JFP 27, ell, 55 pages, 2017. (© Cambridge University Press 2017 1
doi:10.1017/S0956796817000016

Modular, higher order cardinality analysis in
theory and practice

ILYA SERGEY

University College London, London, UK
(e-mail: i.sergey@ucl.ac.uk)

DIMITRIOS VYTINIOTIS and SIMON L. PEYTON JONES
Microsoft Research, Cambridge, UK

(e-mail: dimitris@microsoft.com, simonpj@microsoft.com)

JOACHIM BREITNER

University of Pennsylvania, Pennsylvania, USA
(e-mail: joachim@cis.upenn.edu)

Abstract

Since the mid *80s, compiler writers for functional languages (especially lazy ones) have been
writing papers about identifying and exploiting thunks and lambdas that are used only once.
However, it has proved difficult to achieve both power and simplicity in practice. In this
paper, we describe a new, modular analysis for a higher order language, which is both simple
and effective. We prove the analysis sound with respect to a standard call-by-need semantics,
and present measurements of its use in a full-scale, state-of-the-art optimising compiler.
The analysis finds many single-entry thunks and one-shot lambdas and enables a number
of program optimisations. This paper extends our preceding conference publication (Sergey
et al. 2014 Proceedings of the 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL 2014). ACM, pp. 335-348) with proofs, expanded report
on evaluation and a detailed examination of the factors causing the loss of precision in the
analysis.

1 Introduction
Consider these definitions, written in a purely functional language like Haskell:

wurblel, wurble2 :: (Int -> Int) -> Int
wurblel k = sum (map k [1..10])
wurble2 k = 2 *x k O

f1 :: [Int] -> Int
fl xs = let ys = map costly xs
in wurble (\n. sum (map (+ n) ys))
Here we assume that costly is some function that is expensive to compute and

wurble is either wurblel or wurble2. If we replace ys by its definition, we could
transform f1 into £2:

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

2 L. Sergey et al.

f2 xs = wurble (\n. sum (map (+ n) (map costly xs)))

An optimising compiler can now use short-cut deforestation to fuse the two maps
into one, ecliminating the intermediate list altogether, and offering a substantial
performance gain (Gill et al. 1993).

Does this transformation make the program run faster or slower? It depends on
wurble! For example, wurblel calls its function argument 10 times, so if wurble
= wurblel, function £2 would compute costly 10 times for each element of xs;
whereas £1 would do so only once. On the other hand, if wurble = wurble2, which
calls its argument exactly once, then £2 is just as efficient as £1, and short-cut
deforestation can improve it further.

The reverse is also true. If the programmer writes £2 in the first place, the
full laziness transformation (Peyton Jones et al. 1996) will float the sub-expression
(map costly xs) out of the \n-expression, so that it can be shared. That would be
good for wurblel but bad for wurble2.

What is needed is an analysis that can provide a sound approximation of
how often a function is called — we refer to such an analysis as a cardinality
analysis. An optimising compiler can then use the results of the analysis to guide its
transformations. In this paper, we provide just such an analysis:

e We define two different, useful forms of cardinality, namely (a) how often a
function is called, and (b) how often a thunk is forced in a lazy language
(Section 2). Of these, the former is relevant under both call-by-need and call-by-
value, while the latter is specific to call-by-need.

e We present a backwards analysis that can soundly and efficiently approximate
both forms of cardinality for a non-strict, higher order language (Section 3). A
significant innovation is our use of call demands to model the usage of a function;
this makes the analysis both powerful and modular.

e We prove that our algorithm is sound; for example, if it claims that a function
is called at most once, then it really is (Section 4). This proof is not at all
straightforward, because it must take account of sharing — that is the whole
point! So we cannot use standard denotational techniques, but instead must use
an operational semantics that models sharing explicitly.

e We formalise a number of program optimisations enabled by the results of the
cardinality analysis, prove them sound and, what is equally important, improving
in the sense of Moran & Sands (1999) (Section 5).

e We have implemented our algorithm by extending the Glasgow Haskell Compiler
(GHCQ), a state-of-the-art optimising compiler for Haskell. Happily, the imple-
mentation builds directly on GHC’s current strictness and absence analyser, and
is both simple and efficient (Section 6).

e We measured how often the analysis finds one-shot lambdas and single-entry
thunks (Section 7); and how much this knowledge improved the performance
of real programs (Sections 7.1-7.2). The analysis proves quite effective in that
many one-shot lambdas and single-entry thunks are detected (in the range 0-
30%, depending on the program). Improvements in performance are modest but

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 3

consistent (a few percent): programs already optimised by GHC are a challenging
target!

e We also measure how precise the analysis is, by comparing the static results with
dynamic measurements using an instrumented runtime (Section 7.3), and explain
the typical cases where the analysis as designed cannot be more precise.

Before this work, GHC conservatively assumed that every thunk could be entered
more than once, and every lambda called more than once, thus losing useful
opportunities for optimisation, as quantified in Section 7. We discuss other related
work in Section 8. Distinctive features of our work are (a) the notion of call demands,
(b) a full implementation measured against a state-of-the-art optimising compiler,
and (c) the combination of simplicity with worthwhile performance improvements
due to enabled optimisations.

This is a longer version of a paper “Modular, Higher-Order Cardinality Analysis
in Theory and Practice” by Sergey et al. (2014), containing proofs, an expanded
report on evaluation, and detailed examination of the factors causing the loss of
precision in the analysis.

2 What is cardinality analysis?

Cardinality analysis answers three inter-related questions, in the setting of a non-
strict, pure functional language like Haskell:

e How many times is a particular, syntactic lambda-expression called (Section 2.1),
a question that is complicated by currying in a higher order language like Haskell
(Section 2.2)?

e Which components of a data structure are never evaluated ; that is, are absent
(Section 2.3)?

e How many times is a particular, syntactic thunk evaluated (Section 2.4)?

2.1 Call cardinality

We saw in the introduction an example where it is helpful to know when a function
calls its argument at most once. A lambda that is called at most once is called
a one-shot lambda, and they are fairly common in functional programming: for
example, a continuation is usually one-shot. So cardinality analysis can be a big win
when optimising continuation-heavy programs.

Nor is that all. As we saw in the Introduction, inlining under a one-shot lambda (to
transform f1 into £2) allows short-cut deforestation to fuse two otherwise-separate
calls of map. But short-cut deforestation itself introduces many calls of the function
build:

build :: (forall b. (a -=> b -=> b) -> b => b) -> [a]
build g = g (:) [I

You can see that build calls its argument exactly once, and inlining ys in calls like
(build (\cn. ...ys...)) turns out to be crucial to making short-cut deforestation

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

4 L. Sergey et al.

work in practice. Gill devotes a section of his thesis to elucidating this point
(Gill 1996, Chapter 4.3). Gill lacked an analysis for one-shot lambdas, so his
implementation (which was extant in GHC until recently) relied on a gross hack:
He taught GHC’s optimiser to behave specially for build itself, and a couple
of other functions. No user-defined function will have this good behaviour. Our
analysis subsumes the hack, by providing an analysis that deduces the correct
one-shot information for build, as well as many other functions.

2.2 Currying

In a higher order language with curried functions, we need to be careful about the
details. For example, consider

£3 a = zowzy a (\x.let t = costly x in \y. t+y)

zowzyl ag=g2a+g3a
zowzy2 a g = sum (map (g a) [1..1000])

If zowzy was zowzy1, then in £3 it would be best to inline t at its use site, thus
f4 a = zowzyl a (\x.\y. costly x + y)

The transformed f4 is much better than £3: It avoids allocating a thunk for t, and
avoids allocating a function closure for the \y. But if £3 called zowzy2 instead, such
a transformation would be disastrous. Why? Because zowzy2 applies its argument
g to one argument a, and the function thus computed is applied to each of 1,000
integers. In £3, we will compute (costly a) once, but £4 will compute it 1,000
times, which is arbitrarily bad.

So our analysis of zowzy2 must be able to report “zowzy2’s argument g is called!
once, and the result is called many times”. We formalise this by giving a usage
signature to zowzy, like this:

zowzyl = U — CACYU)) — e
zowzy2 1 U — CHCYU)) — e

The notation CCYU)) is a usage demand: It describes how a (function) value
is used. The demand type U — C%CYU)) — e describes how a function uses
its arguments, therefore it gives a usage demand for each argument.” Informally,
the C'(d) means “this argument is called once, and the result is used with usage
d”, whereas C“(d) means “this argument may be called many times, with each
result used with usage d”. The U means “is used in some unknown way (which
includes not being used at all)”. Note that zowzy1’s second argument precise usage
is CUCYU)), not C(CYU)); that is, in all cases the result of applying g to one
argument is then called only once.

1 We will always use “called” to mean “applied to one argument”.
2 The “e” has no significance; we are just used to seeing something after the final arrow!

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 5

2.3 Absence
Consider this function
f x = case x of (p,q) —-> <cbody>

A strictness analyser can see that f is strict in x, and so can use call-by-value.
Moreover, rather than allocate a pair that is passed to f, which immediately takes
it apart, GHC uses a worker/wrapper transformation to pass the pieces separately,
thus

f x = case x of (p,q) -> fwpgq
fw p q = <cbody>

Now £ (the “wrapper”) is small, and can be inlined at £’s call sites, often eliminating
the allocation of the pair; meanwhile fw (the “worker”) does the actual work.
Strictness analysis, and the worker/wrapper transform to exploit its results, are
hugely important to generating efficient code for lazy programs (Peyton Jones &
Partain 1994; Peyton Jones & Santos 1998).

In general, £’s right-hand side often does not have a syntactically visible case
expression. For example, what if £ simply called another function g that was strict
in x? Fortunately, the worker/wrapper transform is easy to generalise. Suppose the
right-hand side of £ was just <fbody>. Then we would transform to

f x = case x of (p,q) > fwpgq
fw p q = let x = (p,q) in <fbody>

Now we hope that the binding for x will cancel with case expressions in <fbody>,
and indeed it usually proves to be so (Peyton Jones & Santos 1998).

But what if <fbody> did not use q at all? Then it would be stupid to pass q to
fw. We would rather transform to

f x = case x of (p,q) -> fw p
fw p = let x = (p, error "urk") in <fbody>

This turns out to be very important in practice. Programmers seldom write functions
with wholly unused arguments, but they frequently write functions that use only
part of their argument, and ignoring this point leads to large numbers of unused
arguments being passed around in the “optimised” program after the worker—
wrapper transformation. Absence analysis has therefore been part of GHC since its
earliest days (Peyton Jones & Partain 1994), but it has never been formalised. In the
framework of this paper, we give £ from the last code fragment a usage signature
like this:

fUU,A) > e

The U(U, A) indicates that the argument is a product type; that is, a data type
with just one constructor. The A (for “absent”) indicates that f discards the second
component of the product. The top-level U indicates that the overall argument has
been used, and could have been omitted, but we keep it for the uniformity of the
notation.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

6 L. Sergey et al.

2.4 Thunk cardinality
Consider these definitions:

f :: Int -> Int -> Int
f xc=41if x > 0 then c + 1 else
if x == 0 then O else c - 1

gy =1y (costly y)

Since f is not strict in ¢, g must build a thunk for (costly y) to pass to f. In
call-by-need evaluation, thunks are memoised. That is, when a thunk is evaluated at
run-time, it is overwritten with the value so that if it is evaluated a second time the
already-computed value can be returned immediately. But in this case, we can see
that £ never evaluates its second argument more than once, so the memoisation step
is entirely wasted. We call these single-entry thunks.

Memoisation is not expensive, but it is certainly not free. Operationally, a pointer
to the thunk must be pushed on the stack when evaluation starts, it must be black-
holed to avoid space leaks (Jones 1992), and the update involves a memory write.
If cardinality analysis can identify single-entry thunks, as well as one-shot lambdas,
that would be a Good Thing. And so it can: we give f the usage signature:

froxU—>1+xU > e

The “o #*” modifier says that f may evaluate its first argument more than once, while
the “1+#” says that it evaluates its second argument at most once.

2.5 Call versus evaluation

For functions, there is a difference between being evaluated once and called once,
because of Haskell’s seq function. For example:

fl g =g ‘seq‘ 1 —f1 = 1*U —> e
f2g=g ‘seq g2 -—-f2 1 wrC(U)—e
f3g=g3 -— 3 = 1+C(U)—> e

The function seq evaluates its first argument (to head-normal form) and returns its
second argument. If its first argument is a function, the function is evaluated to a
lambda, but not called. Notice that £2’s usage type says that g is evaluated more
than once, but applied only once. For example, consider the call

f (\x. x +y)

How many times is y evaluated? It depends on £, indeed. For f equal to f1, the
answer is zero; for £2 and £3, it is one.

3 Formalising cardinality analysis

We now present our analysis in detail. The syntax of the language we analyse is
given in Figure 1. It is quite conventional: just lambda calculus with pairs and

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 7

Expressions and values

n= z|v|ex|letz=e in e |case e of (z1,12) = &
n= k| Az.e|(z1,m)

Annotated expressions and values

e u= x\v|ez\let$ge1ine2 case e of (z1,12) — €
v = Kk|AMz.e|(z1,1)

Usage demands and multi-demands

d == C™d)|U(d,d)| U|HU
dt w= A|nxd

n = l|lo

m = 0]l|o

Non-syntactic demand equalities

c®u)y = U
U(oxU,0xU) = U
U(A,A) = HU
Usage types
T = e|di 1

Usage type expansion
df -1t =< di =1
e <X wxU—e
Free-variable usage environments (fv-usage)
o u= (zd'),ple
Auxiliary notation on environments

o(z) = d¥ when (z:d") o
A otherwise

Usage signatures and signature environments

p u= (kit;0) kEZsg
P == (xz:p),P|e
transform((k;t;0),d) = (t;9) ifdC CY(...k-fold...CY(U))

= (w*7;w0+*@) otherwise

Fig. 1. Syntax of terms, values, usage types, and usage environments.

(non-recursive) let-expressions. Constants x include literals and primitive functions
over literals, as well as Haskell’s built-in seq. We use A-normal form (Sabry &
Felleisen 1992) so that the issues concerning thunks show up only for let and not
also for function arguments.

3.1 Usage demands

Our cardinality analysis is a backwards analysis over an abstract domain of usage
demands. As with any such analysis, the abstract domain embodies a balance between

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

8 L. Sergey et al.

the cost of the analysis and its precision. Our particular choices are expressed in
the syntax of usage demands, given in Figure 1. A usage demand d is one of the
following:

o U (le , dg) applies to pairs. The pair itself is evaluated and its first component is
used as described by d] and its second by dj.

e ('"(d) applies to functions. The function is called at most n times, and on each
call the result is used as described by d. Call demands are, to the best of our
knowledge, new.

e U, or “used”, indicating no information; the demand can use the value in an
arbitrary way.

e HU, or “head-used”, is a special case; it is the demand that seq places on its first
argument: seq :: HU — U — o.

A usage demand d always uses the root of the value exactly once; it cannot express
absence or multiple evaluation. That is done by df, which is either A (absent), or
n*d indicating that the value is used at most n times in a way described by d. In
both C'™(d) and n*d, the multiplicity n is either 1 or @ (meaning “many”). Notice
that a call demand C"(d) has a d inside it, not a d': If a function is called, its body
is evaluated exactly once. This is different for pairs; the demand (d;, dJ) must have
d" demands as the sub-components. For example, if we have

let x = (el, e2) in fst x + fst x

then el is evaluated twice. So the usage demand for x is w* U(w* U, A)

Both U and HU come with some non-syntactic equalities, denoted by = in
Figure 1 and necessary for the proof of well-typedness (Section 4). For example,
U is equivalent to a pair demand whose components are used many times, or a
many-call-demand where the result is used in an arbitrary way. Similarly, for pairs
HU is equivalent to U(A, A), while for functions HU is equivalent to CYA), if
we had such a thing. In the rest of the paper, all definitions and metatheory are
modulo-= equivalence (checking that all our definitions respect = is routine and,
hence, omitted).

3.2 Usage analysis

The analysis itself is shown in Figures 4 and 5. The main judgement form is written
thus

Pbreld={(1;0) e

which should be read thus: in signature environment P, and under usage demand d,
the term e places demands (t ; @) on its components, and elaborates to an annotated
term €. The syntax of each of these components is given in Figure 1, and their roles
in the judgement are the following:

e The signature environment P maps some of the free variables of e to their usage
signatures, p (Section 3.5). Any free variable outside the domain of P has an
uninformative signature.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 9

e The usage demand, d, describes the degree to which e is evaluated, including how
many times its sub-components are evaluated or called.

e Using P, the judgement transforms the incoming demand d into the demands
(7 ; @) that e places on its arguments and firee variables, respectively:

— The usage that e places on its argument is given by t, which gives a demand
d' for each argument.

— The usage that e places on its free variables is given by its free-variable
usage (fv-usage), ¢, which is simply a finite mapping from variables to usage
demands.

e We will discuss the elaborated expressions €’ in Section 3.7.
For example, consider the expression
e = Az . case z of (p,q) — (p, f True)

Suppose we place demand C(U) on e, so that e is called, just once. What demand
does e then place on its arguments and free variables?

ebel C(U)= (1xU(w* U, A) — o ; {f — 1= CYU)})

That is, e will use its argument once, its argument’s first component perhaps many
times, but will ignore its arguments second component (the A in the usage type).
Moreover, e will call f just once.

In short, we think of the analysis as describing a demand transformer, transforming
a demand on the result of e into demands on its arguments and free variables.

3.3 Pairs and case expressions

With these definitions in mind, we can look at some of the analysis rules in Figure 4.
Rule PaIr explains how to analyse a pair under a demand U (dT, d;r). We simply
analyse the two components, under df or dj, respectively, and combine the results
with “&”. The auxiliary judgement b* (Figure 4) deals with the multiplicity of the
argument demands d;.

The “&” operator, pronounced “both”, is defined for demands in Figure 2, and
for demand types and usage environments in Figure 3. It combines the free-variable
usages ¢ and ¢,. For the most part, the definition is straightforward, but there is
a very important wrinkle for call demands:

C™(dy) & C™(dp) = C(dy U dp)

The “w” part is easy, since n; and ny are both at least 1. But note the switch from
& to the least upper bound U! To see why, consider what demand this expression
places on f:

f12+£f34

Each call gives a usage demand for £ of 1* C(CYU)), and if we use & to combine
that demand with itself, we get w* C(CU)). The inner “1” is a consequence of the

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

10 L. Sergey et al.
u(d")=m
u(A)=0 u(nxd)=n
(dedj=a] dfva)=d]
A&dt = df Audt = dt
d'&A = dF d'ud = df
nxdi &mxdy = *(d&dp) npxdiUngxdy = (mgUng)x(di Udy)
ldi&d=d dUd,=ds]
d&U = U
U&d = U
d&HU = d
HU&d = d
Cn'(dl)&cnz(dz) = Cw(d|ud2)
U(d),d))&U(dj,dj) = U(d]&d], dj&d;)
duU = U
vud = U
dUHU = d
HUUd = d

o™ ()0)
U(df,d3)uU(d],dj)

C™MYm (dy Ui dy)
U(dfudy,dudy)

Fig. 2. Demands and demand operations.

switch to LI, and rightly expresses the fact that no partial application of £ is called
more than once. That is, one can think of the & operator as of adding two multi-
demands, whereas LI is reminiscent to taking the maximum of two multi-demands.

The other rules for pairs PAIRU, PAIRHU, and case expressions CASE should now
be readily comprehensible, (¢, \,, stands for the removal of {z,y} from the domain
of ¢,.). In these rules, as well as in LamMU, the pressed demands are treated modulo
the syntactic equalities from Figure 1 (e.g., HU = U(A4, A)).

3.4 Lambda and application

Rule Lawm for lambdas expects the incoming demand to be a call demand C™(d.).
Then it analyses the body e with demand d. to give (t ; ¢). If n = 1, the lambda is
called at most once, so we can return {(¢p(z) — 7 ; ¢\z); but if n = w, the lambda
may be called more than once, and each call will place a new demand on the free
variables. The n*¢@ operation on the bottom line accounts for this multiplicity, and
is defined in Figure 3. Rule LaMU handles an incoming demand of U by treating
it just like C(U), while LAMHU deals with the head-used demand HU, where the
lambda is not even called so we do not need to analyse the body, and e is obtained
from e by adding arbitrary annotations. Similarly, the return type 7 can be any type,
since the A-abstraction is not going to be applied, but is only head-used. Dually,
given an application (e y), rule APPA analyses e with demand C(d), reflecting that

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 11

P&@=9s g1Ug = 3]

Qr&@r = {(w:d]&d))|gi(x)=d]}

ol = {(z:d/ud)|ei(z)=d}
(dr%ﬁ)u(dr%fz) = (drud;)%(flufz)

T e = °

[0 U(mig) = (559) |

(ten (D) = (nUn;eUe)

‘n*dr:d; n*xT =T n*(plz(pz‘

lxd" = df
oxd" = d'&d'
nte = °
nx(df = 1) = (nxd") = (nx1)
nx@ = {z:nx@(z)|z € dom(@)}

nyUny =n3

1Ul=1 oUn=0 nUo=0
alCb

aCb & (alb)=0b

Fig. 3. Operations on demand types and usage environments, and generic partial order.

e 1s here called once. This returns the demand (d; — 15 ; 1) on the context. Then
we can analyse the argument under demand 4, using b*, yielding ¢,; and combine
@1 and ¢;,. Rule ApPB applies when analysing e; yields the less-informative usage

type e.

3.5 Usage signatures
Suppose we have the term
let £ = \x.\y. x True in f pgq

We would like to determine the correct demands on p and g, namely 1*C(U) and
A, respectively. The gold standard would be to analyse £’s right-hand side at every
call site; that is, to behave as if £ were inlined at each call site. But that is not very
modular; with deeply nested function definitions, it can be exponentially expensive
to analyse each function body afresh at each call site; and it does not work at all
for recursive functions. Instead, we want to analyse f, summarise its behaviour, and
then use that summary at each call site. This summary is called f’s usage signature.
Remember that the main judgement describes how a term transforms a demand for

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

12 L Sergey et al.

‘P»ew:»(r;(p)wfa‘

(z:p)e P (1;¢)=transform(p,d)

VARDN
Pbrzld= (1;0&(z:1%d)) ~ z
x ¢ dom(P)
VARUP
Ptgld= (e;(z:lxd)) ~
Pbhelde=(1;0)~e
LAaM

Pidz.el C"(de) = (@(z) = T3nx(Q\z)) ~ A"z e

PrAz.el COU)= (1;0) ~¢€
PirAz.el U= (1;0)~¢

LamU

LAMHU

PbAz.e| HU = (1:€) ~ Alz.e

Phe |l Cld)= (=1 101) ~e PPyld =@

APPA
Ptreyld= (t;01&p) ~ ey
Phe | CHd)= (o;0)) ~e; PPyloxlU= ¢
APPB
Phreyld=(o;01&p) ey
PWald=¢ Pnld=e
e PAIR
P)"(Il,zz)iU(dl,d2):><0;(p1&([)2>w($1.,$2>
Pt (z,m)l UloxU,0xU) = (o;0) ~ e
PAIRU

Pb(z,22)] U= (e;0) ~e

PAIRHU

Pt (z1,2) | HU = (e;€) ~ (z1,17)

Pre ld=(t;0;)~ e,
Ptes | Ul@r(z),0r(y) = (5 0s) ~ e

P case e of (z,y) = ep L d = (T; 0, \z,y &@s) ~ case e, of (z,y) — e,

Pbzld =¢

Ptrzld={(1,0)~z
—— ABS MULTI
Prz|lA=c¢ Pbiz | nxd = nx@

CASE

Fig. 4. Algorithmic cardinality analysis specification, Part 1.

the value into demands on its context. So a usage signature must be a (conservative
approximation of this) demand transformer.

There are many ways in which one might approximate f’s demand transformer,
but rule LETDN (Figure 5) uses a particularly simple one:

e Look at f’s right-hand side Ay ... Ayx . €1, where e; is not a lambda-expression.
e Analyse e; in demand U, giving (7 ; ¢1).

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 13

PheliU:><T|;(p1)we1 Tf=([)|(§)*>’€1
P fuk:tso\g) el d=(T:¢2) ~ e
@) E s O™ (.. (C™ () .))

Pbletf :lyl Yk .’61 ine | d= <T;((/)2\f)>
~ let f Lam yr... Ay, .e;ine

LETDN

PhelU=(tm;o)~e t=0(7) =1 @f)=A4
P fk;tp;o\g) P eald= (T:02) ~ e

LETDNABS
Pbletf=Ay ...yp-eriney L d=(T;(p2\f))
wletfg},lyl,,.llyk,el inep
Pheld=(t;¢)~e
nxdy = @(z) Pheldy= (_;01)~ e LEtUp

Phletz=e ine | d= (1:0;&(¢)\z)) ~ let z = e iney

Pbheld=(1;¢)~e A=@(z)
LETUPABS

Phletz=e¢ inegid:(r;(pz\gg)wletlzgel ine,

Fig. 5. Algorithmic cardinality analysis specification, Part 2 (1let-rules).

e Record the triple (k ; o(y) — 11 ; ¢1\y) as £’s usage signature in the environment
P when analysing the body of the let.

Now, at a call site of £, rule VARDN calls transform(p, d) to use the recorded usage
signature p to transform the demand d for this occurrence of f.

What does transform({k ;7 ;¢), d) do (Figure 1)? If the demand d on £ is stronger
than C(... C(U)), where the call demands are nested & deep, we can safely unleash
(7 ;) at the call site. If not, we simply treat the function as if it were called many
times, by unleashing (w*1 ;w*¢), multiplying both the demand type t and the usage
environment ¢ (Figure 3), considering it to be the result of the transform. Rule
LETDNABS handles the case when the variable is not used in the body, annotating
the corresponding lambda with one-shot demands, in order to enable let-in floating,
described in Section 5.2.

3.6 Thunks

The LETDN rule unleashes (an approximation to) the demands of the right-hand
side at each usage site. This is good if the right-hand side is a lambda, but not good
otherwise, for two reasons. Consider

let x=y+1 in x + x

How many times is y demanded? Just once! The thunk x is demanded twice, but x’s
thunk is memoised, so the y + 1 is evaluated only once. So it is wrong to unleash
a demand on y at each of x’s occurrence sites. Contrast the situation where x is a
function

let x = \v. y +v in x 42 + x 239

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

14 L. Sergey et al.

Here y really is demanded twice, and LETDN does that. Another reason that LETDN
would be sub-optimal for thunks is shown here:

let x = (p, 90 in case x of (a, b) -> a

The body of the let places usage demand 1* U(U, A) on x, and if we analysed x’s
right-hand side in that demand we would see that q was unused. So we get more
information if we wait until we know the aggregated demand on x, and use it to
analyse its right-hand side.

This idea is embodied in the LETUP rule, used if LETDN does not apply (i.e.,
the right-hand side is not a lambda). Rule LETUP first analyses the body e, to get
the demand ¢,(z) on z; then analyses the right-hand side e; using that demand.
Notice that the multiplicity n of the demand that e, places on z is ignored; that
is because the thunk is memoised. Otherwise the rule is quite straightforward. Rule
LeTUPABs deals with the case when the bound variable is unused in the body.
Instead of removing the binding z from the elaborated program, we preserve the
syntactic structure of the expressions, in order to simplify the proof of soundness of
the analysis in Section 4.

3.7 Elaboration

How are we to take advantage of our analysis? We do so by elaborating the term
during analysis, with annotations of two kinds, as described by the grammar in
Figure 1:

e let-bindings carry an annotation m € {0,1,w}, to indicate how often the let
binding is evaluated.

e Lambdas A™z.e carry an annotation m € {0,1,w}, to indicate how often the
lambda is called. The symbol O serves as an indicator that the lambda is not
supposed to be called at all.

Figures 4 and 5 show the elaborated terms after the “~»”. The operational semantics
(Section 4) gets stuck if we use a thunk or lambda more often than its claimed usage;
and the optimising transformations (Section 5) are guided by the same annotations.

3.8 A more realistic language

The language of Figure 1 is stripped to its bare essentials. Our implementation
handles all of Haskell, or rather the Core language to which Haskell is translated
by GHC. In particular:

e Usage signatures for constants x are predefined.

e All data types with a single constructor (i.e., simple products) are treated analo-
gously to pairs in the analysis.

e Recursive data types with more than one constructor and, correspondingly, case
expressions with more than one alternative (and hence also conditional statements)
are supported. The analysis is more approximate for such types: The only usage
demands that apply to such types are U and HU not U(df, dzT). Furthermore, case

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 15

expressions with multiple branches give rise to a least upper bound LI combination
of usage types, as usual.

e Recursive functions and let-bindings are handled, using the standard kind of
fixed-point iteration, with a conservative approximation in case of excessive
iterations (Section 6.5).

4 Soundness of the analysis

We establish the soundness of our analysis in a sequence of steps. Soundness means
that if the analysis claims that, say, a lambda is one-shot, then that lambda is only
called once; and similarly for single-entry thunks. We formalise this property as
follows:

e We present an operational semantics, written —, for the annotated language
that counts how many times thunks have been evaluated and A-abstractions have
been applied. The semantics simply gets stuck when these counters reach zero and
then an associated thunk is accessed or lambda is invoked, which will happen
only if the claims of the analysis are false (Section 4.1).

e Our goal is to prove that if an expression e is elaborated to e by the analysis,
then e in the instrumented semantics behaves identically to e in a standard
uninstrumented call-by-need semantics (Section 4.3). For reasons of space, we
omit the rules for the uninstrumented call-by-need semantics which are completely
standard (Sestoft 1997), and are identical to the rules of Figure 6 if one simply
ignores all the annotations and the multiplicity side-conditions. We refer to this
semantics as —.

e We prove soundness by giving a type system for the annotated terms, and showing
that for well-typed terms, the instrumented semantics — simulates —, in a
type-preserving way.

4.1 Counting operational semantics

We present a simple counting operational semantics for annotated terms in Figure 6.
This is a standard semantics for call-by-need, except for the fact that multiplicity
annotations decorate the terms, stacks, and heaps. The syntax for heaps, denoted
with H, contains two forms of bindings, one for expressions [z +> Exp(e)] and
one for already evaluated expressions [z +> Val(v)]. The multiplicity m € {0,1,w}
denotes how many more times are we allowed to de-reference this particular binding.
The stacks, denoted with S, are just lists of frames. The syntax for frames includes
application frames (e y), which store a reference y to an argument, case-frames
((z,y) — e), which account for the execution of a case-branch, and update frames
of the form #(x, m), which take care of updating the heap when the active expression
reduces to a value. The first component of an update frame is a name of a variable
to be updated, and the second one is its thunk cardinality.

Rule ELET allocates a new binding on the heap. The rule EBETA fires only if the
cardinality annotation is non-zero; it de-references an Exp(e) binding and emits an

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

16 L. Sergey et al.

Heaps

H == €| [z Exp(e),H | [z Val(v)],H
Stacks

S u= el(ey):S | #zm):S | ((z,y)>e):S

Auxiliary definitions

split(A™z .e) = (A™z.e,A™x.e) where m;+mp =m

split(v) = (v,v) otherwise

‘ (Hoseo;So) — (Hiser1;5S1) ‘

m

ELET (H:let zZ e ine):S) — (H,[z +>Exp(e1)];e2;S)
ELKPE (H,[z "> Exp(e)];z;S) — (Hie;#(z,m):S) ifm>1
—

m+-1

ELKPV (H,[z ¥ Val(v)];z;S)

m

(H, [z val(vi)];v2;S)
s.t. split(v)=(vi,v2)

EUPD (H;v:#(z,m+1):S) — (H,[z 5 Val(v))];v2:S)
s.t. split(v)=(vi,va)

EBETA (H;A™z.e;(ey):S) — (Hse[y/z];S) ifm>1

EAPP (H:ey:S) — (Hie;(ey):S)

EPAIR (H;caseegof (z,y) > e,;S) < (H:es;((z,y) —er):S)

EPRED (H;(z1,2);((y1,92) —er):S) < (Hier[zi/y1,22/1];S)

Fig. 6. Heaps, stacks and a non-deterministic counting operational semantics. The guards
for counting restrictions are highlighted by grey boxes.

update frame. Rules EBETA, EAPP, EPAIR, and EPRED are standard. Note that the
analysis does not assign zero-annotations to lambdas, but we need them for the
soundness result.

Rule ELKPV de-references a binding for an already-evaluated expression [z —
Val(v)], and in a standard semantics would return v leaving the heap unaffected.
In our counting semantics however, we need to account for two things. First, we
decrease the multiplicity annotation on the binding (from m+41 to m in rule ELKPV).
Moreover, the value v can in the future be used both directly (since it is now the
active expression), and indirectly through a future de-reference of . We express this
by non-deterministically splitting the value v, returning two values v; and v, whose
top-level Z-annotations sum up to the original (see split in Figure 6). Our proof
needs only ensure that among the non-deterministic choices there exists a choice
that simulates —. Rule EUPD is similar except that the heap gets updated by an
update frame.

4.2 Checking well-annotated terms

We would like to prove that if we analyse a term e, producing an annotated term
e, then if e executes for a number of steps in the standard semantics —, then
execution of e does not get stuck in the instrumented semantics — of Figure 6.
To do this, we need to prove preservation and progress lemmas, showing that each

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 17

step takes a well-annotated term to a well-annotated term, and that well-annotated
terms do not get stuck.

Figure 7 says what it means to be “well-annotated”, using notation from Figures 1—
3. The rules look very similar to the analysis rules of Figures 4-5, except that we
check an annotated term, rather than producing one. For example, rule TLAM checks
that the annotation on a J-abstraction (m) is at least as large as the call cardinality
we press on this A-abstraction (n). As evaluation progresses the situation clarifies,
so the annotations may become more conservative than the checker requires, but
that is fine.

A more substantial difference is that instead of holding concrete demand trans-
formers p as the analysis does (Figure 1), the environment P holds generalised
demand transformers p. A generalised demand transformer is simply a monotone
function from a demand to a pair (t ; @) of a type and a usage environment
(Figure 7). In the TLETDN rule, we make use of the auxiliary function pu (Figure 2)
and clairvoyantly choose any such transformer p, which is sound for the RHS
expression — denoted with P I e; : p. We still check that e; can be type checked
with some demand d; that comes from type-checking the body of the let (¢;(x)).
In rule TVARDN, we simply apply the transformer p to get a type and fv-usage
environment.

Rule WFTRANS imposes two conditions necessary for the soundness of the
transformer. First, it has to be a monotone function on the demand argument.
Second, it has to soundly approximate any type and usage environment that we can
attribute to the expression. One can easily confirm that the intensional representation
used in the analysis satisfies both properties for the A-expressions bound with
LerDN.

Because these rules conjure up functions p out of thin air, and have universally
quantified premises (in WFTRANS), they do not constitute an algorithm. But for the
very same reasons, they are convenient to reason about in the metatheory, and that
is the only reason we need them. In effect, Figure 7 constitutes an elaborate invariant
for the operational semantics.

4.3 Soundness of the analysis
The first result is almost trivial.

Lemma 4.1 (Analysis produces well-typed terms)
IfPhreld={(t;p)we then Pke|d= (1;0¢).

We would next like to show that well-typed terms do not get stuck. To present
the main result, we need some notation first.

Definition 4.1 (Unannotated heaps and stacks and erasure)

We use H and S to refer to an uninstrumented heap and stack, respectively. We
use e = e to mean that the erasure of all annotations from e is e, and we define
S% = § and H* = H analogously.

We can show that annotated terms run for at least as many steps as their erasures
would run in the uninstrumented semantics:

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

18 L Sergey et al.

ped—(1;0) P:=¢g|P,(x:p)

‘P%eidﬁ(ﬂ‘l’)‘

(z:p)eP (t:9)=p(d) x ¢ dom(P)
TVARDN TVARUP
Przld= (t;0&(z:1xd)) Ptz d= (e;(z:1xd))

dCC™d,) m>n Preld.= (1:0)
PEAMz.eld= (¢p(z) = 1;nx(@\z))

TLAM

PFel\LCl(d)éﬂ'l;(pl)

TLAMHU rljd+—>1 PHyl T:wpz
PHA"z.eld=(1:€) L & TAPP
Plreryld=(t:;01&p)

dC HU

dCU(d],d)) PEald =@ PEnld=e¢
PE(z,m) L d= (o:01&)

TPAIR

Pre.ld=(t;0.)
Pres | Ulor(z),0r(y) = (- 0s)
Pt caseesof (z,y) = er L d=(T;0:\z,y &Qs)

TCASE

m 2 u(pa(z)) @2(z) Cnxd
Pre ldi=(ti;p1) Pfe:p

P.(zp)Feld=(1;¢)
PrletzZejine; | d= (1:(¢\g))

TLETDN

m>n Preld=(t;¢)
nxdy =@(z) Pleldy= (_i00)
PrletzZe ine | d= (T:01 &(2\2))

TLETUP

Preyld=(t;¢) A=@(z)
PrletzZe ine; | d= (T:0; &(¢:\z))

PEz|di=¢

Przld=(1;0)
——F TABS TMULTI
PFzl|lA=c¢ PP x| nxd= n*o

le,dz.dl [d2:>p(d1) Ep(dz)
Vd,0,7.(Pteld=(t;9)) = (1:9) Ep(d)

Pfte:p

TLETUPABS

WFTRANS

Fig. 7. Generalised demand transformers p, transformer environments P and well-annotated
terms with respect to a type v and a usage environment ¢.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 19

Theorem 4.1 (Safety for annotated terms)
IfetFe; | HU = (t;¢) and ¢ = eT and (e ;e ;&) —* (H ;e ; S), then there exist
H, e; and S, such that (¢ ;e; ;e)——F(H ;e,;S), H* = H, 8% = S, and e; =e.

Unsurprisingly, to prove this theorem, we need to generalise the statement to talk
about a single-step reduction of a configuration with arbitrary (but well-annotated)
heap and stack. Hence, we introduce a well-annotated configuration relation, denoted
F (H;e;S), that extends the well-annotation invariant of Figure 7 to configurations.
For reasons of space, we only give the statement of the theorem below, and defer
the details of the well-annotation relation to Appendix A.

Lemma 4.2 (Single-step safety)

Assume that - (H; ;e ;Sy). If (HT ;ef ;ST) —> (H, ; 5 ;5,) in the uninstrumented
semantics, then there exist H,, e; and S;, such that (H; ;e; ;S;) «— (H; ;€5 ;S,),
H; = H,, eg = ¢ and S; = S, and moreover F (H, ; e; ; S)).

Notice that the counting semantics is non-deterministic, so Lemma 4.2 simply
ensures that there exists a possible transition in the counting semantics that always
results in a well-typed configuration. Lemma 4.2 crucially relies on yet another
property, below.

Lemma 4.3 (Value demand splitting)

If Pv | (d &dy) = (t;¢), then there exists a split split(v) = (vq,Vv») such that:
PrFv | d = (t1;¢)and PF v, | d = (15 ; ;) and moreover, 1y E 7, 10 C t
and ¢ & ¢> E o.

Why is Lemma 4.3 important? Consider the following:
let x = v in case x 3 of (y,z) -> x 4

The demand exercised on x from the body of the let-binding will be
CY(U)& C'(U) = C”(U) and hence the value v will be checked against this demand
(using the LETUP rule), unleashing an environment ¢. However, after substituting
v in the body (which is ultimately what call-by-need will do) we will have checked
it against C'(U) and C'(U) independently, unleashing ¢; and ¢, in each call site.
Lemma 4.3 ensures that reduction never increases the demand on the free variables
of the environment, and hence safety is not compromised. It is precisely the proof
of Lemma 4.3 that requires demand transformers to be monotone in the demand
arguments, ensured by WFTRANS.

Theorem 4.2 (Safety of analysis)
Ifet e | HU = (1 ;¢e) ~» e and (¢ ;e ;8) —* (H ; e, ; S), then there exist H, e,
and S, such that (¢ ;e ;e)——*(H ;e,;S), H* = H, S = § and eg = .

The proof is just a combination of Lemma 4.1 and Theorem 4.1.

5 Optimisations

We discuss next the two optimisations enabled by our analysis.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

20

L. Sergey et al.

‘ (Hoseo:;So) = (H1:e1;S1) ‘

OPT-ELETA (H;letz 2 e iney;S) = (H;e;S)

OPT-ELETU (H:letz Z e ine;:S) = (H,[z > Exp(e|)];ez;S) where n > 1
OPT-ELKPEM (H, [z +> Exp(e)];z;S) = (H;e;#(z,0):5S)

OPT-ELKPEO (H,[z — Exp(e)];z;S) = (H;e;S)

OPT-ELKPV (H,[z > Val(v)];z;S) = (H,[z > Val(v)];v;S)

OpT-EUPD (H;v;#(z,m) :S) = (H,[z > Val(v)];v;S)

OPT-EBETA (H;A™z.e;(ey):S) = (H:e[y/z];S)

OpT-EAPP (H;ey;S) = (H;e;(ey):S)

OPT-EPAIR (H;casee, of (z,y) > er;S) = (Hies;((z,y) —er):S)
OPT-EPRED (H:(z1,22);((y1,2) = &) :S) = (Hier[n/y1,m2/1]:S)

Fig. 8. Optimised counting semantics.

5.1 Optimised allocation for thunks

We show here that for 0-annotated bindings there is no need to allocate an entry
in the heap, and for 1-annotated ones we don’t have to emit an update frame on
the stack. Within the chosen operational model, this optimisation is of dynamic
flavour so we express this by providing a new, optimising small-step machine for
the annotated expressions. The new semantics is defined in Figure 8. We will show
that programs that can be evaluated via the counting semantics (Figure 6) can
be also evaluated via the optimised semantics in a smaller or equal number of
steps.

The proof is a simulation proof, hence we define relations between heaps/optimised
heaps, and stacks/optimised stacks that are preserved during evaluation.

Definition 5.1 (Auxiliary oc-relations)
We write e; oc e, iff e; and e, differ only on the Z-annotations. H; oc H, and
S| oc S; are defined in Figure 9.

For this optimisation, the annotations on A-abstractions play no role, hence we
relate any expressions that differ only on those.

Figure 9 tells us when a heap H is related with an optimised heap H,,; with the
relation H oc Hop. As we have described, there are no N bindings in the optimised
heap. Moreover, notice that there are no bindings of the form [z BN Val(wv)] in either
the optimised or unoptimised heap. It is easy to see why: every heap binding starts
life as [z — Exp(e)]. By the time Exp(e) has become a value Val(v), we have already
used x once. Hence, if originally m = w, then the value binding will also be w (in
the optimised or unoptimised semantics). If it was m = 1, then it can only be 0 in
the unoptimised heap and non-existent in the optimised heap. If it was m = 0, then
no such bindings would have existed in the optimised heap anyway.

The relation between stacks is given with S oc Syp,. Rule SSiM2 ensures that there
are no frames #(x, 1) in the optimised stack. In fact during evaluation, it is easy to
observe that there are not going to be any update frames #(x,0) in the original or
optimised stack.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 21

Hy o< Hy Hj o< Hy
— HSm1 - HSIM2 - HSIM3
Eoc g Hy, [z — Exp(e)] = Hy Hy, [z — Val(v)] = Hy
nzl H1°<H2 €] < e
~ - HS1m4
Hy, [z = Exp(e;)] o< Hy, [z + Exp(e2)]
HiocHy viecvy
— - HS1M5
Hi, [JL — Val(vl)] o< Hj, [l — Val(V2)}
Sy =S, S =S,
— SSmm1 — SSim2 SSim3
g (#(2,1):S1) = Sy (ey):Sye<(oy):Sy
S; =S,
SSim4
(#(z,0) : S1) =< (#(z,0) : S)
€| < e S] o< Sz
SSim5

((z,y) —e1):S1o<((z,y) > e2):S2

Fig. 9. Auxiliary simulation relation oc for heaps and stacks.

We can now state the optimisation simulation theorem.
Theorem 5.1 (Optimised semantics)
If (Hi ;e ;S1) oc (Ha ;e ;Sy) and (Hy ;e ;S;) — (H] ;€| ;S}), then there exists
k € {0,1} such that (H, ; e, ;S;) =" (H, ; €, ;S5) and (H] ;€| ;S}) oc (H ;€ ;Sh).
Proof
The proof is by case analysis on the — relation:

e Case ELET. We have two cases to consider. If m > 1, then it is obvious. If m = 0,
then H) = Hy, [z N Exp(e;)] and Hj = H, and H} oc H, as required.
e Case ELKPE. In this case, we have that

(Hy, [z +> Exp(e1)] ;2 ;S1) < (Hi ;e ;#(z,m) : Sp)

given that m > 1. Then either OpT-ELKPEM or OpT-ELKPEO will fire:
— If m = w, the result follows trivially.
— If m =1, then 8] = #(=z,1) : S; and S} = S, and by rule SS1M2 we are done.

e Case ELkPV. By the side condition m = m’ + 1, it can only be that m = 1
or m = w. By the heap invariant for H; and an easy induction, it has to be
that m = w. The corresponding rule that can fire in the optimised semantics is
OpT-ELKPV and the result is trivial.

e Case EUPD. We have that:

(Hy ;v s #(z,n) : S1) — (Hy, [z+> Val(vy)] ;va ; Si)

where n = m + 1 and split(v) = (vy,Vva). Therefore, since n = m + 1, it has to be
the case that n = w or n = 1.

— If n = w, then rule OPT-EUPD gives the result.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

22 L. Sergey et al.

— Let n = 1. Then, assume that (H; ;v ;#(z,n) : S1) oc (Hy ;v ;S,) which will
happen if S; oc S;. However, in this case, m = 0, which means that it also
must be the case that (Hy, [z — Val(vi)] ; Va2 ;Si) oc (Hy ;vs:S,) so we are
done in 0 steps (hence we have =* and not just = in the statement of the
theorem).

e Case EBETA follow directly from the rule OpT-EBETA.
e Case EAPP follows by OpT-EAPP.
e Cases EPRED and EPAIR follow directly from rules OpT-EPRED and OPT-EPAIR.

O

Notice that the counting semantics may not be able to take a transition at some
point due to the wrong non-deterministic choice but in that case the statement of
Theorem 5.1 holds trivially. Finally, we tie together Theorems 5.1 and 4.2 to get the
following result.

Theorem 5.2 (Analysis is safe for optimised semantics)

If b e | HU = (1;¢) ~» e1 and (g;e1;6) —" (H ;e5;S5), then (g;e1:¢) =™ (H;e,:S)
s. t. e; = e, m < n, and there exist H, and S, such that H; = H and S; =S and
H, occ Hand S, oc S.

Theorem 5.2 says that if a program e; evaluates in n steps to e; in the reference
semantics, then it also evaluates to the same e, (modulo annotation) in the optimised
semantics in n steps or fewer; and the heaps and stacks are consistent. Moreover,
the theorem has informative content on infinite sequences. For example, it says that
for any point in the evaluation in the reference semantics, we will no later have
reached a corresponding intermediate configuration in the optimised semantics with
consistent heaps and stacks.

5.2 let-in floating into one-shot lambdas

As discussed in Section 2, we are interested in the particular case of 1et-floating (Pey-
ton Jones et al. 1996): moving the binder into the body of a lambda-expression. This
transformation is trivially safe, given obvious syntactic side conditions (Moran &
Sands 1999, Section 4.5), however, in general, it is not beneficial. Here we describe
the conditions under which let-in floating makes things better in terms of the length
of the program execution sequence.

We start by defining let-in floating in a form of syntactic rewriting:

Definition 5.2 (let-in floating for one-shot lambdas)

let z 2 e;in(let f = Az . e iney)

= let f

[EMIE

S

Mz . (let z 2 e ine) in ey,
for any my, my and z ¢ FV(ey).

Next, we provide a number of definitions necessary to formulate the so called
improvement result (Moran & Sands 1999). The improvement is formulated for

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 23

closed, well-formed configurations. For a configuration (H ;e ;S) to be closed, any
free variables in H, e and S must be contained in a union dom(H) U dom(S), where
dom(H) is a set of variables bound by a heap H, and dom(S) is a set of variables
marked for update in a stack S. A configuration is well-formed if dom(H) and dom(S)
are disjoint.

Definition 5.3 (Convergence)
For a closed configuration (H ;e ;S),

def

(H:e;S) |V = 3H,v.(H;e;S)—" (H ;v:e)
H;e;8) sV £ 3IM . (H;e;S8)IM and M < N

The following theorem shows that local let-in floating into the body of a one-shot
lambda does not make the execution longer.

Theorem 5.3 (Let-in float improvement)
For any H and S, if

(Hi;let 2 2 e;in(let f Z Mz .einey);S) ¥V
and z ¢ FV(e,), then

(Hi;let f Z 'z . (let 2 2 e; ine) ine, ; S) IV,

Proof sketch: Let us refer to the first configuration as ¢ and the second as ¢. We
say that two heaps, H; and Hj, are related (H; ~ H,) iff they are of the form:

Hi = Ho, [2+5> 1], [i = A"z . el,..., [fi ms A% . €]
Hy = Ho, [fi > A"z . e,],..., [— A%z . e,]

for some Hy and k, where e, = (let z = e; in e); and e, e; and z are from the
statement of the theorem, and Zle ng =13
The proof goes in four stages.

1. Tt is the case that ¢ evaluates in two steps to some ¢ = (H; ;e; ;S) and ¢
evaluates in one step to some ¢ = (H, ;e; ;S) such that H; ~ H,. Now we need to
show that ¢, will make at most one step more than ¢; before they both terminate.

2. Taking (H; ~ H;) and the stacks and expressions being the same for both
configurations as an invariant, we show that both configurations will make a step
simultaneously, so the invariant is preserved until some f;, is in the configuration
focus. Then we pass to the next stage.

3. If f is in the focus of both configurations, we consider the stack. If S = ¢, the case
is done. (And so too if S contains a case alternative because both computations
will be stuck.) If S = #(x,n) : S, then we update the heap in both branches
in a ~-preserving way, so we are back to stage (2). If S = (e y) : S/, then the
“optimised” program makes one additional step to allocate z, and we pass to the
last stage of the proof.

3 The Val(-)/Exp(") distinction does not affect the core of the proof.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

24 L. Sergey et al.

4. For the rest of the execution, we can show that the programs will execute in
lockstep with a simulation argument taking the invariant almost as in stage (2),
but now with Z§=1 n; = 0 and z being allocated in the second heap too.

O

Even though Theorem 5.3 gives a termination-dependent result, its proof goes via
a simulation argument, hence it is possible to state the theorem in a more general
way without requiring termination.

6 Implementation

We have implemented the cardinality analyser by extending the demand analysis
machinery of the GHC (version 7.8 and later), available publicly from its open-source
repository:

http://git.haskell.org/ghc

We claborate on some implementation specifics in this section.

6.1 Analysis

The implementation of the analysis was straightforward, because GHC’s existing
strictness analyser is already cast as a backwards analysis, exactly like our new
cardinality analysis. So the existing analyser worked unchanged; all that was required
was to enrich the domains over which the analyser works.* In total, the analyser
increased from 900 lines of code to 1,140 lines, an extremely modest change.

We run the analysis twice, once in the middle of the optimisation pipeline, and
once near the end. The purpose of the first run is to expose one-shot lambdas, which
in turn enable a cascade of subsequent transformations (Section 6.3). The second
analysis finds the single-entry thunks, which are exploited only by the code generator.
This second analysis is performed very late in the pipeline (a) so that it sees the
result of all previous inlining and optimisation and (b) because the single-entry
thunk information is not robust to certain other transformations (Section 6.4).

6.2 Absence

GHC exploits absence in the worker/wrapper split, as described in Section 2.3:
absent arguments are not passed from the wrapper to the worker.

6.3 One-shot lambdas

As shown in Section 5.2, there is no run-time payoff for one-shot lambdas. Rather,
the information enables some important compile-time transformations. Specifically,

4 This claim is true in spirit, but in practice we substantially refactored the existing analyser when adding

usage cardinalities.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 25
consider
let z =costlyv in ...(Ay....x...)...

If the Ay is a one-shot lambda, the binding for = can be floated inside the lambda,
without risk of duplicating the computation of costly. Once the binding for z is
inside the Ay, several other improvements may happen:

e It may be inlined at z’s use site, perhaps entirely eliminating the allocation of a
thunk for z.

e It may enable a rewrite rule (eg foldr/build fusion) to fire.

e It may allow two lambdas to be replaced by one. For example:

f=/1v.let x = costlywv in Ay....x...
= f =Av.ly....(costlyw)...

The latter produces one function with two arguments, rather than a curried
function that returns a heap-allocated lambda (Marlow & Peyton Jones 2006).

6.4 Single-entry thunks

The code that GHC compiles for a thunk begins by pushing an update frame on
the stack, which includes a pointer to the thunk. Then the code for the thunk is
executed. When evaluation is complete, the value is returned, and the update frame
overwrites the thunk with an indirection to the value (Peyton Jones 1992). It is
easy to modify this mechanism to take advantage of single-entry thunks: we do
not generate the push-update-frame code for single-entry thunks. There is a modest
code size saving (fewer instructions generated) and a modest runtime saving (a
few store instructions saved on thunk entry, and a few more when evaluation is
complete).

Take care though! The single-entry property is not robust to program transforma-
tion. For example, common sub-expression elimination can combine two single-entry
thunks into one multiple-entry one, as can this sequence of transformations:

let yéein let z=y+0inz*z
Identity of + = 1let yé ein let x =y in z * 2
Inline z = let y L cin y*y Wrong!

This does not affect the formal results of the paper, but it is the reason that our
second run of the cardinality analysis is immediately before code generation.

6.5 Handling of recursive functions

For our formal presentation, we had the liberty to assume that let-expressions are
non-recursive, in rule LETDN in Figure 5. In reality, lets are recursive, and GHC has

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

26 L. Sergey et al.

to deal with them. Ideally, we would like to find the least usage signature p so that

P, fipbe | U= (t1;01) e p={k;01(7) = 1 ;01\y)
P, fpbreld=(t;p)e @f) EnC™(..(C™(.)...)

Phletf=ly...y.-coine | d = (1;(@\;)) ~ let f = A"y, ... A%y, .e; in e,

holds. But that is itself a recursive specification and hence non-executable.

Therefore, we employ a usual fixed-point iteration. We start with the most
optimistic signature p* = (k ;A — --- — A — e ;¢) which claims that f uses
neither any of its k& arguments nor its free variables’ and calculate

P, fipibe LU= (t;01) el pT=({k;0(7)—1:i0\g) -

If we have p* = p**! for some i, we found the desired fixed-point. We analyse the
body

P, fip'teld=(t;p) e @f)En*CM(..(C"(.)...)
and obtain
Phletf=ly...ys.e1ine | d = (1;(p2\s)) ~ let f = A"y, ... A%y, el ine,.

Note that, unless the let is not actually recursive, e, will put a demand on both
f and its other free variables. The strictness signature of f will (eventually) mention
the free variables of e, so the demands put on the free variables are necessary
multiple-use, and no 1*_ annotation that is not hidden behind a C'"(_) demand will
survive there, even when in fact there is only one use in the complete recursion. This
is one cause of imprecision (Section 7.3).

Unfortunately, our domain (i.e., the cpo of usage signatures p) does not have
finite height and therefore it is not guaranteed that this iteration terminates. If
no fixed-point is found after a finite number of steps (currently 10), we abort the
search. In order to obtain a sound result, we re-analyse e; one final time, this time
with a most pessimistic signature p*. If the domain of triples had a top element,
that would be a suitable choice, but such an element would have to mention all
variables in its usage of free variables, which is not expressible. Instead, we use ¢'°,
the free-variable usage component of p'®, which mentions all free variables that are
relevant to e, but possibly with a demand that is too good to be true, and adjust
that pessimistically:

poc:(k,U_’_) U—).;{.T}IU‘SCEdom((plo)})

This signature is larger than any analysis result that we expect for e, and hence a
conservative assumption.
After analysing e; and e, using p™ as the signature for f, ie.,
P,f:pgo|" eq l U = <‘L'1 ;q)1> > €1
P, fp*Peld=(t;p) e ¢@f)Tn*CM(..(C™(..)...),

5 In the implementation, which is combined with GHC’s strictness analysis, the initial signature is

actually “hyperstrict”, i.e., that of a bottoming function.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 27

we obtain

Phletf=/ y...yp.e1ine | d = (1;(@2\s)) ~ let f = A"y, ... A%y, .e ine; .

6.6 Accelerating fixed-point computation

Running the analyser on nested recursive definitions can be expensive at compile-
time. For instance, for two functions f and g, such that g is nested under £, the
analyser must find a fixed-point for the inner function g at each iteration of the
fixed-point computation for function f. To remedy this, we use the simple widening
strategy from the literature (Henglein 1994), based on the observation that iterations
of the fixed-point process for f generates a monotonically increasing sequence of
usage signatures for £. Therefore, each time we begin the fixed-point process for g,
the environment contains values that are no smaller (in the demand partial order)
than the corresponding values the previous time we encountered g. It follows that
the correct fixed-point for g will be greater than the correct fixed-point found on
the previous iteration of f. Therefore, we can begin the fixed-point process for g
not with the bottom value, but rather with the result of the previous analysis. In the
implementation, this result is conveniently available in the elaborated term e;.

We also improve it a bit more by splitting the environment component ¢ of a
usage signature, separating variables with multiple-use demands from the other ones.
The intuition is that multiple-use demands cannot be increased any further, and,
therefore, do not contribute to the fixed-point computation.

7 Evaluation

To measure the accuracy of the analysis, we counted the proportion of (a) one-shot
lambdas and (b) single-entry thunks. In both cases, these percentages are of the
syntactically occurring lambdas or thunks, respectively, measured over the code of
the benchmark program only, not library code. Table 1 shows the results reported
by our analysis for programs from the nofib benchmark suite (Partain 1993).
For the sake of presentation, in the table we show the most interesting programs
with non-trivial contributions to the overall analysis statistics. The numbers are
quite encouraging. One-shot lambdas account for 0-30% of all lambdas (with the
arithmetic mean being 10.3%), while single-entry thunks are 0-23% of all thunks
(with the arithmetic mean 12.6%).

The static (syntactic) frequency of single-entry thunks may be very different to
their dynamic frequency in a program execution, so we instrumented GHC to measure
the latter. (We did not measure the dynamic frequency of one-shot lambdas, because
they confer no direct performance benefit.) The “Runtime 1U-Thunks” column of
Table 1 gives the dynamic frequency of single-entry thunks in the same nofib
programs. Note that these statistics include single-entry thunks from libraries, as
well as the benchmark program code. The results vary widely. Most programs do
not appear to use single-entry thunks much, while a few use many, up to 74%
for cryptarithm?.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

28 L. Sergey et al.

Table 1. Analysis results for nofib: ratios of syntactic one-shot lambdas, syntactic
single-entry thunks and runtime entries into single-entry thunks

Program Syntactic 1S-4 Syntactic 1U-Thunks Runtime 1U-Thunks
anna 4.0% 7.2% 2.9%
banner 14.3% 20.0% 5.3%
boyer2 3.3% 20.0% 0.0%
bspt 5.0% 15.4% 1.5%
cacheprof 7.6% 11.9% 5.1%
calendar 5.7% 0.0% 0.2%
circsim 2.6% 4.0% 3.0%
constraints 2.0% 3.2% 4.5%
cryptarithmil 0.0% 0.0% 5.3%
cryptarithm?2 0.6% 3.0% 74.0%
cse 4.2% 2.8% 1.8%
eliza 0.0% 0.0% 48.7%
expert 3.4% 4.3% 3.9%
fem 19.2% 17.6% 1.7%
fft2 6.6% 0.0% 0.4%
fluid 7.3% 4.6% 2.3%
fulsom 5.4% 7.3% 8.0%
gamteb 40.2% 22.0% 0.9%
ged 12.5% 0.0% 0.0%
gen_regexps 5.6% 0.0% 0.2%
hpg 5.2% 0.0% 41%
integer 8.3% 0.0% 0.0%
knights 10.4% 23.4% 1.3%
life 3.2% 0.0% 1.8%
1ift 2.1% 0.0% 1.1%
listcopy 11.5% 21.4% 1.8%
mandel 12.3% 4.2% 3.9%
mkhprog 27.4% 20.8% 5.8%
nucleic2 3.5% 3.1% 3.2%
parser 7.5% 24.7% 1.4%
partstof 5.8% 10.7% 0.1%
puzzle 16.5% 28.0% 68.9%
reptile 10.2% 13.8% 1.0%
rewrite 6.7% 6.0% 19.9%
scc 0.0% 0.0% 0.8%
solid 5.5% 2.4% 0.0%
sphere 7.8% 6.2% 20.0%
typecheck 3.9% 9.4% 0.9%
wheel-sievel 10.5% 0.0% 0.0%
x2n1 0.0% 0.0% 0.1%

... and 50 more programs

Arithmetic mean 10.3% 12.6% 5.5%

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 29

It is important to note that the results of the optimised execution, although
related with the numbers of one-shot lambdas and single-entry thunks in the
nofib programs themselves, are much likely caused by the analysis results and the
subsequent optimisations for the standard libraries.

7.1 Optimising nofib programs

In the end, of course, we seek improved runtimes, although the benefits are likely
to be modest. One-shot lambdas do not confer any performance benefits directly;
rather, they remove potential obstacles from other compile-time transformations.
Single-entry thunks, on the other hand give an immediate performance benefit, by
omitting the push-update-frame code, but it is a small one.

Table 2 summarises the effect of cardinality analysis when running the nofib
suite. “Allocation” is the change in how much heap was allocated when the program
is run and “Runtime” is a change in the actual program execution time.

In Section 2.1, we mentioned a hack, used by Gill in GHC, in which he hard-
coded the call-cardinality information for three particular functions: build, foldr
and runST. Our analysis renders this hack redundant, as now the same results can
be soundly inferred. We therefore report two sets of results: relative to an unhacked
baseline, and relative to a hacked baseline. In both cases, the binary size of the
(statically) linked binaries falls slightly but consistently (2.0% average), which is
welcome. This may be due to less push-update-frame code being generated, but
it’s virtually impossible to say for sure: Any change that affects inlining (which
discovering one-shot-lambdas certainly does) has knock-on effects propagate down
the long optimisation pipeline, with unpredictable consequences for code size.

Considering allocation, the numbers relative to the unhacked baseline are quite
encouraging, but relative to the hacked compiler the improvements are modest:
the hack was very effective! Otherwise, only one program, nucleic2 shows a
significant (11%) reduction in allocation, which turned out to be because a thunk
was floated inside a one-shot lambda and ended up never being allocated, exactly
as advertised. One can notice, though, that the new compiler sometimes performs
worse than the cardinality-unaware versions in a very few benchmarks in nofib.
In a highly optimising compiler with many passes, it is very hard to ensure that
every “optimisation” always makes the program run faster; and, even if a pass does
improve the program per se, to ensure that every subsequent pass will carry out all
the optimisations that it did before the earlier improvement was implemented. The
data show that we do not always succeed (even comparing to the unhacked baseline
compiler).

A shortcoming of nofib suite is that runtimes tend to be short and very noisy:
Even with the execution key slow only 18 programs from the suite run for longer
than half second (with a maximum of 2.5 seconds for constraints). Among those
long-runners, the biggest performance improvement is 8.8% (for integer), with an
average of 2.3%. To produce more realistic average numbers for the whole nofib
suite, we have re-run the suite several times. As a result, some short-running outliers
have been averaged out, and overall runtime statistics for individual programs has

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

30 L. Sergey et al.

Table 2. Cardinality analysis-enabled optimisations for nofib

Allocation Runtime
Program No hack Hack No hack Hack
anna —22% —0.2% +0.1% +0.1%
banner +3.5% —0.1% —0.0% —0.0%
boyer?2 —0.4% —0.4% +0.0% —0.0%
bspt —22% -0.0% —0.0% +0.0%
cacheprof —7.5% —0.6% —6.0% —1.7%
calendar —9.2% +0.2% —0.0% —0.0%
circsim —7.5% —0.0% —4.3% —2.0%
constraints —0.9% —0.0% —1.2% —0.2%
cryptarithml —0.0% —0.0% +2.3% +0.0%
cryptarithm2 —0.3% —0.0% —2.3% —0.0%
cse —4.6% —0.0% +0.0% +0.0%
eliza —22% —0.1% +0.0% +0.0%
expert —1.8% —0.1% —0.0% —0.0%
fem -2.2% —0.0% —0.0% —0.0%
fft2 -34.8% —0.0% +0.0% —0.0%
fluid —3.4% —0.0% —0.0% —0.0%
fulsom —0.7% —0.0% —0.0% +1.8%
gamteb +3.1% +0.5% +0.0% +0.0%
gecd —15.5% —0.0% —0.0% —0.0%
gen_regexps —1.0% —0.1% —0.0% —0.0%
hpg —2.0% —1.0% —0.1% —0.0%
integer —0.0% —0.0% —8.8% —6.6%
knights —1.9% —0.0% +0.0% +0.0%
life —0.8% —0.0% —3.4% +0.0%
lift —1.9% —0.0% —0.0% —0.0%
listcopy +1.2% —0.0% +0.1% +0.1%
mandel —1.9% —0.0% +0.0% +0.0%
mkhprog —11.9% +0.1% —0.0% —0.0%
nucleic2 —14.1% —10.9% +0.0% +0.0%
parser —0.2% —0.2% +0.0% +0.0%
partstof —95.5% —0.0% —0.0% —0.0%
puzzle —8.2% —0.0% +0.1% +0.1%
reptile —2.7% —0.0% —0.0% —0.0%
rewrite —6.6% —0.0% —0.0% —0.0%
scc —0.3% —0.4% —0.0% —0.0%
solid —0.6% —0.0% +0.0% +0.0%
sphere —1.5% —1.5% —0.0% —0.1%
typecheck —0.5% —0.0% +0.1% —0.1%
wheel-sievel —18.7% —0.0% —4.0% +0.7%
x2n1 —29.9% —0.0% —0.0% —0.0%

... and 50 more programs

Best improvement 95.5% 10.9% 8.8% 6.6%
Worst degradation 3.5% 0.5% 2.3% 2.6%
Geometric mean improvement 6.0% 0.3% 1.8% 1.0%

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 31

Table 3. Optimisation of the programs from the computer language benchmark game

Program Runtime 1U-Thunks No-Opt Runtime Runtime A
binary-trees 49.4% 66.83 s —9.2%
fannkuch-redux 0.0% 158.94 s —3.7%
n-body 5.7% 3841 s —4.4%
pidigits 8.8% 41.56 s —0.3%
spectral-norm 4.6% 17.83 s —1.7%

Table 4. Analysis and optimisation results for selected hackage libraries

Library Syntactic 1S-2 Syntactic 1U-Thunks Benchmark name Allocation A
attoparsec 32.8% 19.3% benchmarks —7.1%
bench —0.2%
binary 16.8% 0.9% builder —0.3%
get —4.3%
. o o boundcheck —0.5%
bytestring 5.3% 4.3% all —6.6%
cassava 26.4% 9.8% benchmarks —0.7%

slightly changed comparing to the conference version of this paper (Sergey et al
2014).

For more realistic numbers, we measured the improvement in runtime, relative to
the hacked compiler, for several programs from the Computer Language Benchmarks
Game.® The results are shown in Table 3. All programs were run with the official
shootout settings (except spectral-norm, to which we gave a bigger input value
of 7,500) on a 2.7 GHz Intel Core i7 OS X machine with 8 Gb RAM. These
are uncharacteristic Haskell programs, optimised to within an inch of their life by
dedicated Haskell hackers. There is no easy meat to be had, and indeed the heap-
allocation changes are so tiny (usually zero, and —0.2% at the most in the case of
binary-trees) that we omit them from the table. However, we do get one joyful
result: a solid speedup of 9.2% in binary-trees due to fewer thunk updates. As
you can see, nearly half of its thunks entered at runtime are single-entry.

7.2 Real-world programs

To test our analysis and the cardinality-powered optimisations on some real-world
programs, we chose a number of continuation-heavy libraries from the hackage
repository’: attoparsec, a fast parser combinator library, binary, a lazy binary

% http://benchmarksgame.alioth.debian.org/
7 http://hackage.haskell.org/

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

32 L. Sergey et al.

Table 5. Compilation of large nofib programs with optimised GHC

GHC Allocation A GHC Runtime A

Program LOC No hack Hack No hack Hack

anna 5740 —1.6% —1.5% —0.8% —0.4%
cacheprof 1600 —1.7% —0.4% —2.3% —1.8%
fluid 1579 —1.9% —1.9% —2.8% —1.6%
gamteb 1933 —0.5% —0.1% —0.5% —0.1%
parser 2379 —0.7% —0.2% —2.6% —0.6%
veritas 4674 —1.4% —0.3% —4.5% —4.1%

serialisation library, bytestring, a space-efficient implementation of byte-vectors
and cassava, a parsing and encoding library for CSV-files.

These libraries come with accompanying benchmark suites, which we ran both
for the baseline compiler and the cardinality-powered one. Table 4 contains the
ratios of syntactic one-shot lambdas and single-entry thunks for the libraries, as
well relative improvement in memory allocation for particular benchmarks. Since
we were interested only in the absolute improvement against the state of the art, we
made our comparison with respect to the contemporary version of (hacked) baseline
GHC. The encouraging results for attoparsec are explained by its relatively high
ratio of one-shot lambdas, which is typical for parser combinator libraries.

GHC itself is a very large Haskell program, written in a variety of styles, so we
compiled it with and without cardinality-powered optimisations, and measured the
allocation and runtime improvement when using the two variants to compile several
programs. The results are shown in Table 5. As in the other cases, we get modest
but consistent improvements.

7.3 Precision and missed opportunities

After having formally established that our changes are semantically correct, and
empirically that they are beneficial, one might still wonder how complete they are:
Does our analysis find all single-entry thunks and one-shot functions, and if not,
what opportunities did it miss? Any static analysis will be approximate, but it would
not be surprising if the analysis missed some low-hanging fruit.

In this section, we report on a study in which we use a specially instrumented
version of the compiler to make dynamic, runtime measurements to see how often
each thunk is entered in an actual program run. Then we compare these runtime
figures with the results of the static analysis.

In this study, we focus only on single-entry thunks. One could imagine doing a
similar study for one-shot lambdas, but we leave that as further work.

7.3.1 Runtime instrumentation

Our goal is this: For every dynamically allocated instance of a thunk, we want to
observe how often it is used.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 33

(a) (b) (0

Fig. 10. Heap during evaluation of a thunk ¢ (uninstrumented runtime). (a) Before
evaluation, (b) After evaluation, (c) After garbage collection.

To see why this cannot be observed in an unmodified version of the runtime, let
us recall how thunks are evaluated in GHC. At run time, a thunk is represented
as a closure that is stored in the heap, referencing its program code as well as the
values captured by its free variables, as pictured in Figure 10. Upon its first use, the
closure is entered, i.e., jumped to. Immediately after that, the thunk code T performs
the following actions:

1. First, it replaces the closure by a black hole, a special type of closure used to

mark values under evaluation,

2. Next, pushes an update frame, which will be activated later, onto the stack,

3. Then, it runs the actual code of the closure, which will eventually evaluate to
a value C.

4. This value is then returned via the stack to the update frame, which replaces
the black hole by an indirection 1, pointing to the returned value C; see
Figure 10(b).

5. Finally, the value is returned to the code that triggered the evaluation of the
thunk T.

Any subsequent use of a pointer to (what used to be) the thunk T enters the
indirection I, which simply returns the value C. We might hope to count the number
of times T is used by counting the number of times the indirection is entered.

However, the next run of the garbage collector replaces a pointer to the indirection
I by a direct pointer to the indirection’s target C (Figure 10(c)). Hence, after garbage
collection, only the final value remains in the heap, without any indication that this
value came from our original thunk T. Therefore, we have no way to relate any
subsequent uses of this value to the original thunk T, whose runtime cardinality we
were planning to measure.

In order to observe all uses of a thunk, we implemented a new type of closures in
GHC’s runtime, dubbed counting indirection (CI). When entered, these indirections
behave as normal indirections, i.e., they evaluate the closure they are pointing to.
The important difference is that the garbage collector does not erase them, but
instead copies them like any other closure. More precisely, we do the following:

e When dynamically allocating a thunk in the heap, we allocate two heap objects,
the thunk itself T, and a CI that points to T (Figure 11(a)).

e As well as pointing to T, the dynamically allocated CI also contains

— Cl.cnt: a pointer to a static data structure, CNT;

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

34 L. Sergey et al.

Lo [T e [T
e—a |y Jof e—a [1] e—rfafl] 2]

QCNT‘IO‘Z‘S‘ QCNT‘IO‘3‘5‘ Qcm‘m‘z‘ﬂ

(a) (b) (c)

Fig. 11. Heap during evaluation of a thunk ¢ (instrumented runtime). (a) Before evaluation,
(b) After first evaluation, (c) After second evaluation (and garbage collection).

— Cl.entries: a private count of the number of times the indirection has been
entered;

e There is a single, static CNT record for each syntactic closure, or allocation site
A. The CNT record contains three fields®:

— CNT.allocs: the number of times allocation site A has been executed; that is,
how many thunks have been allocated by A.

— CNT.once: the number of those thunks that have been entered exactly once.

— CNT.multi: the number of those thunks that have been entered more than
once.

When the CI is entered the first time (Cl.entries = 0), it increments Cl.entries,
and the CNT.once counter in the static CNT record. If it is entered a second time
(Cl.entries = 1), it again increments Cl.entries, decrements CNT.once and increments
CNT.multi. Further uses of the CI simply increase Cl.entries.

A particular instance of this modified scenario is depicted in Figure 11(a), where
the counter CNT records indicates that so far 10 closure instances have been
allocated, out of which two have been used at most once and five were used multiple
times. After the first evaluation of the newly allocated thunk, the private Cl.entries
field is incremented, along with CNT.once (Figure 11(b)). After the second entry,
Cl.entries becomes 2, while the CNT.multi field has gone from 5 to 6, recording that
one more instance of this thunk has been entered more than once (Figure 11(c)).

7.3.2 Evaluating soundness and completeness

This instrumentation allowed us to check the actual implementation for two things:

e Soundness. Does the executing program enter any thunk multiple times that the
analysis determined as single-entry? If so, the analysis is wrong.

8 The static CNT record contains additional fields, not relevant to the discussion.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 35

Table 6. Precision of the analysis: Allocated thunks

Syntactic thunks Dynamic thunks

Determined to be Determined to be
Observed Single entry Multi entry Single entry Multi entry
Never used 19 525 157444 1,608,128
Entered once 1,310 3,498 4,893,280 171,101,068
Multiple times 0 3,653 0 66,457,533

e Completeness. How many thunks are thought to be multiple-entry by the analysis,

but are entered only once during execution? Perhaps, a more precise analysis
could find more single-entry thunks?
Of course, in a different execution of the same program, the same syntactic thunk
might be entered more than once, so the analysis is not necessarily at fault.
Moreover, the analysis is necessarily approximate. But still, it is worth a manual
analysis of these apparently missed opportunities.

We compiled programs from the nofib benchmark suite with the instrumentation
described above, linked them against an uninstrumented base library and ran each
program once. We obtained the results in Table 6. The first pair of columns,
“syntactic thunks”, gives the results by allocation site. For example, across all the
program runs, there were 19 allocation sites that were determined to be single-entry,
but were never entered at all.

The second pair of columns, “dynamic thunks”, gives the result by dynamically
allocated thunk instances. This emphasises those thunks that are evaluated most
often; allocation sites with very few instances don’t matter much. For example,
across all program runs there were 4,893,280 thunks allocated at allocation sites
marked single-entry, that were indeed entered exactly once.

On soundness the news is good: The table confirms that every thunk that we
determined to be single-entry (the first column of each pair) was indeed used at
most once (the zero entries in the third row).

On completeness, the news is not so good. Consider all the syntactic thunks (i.e.,
allocation sites) whose instances were entered at most once (i.e., the first two rows
of the table). These are the candidates that cardinality analysis might determine as
single-entry. But only 1,329 (i.e., 1,310 4+ 19) were so determined, with 4,023 being
missed. So we are missing 75% of the plausible opportunities! It get worse when
we consider the dynamic-thunk columns: Only 2.8% of the thunks that are actually
entered at most once are identified as such by the analysis.

So what about these 172,709,196 dynamic thunks that were used once or less, but
where our analysis did not predict that? We call them the “plausible opportunity”
thunks. The natural question is: could the analysis have done better for these
thunks?

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

36 L. Sergey et al.

Extended Syntax
n = 1| P2(r)
m = 0|l|wP(r)

r datacon | fix | cpe | both | ...

\dr&d;:d; dl&dzzd3‘

nyxdy &npxdy = (nl&nz)*(dludz) O”‘(dl)uC”Z(dz) = O”'&”l(dludz)
|77,1|J7L2:77,3 nl&n2:n3|
ur = 1 1&1 = o {both}
Ilor = or l1&or = o (rU{both})
orldl = or or&l = o (rU{both})
orlorn = o(rnUn) on&or = o(rUrnU{both})

Fig. 12. Modified syntax and operations to track reasons of precision loss.

7.4 Missed opportunities

To learn more about the missed opportunities, we extended the usage types so that
with every @ occurring in a demand on a plausible-opportunity thunk, we could
also track the reason for that pessimistic conclusion.

To that end, we extended the type for cardinalities (n and m in Figure 1) to
keep track of a set of reasons, which are just strings injected at various places in
the code; for example, the reason datacon is added to the many-used demand put
on the arguments of a data constructor application when the incoming demand on
its result is non-informative. The operations U and & combine reasons from both
arguments, as shown in Figure 12. When reporting the counters of the instrumented
runtime presented in the previous section, all reasons for this particular thunk to
not be assumed one-shot are printed along with it.

Using this more detailed analysis, we found that almost all the plausible-
opportunity thunks fall into one of four categories:

1. The large majority of missed opportunities (71.7%) are due to thunks that are
stored in constructors (e.g., in tuples, lists, arrays). There are two reasons for poor
precision:

e Our analysis can transport the demand on tuples and other product types
into the argument of constructors. But this is only helpful if the demand on
the product type is known. Since the analysis looks at function definitions
before their uses, this works in the case of £ (x,y), where we can use the nested
demand information in the strictness signature of f to get information on x and
y. However, if a tuple is returned from a function such as f x = (x+1, y-1),
the demand on the result of f is not known and we have to assume the thunk
x+1 to be used multiple times. Returning a constructor in this way is a very
frequent pattern.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 37

e Currently, our analysis only computes nested demand information for product
types. Extending it to sum types is possible, but experiments using a prototype’
showed no relevant improvements. This is not surprising, as data constructors
of sum types are routinely returned from functions and thus especially affected
by the aforementioned problem. Additionally, extending demand analysis to
sum-types poses the problem of getting precise results for recursive types (which
are almost invariably sums), not addressed by this work.

2. The next frequent case, accounting for 22.2% of missed opportunities, arises from
when the cardinality analysis has to give up because the use of the thunk occurs
inside a recursive function.!® This is often the result of using foldr together
with short-cut deforestation (Gill et al. 1993), and typically results in code of the
following shape:

let foo xs = let thunk = f x
in let go [] = thunk
go (x:xs) = g x (go xs)
in go xs

Clearly, the thunk is called at most once, but the call comes from a recursive func-
tion go, where the cardinality analysis has to make the conservative assumption
that everything used by go is used more than once, as discussed in Section 6.5.
In order for our analysis to detect that thunk in foo is called at most once, it
would have to see that

a. although it is called from within a recursive function, it is not called together
with the recursive function, so it lies, in a way, on the exit path from the
loop,

b. the recursion here is linear: once it is started, its exit path is executed once,
and

c. the recursion is initially started at most once.

An analysis that is capable of doing such reasoning is Call Arity (Breitner 2015a),
which is a separate analysis in GHC. Call Arity is a forward analysis, while our
analysis is a backwards analysis, so combining the two to improve the handling
of recursive functions is non-trivial and future work.

3. Around 4% of the missed opportunities are thunks created in the last Core-to-
Core pass, which transforms the program into A-normal form, in preparation
of lowering the program to STG. This involves introducing let-bindings for all
non-trivial function arguments. Usually, the pass will use the information found
in the function’s strictness signature and attach it to the newly created thunks,
but if there is no such signature, or the function is not saturated, a conservative
assumption is made here. There might be room for improvement here, but 4% is
hardly a fat target.

9 provided by Omer Sinan Agacan.
10 This number is severely inflated by a single static thunk in fannkuch-redux accounting for 21.0%.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

38 L. Sergey et al.

4. Only 1.3% of the missed opportunities are due to uses of the both operator (&).
Such a case can arise from a call to the function maybe d £ mb. The function
maybe uses either d or £ (depending on mb), but never both; the analysis does not
see that.

Less than 1% of missed opportunities have other reasons (e.g., arguments to
primitive operations); 0.2% of missed opportunities are due to more than one
reason.

In short, there does not seem to be a lot of low-hanging fruit here. We are not
optimistic for radical improvements in the treatment of data structures. Probably
the best opportunity is using Call Arity to improve case (2).

8 Related work
8.1 Abstract interpretation for usage and absence

The goal of the traditional usage/absence analyses is to figure out which parts of
the programs are used, and which are not (Peyton Jones & Partain 1994). This
question was first studied in the late 80’s, when an elegant representation of usage
analysis in terms of projections (Hinze 1995) was given by Wadler & Hughes (1987).
Their formulation allows one to define a backwards analysis — inferring the usage
of arguments of a function from the usage of its result — an idea that we adopted
wholesale. Our work has important differences, notably (a) call demands C™(d),
which appear to be entirely new; and (b) the ability to treat nested lambdas, which
requires us to capture the usage of free variables in a usage signature. Moreover our
formal underpinning is quite different to their (denotational) approach, because we
fundamentally must model sharing.

8.2 Type-based approaches

The notion of “single-entry” thunks and “one-shot” lambdas is reminiscent of linear
types (Girard 1995; Turner & Wadler 1999), a similarity that was noticed very early
(Launchbury et al. 1993). Linear types per se are far too restrictive (see, for example,
Wansbrough & Peyton Jones (1999, Section 2.2) for details), but the idea of using
a type system to express usage information inspired a series of “once upon a type”
papers!! (Turner et al. 1995; Gustavsson 1998; Wansbrough & Peyton Jones 1999;
Wansbrough 2002).

Alas, a promising idea turned out to lead, step by step, into a deep swamp.
First, subtyping proved to be essential, so that a function that used its argument
once could have a type like Int' — Int, but still be applied to an argument
z that was used many times and had type Int® (Wansbrough & Peyton Jones
1999). Then usage polymorphism proved essential to cope with currying: “/Using the
monomorphic system] in the entirety of the standard libraries, just two thunks were
annotated as used-once” (Wansbrough 2002, 3.7). Gustavsson advocated bounded

I The title, as so often, is due to Wadler.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 39

polymorphism to gain greater precision (Gustavsson & Sveningsson 2001), while
Wansbrough extended usage polymorphism to data types, sometimes resulting in
data types with many tens of usage parameters. The interaction of ordinary type
polymorphism with all these usage-type features was far from straightforward. The
inference algorithm for a polymorphic type system with bounds and subtyping is
extremely complex. And so on. Burdened with these intellectual and implementation
complexities, Wansbrough’s heroic prototype in GHC (around 2,580 brand-new lines
of code; plus pervasive changes to thousands of lines of code elsewhere) turned out
to be unsustainable, and never made it into the main trunk.

Our system sidesteps these difficulties entirely by treating the problem as a
backwards analysis like strictness analysis, rather than as a type system (even
though we use the type system vocabulary when defining demand types). This is
what gives the simplicity to our approach, but also prevents it from giving “rich”
demand signatures to third- and higher order functions: Our usage types can account
uniformly only for the first- and second-order functions, thanks to call demands.
For example, what type might we attribute to the following function?

fxg=gx

The usage of x depends on the particular g in the call, so usage polymorphism
would be called for. This is indeed more expressive but it is also more complicated.
We deliberately limit precision for very higher order programs, to gain simplicity.

At some level, abstract interpretation and type inference can be seen as different
sides of the same coin, but there are some interesting differences. For example,
our LETDN and LETUP rules are explicit about information flow; in the former,
information flows from the definition of a function to its uses, while in the latter
the flow is reversed. Type systems use unification variables to allow much richer
information flow — but at the cost of generating constraints involving subtyping and
bounds that are tricky to solve.

Another intriguing difference is in the handling of free variables:

let £ = \x. y + x in if b then f 1 else y

How many times is the free variable y evaluated in this expression? Obviously
just once, and LETDN discovers this, because we unleash the demand on y at £’s call
site, and take the least upper bound of the two branches of the if. But type systems
behave like LETUP: compute the demand on f (namely, called once) and from that
compute the demand on y. Then combine the demand on y from the body of the
let (used at most once), and from £’s right-hand side (used at most once), yielding
the result that y is used many times. We have lost the fact that the two uses come
from different branches of the conditional.

The fact that our usage signatures include the ¢ component makes them more
expressive than mere types—unless we extend the type system yet further with a
polymorphic effect system (Hage et al. 2007; Holdermans & Hage 2010; Verstoep
& Hage 2015). Moreover, the analysis approach deals very naturally with absence,
and with product types such as pairs, which are ubiquitous. Most of type-based
approaches do not do so well here (except for the type-based analysis by Verstoep &

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

40 L. Sergey et al.

Hage (2015), which handles absence, but has not been implemented and evaluated
in practice).

Comparing to polymorphic effect systems, a weakness of our approach is that
as soon as a value is stored in a data structure, we entirely lose track of its usage
cardinality. Type-based approaches can use usage polymorphism to track usage
within data structures. Consider, for example, a usage-polymorphic data type Tree,
defined as follows:

data Tree c¢c = Leaf (Int ->c Int)
| Node (Tree c) (Tree c)

2

where “->c” is a type of functions called no more than c times. So a value of
type (Tree 1) is a tree of called-once functions. This approach works, but when
Wansborough tried it at scale he found that he had to add thousands of cardinality
variables to some data types (Wansbrough 2002, Section 6.4.11). So the approach
did not appear to scale well at all.

In short, an analysis-based approach has proved much simpler intellectually than
the type-based one, and far easier to implement. One might wonder if a clever type
system might give better results in practice, but Wansbrough’s results (mostly zero
change to allocation; one program allocated 15% more, one 14% less (Wansbrough
2002)) were no more compelling than those we report. Our proof technique does
however share much in common with Wansbrough and Gustavsson’s work, all three
being based on an operational semantics with an explicit heap. However, ours is
the only one that deals with one-shot lambdas; the others are concerned only with
single-entry thunks.

One other prominent type-based usage system is Clean’s uniqueness types (Barend-
sen & Smetsers 1996). Clean’s notion of uniqueness is, however, fundamentally
different to ours. In Clean, a unique-typed argument places a restriction on the
caller (to pass the only copy of the value), whereas for us a single-entry argument
is a promise by callee (to evaluate the argument at most once). In a related analysis
framework by Hage et al. (2007), based on a polymorphic type-and-effect system,
a similar dichotomy is accounted for by two different subeffecting rules (T-SuBUP)
and (T-SusDown).

8.3 Other related work

Call demands, introduced in this paper, appear to be related to the notion of
applicativeness, employed in the recent work on relevance typing (Holdermans
& Hage 2010). In particular, applicativeness means that an expression is either
“guaranteed to be applied to an argument” (S), or “may not be applied to an
argument” (L). In this terminology, S corresponds to a “strong” version of our
demands C“(d), which requires d C U, and L is similar to our U. The seq-like
evaluation of expressions corresponds to our demand HU. However, neither call-
nor thunk-cardinality are captured by the concept of applicativeness.

Abstract counting or sharing analysis conservatively determines which parts of
the program might be used by several components or accessed several times in the

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 41

course of execution. Early work employed a forward abstract interpretation frame-
work (Hudak 1986; Goldberg 1987). Since the forward abstract interpreter makes
assumptions about arguments of a function it examines, the abstract interpretation
can account for multiple combinations of those and may, therefore, be extremely
expensive to compute.

Recent development on the systematic construction of abstract-interpretation-
based static analyses for higher order programs, known as abstracted abstract
machines, makes it straightforward to derive an analyser from an existing small-
step operational semantics, rather than come up with an ad-hoc non-standard
one (Van Horn & Might 2010). This approach also greatly simplifies integration
of the counting abstract domain to account for sharing (Might & Shivers 2006).
However, the abstract interpreters obtained this way are whole-program forward
analysers, which makes them non-modular. It would be, however, an interesting
topic for the future work to build a backwards analysis from abstracted abstract
machines.

8.4 Related analyses in GHC

Besides the implementation of the cardinality analysis, we present there are two
further related analyses employed by the compiler.

The goal of arity analysis (Xu & Peyton Jones 2005) is to enable the transformation
known as lambda-floating by providing an answer to the question “given a function
£, what is the minimal number of arguments £ will be always given when called?”.
Taking the number of top-level lambdas is sound, but imprecise. We believe that the
information necessary for lambda-floating can be inferred from the results of our
cardinality analyser. What makes us sure is the observation that operationally an
inferred call demand C(C(...)) for a function f indicates that £, whenever used, is
applied to at least as many arguments as there are Cs in the demand.

The goal of Call Arity analysis (Breitner 2015a) is similar: It also tries to determine
a lower bound on the number of arguments a function is given. Motivated by runtime
inefficiencies caused by applying list fusion to left folds, the main strength of the call
arity analysis is that it is able to determine that a thunk or a function is used once
even if the call site lies within a recursive function. In order to do so, it analyses
all 1let-bindings downwards and returns co-call graphs, indicating which functions
and thunks are called together. For this analysis, an Isabelle formalisation exists
that proves not only that the analysis and transformation preserves the semantics,
but also and more notable that it does not degrade the program (Breitner 2015b).
A more detailed treatment of the analysis and its formalisation can be found in the
third-named author’s thesis (Breitner 2016).

9 Conclusion

The fourth-named author has been trying to crack this problem for nearly two
decades. The tradeoff between precision, information flow, complexity and im-
plementation payoff, is a complex one. We now have better news. The cardinality

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

42 L. Sergey et al.

analysis described here is simple to implement (it added 250 lines of code to a 140,000
line compiler), and, even in the presence of the shortcomings and potential precision
losses identified in Section 7.3, it gives real improvements for serious programs, not
just for toy benchmarks; for example, GHC itself (a very large Haskell program)
runs 4% faster. In the context of a 20-year-old optimising compiler, a gain of this
magnitude is a solid win.

Acknowledgements

We are grateful to Johan Tibell for the suggestion to use benchmark-accompanied
hackage libraries and the cabal bench utility for the experiments in Section 7.2.
We also thank the POPL 2014 and JFP reviewers for their substantial, detailed, and
constructive feedback. Finally, we are grateful to Matthias Felleisen for his work as
our JFP editor.

References

Barendsen, E. & Smetsers, S. (1996) Uniqueness typing for functional languages with graph
rewriting semantics. Math. Struct. Comput. Sci. 6(6), 579-612.

Breitner, J. (2015a) Call arity. In Trends in functional programming. LNCS, vol. 8843. Springer,
pp- 34-50.

Breitner, J. (2015b) Formally proving a compiler transformation safe. In Proceedings of the
ACM SIGPLAN Workshop on Haskell. ACM, pp. 35-46.

Breitner, J. (2016) Lazy Evaluation: From Natural Semantics to a Machine-Checked Compiler
Transformation. PhD Thesis, Karlsruhe Institute of Technology.

Gill, A. (1996) Cheap Deforestation for Non-Strict Functional Languages. PhD Thesis,
University of Glasgow, Department of Computer Science.

Gill, A., Launchbury, J. & Peyton Jones, S. L. (1993) A short cut to deforestation. In
Proceedings of the 6th ACM Conference on Functional Programming Languages and
Computer Architecture. ACM Press, pp. 223-232.

Girard, J.-Y. (1995) Linear logic: Its syntax and semantics. In Proceedings of the Workshop
on Advances in Linear Logic. Cambridge University Press, pp. 1-42.

Goldberg, B. (1987) Detecting sharing of partial applications in functional programs. In
Functional Programming Languages and Ccomputer Architecture. LNCS, vol. 274. Springer-
Verlag.

Gustavsson, J. (1998) A type based sharing analysis for update avoidance and optimisation.
In Proceedings of the 3rd ACM SIGPLAN International Conference on Functional
Programming (ICFP’98). ACM, pp. 39-50.

Gustavsson, J. & Sveningsson, J. (2001) A usage analysis with bounded usage polymorphism
and subtyping. In Implementation of Functional Languages (IFL 2000), Selected Papers.
LNCS, vol. 2011. Springer, pp. 140-157.

Hage, J., Holdermans, S. & Middelkoop, A. (2007) A generic usage analysis with subeffect
qualifiers. In Proceedings of the 12th ACM SIGPLAN International Conference on
Functional Programming (ICFP 2007). ACM, pp. 235-246.

Henglein, F. (1994) Iterative fixed point computation for type-based strictness analysis. In
Proceedings of the Ist International Static Analysis Symposium (SAS’94). LNCS, vol. 864.
Springer-Verlag, pp. 395-407.

Hinze, R. (1995) Projection-Based Strictness Analysis - Theoretical and Practical Aspects. PhD
Thesis, Bonn University.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 43

Holdermans, S. & Hage, J. (2010) Making “stricternes” more relevant. In Proceedings of
the 2010 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation
(PEPM 2010). ACM, pp. 121-130.

Hudak, P. (1986) A semantic model of reference counting and its abstraction. In
Proceedings of the 1986 ACM Conference on Lisp and Functional Programming. ACM,
pp- 351-363.

Jones, R. (1992) Tail recursion without space leaks. J. Funct. Program. 2(1), 73-79.

Kahn. (1987) Functional Programming Languages and Ccomputer Architecture. LNCS, vol. 274.
Springer-Verlag.

Launchbury, J., Gill, A., Hughes, J., Marlow, S., Peyton Jones, S. L. & Wadler, P. (1993)
Avoiding unnecessary updates. In Workshops in Computing, Launchbury, J. & Sansom, P.
M. (eds). Springer.

Launchbury, J. & Sansom, P. M. (eds). (1993) Workshops in Computing. Springer.

Marlow, S. & Peyton Jones, S. L. (2006) Making a fast curry: Push/enter versus eval/apply
for higher-order languages. J. Funct. Program. 16(4-5), 415-449.

Might, M. & Shivers, O. (2006) Improving flow analyses via I'CFA: Abstract garbage
collection and counting. In Proceedings of the 11th ACM SIGPLAN International
Conference on Functional Programming (ICFP 2006). ACM.

Moran, A. & Sands, D. (1999) Improvement in a lazy context: An operational theory for
call-by-need. In In Popl’99: Proceedings of the 26th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. ACM, pp. 43-56.

Partain, W. (1993) The nofib benchmark suite of Haskell programs. In Workshops in
Computing. Springer.

Peyton Jones, S. L. (1992) Implementing lazy functional languages on stock hardware: The
spineless tagless G-machine. J. Funct. Program. 2(2), 127-202.

Peyton Jones, S. L. & Partain, W. (1994) Measuring the effectiveness of a simple strictness
analyser. In Proceedings of the 1993 Glasgow Workshop on Functional Programming.
Springer, pp. 201-220.

Peyton Jones, S. L., Partain, W. & Santos, A. (1996) Let-floating: Moving bindings to give
faster programs. In Proceedings of the 1st ACM SIGPLAN International Conference on
Functional Programming (ICFP’96). ACM, pp. 1-12.

Peyton Jones, S. L. & Santos, A. (1998) A transformation-based optimiser for Haskell. Sci.
Comput. Program. 32(1-3), 3-47.

Sabry, A. & Felleisen, M. (1992) Reasoning about programs in continuation-passing style. In
Proceedings of the 1992 ACM Conference on Lisp and Functional Programming. LISP
Pointers, vol. V, no. 1. ACM, pp. 288-298.

Sergey, 1., Vytiniotis, D. & Peyton Jones, S. L. (2014) Modular, higher-order cardinality
analysis in theory and practice. In Proceedings of the 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL 2014). ACM, pp.

335-348.
Sestoft, P. (1997) Deriving a lazy abstract machine. J. Funct. Program. 7(3), 231-
264.

Turner, D. N. & Wadler, P. (1999) Operational interpretations of linear logic. Theor. Comput.
Sci. 227(1-2), 231-248.

Turner, D. N., Wadler, P. & Mossin, C. (1995) Once upon a type. In Proceedings of the
7th ACP Conference on Functional Programming Languages and Computer Architecture.
ACM, pp. 1-11.

Van Horn, D. & Might, M. (2010) Abstracting abstract machines. In Proceedings of the
15th ACM SIGPLAN International Conference on Functional Programming (ICFP 2010).
ACM, pp. 51-62.

Verstoep, H. & Hage, J. (2015) Polyvariant cardinality analysis for non-strict higher-order
functional languages: Brief announcement. In Proceedings of the 2015 ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation (PEPM 2015). ACM,
pp- 139-142.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

44 L. Sergey et al.

Wadler, P. & Hughes, J. (1987) Projections for strictness analysis. In Functional Programming
Languages and Ccomputer Architecture, Kahn, G. (ed.). LNCS, vol. 274. Springer-Verlag,
pp. 385-407.

Wansbrough, K. (2002) Simple Polymorphic Usage Analysis. PhD Thesis, Computer
Laboratory, University of Cambridge.

Wansbrough, K. & Peyton Jones, S. L. (1999) Once upon a polymorphic type. In Popl’99:
Proceedings of the 26th Annual ACM sigplan-sigact Symposium on Principles of
Programming Languages. ACM, pp. 15-28.

Xu, D. & Peyton Jones, S. L. (2005) Arity Analysis. Unpublished draft.

Appendix
A Proofs of soundness of the analysis

This appendix provides typing rules for stacks and heaps, omitted from the main
paper body and proves the soundness of the analysis (Section 4).

A.1 Stack and heap typing for analysis safety

Definition A.1 (Configuration typing)

We write P + (H ;e ;S) to mean that there exist d, 7, ¢; and ¢, such that
Preld={(t;¢)and PES | (d,t)= ¢ and P+ H ~ (¢; & ¢2) according to
the heap and stack typing rules of Figure 13.

Figure 13 explains how we type stacks and heaps. The judgement P E S | (d,7) =
¢ intends to identify the fv-usage environment of the stack S, given that the argument
that we intend to place in the hole of the stack has type t when being imposed with
demand d. Rule SHU deals with the case when we impose no demand on the hole
of the stack — consequently the stack must be empty! Rule SARR deals with the case
when the stack demands the application of the expression in the hole to an argument
and hence the shape of the stack has to be (e y) : S. The corresponding demand
that this particular stack expresses is C''(d) where d is the demand expressed by the
rest of the stack. The following three rules (SUpDUP, SUPDUPABS and SUPDDN)
correspond to the flavours of LETDN that we encountered in the typing rules. If we
encounter a stack #(z,n) : S, then what is the demand that is placed on z? In the
continuation S, the variable z will be immediately used with some demand d but it
might be that the continuation induces further calls to z which end up pressing an
additional m*d,. In total, the demand that this stack presses on the hole is d & d,
— and it must be the case that the multiplicity n on the stack be higher than the
indirect multiplicity in S (m), plus one, for the immediate pressure on the top of
the stack. This is in-line with our intuition that the only way we can exercise more
pressure than just a linear C''(d) on a function is via the heap: In the continuation,
we could potentially be immediately calling the function but we might as well be
calling it indirectly later on. Rule SUPDUPABS is of similar flavour, only simpler,
since the indirect pressure on z is just A.

The SUpDUP and SUPDUPABS rules deal with demand on z being gathered up
from the continuation of the execution, but rule SUPDDN is rather different: If =
is bound with a transformer in P then we — in effect — treat it as if the expression

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 45

PES|(d,7)=0¢

dC HU
—— SHU
PEel(d,t)=¢

m=dy =t PEyldl PES|(d1)=¢

; SARR
PE(ey):SL(C(d),)= ¢

z ¢ dom(P) m+1<n
PES|(d,e)=¢ mxd,=0(z)
PIE (#(z,n):S) | (d&dy,T) = ¢\s

SuppUP

z¢dom(P) 1<n
PES|(d,e)=¢ o¢(z)=A4
P& (#(LI‘TL) . S) J, (d,f) = (P\.'I;

SUPDUPABS

(zp)eP nzpu(p(z))+1
PES|(d, T =0¢

P (#(z,n):S) L (d,7) = ¢\x

SUpPDDN

dp £ U(¢1(2), ¢1(y))
Preld=(t;¢1) PES](d,7)= ¢

PE ((:c,y)—>e):5¢(dp,0) = ‘Pl\m.y&(PZ

SCASE

PrH~g
- HPVARABS —— HPEMPTY
PFH~ g, (2:4) PrH~e

n>m z¢dom(P)
Pte/vld=(t;0;) PFH~@&¢
PFH, [z~ Exp(e)/Val(v)] ~ @, (z:mxd)

HPVARUP

n>m (z:p)eP Ptelvip
Pre/vld=(1150)) PFH~o
PFH, [z Exp(e)/Val(v)] ~ ¢, (z:m*d)

HPVARDN

Fig. 13. Stack and heap typing.

bound by z is inlined so we only gather the ¢ from the continuation and check that
the multiplicity of z is sufficient.

Rule SCasE is interesting, too. The stack has the shape of a case elimination
branch. If there exists a demand d, such that the rhs e can be typed with it, giving
(t; @1) and the stack, when pressed with d, can give ¢,, then we can simply return
©1\z,y & @2. In this case, the demand pressed on the hole of the stack can be any
dp C U(p1(z), 91(y))-

The heap typing judgement P - H ~ ¢ ensures that the heap H has enough
multiplicity to withstand the pressure that ¢ will exercise. Rules HPVARABS and
HpEMPTY are boring. However, HPVARUP ensures that if ¢ needs to press m * d

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

46 L. Sergey et al.

on z, then (i) z must have enough multiplicity in the heap, but also that (ii) the
expression or value bound by z can be checked at this demand yielding a new ¢;.
Finally, (iii) the remaining heap must have enough multiplicity to withstand the
newly unleashed demand from ¢;.

Rule HPVARDN is simpler: It checks that (i) the multiplicity of z in the heap
is high enough, (ii) the transformer is well-formed for the bound expression and
(ii1) the expression can indeed be typechecked in the demand that ¢ presses.

With these definitions in place, we can prove the generalised safety statement,
Lemma 4.2, which is needed for the proof of Theorem 4.1.

A.2 Soundness theorems

The partial order C and the least upper bound U are defined for usage types
naturally:

1l < (nUn)=n

For usage environments ¢, the partial order is defined as a point-wise lifting of
partial order on multi-demands in their codomains (assuming each ¢ is predeter-
mined with A by default).

Lemma A.1 (Monotonicity of usage typing)
If the transformer environment P consists of monotone functions and P+ e | d =
(t;p)and d C d,then PFe | d = (7 ;¢') and 7 C 1t and ¢ C ¢'.

Proof
The intuition is that if we use an expression “less” than how it was originally
typed, then the annotations in it are still adequate, and we get smaller types and
environments out.

The proof goes by induction on the typing derivation.

e Case TVArRDN follows by monotonicity of the transformer and monotonicity of
the operations on usage environments.

e Case TVARUP is trivial.

e Case TLAM is an easy application of the induction hypothesis, and then either
TLaM or TLAMHU. Note that this relies on the non-deterministic choice of return
type of TLAMHU which lets us choose the same type as the TLAaM used for typing
the 1-abstraction.

e Case TLAMHU is straightforward.

e Case TPaIR and TCASE are easy applications of the induction hypothesis.

e Case TLETDN follows by induction hypothesis for e;, noting that p is monotone
by the assumption P F e; : p.

e Case TLETUP follows by induction hypothesis and then applying either TLETUP
or TLETABS.

e Case TLETABS follows by induction hypothesis and TLETUP.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 47

Lemma A.2 (Discrete usage signatures are well-formed)

If
ezi"‘xl...i”kxk.el, n,...,nE >0 (Al)
Pre | U= (t;p1) (A2)
(0 500) = (@1(T) = 1 ; @1 \z) (A3)
p = Ad . transform({k ;7 ; @o), d) (A4)
then PF e :p.
Proof
By the typing rule WFTRANS, we need to show that
Vdi,dy.dy E dy = T C T A OO E 0P (A5)
Vd,qo,r.(Pl—eld:(r;(p))zTETpd/\Q()I;CD;‘f. (A6)

The proof of (AS5) is straightforward, since p is a monotonic step-function.

For the second part, let us first define the threshold d; as d, = C'(...k —
fold... C'(U)...), where k-fold stands for applying the constructor (C' in this case)
k times. We remark that, by consecutive applications of rule TLAM, we can obtain

Ptel d = (10;00)

Let us assume that P -e | e = (14 ; ¢4). We show that 14 C 19 and ¢4 C ¢(by
induction on the number of 4s k.

e If k =0, then it can only be that d C U and the result follows by monotonicity
(Lemma A.1).
e If k>0, then we have several cases on the shape of d.

— d= U(df, d;). This can only happen if d C HU and rule TLAMHU was used,
otherwise the lambda is not typeable at all. But HU C d; anyway so this case
follows by monotonicity.

— d = HU. This is similar as above.

— d = C™(dy). In this case, we can invert the TLAM rule used to type e = A" . ey
with C™(dy), n = m, and apply the induction hypothesis for the body e,. We
get back a pair (1 ; @p). If m = 1, then we are easily done by the induction
hypothesis. If m = w, then it is definitely the case that d IZ d; and hence
we multiply both components of (1 ; @) by w and we are done, using the
induction hypothesis.!?

— d = U. We observe that d £ C(U) and hence the case follows as the previous
one using inversion on TLAM.

O

12 Note that we can guarantee the same result by choosing a different more expressive transform that

only infinitises the previous types but not the current one, yielding tighter types, but we have not done
that for simplicity.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

48 L. Sergey et al.

Lemma A.3 (Analysis produces well-typed terms (Lemma 4.1))
IfPbeld=(t;p)~e then Pke|d= (t;0¢).

Proof

The proof is by induction on the height of the derivation P b ¢ | d = (7 ; @) ~»
e. We abuse the notation, considering a demand signature environment P from
the perspective of both discrete and generalised usage signatures. Obviously, any
discrete signature p = (k ;7 ; ¢) can be considered as a generalised one, p, such
that

ef

o(d) £ transform(p, d),

where transform({k ;7 ; @), d) is defined in Figure 1.

e Case VARDN. Corresponds straightforwardly to the application of rule TVARDN,
where p(d) = transform(p, d).

e Case VARUP. Straightforward by the rule TVARUP.

e Case LaM. By the rule TLAM. By induction hypothesis, we have P - e | d. =
(t ;). Moreover, by the formulation of Lam, d = C(d.) (exact equality) and
m = n, so the premises of the rule TLAM are fulfilled.

e Case LaMU. Follows by rule TLAM observing that U C C'*(U).

e Case LAMHU. Straightforward by the rule TLAMHU.

e Case APPA. By induction hypothesis and a simple additional statement relating
B* and F (ensuring that variables transformed unde via b* are well-typed under
F, the proof is by considering two trivial cases of the corresponding relation), we
have

PEyldl = (A7)
Prei | Cl(d) = (d -1, 501 (A3)
Now, let us just take 71 = dZT — 1,., so the premises of the rule TApp are fulfiled.
e Case AppB. By induction, we have
PFylow*U= @, (A9)
Pre | Cd)= (0*U > 1, ;1) (A10)

Moreover, by the definition of < (Figure 1),
o< wxlU — o,

so we just take 7y = o, which fulfils the premise of the rule TApP.

e Case PaIr. Straightforward by the typing rule TPAIR, taking d = U (le , al2T).

e Case PAIRU. Straightforward by the typing rule TPAIR, observing that U C
Ulw=*U,w=* U).

e Case PAIRHU. By the typing rule TPAIR, taking d = U(A, A). Both subderivations
for the components of the pair are processed thus via the typing rule TABs, which
gives empty environments (&) in both cases. Finally, ¢ & ¢ = ¢, which concludes the
proof for this case.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 49

e Case Cask. By induction hypothesis,
Pre.|ld=(t;0) (A11)
Ples | Ulpr(z),or(y) = (- 0s) (A12)

so we can directly apply the typing rule TCASE.
e Case LETUP By induction, we have

Ptey| d=(1;02) (A13)
n*d, = @y(x) (Al14)
Ptei | dy=(-;01) (A15)

The proof for this case is completed by applying the typing rule TLETUP with
m =n.

e Case LETUPABSs Straightforward by the rule TLETUPABS.

e Case LETDN. In this case, we have that

Pbhletz=7"F.e;ine | d = (1;(p2\a))
> let z = AMg .. A", . e in e;

Let us call the resulting RHS term e = 2™z, ... 2™y .e;. By inversion, we have

that
Pbe | U= (t1;01) e
Tx = Qol(y) -7
Pozk it io\g) P eld=(t;0) e
@a(z) En= C™M(...(C™(...)...)
Hence, it is easy to show by induction and monotonicity that P e | (C™(......)

= (_;_). We know that n > pu(p2(z)). Moreover, P t* e : p for the concrete
transform used, by Lemma A.2. Finally, the statement for the body follows
by induction hypothesis. The case is finished by putting these all together and
applying rule TLETDN.

e Case LETDNABs. Similar to the case LETDN.

g

Lemma A.4 (Value splitting (Lemma 4.3))

If PFv | (d &dy) = (1;¢), then there exists a split split(v) = (vi,Vvz) such that
Prvy|d = {t1;¢1)and P+ v, | d» = (15 ;¢5) and moreover 7; C 1, 7, C 7 and
P1& 2 C .

Proof

This is an extremely important property. It says that for a value (and only for
values!) the unleashed environment is additive with respect to the placed demands.
This allows one to use a variable directly (by dereferencing a variable and using it
with a particular continuation) and indirectly in the continuation! Here is the proof,
by case analysis on the shape of the value v:

e Case v = (z, y). In this case, without loss of generality assume that d; = U (dlT , dzT)
and &, = U (d;r , dI). If one of them is a call demand, then their & is not defined,

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

50 L. Sergey et al.

and if one of them is a naked U or HU, then that is equivalent to some U (dT, d;)
in terms of how the result will be typed. The result then follows by monotonicity
of the & operation and Lemma A.5 (see below).

e Case v = A"z .e. In this case, if one of d; or d; is less or equal to HU, assume
d, then the split is by choosing n; = 0 and n, = n. The n; = 0 split uses the
TLAMHU rule assigning the same type as the other split assigns. The other split
merely uses the typing rule that was originally used to type v. If on the other
hand no d; nor d, is less or equal to HU, then they cannot be non-call-demands
either (because their & would not be defined). Assume then without loss of
generality that d; = C™(d[) and d» = C™(d}). (If one of them was U, then
we simply type it as C”(U)). Let us use the split induced by d; and d,, that is
n = n; + ny. From typing the body e with d;, we will get (¢} (z) — 7} ;n1 * ¢})
and similarly (@5(z) — 75 ; ny * @), where ¢/, and 7 are the results of typing e
with d; respectively. However, we know that the body is typeable with d Ll d}
resulting in (@, (z) — 74 ;(n1 + m) * @) for v. By monotonicity, we get that for
i € {1,2}:

@i(z) = 7 C ou(z) — w
as required. Moreover, we need to show that
m* @y &m * @y E (n1 +m) * gy,
By monotonicity, it suffices to show that
n* u&m * ey E (n + m) * @y

and the result follows by the easy-to-show fact that n; *d" & ny * d™ C (ng+mnp)* d'
for any d.

O

Lemma A.5 (Variable demand splitting)

Assume that the transformer environment P is monotone. If P F z | (le & d2T) =
(t;¢), then PF z | df: (t1;¢1) and PF z | d;: (125 02) and @1 & @2 C 0.
Proof

If = ¢ dom(P), then the result is trivial. If € dom(P), then there is a transformer
(z:p) € P. First of all, let us examine the case where either df or dzJr is A. Without
loss of generality, assume df = A. In this case, the result is trivial since ¢, = ¢ and
@ = @1. Assume instead that df =ny * d; and d;r = np * dp. In this case, it suffices
to show that

ny * (I);,i‘ & ny * (I);,iz C (m + ’rlz) * (I);,i‘&dz

However, by monotonicity, we know that n; * (I)gl C oy * (I);fl&"l2 and similarly
ny * @F C omy x @G &% 5o it suffices to show for every binding in @ &%, call it
(y:d"), that it is the case that

mo*d &nyxd T (ng 4+ mn)*d
This is easy to show using the fact that o *d' = d' & d' = d" & ... & dT & df. O

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 51

Lemma A.6 (Single-step safety (Lemma 4.2))

Assume that - (H; ;e ;Sy). If (Hﬁ ;ef ;S?) — (I ; e; ; S;) in the uninstrumented
semantics, then (H; ;e;;S;) — (H, ;e;;S,) such that H; =M, eg = e and S; =5,
and moreover F (H, ; e, ;S)).

Proof
By induction on the height of the derivation - (H ;e ; S). We proceed by case
analysis on the rule used for — in the uninstrumented semantics.

e Case ELET. We have three cases to consider, depending on whether rule TLETUP,
TLeTUPABS or TLETDN is used.

— Case TLETUP. In this case, we have that

PrletzZe ine | d= (1;0; & p)) (A16)
n<m (A17)
Prey|d=(t;p(zn*d)) (A18)
Pre |l d=(;01) (A19)
Moreover,
PES|(d,1)= ¢g (A20)
PFH~ @& pr& s (A21)

The rule ELET fires in the instrumented semantics as well, giving us a new
heap H, [z > Exp(e;)]. By using HPVARUP, we can conclude

P FH,[z+> Exp(e)] ~ @2, (z:n* di) & @ (A22)

from (A17), (A19), (A21). Hence, from (A18), (A22) and (A20), we conclude
that the resulting configuration is well-typed.

— Case TLETUPABSs. Similar but simpler than the case for TLETUP.

— Case TLETDN. In this case, we have that

PhletzZejine; | d= (1;¢)) (A23)
n<m (A24)
Preild = {_;op1) (A25)
Pite:p (A26)
P.(z:p)F eyl d=(1:0(z:d") (A27)
d"Cnd (A28)
Moreover,
PES| (d1)= ¢g (A29)
PI—HN(pz&(pS (A30)

The rule ELET fires in the instrumented semantics as well, giving us a new
heap H, [z — Exp(e;)]. We need to use HPVARDN to deduce that

P,(z:p) - H, [z %> Exp(e1)] ~ g2, (¢:d") & ps (A31)

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

52 L. Sergey et al.

which follows from (A30), (A26), (A24), (A25). Moreover, from (A29) and the
observation that z ¢ fv(95), it is easy to deduce that P, (z:p)E S | (d,7) = ¢35
(simple inductive weaking proof). From this, and (A27) and (A31), we get that
the resulting configuration is well typed.

e Case ELKPE. In this case, we have two cases depending on how the variable was
typed.

— Case TVARUP. In this case, we have
Ptz |d=(e;(x:1*d)) (A32)
where = ¢ dom(P). Moreover,
PES | (d,e)= ¢g (A33)
P FH, [z Exp(e)] ~ (¢s)\q (z:1 * d & ps(x)) (A34)

We have two cases: If pg(z) = A, then we only press 1 * d on z. If pg(z) =
m * d, then we press (1 + m) * (d & d;) on x. Let us consider the latter case
first:

P+ H, [z Exp(e)] ~ (¢s5)\a» (z:(1 + m) * (d & d,)) (A35)
By inverting HPLETUP, it must be that

n>m+l (A36)
PEH~(ps)\z & e (A37)
Pre | (d&dy)= (t1;0) (A38)

To finish the case by SUppUP, we need to show that
PE#(=z,n):8) | (d&dys,11) = @5\a
which will be the case if we show that
PES]|(d,e) = (¢ps)\z:(z:m * dy)

and also: n > 1 + m. The first is exactly (A33) and the second is just (A36).
If it was the case that ¢g(z) = A, then we could similarly use SUPDUPABS.
— Case TVARDN. In this case, we have that

Prald= (T 0f&(z:1*d) (A39)
Let us assume that bindings are not recursive so z & dom(d)g). Moreover,
PES|(dT)) = ¢s (A40)
P+ H,[z+> Exp(e)] ~
D) & (¢s5)\as (z:1 * d & @5()) (A41)

Let us assume that ¢pg(x) = m * d, (the case where @pg(z) = A is easier). By
rule HPLETDN, this also means that

PHH~®/&(9s)\s

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 53

and moreover P+ e | (d & d;) = (te ;) — hence by monotonicity it is also
the case that P e | d = (14 ; @q4), and in fact we also have ¢4 C d)g and
Td E Tpd.

Now for the right-hand side, the environment from the expression is ¢, (We
press the demand d). The environment for the stack-typing is the one we
get from P B S | (d, Tpd) = ®g\,. Hence, we need to show that P - H ~
@ & (ps)\; and the result follows from monotonicity.

e Case ELKPV. Again we have two cases depending on how the variable is
typed.

— Case TVARUP. In this case, we have
Przxz|d= (e;(z:1*d)) (A42)
where z & dom(P). Moreover,
PES | (de) = pg (A43)
P EH, [z Val(v)] ~ (¢s)\s, (z:1 * d & 9s(2)) (A44)

Again we have two cases depending on @g(z).
— Case ¢g(z) = m * d,. We know that n > 1 + m and hence the expression
can take a step in the counting semantics. From (A44), we get that

PEH~ (@s)\z &y (A45)

where P v | (d & dy) = (1 @y).

By Lemma A4, we getthat P vy | d = (zy;01) and P F v, | dp = (12;02)
such that ¢; & ¢> C ¢,, 11 E 7 and 7, C 7t for some v; and v, with
split(v) = (vq,Vv2). To finish the case, we need to show that

H~@&p:&(0s5)\s

which follows from (A45) and strengthening (Lemma A.7).

— Case @g(z) = A. This case is easy as it induces a trivial split for v; and
vy where v; gets a 0 counter if it is a lambda. This reflects the fact that
this is never used indirectly in the continuation but only directly in the
stack S.

— Case TVARDN. In this case, we have

Prald=(T!;0f&(z:1*d)) (A46)

where (z:p) € P. Moreover,
PES|(dTH=¢s (A47)
and
P H,[z+ Val(v)] ~

D & (p5)\o» (w11 * d & p5(2))
Let us deal with the case when ¢g(x) = m * d, (the case where pg(z) = A is
easier).

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

54 L. Sergey et al.

By inverting rule HPLETDN, we get
PFH~ (ps)\s &DJ (A48)

and moreover P v | (d & d;) = (_;p,) (ie., the v is sufficiently annotated). So
the configuration can indeed step and for the right-hand side, by Lemma A.4,
we must have P Fv, | d = (13 ; ;) and we must also have P £ S | (d,1;) =
¢'s. By the well-formedness of the transformer, it must be that 7, C Tpd and
it must also be ¢, C d)g. Hence by monotonicity, ¢’y T ¢g as well. To finish
the case, we need to show that

PEH, [z Val(vi)] ~ (¢s)\x & @2 (205 ()

By rule HpLETDN, it suffices to show two things: First, that P - H ~
(@'s)\z & @, — this follows by (A48) and monotonicity. Second, that if ¢'y(z) =
df, vy is still typeable under that df. However, by the splitting lemma A.4, we
know that P+ v; | d, = (- ;¢)) and the result follows by monotonicity since
it must be the case that d¥ T m = d,.

Case EUPD. Similar to ELKPV case.

Case EBETA. Using the substitution lemma (Lemma A.8).
Case EAPp. Trivial.

Case EPAIR. Trivial.

Case EPRED. Using the substitution lemma (Lemma A.S8).

O
Lemma A.7 (Heap-typing strengthening)
If PFH~ ¢y and ¢, C ¢, then P+ H ~ ¢>.
Proof
Easy induction, appealing to the monotonicity of the typing Lemma A.1. O

Lemma A.8 (Substitution)

Assume that P is monotone and P - e | d = (t; ¢) and z ¢ dom(P). If
PFy | @i(z) = @, then P ely/x] | d = (. ; ¢.) such that . C @1\, & 92
and 7, C 7.

Proof

By induction on the derivation P + e | d = (1 ;¢1). First of all, if y ¢ dom(P), then
the result follows easily by a renaming. So we will only be concerned with the case
when y € dom(P), in particular (y:p) € P.

e Case TVARDN. In this case, we know that the variable we exercise pressure on is
not x and therefore the result follows trivially (y is absent).

e Case TVARUP. If the variable is not z, then the result follows trivially (y is absent).
If it is z, then we have that the pressure on z is (z:1* d). Then ¢, = CD/‘f & (y:1*=d).
For the substituted expression, we get that ¢. = ¢, and 7, = Tpd. Clearly, Tpd Ce
and moreover @, C 1 * ¢, as required.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

Modular, higher order cardinality analysis 55

e The rest of the cases are straightforward but somewhat tedious applications of
the induction hypothesis and monotonicity of typing. They rely on the following
property: If ¢i(z) = ny * d; and @y(z) = ny * dy, then

g * (Dgl &y * (Dgz C(ng +m)* (I);iHrdz

which follows by the monotonicity of the transformer p.

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 11 Nov 2025 at 18:08:14, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796817000016

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796817000016
https://www.cambridge.org/core

