4% 1.3%

life 3.2% 0.0% 1.8%

lift 2.1% 0.0% 1.1%

listcopy 11.5% 21.4% 1.8%

mandel 12.3% 4.2% 3.9%

mkhprog 27.4% 20.8% 5.8%

nucleic2 3.5% 3.1% 3.2%

parser 7.5% 24.7% 1.4%

partstof 5.8% 10.7% 0.1%

puzzle 16.5% 28.0% 68.9%

reptile 10.2% 13.8% 1.0%

rewrite 6.7% 6.0% 19.9%

scc 0.0% 0.0% 0.8%

solid 5.5% 2.4% 0.0%

sphere 7.8% 6.2% 20.0%

typecheck 3.9% 9.4% 0.9%

wheel-sieve1 10.5% 0.0% 0.0%

x2n1 0.0% 0.0% 0.1%

... and 50 more programs

Arithmetic mean 10.3% 12.6% 5.5%

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 29

It is important to note that the results of the optimised execution, although

related with the numbers of one-shot lambdas and single-entry thunks in the

nofib programs themselves, are much likely caused by the analysis results and the

subsequent optimisations for the standard libraries.

7.1 Optimising nofib programs

In the end, of course, we seek improved runtimes, although the benefits are likely

to be modest. One-shot lambdas do not confer any performance benefits directly;

rather, they remove potential obstacles from other compile-time transformations.

Single-entry thunks, on the other hand give an immediate performance benefit, by

omitting the push-update-frame code, but it is a small one.

Table 2 summarises the effect of cardinality analysis when running the nofib

suite. “Allocation” is the change in how much heap was allocated when the program

is run and “Runtime” is a change in the actual program execution time.

In Section 2.1, we mentioned a hack, used by Gill in GHC, in which he hard-

coded the call-cardinality information for three particular functions: build, foldr

and runST. Our analysis renders this hack redundant, as now the same results can

be soundly inferred. We therefore report two sets of results: relative to an unhacked

baseline, and relative to a hacked baseline. In both cases, the binary size of the

(statically) linked binaries falls slightly but consistently (2.0% average), which is

welcome. This may be due to less push-update-frame code being generated, but

it’s virtually impossible to say for sure: Any change that affects inlining (which

discovering one-shot-lambdas certainly does) has knock-on effects propagate down

the long optimisation pipeline, with unpredictable consequences for code size.

Considering allocation, the numbers relative to the unhacked baseline are quite

encouraging, but relative to the hacked compiler the improvements are modest:

the hack was very effective! Otherwise, only one program, nucleic2 shows a

significant (11%) reduction in allocation, which turned out to be because a thunk

was floated inside a one-shot lambda and ended up never being allocated, exactly

as advertised. One can notice, though, that the new compiler sometimes performs

worse than the cardinality-unaware versions in a very few benchmarks in nofib.

In a highly optimising compiler with many passes, it is very hard to ensure that

every “optimisation” always makes the program run faster; and, even if a pass does

improve the program per se, to ensure that every subsequent pass will carry out all

the optimisations that it did before the earlier improvement was implemented. The

data show that we do not always succeed (even comparing to the unhacked baseline

compiler).

A shortcoming of nofib suite is that runtimes tend to be short and very noisy:

Even with the execution key slow only 18 programs from the suite run for longer

than half second (with a maximum of 2.5 seconds for constraints). Among those

long-runners, the biggest performance improvement is 8.8% (for integer), with an

average of 2.3%. To produce more realistic average numbers for the whole nofib

suite, we have re-run the suite several times. As a result, some short-running outliers

have been averaged out, and overall runtime statistics for individual programs has

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

30 I. Sergey et al.

Table 2. Cardinality analysis-enabled optimisations for nofib

Allocation Runtime

Program No hack Hack No hack Hack

anna −2.2% −0.2% +0.1% +0.1%

banner +3.5% −0.1% −0.0% −0.0%

boyer2 −0.4% −0.4% +0.0% −0.0%

bspt −2.2% -0.0% −0.0% +0.0%

cacheprof −7.5% −0.6% −6.0% −1.7%

calendar −9.2% +0.2% −0.0% −0.0%

circsim −7.5% −0.0% −4.3% −2.0%

constraints −0.9% −0.0% −1.2% −0.2%

cryptarithm1 −0.0% −0.0% +2.3% +0.0%

cryptarithm2 −0.3% −0.0% −2.3% −0.0%

cse −4.6% −0.0% +0.0% +0.0%

eliza −2.2% −0.1% +0.0% +0.0%

expert −1.8% −0.1% −0.0% −0.0%

fem -2.2% −0.0% −0.0% −0.0%

fft2 -34.8% −0.0% +0.0% −0.0%

fluid −3.4% −0.0% −0.0% −0.0%

fulsom −0.7% −0.0% −0.0% +1.8%

gamteb +3.1% +0.5% +0.0% +0.0%

gcd −15.5% −0.0% −0.0% −0.0%

gen regexps −1.0% −0.1% −0.0% −0.0%

hpg −2.0% −1.0% −0.1% −0.0%

integer −0.0% −0.0% −8.8% −6.6%

knights −1.9% −0.0% +0.0% +0.0%

life −0.8% −0.0% −3.4% +0.0%

lift −1.9% −0.0% −0.0% −0.0%

listcopy +1.2% −0.0% +0.1% +0.1%

mandel −1.9% −0.0% +0.0% +0.0%

mkhprog −11.9% +0.1% −0.0% −0.0%

nucleic2 −14.1% −10.9% +0.0% +0.0%

parser −0.2% −0.2% +0.0% +0.0%

partstof −95.5% −0.0% −0.0% −0.0%

puzzle −8.2% −0.0% +0.1% +0.1%

reptile −2.7% −0.0% −0.0% −0.0%

rewrite −6.6% −0.0% −0.0% −0.0%

scc −0.3% −0.4% −0.0% −0.0%

solid −0.6% −0.0% +0.0% +0.0%

sphere −1.5% −1.5% −0.0% −0.1%

typecheck −0.5% −0.0% +0.1% −0.1%

wheel-sieve1 −18.7% −0.0% −4.0% +0.7%

x2n1 −29.9% −0.0% −0.0% −0.0%

... and 50 more programs

Best improvement 95.5% 10.9% 8.8% 6.6%

Worst degradation 3.5% 0.5% 2.3% 2.6%

Geometric mean improvement 6.0% 0.3% 1.8% 1.0%

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 31

Table 3. Optimisation of the programs from the computer language benchmark game

Program Runtime 1U-Thunks No-Opt Runtime Runtime Δ

binary-trees 49.4% 66.83 s −9.2%

fannkuch-redux 0.0% 158.94 s −3.7%

n-body 5.7% 38.41 s −4.4%

pidigits 8.8% 41.56 s −0.3%

spectral-norm 4.6% 17.83 s −1.7%

Table 4. Analysis and optimisation results for selected hackage libraries

Library Syntactic 1S-λ Syntactic 1U-Thunks Benchmark name Allocation Δ

attoparsec 32.8% 19.3% benchmarks −7.1%

binary 16.8% 0.9%

bench −0.2%

builder −0.3%

get −4.3%

bytestring 5.3% 4.3%
boundcheck −0.5%

all −6.6%

cassava 26.4% 9.8% benchmarks −0.7%

slightly changed comparing to the conference version of this paper (Sergey et al.

2014).

For more realistic numbers, we measured the improvement in runtime, relative to

the hacked compiler, for several programs from the Computer Language Benchmarks

Game.6 The results are shown in Table 3. All programs were run with the official

shootout settings (except spectral-norm, to which we gave a bigger input value

of 7,500) on a 2.7 GHz Intel Core i7 OS X machine with 8 Gb RAM. These

are uncharacteristic Haskell programs, optimised to within an inch of their life by

dedicated Haskell hackers. There is no easy meat to be had, and indeed the heap-

allocation changes are so tiny (usually zero, and −0.2% at the most in the case of

binary-trees) that we omit them from the table. However, we do get one joyful

result: a solid speedup of 9.2% in binary-trees due to fewer thunk updates. As

you can see, nearly half of its thunks entered at runtime are single-entry.

7.2 Real-world programs

To test our analysis and the cardinality-powered optimisations on some real-world

programs, we chose a number of continuation-heavy libraries from the hackage

repository7: attoparsec, a fast parser combinator library, binary, a lazy binary

6 http://benchmarksgame.alioth.debian.org/
7 http://hackage.haskell.org/

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

32 I. Sergey et al.

Table 5. Compilation of large nofib programs with optimised GHC

GHC Allocation Δ GHC Runtime Δ

Program LOC No hack Hack No hack Hack

anna 5740 −1.6% −1.5% −0.8% −0.4%

cacheprof 1600 −1.7% −0.4% −2.3% −1.8%

fluid 1579 −1.9% −1.9% −2.8% −1.6%

gamteb 1933 −0.5% −0.1% −0.5% −0.1%

parser 2379 −0.7% −0.2% −2.6% −0.6%

veritas 4674 −1.4% −0.3% −4.5% −4.1%

serialisation library, bytestring, a space-efficient implementation of byte-vectors

and cassava, a parsing and encoding library for CSV-files.

These libraries come with accompanying benchmark suites, which we ran both

for the baseline compiler and the cardinality-powered one. Table 4 contains the

ratios of syntactic one-shot lambdas and single-entry thunks for the libraries, as

well relative improvement in memory allocation for particular benchmarks. Since

we were interested only in the absolute improvement against the state of the art, we

made our comparison with respect to the contemporary version of (hacked) baseline

GHC. The encouraging results for attoparsec are explained by its relatively high

ratio of one-shot lambdas, which is typical for parser combinator libraries.

GHC itself is a very large Haskell program, written in a variety of styles, so we

compiled it with and without cardinality-powered optimisations, and measured the

allocation and runtime improvement when using the two variants to compile several

programs. The results are shown in Table 5. As in the other cases, we get modest

but consistent improvements.

7.3 Precision and missed opportunities

After having formally established that our changes are semantically correct, and

empirically that they are beneficial, one might still wonder how complete they are:

Does our analysis find all single-entry thunks and one-shot functions, and if not,

what opportunities did it miss? Any static analysis will be approximate, but it would

not be surprising if the analysis missed some low-hanging fruit.

In this section, we report on a study in which we use a specially instrumented

version of the compiler to make dynamic, runtime measurements to see how often

each thunk is entered in an actual program run. Then we compare these runtime

figures with the results of the static analysis.

In this study, we focus only on single-entry thunks. One could imagine doing a

similar study for one-shot lambdas, but we leave that as further work.

7.3.1 Runtime instrumentation

Our goal is this: For every dynamically allocated instance of a thunk, we want to

observe how often it is used.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 33

Fig. 10. Heap during evaluation of a thunk t (uninstrumented runtime). (a) Before

evaluation, (b) After evaluation, (c) After garbage collection.

To see why this cannot be observed in an unmodified version of the runtime, let

us recall how thunks are evaluated in GHC. At run time, a thunk is represented

as a closure that is stored in the heap, referencing its program code as well as the

values captured by its free variables, as pictured in Figure 10. Upon its first use, the

closure is entered, i.e., jumped to. Immediately after that, the thunk code T performs

the following actions:

1. First, it replaces the closure by a black hole, a special type of closure used to

mark values under evaluation,

2. Next, pushes an update frame, which will be activated later, onto the stack,

3. Then, it runs the actual code of the closure, which will eventually evaluate to

a value C.

4. This value is then returned via the stack to the update frame, which replaces

the black hole by an indirection I, pointing to the returned value C; see

Figure 10(b).

5. Finally, the value is returned to the code that triggered the evaluation of the

thunk T.

Any subsequent use of a pointer to (what used to be) the thunk T enters the

indirection I, which simply returns the value C. We might hope to count the number

of times T is used by counting the number of times the indirection is entered.

However, the next run of the garbage collector replaces a pointer to the indirection

I by a direct pointer to the indirection’s target C (Figure 10(c)). Hence, after garbage

collection, only the final value remains in the heap, without any indication that this

value came from our original thunk T. Therefore, we have no way to relate any

subsequent uses of this value to the original thunk T, whose runtime cardinality we

were planning to measure.

In order to observe all uses of a thunk, we implemented a new type of closures in

GHC’s runtime, dubbed counting indirection (CI). When entered, these indirections

behave as normal indirections, i.e., they evaluate the closure they are pointing to.

The important difference is that the garbage collector does not erase them, but

instead copies them like any other closure. More precisely, we do the following:

• When dynamically allocating a thunk in the heap, we allocate two heap objects,

the thunk itself T, and a CI that points to T (Figure 11(a)).

• As well as pointing to T, the dynamically allocated CI also contains

— CI.cnt: a pointer to a static data structure, CNT;

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

34 I. Sergey et al.

Fig. 11. Heap during evaluation of a thunk t (instrumented runtime). (a) Before evaluation,

(b) After first evaluation, (c) After second evaluation (and garbage collection).

— CI.entries: a private count of the number of times the indirection has been

entered;

• There is a single, static CNT record for each syntactic closure, or allocation site

A. The CNT record contains three fields8:

— CNT.allocs: the number of times allocation site A has been executed; that is,

how many thunks have been allocated by A.

— CNT.once: the number of those thunks that have been entered exactly once.

— CNT.multi: the number of those thunks that have been entered more than

once.

When the CI is entered the first time (CI.entries = 0), it increments CI.entries,

and the CNT.once counter in the static CNT record. If it is entered a second time

(CI.entries = 1), it again increments CI.entries, decrements CNT.once and increments

CNT.multi. Further uses of the CI simply increase CI.entries.

A particular instance of this modified scenario is depicted in Figure 11(a), where

the counter CNT records indicates that so far 10 closure instances have been

allocated, out of which two have been used at most once and five were used multiple

times. After the first evaluation of the newly allocated thunk, the private CI.entries

field is incremented, along with CNT.once (Figure 11(b)). After the second entry,

CI.entries becomes 2, while the CNT.multi field has gone from 5 to 6, recording that

one more instance of this thunk has been entered more than once (Figure 11(c)).

7.3.2 Evaluating soundness and completeness

This instrumentation allowed us to check the actual implementation for two things:

• Soundness. Does the executing program enter any thunk multiple times that the

analysis determined as single-entry? If so, the analysis is wrong.

8 The static CNT record contains additional fields, not relevant to the discussion.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 35

Table 6. Precision of the analysis: Allocated thunks

Syntactic thunks Dynamic thunks

Determined to be Determined to be

Observed Single entry Multi entry Single entry Multi entry

Never used 19 525 157444 1,608,128

Entered once 1,310 3,498 4,893,280 171,101,068

Multiple times 0 3,653 0 66,457,533

• Completeness. How many thunks are thought to be multiple-entry by the analysis,

but are entered only once during execution? Perhaps, a more precise analysis

could find more single-entry thunks?

Of course, in a different execution of the same program, the same syntactic thunk

might be entered more than once, so the analysis is not necessarily at fault.

Moreover, the analysis is necessarily approximate. But still, it is worth a manual

analysis of these apparently missed opportunities.

We compiled programs from the nofib benchmark suite with the instrumentation

described above, linked them against an uninstrumented base library and ran each

program once. We obtained the results in Table 6. The first pair of columns,

“syntactic thunks”, gives the results by allocation site. For example, across all the

program runs, there were 19 allocation sites that were determined to be single-entry,

but were never entered at all.

The second pair of columns, “dynamic thunks”, gives the result by dynamically

allocated thunk instances. This emphasises those thunks that are evaluated most

often; allocation sites with very few instances don’t matter much. For example,

across all program runs there were 4,893,280 thunks allocated at allocation sites

marked single-entry, that were indeed entered exactly once.

On soundness the news is good: The table confirms that every thunk that we

determined to be single-entry (the first column of each pair) was indeed used at

most once (the zero entries in the third row).

On completeness, the news is not so good. Consider all the syntactic thunks (i.e.,

allocation sites) whose instances were entered at most once (i.e., the first two rows

of the table). These are the candidates that cardinality analysis might determine as

single-entry. But only 1,329 (i.e., 1, 310 + 19) were so determined, with 4,023 being

missed. So we are missing 75% of the plausible opportunities! It get worse when

we consider the dynamic-thunk columns: Only 2.8% of the thunks that are actually

entered at most once are identified as such by the analysis.

So what about these 172,709,196 dynamic thunks that were used once or less, but

where our analysis did not predict that? We call them the “plausible opportunity”

thunks. The natural question is: could the analysis have done better for these

thunks?

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

36 I. Sergey et al.

Fig. 12. Modified syntax and operations to track reasons of precision loss.

7.4 Missed opportunities

To learn more about the missed opportunities, we extended the usage types so that

with every ω occurring in a demand on a plausible-opportunity thunk, we could

also track the reason for that pessimistic conclusion.

To that end, we extended the type for cardinalities (n and m in Figure 1) to

keep track of a set of reasons, which are just strings injected at various places in

the code; for example, the reason datacon is added to the many-used demand put

on the arguments of a data constructor application when the incoming demand on

its result is non-informative. The operations
 and & combine reasons from both

arguments, as shown in Figure 12. When reporting the counters of the instrumented

runtime presented in the previous section, all reasons for this particular thunk to

not be assumed one-shot are printed along with it.

Using this more detailed analysis, we found that almost all the plausible-

opportunity thunks fall into one of four categories:

1. The large majority of missed opportunities (71.7%) are due to thunks that are

stored in constructors (e.g., in tuples, lists, arrays). There are two reasons for poor

precision:

• Our analysis can transport the demand on tuples and other product types

into the argument of constructors. But this is only helpful if the demand on

the product type is known. Since the analysis looks at function definitions

before their uses, this works in the case of f(x,y), where we can use the nested

demand information in the strictness signature of f to get information on x and

y. However, if a tuple is returned from a function such as f x = (x+1, y-1),

the demand on the result of f is not known and we have to assume the thunk

x+1 to be used multiple times. Returning a constructor in this way is a very

frequent pattern.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 37

• Currently, our analysis only computes nested demand information for product

types. Extending it to sum types is possible, but experiments using a prototype9

showed no relevant improvements. This is not surprising, as data constructors

of sum types are routinely returned from functions and thus especially affected

by the aforementioned problem. Additionally, extending demand analysis to

sum-types poses the problem of getting precise results for recursive types (which

are almost invariably sums), not addressed by this work.

2. The next frequent case, accounting for 22.2% of missed opportunities, arises from

when the cardinality analysis has to give up because the use of the thunk occurs

inside a recursive function.10 This is often the result of using foldr together

with short-cut deforestation (Gill et al. 1993), and typically results in code of the

following shape:

let foo xs = let thunk = f x

in let go [] = thunk

go (x:xs) = g x (go xs)

in go xs

Clearly, the thunk is called at most once, but the call comes from a recursive func-

tion go, where the cardinality analysis has to make the conservative assumption

that everything used by go is used more than once, as discussed in Section 6.5.

In order for our analysis to detect that thunk in foo is called at most once, it

would have to see that

a. although it is called from within a recursive function, it is not called together

with the recursive function, so it lies, in a way, on the exit path from the

loop,

b. the recursion here is linear: once it is started, its exit path is executed once,

and

c. the recursion is initially started at most once.

An analysis that is capable of doing such reasoning is Call Arity (Breitner 2015a),

which is a separate analysis in GHC. Call Arity is a forward analysis, while our

analysis is a backwards analysis, so combining the two to improve the handling

of recursive functions is non-trivial and future work.

3. Around 4% of the missed opportunities are thunks created in the last Core-to-

Core pass, which transforms the program into A-normal form, in preparation

of lowering the program to STG. This involves introducing let-bindings for all

non-trivial function arguments. Usually, the pass will use the information found

in the function’s strictness signature and attach it to the newly created thunks,

but if there is no such signature, or the function is not saturated, a conservative

assumption is made here. There might be room for improvement here, but 4% is

hardly a fat target.

9 provided by Ömer Sinan Aǧacan.
10 This number is severely inflated by a single static thunk in fannkuch-redux accounting for 21.0%.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

38 I. Sergey et al.

4. Only 1.3% of the missed opportunities are due to uses of the both operator (&).

Such a case can arise from a call to the function maybe d f mb. The function

maybe uses either d or f (depending on mb), but never both; the analysis does not

see that.

Less than 1% of missed opportunities have other reasons (e.g., arguments to

primitive operations); 0.2% of missed opportunities are due to more than one

reason.

In short, there does not seem to be a lot of low-hanging fruit here. We are not

optimistic for radical improvements in the treatment of data structures. Probably

the best opportunity is using Call Arity to improve case (2).

8 Related work

8.1 Abstract interpretation for usage and absence

The goal of the traditional usage/absence analyses is to figure out which parts of

the programs are used, and which are not (Peyton Jones & Partain 1994). This

question was first studied in the late 80’s, when an elegant representation of usage

analysis in terms of projections (Hinze 1995) was given by Wadler & Hughes (1987).

Their formulation allows one to define a backwards analysis – inferring the usage

of arguments of a function from the usage of its result – an idea that we adopted

wholesale. Our work has important differences, notably (a) call demands C n(d),

which appear to be entirely new; and (b) the ability to treat nested lambdas, which

requires us to capture the usage of free variables in a usage signature. Moreover our

formal underpinning is quite different to their (denotational) approach, because we

fundamentally must model sharing.

8.2 Type-based approaches

The notion of “single-entry” thunks and “one-shot” lambdas is reminiscent of linear

types (Girard 1995; Turner & Wadler 1999), a similarity that was noticed very early

(Launchbury et al. 1993). Linear types per se are far too restrictive (see, for example,

Wansbrough & Peyton Jones (1999, Section 2.2) for details), but the idea of using

a type system to express usage information inspired a series of “once upon a type”

papers11 (Turner et al. 1995; Gustavsson 1998; Wansbrough & Peyton Jones 1999;

Wansbrough 2002).

Alas, a promising idea turned out to lead, step by step, into a deep swamp.

First, subtyping proved to be essential, so that a function that used its argument

once could have a type like Int1 → Int , but still be applied to an argument

x that was used many times and had type Intω (Wansbrough & Peyton Jones

1999). Then usage polymorphism proved essential to cope with currying: “[Using the

monomorphic system] in the entirety of the standard libraries, just two thunks were

annotated as used-once” (Wansbrough 2002, 3.7). Gustavsson advocated bounded

11 The title, as so often, is due to Wadler.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 39

polymorphism to gain greater precision (Gustavsson & Sveningsson 2001), while

Wansbrough extended usage polymorphism to data types, sometimes resulting in

data types with many tens of usage parameters. The interaction of ordinary type

polymorphism with all these usage-type features was far from straightforward. The

inference algorithm for a polymorphic type system with bounds and subtyping is

extremely complex. And so on. Burdened with these intellectual and implementation

complexities, Wansbrough’s heroic prototype in GHC (around 2,580 brand-new lines

of code; plus pervasive changes to thousands of lines of code elsewhere) turned out

to be unsustainable, and never made it into the main trunk.

Our system sidesteps these difficulties entirely by treating the problem as a

backwards analysis like strictness analysis, rather than as a type system (even

though we use the type system vocabulary when defining demand types). This is

what gives the simplicity to our approach, but also prevents it from giving “rich”

demand signatures to third- and higher order functions: Our usage types can account

uniformly only for the first- and second-order functions, thanks to call demands.

For example, what type might we attribute to the following function?

f x g = g x

The usage of x depends on the particular g in the call, so usage polymorphism

would be called for. This is indeed more expressive but it is also more complicated.

We deliberately limit precision for very higher order programs, to gain simplicity.

At some level, abstract interpretation and type inference can be seen as different

sides of the same coin, but there are some interesting differences. For example,

our LetDn and LetUp rules are explicit about information flow; in the former,

information flows from the definition of a function to its uses, while in the latter

the flow is reversed. Type systems use unification variables to allow much richer

information flow – but at the cost of generating constraints involving subtyping and

bounds that are tricky to solve.

Another intriguing difference is in the handling of free variables:

let f = \x. y + x in if b then f 1 else y

How many times is the free variable y evaluated in this expression? Obviously

just once, and LetDn discovers this, because we unleash the demand on y at f’s call

site, and take the least upper bound of the two branches of the if. But type systems

behave like LetUp: compute the demand on f (namely, called once) and from that

compute the demand on y. Then combine the demand on y from the body of the

let (used at most once), and from f’s right-hand side (used at most once), yielding

the result that y is used many times. We have lost the fact that the two uses come

from different branches of the conditional.

The fact that our usage signatures include the ϕ component makes them more

expressive than mere types—unless we extend the type system yet further with a

polymorphic effect system (Hage et al. 2007; Holdermans & Hage 2010; Verstoep

& Hage 2015). Moreover, the analysis approach deals very naturally with absence,

and with product types such as pairs, which are ubiquitous. Most of type-based

approaches do not do so well here (except for the type-based analysis by Verstoep &

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

40 I. Sergey et al.

Hage (2015), which handles absence, but has not been implemented and evaluated

in practice).

Comparing to polymorphic effect systems, a weakness of our approach is that

as soon as a value is stored in a data structure, we entirely lose track of its usage

cardinality. Type-based approaches can use usage polymorphism to track usage

within data structures. Consider, for example, a usage-polymorphic data type Tree,

defined as follows:

data Tree c = Leaf (Int ->c Int)

| Node (Tree c) (Tree c)

where “->c” is a type of functions called no more than c times. So a value of

type (Tree 1) is a tree of called-once functions. This approach works, but when

Wansborough tried it at scale he found that he had to add thousands of cardinality

variables to some data types (Wansbrough 2002, Section 6.4.11). So the approach

did not appear to scale well at all.

In short, an analysis-based approach has proved much simpler intellectually than

the type-based one, and far easier to implement. One might wonder if a clever type

system might give better results in practice, but Wansbrough’s results (mostly zero

change to allocation; one program allocated 15% more, one 14% less (Wansbrough

2002)) were no more compelling than those we report. Our proof technique does

however share much in common with Wansbrough and Gustavsson’s work, all three

being based on an operational semantics with an explicit heap. However, ours is

the only one that deals with one-shot lambdas; the others are concerned only with

single-entry thunks.

One other prominent type-based usage system is Clean’s uniqueness types (Barend-

sen & Smetsers 1996). Clean’s notion of uniqueness is, however, fundamentally

different to ours. In Clean, a unique-typed argument places a restriction on the

caller (to pass the only copy of the value), whereas for us a single-entry argument

is a promise by callee (to evaluate the argument at most once). In a related analysis

framework by Hage et al. (2007), based on a polymorphic type-and-effect system,

a similar dichotomy is accounted for by two different subeffecting rules (T-SubUp)

and (T-SubDown).

8.3 Other related work

Call demands, introduced in this paper, appear to be related to the notion of

applicativeness, employed in the recent work on relevance typing (Holdermans

& Hage 2010). In particular, applicativeness means that an expression is either

“guaranteed to be applied to an argument” (S), or “may not be applied to an

argument” (L). In this terminology, S corresponds to a “strong” version of our

demands Cω(d), which requires d � U , and L is similar to our U . The seq-like

evaluation of expressions corresponds to our demand HU . However, neither call-

nor thunk-cardinality are captured by the concept of applicativeness.

Abstract counting or sharing analysis conservatively determines which parts of

the program might be used by several components or accessed several times in the

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 41

course of execution. Early work employed a forward abstract interpretation frame-

work (Hudak 1986; Goldberg 1987). Since the forward abstract interpreter makes

assumptions about arguments of a function it examines, the abstract interpretation

can account for multiple combinations of those and may, therefore, be extremely

expensive to compute.

Recent development on the systematic construction of abstract-interpretation-

based static analyses for higher order programs, known as abstracted abstract

machines, makes it straightforward to derive an analyser from an existing small-

step operational semantics, rather than come up with an ad-hoc non-standard

one (Van Horn & Might 2010). This approach also greatly simplifies integration

of the counting abstract domain to account for sharing (Might & Shivers 2006).

However, the abstract interpreters obtained this way are whole-program forward

analysers, which makes them non-modular. It would be, however, an interesting

topic for the future work to build a backwards analysis from abstracted abstract

machines.

8.4 Related analyses in GHC

Besides the implementation of the cardinality analysis, we present there are two

further related analyses employed by the compiler.

The goal of arity analysis (Xu & Peyton Jones 2005) is to enable the transformation

known as lambda-floating by providing an answer to the question “given a function

f, what is the minimal number of arguments f will be always given when called?”.

Taking the number of top-level lambdas is sound, but imprecise. We believe that the

information necessary for lambda-floating can be inferred from the results of our

cardinality analyser. What makes us sure is the observation that operationally an

inferred call demand C(C(...)) for a function f indicates that f, whenever used, is

applied to at least as many arguments as there are Cs in the demand.

The goal of Call Arity analysis (Breitner 2015a) is similar: It also tries to determine

a lower bound on the number of arguments a function is given. Motivated by runtime

inefficiencies caused by applying list fusion to left folds, the main strength of the call

arity analysis is that it is able to determine that a thunk or a function is used once

even if the call site lies within a recursive function. In order to do so, it analyses

all let-bindings downwards and returns co-call graphs, indicating which functions

and thunks are called together. For this analysis, an Isabelle formalisation exists

that proves not only that the analysis and transformation preserves the semantics,

but also and more notable that it does not degrade the program (Breitner 2015b).

A more detailed treatment of the analysis and its formalisation can be found in the

third-named author’s thesis (Breitner 2016).

9 Conclusion

The fourth-named author has been trying to crack this problem for nearly two

decades. The tradeoff between precision, information flow, complexity and im-

plementation payoff, is a complex one. We now have better news. The cardinality

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

42 I. Sergey et al.

analysis described here is simple to implement (it added 250 lines of code to a 140,000

line compiler), and, even in the presence of the shortcomings and potential precision

losses identified in Section 7.3, it gives real improvements for serious programs, not

just for toy benchmarks; for example, GHC itself (a very large Haskell program)

runs 4% faster. In the context of a 20-year-old optimising compiler, a gain of this

magnitude is a solid win.

Acknowledgements

We are grateful to Johan Tibell for the suggestion to use benchmark-accompanied

hackage libraries and the cabal bench utility for the experiments in Section 7.2.

We also thank the POPL 2014 and JFP reviewers for their substantial, detailed, and

constructive feedback. Finally, we are grateful to Matthias Felleisen for his work as

our JFP editor.

References

Barendsen, E. & Smetsers, S. (1996) Uniqueness typing for functional languages with graph

rewriting semantics. Math. Struct. Comput. Sci. 6(6), 579–612.

Breitner, J. (2015a) Call arity. In Trends in functional programming. LNCS, vol. 8843. Springer,

pp. 34–50.

Breitner, J. (2015b) Formally proving a compiler transformation safe. In Proceedings of the

ACM SIGPLAN Workshop on Haskell. ACM, pp. 35–46.

Breitner, J. (2016) Lazy Evaluation: From Natural Semantics to a Machine-Checked Compiler

Transformation. PhD Thesis, Karlsruhe Institute of Technology.

Gill, A. (1996) Cheap Deforestation for Non-Strict Functional Languages. PhD Thesis,

University of Glasgow, Department of Computer Science.

Gill, A., Launchbury, J. & Peyton Jones, S. L. (1993) A short cut to deforestation. In

Proceedings of the 6th ACM Conference on Functional Programming Languages and

Computer Architecture. ACM Press, pp. 223–232.

Girard, J.-Y. (1995) Linear logic: Its syntax and semantics. In Proceedings of the Workshop

on Advances in Linear Logic. Cambridge University Press, pp. 1–42.

Goldberg, B. (1987) Detecting sharing of partial applications in functional programs. In

Functional Programming Languages and Ccomputer Architecture. LNCS, vol. 274. Springer-

Verlag.

Gustavsson, J. (1998) A type based sharing analysis for update avoidance and optimisation.

In Proceedings of the 3rd ACM SIGPLAN International Conference on Functional

Programming (ICFP’98). ACM, pp. 39–50.

Gustavsson, J. & Sveningsson, J. (2001) A usage analysis with bounded usage polymorphism

and subtyping. In Implementation of Functional Languages (IFL 2000), Selected Papers.

LNCS, vol. 2011. Springer, pp. 140–157.

Hage, J., Holdermans, S. & Middelkoop, A. (2007) A generic usage analysis with subeffect

qualifiers. In Proceedings of the 12th ACM SIGPLAN International Conference on

Functional Programming (ICFP 2007). ACM, pp. 235–246.

Henglein, F. (1994) Iterative fixed point computation for type-based strictness analysis. In

Proceedings of the 1st International Static Analysis Symposium (SAS’94). LNCS, vol. 864.

Springer-Verlag, pp. 395–407.

Hinze, R. (1995) Projection-Based Strictness Analysis - Theoretical and Practical Aspects. PhD

Thesis, Bonn University.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 43

Holdermans, S. & Hage, J. (2010) Making “stricternes” more relevant. In Proceedings of

the 2010 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation

(PEPM 2010). ACM, pp. 121–130.
Hudak, P. (1986) A semantic model of reference counting and its abstraction. In

Proceedings of the 1986 ACM Conference on Lisp and Functional Programming. ACM,

pp. 351–363.
Jones, R. (1992) Tail recursion without space leaks. J. Funct. Program. 2(1), 73–79.
Kahn. (1987) Functional Programming Languages and Ccomputer Architecture. LNCS, vol. 274.

Springer-Verlag.
Launchbury, J., Gill, A., Hughes, J., Marlow, S., Peyton Jones, S. L. & Wadler, P. (1993)

Avoiding unnecessary updates. In Workshops in Computing, Launchbury, J. & Sansom, P.

M. (eds). Springer.
Launchbury, J. & Sansom, P. M. (eds). (1993) Workshops in Computing. Springer.
Marlow, S. & Peyton Jones, S. L. (2006) Making a fast curry: Push/enter versus eval/apply

for higher-order languages. J. Funct. Program. 16(4–5), 415–449.
Might, M. & Shivers, O. (2006) Improving flow analyses via ΓCFA: Abstract garbage

collection and counting. In Proceedings of the 11th ACM SIGPLAN International

Conference on Functional Programming (ICFP 2006). ACM.
Moran, A. & Sands, D. (1999) Improvement in a lazy context: An operational theory for

call-by-need. In In Popl’99: Proceedings of the 26th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages. ACM, pp. 43–56.
Partain, W. (1993) The nofib benchmark suite of Haskell programs. In Workshops in

Computing. Springer.
Peyton Jones, S. L. (1992) Implementing lazy functional languages on stock hardware: The

spineless tagless G-machine. J. Funct. Program. 2(2), 127–202.
Peyton Jones, S. L. & Partain, W. (1994) Measuring the effectiveness of a simple strictness

analyser. In Proceedings of the 1993 Glasgow Workshop on Functional Programming.

Springer, pp. 201–220.
Peyton Jones, S. L., Partain, W. & Santos, A. (1996) Let-floating: Moving bindings to give

faster programs. In Proceedings of the 1st ACM SIGPLAN International Conference on

Functional Programming (ICFP’96). ACM, pp. 1–12.
Peyton Jones, S. L. & Santos, A. (1998) A transformation-based optimiser for Haskell. Sci.

Comput. Program. 32(1–3), 3–47.
Sabry, A. & Felleisen, M. (1992) Reasoning about programs in continuation-passing style. In

Proceedings of the 1992 ACM Conference on Lisp and Functional Programming. LISP

Pointers, vol. V, no. 1. ACM, pp. 288–298.
Sergey, I., Vytiniotis, D. & Peyton Jones, S. L. (2014) Modular, higher-order cardinality

analysis in theory and practice. In Proceedings of the 41st Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL 2014). ACM, pp.

335–348.
Sestoft, P. (1997) Deriving a lazy abstract machine. J. Funct. Program. 7(3), 231–

264.
Turner, D. N. & Wadler, P. (1999) Operational interpretations of linear logic. Theor. Comput.

Sci. 227(1–2), 231–248.
Turner, D. N., Wadler, P. & Mossin, C. (1995) Once upon a type. In Proceedings of the

7th ACP Conference on Functional Programming Languages and Computer Architecture.

ACM, pp. 1–11.
Van Horn, D. & Might, M. (2010) Abstracting abstract machines. In Proceedings of the

15th ACM SIGPLAN International Conference on Functional Programming (ICFP 2010).

ACM, pp. 51–62.
Verstoep, H. & Hage, J. (2015) Polyvariant cardinality analysis for non-strict higher-order

functional languages: Brief announcement. In Proceedings of the 2015 ACM SIGPLAN

Workshop on Partial Evaluation and Program Manipulation (PEPM 2015). ACM,

pp. 139–142.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

44 I. Sergey et al.

Wadler, P. & Hughes, J. (1987) Projections for strictness analysis. In Functional Programming

Languages and Ccomputer Architecture, Kahn, G. (ed.). LNCS, vol. 274. Springer-Verlag,

pp. 385–407.
Wansbrough, K. (2002) Simple Polymorphic Usage Analysis. PhD Thesis, Computer

Laboratory, University of Cambridge.
Wansbrough, K. & Peyton Jones, S. L. (1999) Once upon a polymorphic type. In Popl’99:

Proceedings of the 26th Annual ACM sigplan-sigact Symposium on Principles of

Programming Languages. ACM, pp. 15–28.
Xu, D. & Peyton Jones, S. L. (2005) Arity Analysis. Unpublished draft.

Appendix

A Proofs of soundness of the analysis

This appendix provides typing rules for stacks and heaps, omitted from the main

paper body and proves the soundness of the analysis (Section 4).

A.1 Stack and heap typing for analysis safety

Definition A.1 (Configuration typing)

We write P � 〈H ; e ; S〉 to mean that there exist d , τ, ϕ1 and ϕ2 such that

P � e ↓ d ⇒ 〈τ ; ϕ1〉 and P �s S ↓ (d , τ) ⇒ ϕ2 and P � H ∼ (ϕ1 &ϕ2) according to

the heap and stack typing rules of Figure 13.

Figure 13 explains how we type stacks and heaps. The judgement P �s S ↓ (d , τ) ⇒
ϕ intends to identify the fv-usage environment of the stack S, given that the argument

that we intend to place in the hole of the stack has type τ when being imposed with

demand d . Rule SHU deals with the case when we impose no demand on the hole

of the stack – consequently the stack must be empty! Rule SArr deals with the case

when the stack demands the application of the expression in the hole to an argument

and hence the shape of the stack has to be (• y) : S. The corresponding demand

that this particular stack expresses is C 1(d) where d is the demand expressed by the

rest of the stack. The following three rules (SUpdUp, SUpdUpAbs and SUpdDn)

correspond to the flavours of LetDn that we encountered in the typing rules. If we

encounter a stack #(x ,n) : S, then what is the demand that is placed on x? In the

continuation S, the variable x will be immediately used with some demand d but it

might be that the continuation induces further calls to x which end up pressing an

additional m∗dx . In total, the demand that this stack presses on the hole is d & dx

– and it must be the case that the multiplicity n on the stack be higher than the

indirect multiplicity in S (m), plus one, for the immediate pressure on the top of

the stack. This is in-line with our intuition that the only way we can exercise more

pressure than just a linear C 1(d) on a function is via the heap: In the continuation,

we could potentially be immediately calling the function but we might as well be

calling it indirectly later on. Rule SUpdUpAbs is of similar flavour, only simpler,

since the indirect pressure on x is just A.

The SUpdUp and SUpdUpAbs rules deal with demand on x being gathered up

from the continuation of the execution, but rule SUpdDn is rather different: If x
is bound with a transformer in P then we – in effect – treat it as if the expression

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 45

Fig. 13. Stack and heap typing.

bound by x is inlined so we only gather the ϕ from the continuation and check that

the multiplicity of x is sufficient.

Rule SCase is interesting, too. The stack has the shape of a case elimination

branch. If there exists a demand d , such that the rhs e can be typed with it, giving

〈τ ; ϕ1〉 and the stack, when pressed with d , can give ϕ2, then we can simply return

ϕ1\x ,y &ϕ2. In this case, the demand pressed on the hole of the stack can be any

dp � U (ϕ1(x), ϕ1(y)).

The heap typing judgement P � H ∼ ϕ ensures that the heap H has enough

multiplicity to withstand the pressure that ϕ will exercise. Rules HpVarAbs and

HpEmpty are boring. However, HpVarUp ensures that if ϕ needs to press m ∗ d

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

46 I. Sergey et al.

on x , then (i) x must have enough multiplicity in the heap, but also that (ii) the

expression or value bound by x can be checked at this demand yielding a new ϕ1.

Finally, (iii) the remaining heap must have enough multiplicity to withstand the

newly unleashed demand from ϕ1.

Rule HpVarDn is simpler: It checks that (i) the multiplicity of x in the heap

is high enough, (ii) the transformer is well-formed for the bound expression and

(iii) the expression can indeed be typechecked in the demand that ϕ presses.

With these definitions in place, we can prove the generalised safety statement,

Lemma 4.2, which is needed for the proof of Theorem 4.1.

A.2 Soundness theorems

The partial order � and the least upper bound
 are defined for usage types

naturally:

τ1 � τ2 ⇔ (τ1
 τ2) = τ2

For usage environments ϕ, the partial order is defined as a point-wise lifting of

partial order on multi-demands in their codomains (assuming each ϕ is predeter-

mined with A by default).

Lemma A.1 (Monotonicity of usage typing)

If the transformer environment P consists of monotone functions and P � e ↓ d ⇒
〈τ ; ϕ〉 and d ′ � d , then P � e ↓ d ′ ⇒ 〈τ′ ; ϕ′〉 and τ′ � τ and ϕ � ϕ′.

Proof

The intuition is that if we use an expression “less” than how it was originally

typed, then the annotations in it are still adequate, and we get smaller types and

environments out.

The proof goes by induction on the typing derivation.

• Case TVarDn follows by monotonicity of the transformer and monotonicity of

the operations on usage environments.

• Case TVarUp is trivial.

• Case TLam is an easy application of the induction hypothesis, and then either

TLam or TLamHU. Note that this relies on the non-deterministic choice of return

type of TLamHU which lets us choose the same type as the TLam used for typing

the λ-abstraction.

• Case TLamHU is straightforward.

• Case TPair and TCase are easy applications of the induction hypothesis.

• Case TLetDn follows by induction hypothesis for e2, noting that ρ is monotone

by the assumption P �t e1 : ρ.

• Case TLetUp follows by induction hypothesis and then applying either TLetUp

or TLetAbs.

• Case TLetAbs follows by induction hypothesis and TLetUp.

�

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 47

Lemma A.2 (Discrete usage signatures are well-formed)

If

e = λn1x1 . . . λ
nk xk.e1, n1, . . . ,nk > 0 (A1)

P � e1 ↓ U ⇒ 〈τ1 ; ϕ1〉 (A2)

〈τ0 ; ϕ0〉 = 〈ϕ1(x) → τ1 ; ϕ1\x 〉 (A3)

ρ = λd . transform(〈k ; τ0 ; ϕ0〉, d) (A4)

then P �t e : ρ.

Proof

By the typing rule WFTrans, we need to show that

∀d1, d2.d1 � d2 =⇒ T d1
ρ � T d2

ρ ∧ Φd1
ρ � Φd2

ρ (A5)

∀d , ϕ, τ.(P � e ↓ d ⇒ 〈τ ; ϕ〉) =⇒ τ � T d
ρ ∧ ϕ � Φd

ρ . (A6)

The proof of (A5) is straightforward, since ρ is a monotonic step-function.

For the second part, let us first define the threshold dt as dt = C 1(. . . k −
fold . . .C 1(U) . . .), where k -fold stands for applying the constructor (C 1 in this case)

k times. We remark that, by consecutive applications of rule TLam, we can obtain

P � e ↓ dt ⇒ 〈τ0 ; ϕ0〉

Let us assume that P � e ↓ e ⇒ 〈τd ; ϕd〉. We show that τd � τ0 and ϕd � ϕ0 by

induction on the number of λs k .

• If k = 0, then it can only be that d � U and the result follows by monotonicity

(Lemma A.1).

• If k > 0, then we have several cases on the shape of d .

— d = U (d†
1 , d

†
2). This can only happen if d � HU and rule TLamHU was used,

otherwise the lambda is not typeable at all. But HU � dt anyway so this case

follows by monotonicity.

— d = HU . This is similar as above.

— d = Cm (d1). In this case, we can invert the TLam rule used to type e = λn.eb

with Cm (d1), n � m , and apply the induction hypothesis for the body eb . We

get back a pair 〈τb ; ϕb〉. If m = 1, then we are easily done by the induction

hypothesis. If m = ω, then it is definitely the case that d �� dt and hence

we multiply both components of 〈τb ; ϕb〉 by ω and we are done, using the

induction hypothesis.12

— d = U . We observe that d � Cω(U) and hence the case follows as the previous

one using inversion on TLam.

�

12 Note that we can guarantee the same result by choosing a different more expressive transform that
only infinitises the previous types but not the current one, yielding tighter types, but we have not done
that for simplicity.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

48 I. Sergey et al.

Lemma A.3 (Analysis produces well-typed terms (Lemma 4.1))

If P �� e ↓ d ⇒ 〈τ ; ϕ〉� e, then P � e ↓ d ⇒ 〈τ ; ϕ〉.

Proof

The proof is by induction on the height of the derivation P �� e ↓ d ⇒ 〈τ ; ϕ〉 �
e. We abuse the notation, considering a demand signature environment P from

the perspective of both discrete and generalised usage signatures. Obviously, any

discrete signature ρ = 〈k ; τ ; ϕ〉 can be considered as a generalised one, ρ, such

that

ρ(d)
def
= transform(ρ, d),

where transform(〈k ; τ ; ϕ〉, d) is defined in Figure 1.

• Case VarDn. Corresponds straightforwardly to the application of rule TVarDn,

where ρ(d) = transform(ρ, d).

• Case VarUp. Straightforward by the rule TVarUp.

• Case Lam. By the rule TLam. By induction hypothesis, we have P � e ↓ de ⇒
〈τ ; ϕ〉. Moreover, by the formulation of Lam, d = C (de) (exact equality) and

m = n , so the premises of the rule TLam are fulfilled.

• Case LamU. Follows by rule TLam observing that U � Cω(U).

• Case LamHU. Straightforward by the rule TLamHU.

• Case AppA. By induction hypothesis and a simple additional statement relating

��∗ and �∗ (ensuring that variables transformed unde via ��∗ are well-typed under

�∗, the proof is by considering two trivial cases of the corresponding relation), we

have

P �∗ y ↓ d†
2 ⇒ ϕ2 (A7)

P � e1 ↓ C 1(d) ⇒ 〈d†
2 → τr ; ϕ1〉 (A8)

Now, let us just take τ1 = d†
2 → τr , so the premises of the rule TApp are fulfiled.

• Case AppB. By induction, we have

P �∗ y ↓ ω∗U ⇒ ϕ2 (A9)

P � e1 ↓ C 1(d) ⇒ 〈ω∗U → τr ; ϕ1〉 (A10)

Moreover, by the definition of � (Figure 1),

• � ω∗U → •,

so we just take τ1 = •, which fulfils the premise of the rule TApp.

• Case Pair. Straightforward by the typing rule TPair, taking d = U (d†
1 , d

†
2).

• Case PairU. Straightforward by the typing rule TPair, observing that U �
U (ω ∗ U , ω ∗ U).

• Case PairHU. By the typing rule TPair, taking d = U (A,A). Both subderivations

for the components of the pair are processed thus via the typing rule TAbs, which

gives empty environments (ε) in both cases. Finally, ε& ε = ε, which concludes the

proof for this case.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 49

• Case Case. By induction hypothesis,

P � er ↓ d ⇒ 〈τ ; ϕr 〉 (A11)

P � es ↓ U (ϕr (x), ϕr (y)) ⇒ 〈 ; ϕs〉 (A12)

so we can directly apply the typing rule TCase.

• Case LetUp By induction, we have

P �� e2 ↓ d ⇒ 〈τ ; ϕ2〉 (A13)

n∗dx = ϕ2(x) (A14)

P �� e1 ↓ dx ⇒ 〈 ; ϕ1〉 (A15)

The proof for this case is completed by applying the typing rule TLetUp with

m = n .

• Case LetUpAbs Straightforward by the rule TLetUpAbs.

• Case LetDn. In this case, we have that

P �� let x = λy1..k.e1 in e2 ↓ d ⇒ 〈τ ; (ϕ2\x)〉
� let x n

= λn1x1 . . . λ
nk xk.e1 in e2

Let us call the resulting RHS term e = λn1x1 . . . λ
nk xk.e1. By inversion, we have

that

P �� e1 ↓ U ⇒ 〈τ1 ; ϕ1〉� e1

τx = ϕ1(y) → τ1

P , x :〈k ; τx ; ϕ1\y〉 �� e2 ↓ d ⇒ 〈τ ; ϕ2〉� e2

ϕ2(x) � n ∗ C n1 (. . . (C nk (. . .) . . .))

Hence, it is easy to show by induction and monotonicity that P � e ↓ (C n1 (.))

⇒ 〈 ; 〉. We know that n � μ(ϕ2(x)). Moreover, P �t e : ρ for the concrete

transform used, by Lemma A.2. Finally, the statement for the body follows

by induction hypothesis. The case is finished by putting these all together and

applying rule TLetDn.

• Case LetDnAbs. Similar to the case LetDn.

�

Lemma A.4 (Value splitting (Lemma 4.3))

If P � v ↓ (d1 & d2) ⇒ 〈τ ; ϕ〉, then there exists a split split(v) = (v1, v2) such that

P � v1 ↓ d1 ⇒ 〈τ1 ;ϕ1〉 and P � v2 ↓ d2 ⇒ 〈τ2 ;ϕ2〉 and moreover τ1 � τ, τ2 � τ and

ϕ1 &ϕ2 � ϕ.

Proof

This is an extremely important property. It says that for a value (and only for

values!) the unleashed environment is additive with respect to the placed demands.

This allows one to use a variable directly (by dereferencing a variable and using it

with a particular continuation) and indirectly in the continuation! Here is the proof,

by case analysis on the shape of the value v:

• Case v = (x , y). In this case, without loss of generality assume that d1 = U (d†
1 , d

†
2)

and d2 = U (d†
3 , d

†
4). If one of them is a call demand, then their & is not defined,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

50 I. Sergey et al.

and if one of them is a naked U or HU , then that is equivalent to some U (d†
1 , d

†
2)

in terms of how the result will be typed. The result then follows by monotonicity

of the & operation and Lemma A.5 (see below).

• Case v = λnx.e. In this case, if one of d1 or d2 is less or equal to HU , assume

d1, then the split is by choosing n1 = 0 and n2 = n . The n1 = 0 split uses the

TLamHU rule assigning the same type as the other split assigns. The other split

merely uses the typing rule that was originally used to type v. If on the other

hand no d1 nor d2 is less or equal to HU , then they cannot be non-call-demands

either (because their & would not be defined). Assume then without loss of

generality that d1 = C n1 (d ′
1) and d2 = C n2 (d ′

2). (If one of them was U , then

we simply type it as Cω(U)). Let us use the split induced by d1 and d2, that is

n = n1 + n2. From typing the body e with d1, we will get 〈ϕ′
1(x) → τ′

1 ; n1 ∗ ϕ′
1〉

and similarly 〈ϕ′
2(x) → τ′

2 ; n2 ∗ ϕ′
2〉, where ϕ′

i and τ′
i are the results of typing e

with d ′
i respectively. However, we know that the body is typeable with d ′

1
 d ′
2

resulting in 〈ϕ
(x) → τ
 ; (n1 + n2) ∗ ϕ
〉 for v. By monotonicity, we get that for

i ∈ {1, 2}:

ϕ′
i (x) → τ′

i � ϕ
(x) → τ

as required. Moreover, we need to show that

n1 ∗ ϕ′
1 &n2 ∗ ϕ′

2 � (n1 + n2) ∗ ϕ

By monotonicity, it suffices to show that

n1 ∗ ϕ
 &n2 ∗ ϕ
 � (n1 + n2) ∗ ϕ

and the result follows by the easy-to-show fact that n1 ∗d† &n2 ∗d† � (n1+n2)∗d†

for any d†.

�
Lemma A.5 (Variable demand splitting)

Assume that the transformer environment P is monotone. If P �∗ x ↓ (d†
1 & d†

2) ⇒
〈τ ; ϕ〉, then P �∗ x ↓ d†

1 ⇒ 〈τ1 ; ϕ1〉 and P �∗ x ↓ d†
2 ⇒ 〈τ2 ; ϕ2〉 and ϕ1 &ϕ2 � ϕ.

Proof

If x /∈ dom(P), then the result is trivial. If x ∈ dom(P), then there is a transformer

(x :ρ) ∈ P . First of all, let us examine the case where either d†
1 or d†

2 is A. Without

loss of generality, assume d†
1 = A. In this case, the result is trivial since ϕ2 = ε and

ϕ = ϕ1. Assume instead that d†
1 = n1 ∗ d1 and d†

2 = n2 ∗ d2. In this case, it suffices

to show that

n1 ∗ Φd1
ρ &n2 ∗ Φd2

ρ � (n1 + n2) ∗ Φd1 &d2
ρ

However, by monotonicity, we know that n1 ∗ Φd1
ρ � n1 ∗ Φd1 &d2

ρ and similarly

n2 ∗ Φd2
ρ � n2 ∗ Φd1 &d2

ρ so it suffices to show for every binding in Φd1 &d2
ρ , call it

(y:d†), that it is the case that

n1 ∗ d† &n2 ∗ d† � (n1 + n2) ∗ d†

This is easy to show using the fact that ω ∗d† = d† & d† = d† & . . . & d† & d†. �

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 51

Lemma A.6 (Single-step safety (Lemma 4.2))

Assume that � 〈H1 ; e1 ; S1〉. If 〈H

1 ; e

1 ; S

1〉 −→ 〈H2 ; e2 ; S2〉 in the uninstrumented

semantics, then 〈H1 ;e1 ;S1〉 ↪−→ 〈H2 ;e2 ;S2〉 such that H

2 = H2, e

2 = e and S

2 = S2,

and moreover � 〈H2 ; e2 ; S2〉.

Proof

By induction on the height of the derivation � 〈H ; e ; S 〉. We proceed by case

analysis on the rule used for −→ in the uninstrumented semantics.

• Case ELet. We have three cases to consider, depending on whether rule TLetUp,

TLetUpAbs or TLetDn is used.

— Case TLetUp. In this case, we have that

P � let x m
= e1 in e2 ↓ d ⇒ 〈τ ; ϕ1 &ϕ2〉 (A16)

n � m (A17)

P � e2 ↓ d ⇒ 〈τ ; ϕ2, (x :n ∗ d1)〉 (A18)

P � e1 ↓ d1 ⇒ 〈 ; ϕ1〉 (A19)

Moreover,

P �s S ↓ (d , τ) ⇒ ϕS (A20)

P � H ∼ ϕ1 &ϕ2 &ϕS (A21)

The rule ELet fires in the instrumented semantics as well, giving us a new

heap H, [x
m�→ Exp(e1)]. By using HpVarUp, we can conclude

P � H, [x
m�→ Exp(e1)] ∼ ϕ2, (x :n ∗ d1) &ϕS (A22)

from (A17), (A19), (A21). Hence, from (A18), (A22) and (A20), we conclude

that the resulting configuration is well-typed.

— Case TLetUpAbs. Similar but simpler than the case for TLetUp.

— Case TLetDn. In this case, we have that

P � let x m
= e1 in e2 ↓ d ⇒ 〈τ ; ϕ2〉 (A23)

n � m (A24)

P � e1 ↓ d1 ⇒ 〈 ; ϕ1〉 (A25)

P �t e1 : ρ (A26)

P , (x :ρ) � e2 ↓ d ⇒ 〈τ ; ϕ2, (x :d†)〉 (A27)

d† � n ∗ d1 (A28)

Moreover,

P �s S ↓ (d , τ) ⇒ ϕS (A29)

P � H ∼ ϕ2 &ϕS (A30)

The rule ELet fires in the instrumented semantics as well, giving us a new

heap H, [x
m�→ Exp(e1)]. We need to use HpVarDn to deduce that

P , (x :ρ) � H, [x
m�→ Exp(e1)] ∼ ϕ2, (x :d†) &ϕS (A31)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

52 I. Sergey et al.

which follows from (A30), (A26), (A24), (A25). Moreover, from (A29) and the

observation that x /∈ fv (S), it is easy to deduce that P , (x :ρ) �s S ↓ (d , τ) ⇒ ϕS

(simple inductive weaking proof). From this, and (A27) and (A31), we get that

the resulting configuration is well typed.

• Case ELkpE. In this case, we have two cases depending on how the variable was

typed.

— Case TVarUp. In this case, we have

P � x ↓ d ⇒ 〈• ; (x :1 ∗ d)〉 (A32)

where x /∈ dom(P). Moreover,

P �s S ↓ (d , •) ⇒ ϕS (A33)

P � H, [x
n�→ Exp(e)] ∼ (ϕS)\x , (x :1 ∗ d &ϕS (x)) (A34)

We have two cases: If ϕS (x) = A, then we only press 1 ∗ d on x . If ϕS (x) =

m ∗ dx , then we press (1 + m) ∗ (d & dx) on x . Let us consider the latter case

first:

P � H, [x
n�→ Exp(e)] ∼ (ϕS)\x , (x :(1 + m) ∗ (d & dx)) (A35)

By inverting HpLetUp, it must be that

n � m + 1 (A36)

P � H ∼ (ϕS)\x &ϕe (A37)

P � e1 ↓ (d & dx) ⇒ 〈τ1 ; ϕe〉 (A38)

To finish the case by SUpdUp, we need to show that

P �s (#(x ,n) : S) ↓ (d & dx , τ1) ⇒ ϕS\x

which will be the case if we show that

P �s S ↓ (d , •) ⇒ (ϕS)\x , (x :m ∗ dx)

and also: n � 1 + m . The first is exactly (A33) and the second is just (A36).

If it was the case that ϕS (x) = A, then we could similarly use SUpdUpAbs.

— Case TVarDn. In this case, we have that

P � x ↓ d ⇒ 〈T d
ρ ; Φd

ρ &(x :1 ∗ d)〉 (A39)

Let us assume that bindings are not recursive so x /∈ dom(Φd
ρ). Moreover,

P �s S ↓ (d ,T d
ρ) ⇒ ϕS (A40)

P � H, [x
n�→ Exp(e)] ∼

Φd
ρ &(ϕS)\x , (x :1 ∗ d &ϕS (x)) (A41)

Let us assume that ϕS (x) = m ∗ dx (the case where ϕS (x) = A is easier). By

rule HpLetDn, this also means that

P � H ∼ Φd
ρ &(ϕS)\x

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 53

and moreover P � e ↓ (d & dx) ⇒ 〈τe ; ϕe〉 – hence by monotonicity it is also

the case that P � e ↓ d ⇒ 〈τd ; ϕd〉, and in fact we also have ϕd � Φd
ρ and

τd � T d
ρ .

Now for the right-hand side, the environment from the expression is ϕd (we

press the demand d). The environment for the stack-typing is the one we

get from P �s S ↓ (d ,T d
ρ) ⇒ ΦS\x . Hence, we need to show that P � H ∼

ϕe &(ϕS)\x and the result follows from monotonicity.

• Case ELkpV. Again we have two cases depending on how the variable is

typed.

— Case TVarUp. In this case, we have

P � x ↓ d ⇒ 〈• ; (x :1 ∗ d)〉 (A42)

where x /∈ dom(P). Moreover,

P �s S ↓ (d , •) ⇒ ϕS (A43)

P � H, [x
n�→ Val(v)] ∼ (ϕS)\x , (x :1 ∗ d &ϕS (x)) (A44)

Again we have two cases depending on ϕS (x).

– Case ϕS (x) = m ∗ dx . We know that n � 1 + m and hence the expression

can take a step in the counting semantics. From (A44), we get that

P � H ∼ (ϕS)\x &ϕv (A45)

where P � v ↓ (d & dx) ⇒ 〈τ ; ϕv 〉.
By Lemma A.4, we get that P � v1 ↓ d ⇒ 〈τ1;ϕ1〉 and P � v2 ↓ dx ⇒ 〈τ2;ϕ2〉
such that ϕ1 &ϕ2 � ϕv , τ1 � τ and τ2 � τ for some v1 and v2 with

split(v) = (v1, v2). To finish the case, we need to show that

H ∼ ϕ1 &ϕ2 & (ϕS)\x

which follows from (A45) and strengthening (Lemma A.7).

– Case ϕS (x) = A. This case is easy as it induces a trivial split for v1 and

v2 where v1 gets a 0 counter if it is a lambda. This reflects the fact that

this is never used indirectly in the continuation but only directly in the

stack S .

— Case TVarDn. In this case, we have

P � x ↓ d ⇒ 〈T d
ρ ; Φd

ρ &(x :1 ∗ d)〉 (A46)

where (x :ρ) ∈ P . Moreover,

P �s S ↓ (d ,T d
ρ) ⇒ ϕS (A47)

and

P � H, [x
n�→ Val(v)] ∼

Φd
ρ &(ϕS)\x , (x :1 ∗ d &ϕS (x))

Let us deal with the case when ϕS (x) = m ∗ dx (the case where ϕS (x) = A is

easier).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

54 I. Sergey et al.

By inverting rule HpLetDn, we get

P � H ∼ (ϕS)\x &Φd
ρ (A48)

and moreover P � v ↓ (d & dx) ⇒ 〈 ;ϕv 〉 (i.e., the v is sufficiently annotated). So

the configuration can indeed step and for the right-hand side, by Lemma A.4,

we must have P � v2 ↓ d ⇒ 〈τ2 ;ϕ2〉 and we must also have P �s S ↓ (d , τ2) ⇒
ϕ′

S . By the well-formedness of the transformer, it must be that τ2 � T d
ρ and

it must also be ϕ2 � Φd
ρ . Hence by monotonicity, ϕ′

S � ϕS as well. To finish

the case, we need to show that

P � H, [x
n ′
�→ Val(v1)] ∼ (ϕ′

S)\x &ϕ2, (x :ϕ′
S (x))

By rule HpLetDn, it suffices to show two things: First, that P � H ∼
(ϕ′

S)\x &ϕ2 – this follows by (A48) and monotonicity. Second, that if ϕ′
S (x) =

d†, v1 is still typeable under that d†. However, by the splitting lemma A.4, we

know that P � v1 ↓ dx ⇒ 〈 ; ϕ′
1〉 and the result follows by monotonicity since

it must be the case that d† � m ∗ dx .

• Case EUpd. Similar to ELkpV case.

• Case EBeta. Using the substitution lemma (Lemma A.8).

• Case EApp. Trivial.

• Case EPair. Trivial.

• Case EPRed. Using the substitution lemma (Lemma A.8).

�

Lemma A.7 (Heap-typing strengthening)

If P � H ∼ ϕ1 and ϕ2 � ϕ1, then P � H ∼ ϕ2.

Proof

Easy induction, appealing to the monotonicity of the typing Lemma A.1. �

Lemma A.8 (Substitution)

Assume that P is monotone and P � e ↓ d ⇒ 〈τ ; ϕ1〉 and x /∈ dom(P). If

P �∗ y ↓ ϕ1(x) ⇒ ϕ2, then P � e[y/x] ↓ d ⇒ 〈τe ; ϕe〉 such that ϕe � ϕ1\x &ϕ2

and τe � τ.

Proof

By induction on the derivation P � e ↓ d ⇒ 〈τ ;ϕ1〉. First of all, if y /∈ dom(P), then

the result follows easily by a renaming. So we will only be concerned with the case

when y ∈ dom(P), in particular (y:ρ) ∈ P .

• Case TVarDn. In this case, we know that the variable we exercise pressure on is

not x and therefore the result follows trivially (y is absent).

• Case TVarUp. If the variable is not x , then the result follows trivially (y is absent).

If it is x , then we have that the pressure on x is (x :1∗d). Then ϕ2 = Φd
ρ &(y:1∗d).

For the substituted expression, we get that ϕe = ϕ2 and τe = T d
ρ . Clearly, T d

ρ � •
and moreover ϕ2 � 1 ∗ ϕ2 as required.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 55

• The rest of the cases are straightforward but somewhat tedious applications of

the induction hypothesis and monotonicity of typing. They rely on the following

property: If ϕ1(x) = n1 ∗ d1 and ϕ2(x) = n2 ∗ d2, then

n1 ∗ Φd1
ρ &n2 ∗ Φd2

ρ � (n1 + n2) ∗ Φd1+d2
ρ

which follows by the monotonicity of the transformer ρ.

�

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

