T. Ono
Nagoya Math. J.
Vol. 95 (1984), 63-71

ON DEFORMATIONS OF HOPF MAPS AND
HYPERGEOMETRIC SERIES

TAKASHI ONO

Introduction

Let R™ denote the Euclidean space of dimension n >1 with the
standard inner product (x, y) and the norm Nx = {x, x>. We shall denote
by dw,_, the volume element of the unit sphere S"~' = {xe R"; Nx = 1}
normalized so that the volume of S*-! is 1.

With each continuous map f: S*' — R™, we shall associate a function
f#(2) of a complex variable z by

@)= everda,,.

Sn—1

Clearly f*(z) is an entire function and its Taylor expansion is given by
o zk
fi@) = > Nu(f) =+
k=0 k!
where

Np) = [ N(f@)do, ..

When f is spherical, i.e. when f maps S"'in S™!, we have f#(z) = e
When we are given a family {f,}, 0 <t <1, of maps: 8! — R™ such that
fy is spherical, we have a family {f!} of entire functions beginning with
ft = e and ending with some advanced function fi.

Here is an illustrative example: consider the family

fi(x) = (2} — x5, 2(1 + D'x,x,) 0t<1.

The map f,: S' — R® is spherical since it is the squaring x> x* in C = R".
Passing to the polar coordinates, we have N(f,(x)) = 1 + tsin’20 and
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e = L ["ewomugg = 3 1:3:5:-- 2k — 1) ()"

or Jo =9 2.4.6. .. 2k k!
= .F(1/2;1; t2),

a Kummer’s hypergeometric series.
The purpose of this paper is to find similar relations between certain

deformations of classical Hopf fibrations S®— S?, S"— S* S*—S8® and
Kummer’s hypergeometric series.

§1. Prerequisites

As for proofs of formulas below, see our earlier paper [2].

The symbols Z, Q, R, C, H, O denote the set of integers, rational
numbers, real numbers, complex numbers, Hamilton’s quaternions and
Cayley’s octonions, respectively. The set of nonnegative real numbers is
denoted by R.. For a subset M of R, we put M, = M N R,. The set of
all (m X n)-matrices over a field K is written K,,,. If m = n, we write
K, for K, ,. For a symmetric matrix A € K, and vectors x € K”, we put

Alx] = ‘xAx, the quadratic form of A. For aeC, ke Z,, the Appell’s
symbol is:

(a,k):{a(a—i—l)---(aﬁ—k—l) ifr>1

1 if k=0.

We have the duplication formula: (2a, 2k) = 4%(a, k)(a + 1/2, k). For a =

(@, ---,a,)eC?, b=(b, - -,b)e C?% the (generalized) hypergeometric
series is defined by

« he (ab (ap’ k)iik_
WFoa; b;2) = ZO . k) k) R

J and ,F, are also called Gauss’ and Kummer’s series, respectively. For
A=(, -, 2,)eR" and ve Z,, the numbers b,(2; 1) are defined by the
generating relation:

1.1 Z b(2; N = H 1 — 42,5,

In particular, we have

(1.2) b(2:1,) = f*,",(’i/?’ W ofor1,=(1, -, ez,
V.

https://doi.org/10.1017/50027763000020961 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020961

HOPF MAPS 65

When 1= (4, ---, 4,) is the set of eigenvalues of a quadratic form gq(x)
on R", we have

) X))
(1.3) J.Sn—lq(x) dwn—l N bj(z_;i—n)_ .

For a continuous map f: S*'— R™, we put
(L4) RO =, <&f@yde,., R,
(15) op) =, F@don., vez..

Then, we have

a®  Nap =, NG do., = LEI o) rez..

§2. Quadratic maps of type (S)

Let f: R* — R™ be a quadratic map. By definition, each component
fi(x), 1< i< m, of f(x) is a quadratic form on R and we can write f;(x)
= A,[x] with a symmetric matrix A; in R,. We shall obtain a general
formula for the number N,(f). In view of (1.4), (1.5), (1.6), we shall con-

sider f,,(8) and o, (f) in order. Since (&, f(x)> = &fi(%) + -+ + Enfu(x)
=&Ax] + - + £,A,[x], we have

2.1 & f(x)) =Alx]  with A=§A, + -+ + &,4,.
Let 2= (4, -+, 2,) be the eigenvalues of A. Then, by (1.3), (1.4) we have

_ bal(2;%)
(2'2) fzk(é) - - b_z_k_(_z_; ’15 .

From (1.3), (1.5), (1.6), (2,2), it follows that

NP = 6e [ bl Ddon,
where

By = -— bu(251,)
b2 1b(2;1,)

Using (1.2) three times and the duplication formula for Appell’s symbol
twice, we can determine B, explicitly and we get

https://doi.org/10.1017/5S0027763000020961 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020961

66 TAKASHI ONO

!
2.3 N(f) = (m/2, k! beu(2; Do .
( ) k(f) 42k(n/4, k)((n + 2)/4’ k) sm—1 ( ) @
In view of (1.1), the main problem is to determine the eigenvalues of the
symmetric matrix A =§A4,+ --- + &,4,. In order to facilitate the
argument, let us make the following assumptions on the quadratic map
f: R" — R™ in terms of the matrix A in (2, 1).

(2.4) DeriniTION. We shall say that a quadratic map f: R® — R™ is
of type (S) if the following conditions are satisfied:
(S1) n is even: n = 2p,
(S2) the trace of A is zero,
(83) A* = al,, where a = a(§) is a positive definite quadratic form on R™.

(2.5) ProposITION. Suppose that f: R — R™ is a quadratic map of

type (S). Notation being as in (2.4), let 2 = (2, - - -, A,,) be the set of eigen-
values of A. Then, after a necessary arrangement of 2,’s, we have 1, =
v =2, =Va and = - =X, = — v a.

Proof. Let T be an orthogonal matrix in R,, such that

A
‘TAT = - )
2oy

By (S3) we have (‘TAT)* = ‘TA’T = al,, and so 4 = aforalli, 1 < i< 2p.
Our assertion then follows at once from (S2). Q.E.D.

Now, back to the formula (2.3), if f is of type (S), we have, by (1.1),

i:,) b2 Dt = (1 — 4/ @) ?2(1 + 4/ at)-"

42kak

— A% f?)-P2 — - D 47a” o
= — 4at) ch=:o<2’k) BT
and so
42k k
(2.6) bo(2; 2) = (!21 k) L, kez..
Combining (2.3) and (2.6), with n = 2p, we get
@7 N = m2E ‘do,_,  when f is of type (S).

(p+ 12, k) Jsn®
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Call g = (&, - - -, ptn) the eigenvalues of a = a(§); by (S3) all p, are posi-
tive. From (1.2), (1.3), (2.7), it follows that

. k! . .
(2.8) N.(f) = mk—)—bk@, D) when f is of type (S).

A further determination of N(f) depends on y, the eigenvalues of a = a(¢),
via (1.1), again.

As an illustrative example, let us consider the case where p =1,
m = 2, i.e. the case of a pair of binary quadratic forms:

(2.9) f(2) = ( fl(x)) _ (ale + 28,x.x, — alxé) )

f 2(36) o, %7 + 28,%:%, — X

Thus, we have

A, = <a1 ﬁl) , 142 — (6(2 ,B2)
.81 — ﬁz —
and A = &A, + §A, Clearly the trace of A is zero. If we assume that
B, — a,fy # 0, one verifies easily that f is of type (S) with
A* = a(§) = (i + B)E + 2(ax, + BB)EE: + (@b + B)E,

this being positive definite. The characteristic polynomial of the matrix
of a(f) is

(210) £ — ((X% + a3 + ﬁ% + ﬁg)t + (alﬁz - azﬁl)z .
Now, by (1.1), we have

STbU2; Wt = (1 — dpt) (1 — dp) "
k=0

= (1 — 4 + )t + ppdD) P = (1 — 22z 4 )7

with x = (i + w)2(wp)”, 2 = 4(pyp)*t. In view of the well-known
generating relation of the Legendre polynomials;

(1— 2xz + 2% = 3 Py(x)*,
k=0
we have

2.11) bu(2; ) = 4" (ppr)**P k(%i’) :
2psp

From (2.8), (2.10), (2.11), it follows that
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For simplicity, put 4 = |a,8, — a,p;| and ¢ = ot + & + B2 + B. Then, we

have

" _ o k . o A k
f@) = 3 N(HZ =5 PR(L)L{T)—

If, in particular, @, =1, 0, =0, B, =0, B, =1 + )}, then 6 =2+ t, 4 =
(1 + )"* and we get '

F1@) = f1@) = e+ o3 15 =)

which is consistent with the formula f%(2) = e*F(1/2; 1; t2) of the example
in the introduction as can be verified directly.

§3. Deformations of Hopf maps

Throughout this section, we shall denote by X one of the algebras
R, C, H, O, of real numbers, complex numbers, Hamilton’s quaternions
and Cayley’s octonions, respectively. Using the standard basis, X may
be identified with the Euclidean space, R?, p =1, 2, 4, 8, with the inner
product {x,y> and the norm Nx = (x, x) = ¥x = xX where x+— X is the
standard involution of X. We put Tx = X + x, the trace of x. Then,

we have

(3.1 (%, ) = 1/2T(xy) .

The following properties of the trace

3.2) T(xy) = T(yx),  T((xy)2) = T(x(y2)

are very useful because the algebra X itself is not necessarily commuta-
tive and associative.

Let f,, £ > — 1, be the quadratic map R? = X X X >R"*?" =R X X
defined by

(33)  fu(a) = (Nx = Ny, 2(1 + t)"xy), z=(x,y)eR?”=XXX.

1) See [1] p. 233, line 2.
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When t =0, f, induces a map of S?-! onto S? which is the classical
Hopf fibration.

(8.4) ProposiTION. For each t > — 1, the map f,: R*®> — R'*? defined
by (3.3) is of type (S).

Proof. Let A, be the symmetric matrix in R,, such that
@) =Alzl, z2=(x)eX XX, {=(¢neR X X.
Substituting (3.3) in the left hand side, we have
(3.5) (G fi(2) = &Nx — Ny) + 2(1 + )<, xy) .
By (3.1), (3.2), we have
(3:6) <y, xyy = FT((xy)) = $T(xyy) = $TGEY) = 1TEHF)) = {x, 79> .

Since, for each ne X, the map y — 7y is a linear endomorphism of X,
there is a matrix B(y) in R, such that

3.7 7y = B(p)y, for all ye X.
Hence, from (3.5), (8.6), it follows that
Z,f(2)) = §(Nx — Ny) + 2(1 + t)"/*Cx, B(p)y) .

From this, one verifies easily that

. _ : _ & 1+ 9Bl
& f2) = Ade] with A, = ((1 sy e ).
Therefore, f, satisfies (S1), (S2) of (2.4). Next, we shall show that
(3:8) ‘B()B(n) = B()'B(p) = (Ny)'».

In fact, using (3.1), (3.2), (3.7), we see that

(B, y) = <x, Blp)y) = <, 79) = :T(x(x7))
= §T(O(xn) = (v, ) = (*p, ¥y,  for all ye X,

which implies that
3.9 tB(p)x = X7 .
From (3.7), (3.9), we have

‘B(p)B(p)y = ‘B(p)yy = (y0)y = Ny,
B(p)'B(p)x = B(pxy = p(7x) = (Np)x,
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which proves (3.8). It follows from (3.8) that
Al =al,, with a=a) =&+ 1+ )Ny.
Since a({) is positive definite for ¢t > — 1, f, satisfies (S3) of (2.4). Q.E.D.

Having verified that f, is of type (S), we may use (2.7), with m =p

41, and get
N(f) = [ a'do, .

Since & + Nyp = N{ =1 on S?, we have
E (R ; )
- Z—O (j >t JSP (Nn)jdwp :

N(f) = [ @+ tNy)do,
Now, the eigenvalues of the quadratic form Ny on R?*'are p = (0, 1,

1) e R?*!, and so, by (1.2), (1.3),
i
L b2 p).

- _ by(2; 1) —
LP (Nryda, b;(2;1,.0)  4((p+1)/2,))
On the other hand, since
Ta— S (1 — apy-re = S (P G\ AT
fla—4mr=a—er=5(2,5)40,
by (1.1), we have
. — (p/2, DY
bi(2; ) = (PIB DL
Therefore, we have
_% g P12,0) 5 (=R )(D[2)) (=)
N7 Z( ) G+D2H) B @iy

5" N, t_.Z. = 28 & (= k)DD2,)) (=)
2, ) Z=k g (@ + 12,7 !

2)—t’ —kJ)

=% ((p+ D2, 5)j! &=

Finally, we have

fi2) =

where the inner sum is equal to
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Therefore, we obtain

fi(z) = e:F( ; ’ tz) .
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