PRIMITIVE IDEALS OF THE QUANTISED ENVELOPING ALGEBRA OF A COMPLEX LIE ALGEBRA

SEI-QWON OH

In this paper, we characterise all primitive ideals of the quantised enveloping algebra $U_q[sl(2,\mathbb{C})]$ of the complex Lie algebra $sl(2,\mathbb{C})$ and show how they are similar to those of $U[sl(2,\mathbb{C})]$, the enveloping algebra of $sl(2,\mathbb{C})$.

The quantised enveloping algebra $U_q[sl(2,\mathbb{C})]$ of the complex Lie algebra $sl(2,\mathbb{C})$ is the algebra $\mathbb{C}[E, K, K^{-1}, F]$ defined by the relations

$$KE = q^{2}EK, \ KF = q^{-2}FK, \ EF - FE = \frac{K^{2} - K^{-2}}{q^{2} - q^{-2}},$$

where q is not a root of unity. Therefore $U_q[sl(2,\mathbb{C})]$ is the iterated Ore extension $\mathbb{C}[E][K, K^{-1}; \sigma][F; \tau, \delta]$, where $\sigma(E) = q^2 E$, $\tau(E) = E$, $\tau(K) = q^2 K$, $\delta(E) = -(K^2 - K^{-2})/(q^2 - q^{-2})$, $\delta(K) = 0$. Hence $U_q[sl(2,\mathbb{C})]$ is a noetherian domain and the sets $\Re_1 = \{E^i K^j F^n | (i, n) \in \mathbb{Z}^+ \times \mathbb{Z}^+, j \in \mathbb{Z}\}$ and $\Re_2 = \{F^i K^j E^n | (i, n) \in \mathbb{Z}^+ \times \mathbb{Z}^+, j \in \mathbb{Z}\}$ are its C-bases and its Gelfand-Kirillov dimension is 3. The element $\Omega = EF + (q^{-2}K^2 + q^2K^{-2})/(q^2 - q^{-2})^2 = FE + (q^2K^2 + q^{-2}K^{-2})/(q^2 - q^{-2})^2$ is a central element of $U_q[sl(2,\mathbb{C})]$.

The quantised enveloping algebra $U_q(\mathfrak{g})$ of a semisimple Lie algebra appears in [2] (originally defined by Drinfield, Jimbo, and others). Moreover the structure of a finite dimensional irreducible module of $U_q(\mathfrak{g})$ is also shown in [2]. In particular, all finite dimensional irreducible modules of $U_q[\mathfrak{sl}(2,\mathbb{C})]$ are of the form $L(\omega q^m)$, where $\omega \in \{1, -1, i, -i\}, m \in \mathbb{Z}^+$, where $L(\lambda)$ is the irreducible highest weight module with highest weight $\lambda \in \mathbb{C}^*$. (See Lemma 5 for the definition of $L(\lambda)$.)

The structure of a finite dimensional irreducible module of $U_q[sl(2,\mathbb{C})]$ is a parallel property of the (classical) enveloping algebra $U[sl(2,\mathbb{C})]$. It is well known that primitive ideals of $U[sl(2,\mathbb{C})]$ with infinite codimensions are of the form $(\Omega' - c)$, where $c \in \mathbb{C}$ and Ω' is Casimir element of the enveloping algebra $U[sl(2,\mathbb{C})]$. In particular, the ideal $(\Omega' - c)$ is maximal if and only if $c \in \mathbb{C}$ is not of the form $n^2 + 2n$, $n \in \mathbb{N}$. In this paper, we show the following quantum version:

Received 16th February, 1993

This research was partially supported by non directed research fund, Korea Research Foundation, 1992.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/94 \$A2.00+0.00.

THEOREM 1.

- All primitive ideals of U_q[sl(2, C)] with finite codimensions are the annihilators of L(ωq^m), where ω ∈ {1,-1,i,-i}, m ∈ Z⁺.
- (2) For every c∈ C, the ideal (Ω c) is a primitive ideal of U_q[sl(2, C)] with infinite codimension. In fact the ideal (Ω-c) is the annihilator of L(λ) for some λ ∈ C*. Conversely, any primitive ideal with infinite codimension is (Ω c) for some c ∈ C. Moreover, the ideal (Ω c) is maximal if and only if c ∈ C is not of the form ±(q^{2(m+1)} + q^{-2(m+1)})/(q² q⁻²)², m ∈ Z⁺.

COROLLARY 2. The centre of $U_q[sl(2,\mathbb{C})]$ is just the subalgebra $\mathbb{C}[\Omega]$.

PROOF: It follows immediately from Theorem 1 and 8.4.18 of [3].

Since Ω is central in $U_q[sl(2,\mathbb{C})]$ all primitive ideals contain an element $\Omega - c$ for some $c \in \mathbb{C}$ by 8.4.18 of [3]. First we prove that the ideal $\langle \Omega - c \rangle$ is completely prime.

LEMMA 3. Let R be a domain, $\sigma \in Aut(R)$ and let δ be a left σ -derivation. Put $S = R[X; \sigma, \delta]$ the skew polynomial ring over R. If $aX + b \in S$ is a normal element and a is invertible in R, then the ideal S(aX + b) is completely prime in S. (An element $y \in S$ is said to be normal provided yS = Sy.)

PROOF: Notice that deg(fg) = deg(f) + deg(g) for nonzero $f, g \in S$, and given $f \in S$, there are $h \in S$, $r \in R$ such that f = h(aX + b) + r because a is invertible. Given $f = h_1(aX + b) + r_1$ and $g = h_2(aX + b) + r_2$, if $fg \in S(aX + b)$ then $r_1r_2 \in S(aX + b)$. Thus $r_1r_2 = 0$. Since R is a domain, $r_1 = 0$ or $r_2 = 0$. Therefore the ideal S(aX + b) is completely prime in S.

PROPOSITION 4. For any $c \in \mathbb{C}$, the ideal $\langle \Omega - c \rangle$ of $U_q[sl(2,\mathbb{C})]$ is completely prime.

PROOF: The set $\mathcal{A} = \{E^i | i \in \mathbb{Z}^+\}$ is a left Ore set of the subalgebra $\mathbb{C}[E, K, K^{-1}]$. Let R be the localisation $\mathcal{A}^{-1}\mathbb{C}[E, K, K^{-1}]$. Thus $R = \mathbb{C}[E, E^{-1}, K, K^{-1}]$ is an integral domain. By Lemma 3, the ideal $\langle \Omega - c \rangle$ is completely prime in the skew polynomial ring $R[F; \sigma, \delta]$ where $\sigma(E) = E$, $\sigma(K) = q^2 K$, $\delta(E) = -(K^2 - K^{-2})/(q^2 - q^{-2})$, $\delta(K) = 0$.

We prove that the ideal $\langle \Omega - c \rangle$ is completely prime in $U_q[sl(2,\mathbb{C})]$. Given $f,g \in U_q[sl(2,\mathbb{C})]$, if $fg \in \langle \Omega - c \rangle$ then $f \in R[F;\sigma,\delta]\langle \Omega - c \rangle$ or $g \in R[F;\sigma,\delta]\langle \Omega - c \rangle$, say $f \in R[F;\sigma,\delta]\langle \Omega - c \rangle$. Hence $E^t f = h(\Omega - c)$ for some $t \in \mathbb{Z}^+$ and $h \notin EU_q[sl(2,\mathbb{C})]$. We give an order relation in the basis \Re_1 as follows:

 $E^{i}K^{j}F^{n} < E^{i'}K^{j'}F^{n'}$ if (i, j, n) < (i', j', n') in the lexicographic order.

Express $E^t f$ and h as linear combinations of the basis \Re_1 . Since $h \notin EU_q[sl(2,\mathbb{C})]$, the set $T = \{K^j F^n \mid \text{the coefficient of } K^j F^n \text{ in the expression of } h \text{ is nonzero}\}$ is

0

Primitive ideals

nonempty. Let $K^r F^s$ be the maximal monomial in the set T. Since $\Omega - c$ is central and $KE = q^2 EK$, we have the following:

$$\begin{split} h(\Omega - c) &= \left(\alpha K^r F^s + \sum_{(i,j,n) \neq (0,r,s)} \alpha_{ijn} E^i K^j F^n \right) (\Omega - c) \\ &= \alpha K^r \left(EF + \frac{q^{-2} K^2 + q^2 K^{-2}}{(q^2 - q^{-2})^2} - c \right) F^s \\ &+ \sum_{(i,j,n) \neq (0,r,s)} \alpha_{ijn} E^i K^j \left(EF + \frac{q^{-2} K^2 + q^2 K^{-2}}{(q^2 - q^{-2})^2} - c \right) F^n \\ &= \alpha q^{-2} \left(q^2 - q^{-2} \right)^{-2} K^{r+2} F^s + \text{ other terms }, \end{split}$$

where α is nonzero. Therefore we have t = 0 and so f is in the ideal $\langle \Omega - c \rangle$.

DEFINITION:

- (1) Let $\rho: U_q[sl(2,\mathbb{C})] \longrightarrow End_{\mathbb{C}}(M)$ be a representation and $\lambda \in \mathbb{C}^*$. A nonzero vector $v \in M$ is said to be a highest weight vector with weight λ if $\rho(K)v = \lambda v$, $\rho(E)v = 0$.
- (2) If M is generated by a highest weight vector v with weight λ , M is said to be a highest weight module with highest weight λ .

LEMMA 5.

- (1) Every homomorphic image of a highest weight module is also a highest weight module with the same highest weight.
- (2) For every λ ∈ C*, there exists an irreducible highest weight module with highest weight λ, denoted by L(λ).

PROOF: See Proposition 4 of [2] and its proof.

LEMMA 6. Let $\rho: U_q[sl(2,\mathbb{C})] \longrightarrow End_{\mathbb{C}}(L(\lambda))$ be a representation and $\lambda \in \mathbb{C}^*$. The irreducible module $L(\lambda)$ is finite dimensional over \mathbb{C} if and only if λ is of the form ωq^m , where $\omega \in \{1, -1, i, -i\}, m \in \mathbb{Z}^+$.

PROOF: Theorem 1 of [2].

LEMMA 7. Let R be a C-algebra and let M be an irreducible R-module with $ann_R M = P$. Then P is of finite codimension (that is, $dim_C R/P < \infty$) if and only if $dim_C M$ is finite.

PROOF: If P is of finite codimension then $\dim_{\mathbb{C}} M$ is finite because M is a finitely generated R/P-module. Conversely, let $\dim_{\mathbb{C}} M$ be finite. The kernel of the representation $\rho: R \longrightarrow End_{\mathbb{C}} M$ is just P. Hence P is of finite codimension.

https://doi.org/10.1017/S0004972700016105 Published online by Cambridge University Press

0

Π

S-Q. Oh

[4]

PROOF OF THEOREM 1: If J is a primitive ideal containing $\langle \Omega - c \rangle$ properly, the Gelfand-Kirillov dimension of $U_q[sl(2,\mathbb{C})]/J$ is less than or equal to 1 by [1, 8.3.6]. Since there is no nonartinian finitely generated noetherian primitive C-algebra with Gelfand-Kirillov dimension 1 (see the proof of [4, 3.2]), the codimension of J is finite by [1, 8.1.17]. Hence every primitive ideal with infinite codimension is of the form $\langle \Omega - c \rangle$. Therefore it is enough to show that there exists $\lambda \in \mathbb{C}^*$ such that λ is not of the form ωq^m and such that Ω acts on $L(\lambda)$ by the scalar c by Lemma 5, 6 and 7.

Let v be a highest weight vector of $L(\lambda)$ on which Ω acts by the scalar c. Then we have

$$cv = \Omega v = \left(FE + rac{q^2K^2 + q^{-2}K^{-2}}{(q^2 - q^{-2})^2}\right)v = rac{q^2\lambda^2 + q^{-2}\lambda^{-2}}{(q^2 - q^{-2})^2}v.$$

Thus we have the equation

(*)
$$\frac{q^2\lambda^2 + q^{-2}\lambda^{-2}}{(q^2 - q^{-2})^2} = c$$

For every $c \in \mathbb{C}$, it is enough to show that the equation (*) has a root which is not of the form ωq^m . If $c \neq \pm (q^{2(m+1)} + q^{-2(m+1)})/(q^2 - q^{-2})^2$, (*) has four roots all of which are not of the form ωq^m . If $c = (q^{2(m+1)} + q^{-2(m+1)})/(q^2 - q^{-2})^2$, (*) has roots $\pm q^{-m-2}$. If $c = -(q^{2(m+1)} + q^{-2(m+1)})/(q^2 - q^{-2})^2$, (*) has roots $\pm iq^{-m-2}$.

References

- [1] J.C. McConnell and J.C. Robson, Noncommutative noetherian rings (John Wiley, 1988).
- [2] M. Rosso, 'Finite dimensional representations of the quantum analog of the enveloping algebra of a complex Lie algebra', Commun. Math. Phys 117 (1988), 581-593.
- [3] L.H. Rowen, Ring theory II (Academic Press, 1988).
- [4] S.P. Smith, 'A class of algebras similar to the enveloping algebra of sl(2, C)', Trans. Amer. Math. Soc.(2) 322 (1990), 285-314.

Department of Mathematics Chungnam National University Taejon 305-764 South Korea