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SELF-LINKED CURVE SINGULARITIES

JURGEN HERZOG* AND BERND ULRICH**

Introduction

Let S be a three-dimensional regular local ring and let J be a prime
ideal in S of height two. This paper is motivated by the question of when
7 is a set-theoretic complete intersection and when the symbolic Rees
algebra S(I) = ®n^ΓnHn is Noetherian. The connection between the two
problems is given by a result of Cowsik which says that the Noetherian
property of S(I) implies that 7 is a set-theoretic complete intersection

([1]).
The ideal 7 is said to be linked to an S-ideal J if there exists an S-

regular sequence au a2 in 7fΊ J such that J = (au a2): I and 7 = (al9 a2): J,
and 7 is called self-linked if 7 is linked to 7 ([14]) (see also [15], [21], [22],
where such ideals were studied). Of course every self-linked ideal is a
set-theoretic complete intersection because F c (au a2). As one of the
main results in the first section of this paper, we prove that 7 is self-
linked in case Sjl has multiplicity at most five (Corollary 1.14). This
follows from another result that gives a criterion in terms of the resolu-
tion, for when an almost complete intersection is self-linked (Theorem 1.1
and Proposition 1.8) (parts of the criterion are similar to results of Szpiro
([20]), Ferrand, Valla ([22]), Mohan Kumar). Using this criterion, we also
characterize all self-linked monomial space curves (Corollary 1.10) and we
show that normal almost complete intersections are self-linked (Corollary
1.9) (an ideal is called normal if all its powers are integrally closed). As
an immediate consequence of Theorem 1.8, we also obtain Kumar's result
that an ideal linked to a regular ideal is self-linked (Corollary 1.11).

In the second section we study the question of when S(I) — S[It, Ii2)t2].
Of course this equality forces S(7) to be Noetherian. Here we will always
assume that 7 is an almost complete intersection in S and that the ideal
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130 JURGEN HERZOG AND BERND ULRICH

generated by the entries of the relation matrix of I is a complete inter-

section (these assumptions are automatically satisfied if / is the defining

ideal of a monomial curve ([5]) or if 7 is a normal almost complete inter-

section ([25])). Relating the above question to the first section of the

paper, we prove, as an analogue of Cowsik's result, that the equality

S(I) = S[It, Ii2)t2] forces I to be self-linked (Corollary 2.5). This follows

from our main result which gives a criterion for when S(I) — S[It, I{2)t2]

(Theorem 2.1). The criterion is formulated in terms of the height of a

determinantal ideal that can be easily computed from the presentation

of I. To prove the theorem we explicitly describe a generator of the

S-module 7(2)//2 (which is cyclic by [25]), and use this generator to obtain

some information about a presentation of the algebra S[It, J(2)£2]. Then

the height condition in the theorem can be translated into a statement

about the grade of a conductor ideal that tests the equality S(I) =

S[It, I{2)t2]. Most of these ideas were introduced by W. Vasconcelos who

also proved the above theorem in a more general context, but under the

additional assumption that the Rees algebra S[It] = ®n^Intn is normal

([24]), [25]). We are grateful to him for providing these ideas and for his

helpful comments concerning the material of our paper.

Theorem 2.1 yields a characterization of all monomial space curves

for which the equality S(I) = S[It, Γ2)t2] holds (Corollary 2.12) (extending

results from [19]). We also determine when a self-linked ideal I admits

an element w such that w generates I{2)/P and is at the same time part

of a regular sequence defining the self-linkage of / (Corollary 2.10). It

turns out that the existence of such an element implies the equality

SCO = S[ft, I(2)t2] (Proposition 2.11).

Throughout this paper, (S, m) will be a three-dimensional regular

local ring, I will be a prime ideal in S of height two, R = S/I, and ω will

be the canonical module of R. By ht, we will denote height of an ideal,

μ will denote minimal number of generators, r(R) = μ(ω) will be the type

of R, and e(R) will stand for the multiplicity of R. We will call an n

by n + 1 matrix A almost symmetric if the matrix obtained by deleting

the last column of A is symmetric, and by It(A) we will denote the S-

ideal generated by all t by t minors of A.

% 1. Self-linked space curve singularities

We begin with a characterization of self-linked almost complete inter-
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SELF-LINKED CURVE SINGULARITIES 131

sections. Parts of this theorem would also follow from [20], page 73,

(the equivalence of a) and c)), [22] (the equivalence of a) and d)), or an

unpublished result of Ferrand (the equivalence of a) and d)). However,

we include a proof for the sake of completeness and because our proof is

somewhat different.

THEOREM 1.1. In addition to the usual assumptions let μ(I) = 3. We

consider a presentation 0-»S2—>S3—•/—•() where A — (αtJ) is a 2 by 3

matrix with entries in m. then the following are equivalent.

a) I is self-linked

b) P c (<xu a2) for some elements au a2 in m

c) there exists an epimorphίsm φ: I —• ω

d) there exists a 2 by 3 matrix C = (ctj) with entries in S such that

UC) gL m and ΣU Σ5-i <*i fin = °

e) there exists a 3 by 2 matrix B with entries in S such that I2(B)

ς£ m and AB is symmetric

f) there exists an invertible 3 by 3 matrix D with entries in S such

that AD is almost symmetric.

Proof. We first show that a) implies c). Let au az be an S-regular

sequence with I=(ax,a2): I. By [14], ω ̂  ((aua2): Γ)fcal9 a2)> and hence

ω = Ij{aua2). Thus we may take φ\ I-> ω to be the natural projection.

Next we prove t h a t c) implies d). Write —* = H o m s ( - , S ) . Then

the exact sequence

0 > S 2 — > S 3 > S > R > 0

yields an exact sequence

0 • S* • S3* - ^ > S2* > ω > 0.

Therefore ψ induces a commutative diagram

s* —> s3 — > i — > o

A* * Π
> S2* > ω > 0.

Denote the bases of S2 and S 3 by {el9 e2} and {hί9 Λ2, h3} respectively, and

let wt — Π(ef). By Nakayama's Lemma, the surjectivity of φ forces φ to

be surjective, and hence there exists a new basis {gl9 g2y g3} of S 3 such

that φ(g,) = e*, φ(g2) = e?, ^(ft) = 0, Let £ = (e^) be the invertible 3 by 3
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(hλ (gλ
matrix with [h2] — E\g2 , and write AE = (dt j). Because of the commu-

W W
tativity of the above diagram, it follows that

0 = Π{φ{dng, + dng2 + dng,)) = dnw1 + dί2w2.

On the other hand,

0 = Π(dnef + d2ιef) = dnwγ + d2ίw2.

Comparing the two equations we conclude that dnw2 — d2ιw2. Since ω is

isomorphic to an ideal in the domain R and w2 φ 0, it now follows that

d12 = d2ί mod I. Note that di2 — d2t = X15=i
 aueβ "~ Σly-i α2ieϋ a n ( i that

Z = I2(A) C /i(A). Therefore 2]^iαu e j2 — Σ ^ i ^ A i c a n be written as

Σΐ=i Σu=i ^ίjαtj with /ι{J e m. Now define

Q __ (c \ __ / 1̂2 — 1̂1 ^ 2 2 ^ 1 2 ^ 3 2 ^ 1 3 |
V ίj \-en-h2ί -e21-h22 -e3ί-h23) *

Then clearly I2(C) ςzt m since IS(E) ςt m, and Σ«=i Σ?=i aίjcij = 0

We now prove that d) implies e). Simply define

ί-c2ι cu\
B = I — c 2 2 c 1 2 .

\ C 23 C 13/

Then IZ(B) qt m, and AS is symmetric since Σ5=iαijcu ^ Σ5-i aii(—cv)

Next we see that e) implies f). Since I2(B) qt m, there exists an in-

vertible 3 by 3 matrix D such that

Then

AD = ((AD)(D-iB)\l) =

where AB is symmetric by assumption.

We now show that f) implies b). Since I = /2(A) = I2(AD) we may

assume that A = (α^) is almost symmetric. Let ( — l)ί+1fi be the maximal

minor obtained from A by deleting the i-th column, and set / = α13/Ί +

a2sf2. Since 02! = α12, it is easy to see that f\ = — a\zf% — a22f, fj2 =

+ α«/, /i = -a\zf, - anf. Therefore P c (/„ /) C I.
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SELF-LINKED CURVE SINGULARITIES 133

Finally we prove that b) implies a). Since P c (au a2) C I it follows

that au a2 is an S-regular sequence in I. Moreover I (Z(au a2): /, and

hence I— (aua2): J, because I is prime. •

Remark 1.2. The equivalence of d), e), f) in Theorem 1.1 and the

proof that c) implies d) show that it suffices to check conditions d), e),

or f) modulo the ideal /.

Remark 1.3. Assume that μ(I) = 3 and that I is self-linked. Then

by the equivalence of a) and f) in Theorem 1.1, it follows that / = I%(A)

where A = i x ^ u\. Let ft denote the i-th maximal minor of A with

sign, then the proof that f) implies a) shows that 1 = (/3, ufx + vf2): L

Remark 1.4. Assume that I is self-linked with respect to the regular

sequence au a2. Then after a permutation of indices if needed, ax g ml

and λat + a2 e ml for some λe S.

Proof. It suffices to show that μ(II(au a2)) = μ(I) — 1. However, the

minimal resolution

0 > S"'1 > Sn > I > 0

implies indeed that

μ(I) — 1 = ^ — 1 = μ(ω) = μ(((au a2): I)/(au a2))

(au a2)) . •

Notice that under the assumptions of Theorem 1.1, ht Ix{A) — 3 and

hence μ(Ix{A)) > 3. Set A = (α^) where atj denote the images of aυ in R.

Then IX(A) = IX(A)II and μ{U~A)) = MΛ(A)). The canonical module of R

can be identified with an i?-ideal ω, and then ωω'1 is an E-ideal that is

independent of the choice of the canonical ideal ω.

Remark 1.5. With the assumptions of Theorem 1.1, ii(A) = ωω~\

Proof. Since ω = (wu w2) is a two-generated ideal in a domain, there

is an exact sequence

0 > ω"1 > R2 > ω > 0 ,

where the image of ω'1 in R2 is {( — w2b, wxb)\b e ω"1}. Therefore the first

Fitting ideal of ω as an j?-module is ^ ω " 1 + w^ω'1 = ωω~\ On the other

hand, we have a presentation
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134 JURGEN HERZOG AND BERND ULRICH

Using this presentation to compute Fu we obtain F1 = Iχ(A*) = Ii(A).

Therefore I^S) = ωω~K Π

Concerning the ideal IX(A) or /^A), we will often make the following

ASSUMPTION 1.6. Suppose μ(I) = 3, let A be a 2 by 3 matrix with

entries in m such that / == /2(A), and assume that μ(Ix{A)) — 3 or, equi-

valently, that IX{A) is a complete intersection in S.

Notice that this assumption is automatically satisfied if I is the defin-

ing ideal of a monomial space curve ([5]), or if I is a normal almost

complete intersection ([23], [25]).

To apply Theorem 1.1 we first need a lemma.

LEMMA 1.7. Under the Assumption 1.6 exactly one of the following

two conditions holds:

a) there exists an ίnvertible 3 by 3 matrix D with entries in S such

that for AD — (ei3), en, e2ί form part of a minimal system of generators of

UAD) = UA)
b) there exists an invertible 2 by 2 matrix E with entries in S such

that for EA = (dtj), (d2u d22, d23) c m(dn, d12t dn).

Proof. First note that we may perform elementary row and column

operations on A. As for column operations, this is part of the definition

in a), and for row operations, this is part of the definition in b). To see

that a) is preserved under elementary row operations, simply notice that

the vector space dimension of each column as a subspace of Iι(A)/mIί(A)

is invariant under such operations. Finally, to show that b) is not

changed by elementary column operations, we remark that by Nakayama's

Lemma, b) is equivalent to the inclusion (d2u dn, d23) c mIx{A), which is

clearly preserved under column operations.

If one of the columns of A is part of a minimal generating set of

Ii(A), then a) is trivially satisfied. Therefore we may assume that αu, α12,

but none of the columns of A form part of a generating set of JΊ(A).

Then α21 € (an) + mIx{A) and α22 e (α12) + ml^A). Write α21 — λxan mod mIx(A)

and α22 = λ2aί2 mod ml^A). If λi ^ λ2 mod m, then adding the second column

to the first column yields a matrix which satisfies condition a).

If however λx = λ2 mod m, we may subtract λx times the first row

from the second row to assume that a2ι e mIx(A) and α22 e ml^A). Then
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Iί(A)l(aιu an) can be generated by α13 or α23. Since α21 and α22 are in

mIx(A), we may add a suitable multiple of the second row to the first row

to assume that I^A) = (αn, α12, α13). Again we may suppose that α23 e (α13)

+ mIx(A). As above, if α23 g m/^A), then adding the third column to the

first column yields a matrix satisfying condition a) (note that α21 e

However, if α23 e mIx(A), then (α21, α22, α23) C mIx(A), and hence

(αn, α12, α13). Therefore (α21, α22, α23) C W2(αu, α12, α13), which is condition b).

Thus we have shown that either a) or b) hold true. Moreover it is

clear from the remarks at the beginning of the proof that these condi-

tions are mutually exclusive. •

Now let I and A = (αί;) be as in Theorem 1.1, let x = xlf x2y x3 be a

sequence of elements in m such that I^A) c (xu x2, x3), and write atj =

Σ J L I aî JCjfc. Since I is of linear type ([8]), the Rees-algebra S[It] has a

presentation S[TU T2, TS]I(FU F2), where Tl9 T2, T3 are indeterminates over

S, and

i = l J=l \y = l / J=l \j = l / * = 1

with

Now it seems natural to consider the matrix

p / * 1 1 M 2 / 1 3 \

\ / 21 # 2 2 ' 2 3 /

and the ideal Δx- = I2(Γ) C S[TU Γ2, T7,]. Finally let Γ be the matrix ob-

tained by reducing Γ modulo m and let Δ* = I2(Γί) be the image of Δ- in

Slm[Tu T2, Tz], One can show that Δs only depends on I and the ideal

(x1? x2, x3), being independent of the choice of A and x = xu x2, x3. The

ideals Δ- were first introduced by W. Vasconcelos ([23]) who showed that

S[It] is normal if and only if Δ* Φ 0 for a regular system of parameters

x in S. We will mostly consider the case where μ{Ix{A)) = 3. We then

take x — xl9 x2, x3 to be a system of generators of I^A), and simply write

Δ instead of Δ^. We are now ready to give another characterization of

self-linked ideals. Part of our proposition (the fact that c) implies a))

could also be concluded from the work of Mohan Kumar.

PROPOSITION 1.8. Under the Assumption 1.6 the following are equi-
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136 JURGEN HERZOG AND BERND ULRICH

valent:

a) I is self-linked

b) ΔφQ

c) A satisfies 1.7 a).

Proof. By Lemma 1.7, A satisfies exactly one of the conditions 1.7

a) or 1.7 b). Thus it suffices to show that if 1.7 a) holds then 1 is self-

linked and Δ Φ 0, whereas if 1.7 b) holds then I is not self-linked and

2 = 0.

So assume 1.7 a). Replacing A by AD we may suppose that

x2

α 2 2

α13\
α23/

where IX(A) = (x^ x2, x3). Thus there are elements cu, e21, c12 in S such that

α1 3 -f- α2 2 = — CiA — Ci2#2 — Qi^s N o w t h e m a t r i x

satisfies condition d) in Theorem 1.1, and hence / is self-linked by The-

orem 1.1. Moreover,

~ \ Tx + αg>3τ

2

and hence J ^ O .

Now assume 1.7 b). Replacing A by EA we are in the situation

where

A __ (X\ X Z %

\ α 2 l #22 #23

with (α21, α22, α23) C m(xu x2, x3). Now let C = (ctj) be a 2 by 3 matrix with

entries in S such that 2]Li Σ5=i aijcij — 0. Then xλcn + x2Ci2 + x3Ci3 =

0 mod m, and therefore (cn, c12, c13) C m. Thus condition d) in Theorem 1.1

is violated and I cannot be self-linked by Theorem 1.1. Moreover,

Γ_ίTι T2 TΛ
\0 0 0 / '

and hence Δ = 0. Π

COROLLARY 1.9. Assume that μ(I) = 3 and I is normal. Then I is

self-linked.
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Proof, Since S[It] is normal it follows from [23] and [25] that for a

suitable regular system of parameters x = xu x2, xz in S, Δ- ψ 0 and IX(A)

= (xu x2, xt) where c is some positive integer. In particular Assumption

1.6 is satisfied. Moreover Δ- c ΔXuX^x* — Δ, and hence Δ Φ 0. Now Pro-

position 1.8 implies that / is self-linked. •

COROLLARY 1.10. Let k be a field, S = k\X, 7, Z] α power series ring,

and R = S/I = A[ίWl, Γ2, t%zj a monomial space curve singularity that is not

a complete intersection. Write I = I2(A)

(this is always possible by [5]). Then the following are equivalent:

a) / is not self-linked

b) a1 < a2 and βx < β2 and T1 < Γ2, or

ax > a2 and βx > β2 and 7Ί > Γ2.

Proof. First notice that Assumption 1.6 is satisfied.

Assume a) and suppose that b) does not hold. Then after a cyclic

permutation of the variables X, Y, Z, either aλ > a2 and βί < β2 or aί < a2

and j9j > β2. In the first case, α12, α22 form part of a minimal generators

of ^(A). In the second case, αn, α2ί or α13, α23 form part of a minimal

system of generators of IX(A) depending on whether Γi > r2 or Tx < ϊ2. In

any case, Proposition 1.8 would imply that / is self-linked.

Next assume that b) holds. Then condition 1.7 b) is satisfied, and

hence by Lemma 1.7 and Proposition 1.8, I is not self-linked. •

From Proposition 1.8 we also obtain a result of Mohan Kumar which

has inspired part of our work.

COROLLARY 1.11 (Mohan-Kumar). Assume that I is linked to a regular

ideal. Then I is self-linked.

Proof. Suppose that / is linked to a regular ideal (xu x2) with respect

to the regular sequence fu f2. Then I/(fu f2) is generated by one element

/ ([14]), and we may assume that /, fu f2 minimally generate I. Since

(xu x2)fd (fuf2), we obtain equations xtf + aί2f + aίzf2 •==• 0 for 1 < i < 2.

Because xί9 x2 form part of a regular system of parameters of S it follows

that both relations form part of a minimal generating set of the first

module of I. Thus we may take
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138 JURGEN HERZOG AND BERND ULRICH

A _ (Xi (hi <h:= (xλ

\*2

Since Iι(A)/(xu x2) is an ideal in the discrete valuation domain S/(xu x2),

we conclude that I1(A)/(xu x2) is cyclic. Now the claim follows from

Proposition 1.8. •

COROLLARY 1.12. In addition to Assumption 1.6 suppose that I ς£ m\

Then I is self-linked.

Proof. Suppose that I is not self-linked. Then by Proposition 1.8

and Lemma 1.7, we could assume that (a2u #22, «2s) C m(alu α12, αi3). But

then I = J2(A) c m(Λ(A))2 c m3. D

For our next result we first need a lemma.

LEMMA 1.13. Let Sf be a faithfully flat extension of S such that

(S\ mf) is a three-dimensional regular local ring and Γ — IS is a prime

ideal. Then the following are equivalent:

a) I satisfies Assumption 1.6 and is self-linked in S

b) V satisfies Assumption 1.6 and is self-linked in Sf.

Proof. Clearly I satisfies 1.6 if and only if Γ does. Now consider

Δ C S/m[Tu T2, Ts] = Q, and the corresponding ideal of Γ, Δf C Sfjm'[Tu

T2, T3] = Q'. Then Q a Q' and ΔQ' = Δ\ Now the claim follows from

Proposition 1.8. •

COROLLARY 1.14. Assume that e(R) < 5. Then I is self-linked.

Proof. By Lemma 1.13 we may assume that R has infinite residue

class field. Then there exists an element z in S with z e m\mι such that

z is iu-regular and e(R/(z)) = e(R). By " " " we denote reduction modulo

z. Then R = S/ΐ, and we consider the associated graded ring of R,

grm(R) = grm(S)/J = Q/J where Q = A[X, 7] and k = S/m. We will prove

the following:

(1.15) If J is not a complete intersection then J = (Fu F2, F3) where

Fu F2, Fs are homogeneous elements in Q, and there are two homogeneous

relations 25=i BtjFj — 0? 1 < ^ < 2, such that at least two of the elements

Bfj (1 < i < 2, 1 < 7 < 3) are linearly independent linear forms in Q.

We first show how Corollary 1.14 follows from (1.15). If J is a com-

plete intersection, then I and / are complete intersections. Thus we may
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assume that J is not a complete intersection. Let ft be elements in I

such that the leading forms of ft are Ft. Then I = (fl9 f2, fz) and hence

I — (f19 f29 f3). In particular, μ(I) — 3. Also fί9 f2, J% form a standard basis

of I and hence by [17], we can find relations in S, Σ5=i bufj = 0> 1 < ί

< 2, such that J5ί; are the leading forms of bi3. Then 2y=i ̂ iO € (2) IΊ / = zl,

and changing α^ modulo the ideal (z) we obtain relations in S, Σ5=i ^ J / J

= 0, 1 < £ < 2, such that J3^ are the leading forms btj. Therefore by

assumption on the elements Bυ, at least two of the elements bi5 form

part of a regular system of parameters in S. Call these two elements

xu x2, and let A be the full relation matrix of /. Then (xu x2) c IX(A)

and I1(A)/(xu x2) is cyclic. Thus μil^A)) = 3 and hence Assumption 1.6

is satisfied. Moreover I ςέ m3 since otherwise e(R) > 6. Now Corollary

1.14 follows from Corollary 1.12.

To prove (1.15), we first list all possibilities for two linearly inde-

pendent quadratic forms hu h2 in the polynomial ring Q = k[X, Y]. Write

hλ = anx
2 + a12xy + any

2, h2 = a2ιx
2 + anxy + a2%y2. We may assume that

the matrix (atj) is either

1 0 αi,\ (1 aa 0\
0 1 aj O r \0 an l) '

In the second case we may even assume that an = a22 = 0, since other-

wise, this case reduces to the first case. Therefore ht = X2 + aί3Y
2, h2 = XY

+ a2zY
2, or h2 = X2, h2 = Y2. In the first case, we may replace X by

X' = X + a23Y to obtain h2 = XΎ. After adding a suitable multiple of

h2 to hx and writing X instead of X\ we may assume that hx — X2 + aY2,

h2 = XY, or in the second case hx = X2, h2 — Y2.

Now we are ready to prove (1.15). Notice that e(Q/J) < 5 since

e(QjJ) = e(R), and J c (X2, XY, Y2) since J is not a complete intersection.

If e(Q/J) = 3, then J = (Z2, ZY, Y2) and (1.15) is clearly true.

So assume that β(Q/J) = 4. Then the Hubert series of Q/J is 1 + 2t

+ ί2. Therefore J = (/ι1? /ι2) + (X, Y)3, where Λj, Λ2 are two linearly inde-

pendent quadratic forms in Q. Hence by the above, ht = X2 + #Y2, ̂ 2 =

XY, or &! = Z 2, h2 = Y2. If Ai = X2 + ^ Y2 with α: ̂  0, h2 = XY, or if

hx = X2, h2 = Y2, then J = (A1? h2) would be a complete intersection. Thus

we may assume that hx = X2, h2 = XY. Then J = (X2, XY, Y3), and Y(X2)

- X(XY) = 0 is the desired relation in (1.15).

Finally let e(Q/J) = 5. Then the Hubert series of Q/J is 1 + 2ί + t2
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+ f or 1 + 2t + 2tf. In the first case J contains two linearly independent

quadratic forms hu h2. If hλ = Z 2 + aY2 with a ψ 0, h2 = ZY, or if /ιx = Z 2,

/ι2 = Y2, then (Z, Y)3 c J, and hence e(Q/J) < 5. Therefore we may assume

that ht = X2, h2 = XY, and from the Hilbert series we obtain that J =

(Z2, XY) + (Z, Y)4 = (Z2, XY, Y4). Now again Y(X2) - X(XY) is the de-

sired relation in (1.15). Finally consider the second case where the Hilbert

series is 1 + 2t + 2t\ Then either J = (Z2 + aXY + βY2) + (Z, Y)3 =

(Z 2 + aXY+ βY2, XY\ Y3) and Y(XY2) - X(Y3) = 0 is the desired rela-

tion in (1.15), or else J = (ZY) + (Z, Y)3 = (ZY, Z 3, Y3) and X\XY) -

Y(X3) = 0, Y\XY) - X(Y3) = 0 are the desired relation in (1.15). •

§ 2. Symbolic Rees algebras of space curve singularities

Recall that the τi-th symbolic power of I is defined as I{n) = S(Ί /WS 7

and that the symbolic Rees algebra of / is S(I) = 0 n ^ o I{n)tn (viewed

as a subring of the polynomial ring S[i\). This algebra contains the

Rees algebra S[It], but equality only holds if / is a complete intersection

([2]). With the methods of Vasconcelos ([25]) we want to study the ques-

tion of when S(I) = S[It, I{2)t2]. As S(I) need not even be Noetherian

([16]), this is a rather strict requirement on I.

For the remainder of this paper we will suppose that I satisfies

Assumption 1.6. We will often make use of the ideal Δ C Sjm[Tu T29 Ts]

which was defined prior to Proposition 1.8. Notice that ht Δ < 2 since

Δ = I2(Γ), and ht Δ > 1 if and only if I is self-linked (Proposition 1.8).

The next theorem answers the above question.

THEOREM 2.1. Under the Assumption 1.6 the following are equivalent:

a) S(I) = S[It,I«Ψ]

b) ht Δ = 2.

This theorem has been proved by W. Vasconcelos in a more general

context, but with the additional assumption that S[It] is normal ([25]) (his

proof also applies to the case where Δ Φ 0). For different results con-

cerning the Noetherian property of symbolic Rees algebras, we also refer

to the work of S. Eliahou ([3]), C. Huneke ([9], [11]), M. Morales ([13]),

and P. Schenzel ([18], [19]). As a first step in the proof of Theorem 2.1,

we describe the second symbolic power /(2). This is done in Proposition

2.2, which follows again from Vasconcelos in case S[It] is normal (or

also from unpublished computations by Huneke). In particular it will
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turn out that / ( 2 ) /I 2 is cyclic, a fact which has been shown for monomial

space curves in [3], [10], and [19].

We first have to fix some more notation. Let ( — ΐ)i+1fίf 1 < i < 3,

be the maximal minor of the 2 by 3 matrix A = (atj) obtained by deleting

the i-th column, so that 1 = J2(A) = (/Ί,/2,/3), write Ii(A) = (xu x2, x3), let

Γ = (ΐtj) be the 2 by 3 matrix defined prior to Proposition 1.8, write P

for the polynomial ring S[TU T2, Tz] and B for the Rees algebra S[It], and

in P consider Fl9 F2 with

Then (Fu F2)P = ker ^ where ^: P -> B is the natural projection, mapping

Γ, to ftt. Finally let {-l)ί+1Δi 1 < i < 3, be the maximal minor of Γ

obtained by deleting the i-th column, and let ( — l)i+1Z)4, 1 < i < 3, be the

i-th minor of the 2 by 3 matrix we get from if we replace T3 by f3.

Notice that φ(Jt) = Dβ.

Under the Assumption 1.6 we now explicitly describe /. Huneke and

Vasconcelos have shown that Ext1

i2(/(Z)/72, ω) ^ SJUA) ([10], [25]), and by

local duality, IX(A) also annihilates J(2)//2, or in other words, Ii2)C.P : IX{A).
s

As 7,(A) ςzί /, we always have that P : 7,(A) C 7<2\ and therefore 7(2) =

P
Let K be the quotient field of S, and let x e ^(A), x ^ 0. Then J ( 2 ) =

P : UA) = P : IX(A) since grade J^A) > 1, and therefore xP2) = x/2 : J^A)

= xP : ^(A). Now consider B = φ n > 0 I
n Γ c S[ί] and read the above equa-

tion in S[t]. Then xP2Ψ = [XJB : ^(A)^, the degree two part of xB : /,(A).
-set] sCί]

But xB : ^(A) == xB : ^(A)^ = xB : Λ(A)B since xS c UA)B. Thus
5[ί] >S[£] B

xP2Ψ = [xB : I1(A)JS]2, where xB : ^(A)^ is a B-ideal that is linked to
B B

Iι{A)B with respect to the regular element x.

Now we use our assumption Ji(A) = (xl9 x2, x3) and choose x = xt. We

will prove that x ^ : (x1? x2, x3)B = (Xj, A O ^ Notice that B = P/(Fi, F2),
B

and that F 1 ? F2, xt is a regular sequence in P = Stϊ7!, JΓ2, ΪY|. Hence by

homogeneity, also x1? 1^, F 2 is a P-regular sequence. Thus if " ' " denotes

reduction modulo xxP, then F[ = 7'^ + TnxL F'2 = r»^ + ri^ί form a P r-

regular sequence contained in the complete intersection (x^ xi)P'. But

then it is well known that
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(Fί, FOP': (*ί, xί)P' = (F'lt F't, det (j£ J | ) ) P ' = (F'lt F'2, Δ[)P'.

Therefore

(Fu Ft, Xi)P: (*,, *, x3)P = (*,, Fu F,)P: (*„ x,, x3)P

= (*,, F,, F,, JOi3 = (Fu Ft, xu A)P

and applying the epimorphism φ we obtain that

x,B : (xu x2, xz)B = (xu DtfB.
B

Therefore

foB : (xu x*, Xs)B)2 = (xj\ Dx)t\

and hence J ( 2 ) = (I\ DJxJ.

Finally notice that over S, Γhc2 = I ̂ ) and Γ J21 = 0. Now apply

w κt*} W
9 and write p(Γ) = C. Then over β, C x2 = 0 and C D2t

z = 0. Since

W w/
J2(C) = (A, A, D3)t2B Φ 0, C has rank two and hence A M == A/*2 = A / ^

We summarize our computations in the following proposition:

PROPOSIFION 2.2. Suppose that Assumption 1.6 is satisfied and write

w = A/*i TΛerc M; = A/^i = D2/x2 = DJx3f and / ( 2 ) = (I 2, w).

Before we come to the proof of Theorem 2.1, we need a general

''connectedness lemma".

LEMMA 2.3. Let Q = 0 π ^ o Qn be a graded catenary equidimensional

ring, assume that (Qo, m0) is a local ring with infinite residue class field,

and write M= m o θ Q + . Let p, q, q', J be homogeneous Q-ideals of the

same height g, with pZDJdq and V Q = VV, and assume that q' is

generated by homogeneous elements of the same degree. Further suppose

that QIJ satisfies Serre's condition (S2) and that Jx is a prime ideal for

every homogeneous element x e q\Mq'. Then ht (p + q) < g + 1.

Proof. We consider the following subsets of the prime spectrum of Q:

A = {prime ideals of height g containing J}

= {minimal prime ideals of J}

B = {prime ideals of height g containing p] Φ 0 ,
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C — {prime ideals of height g containing q]

= {prime ideals of height g containing q'}.

If B Π C Φ 0, then ht (p + q) = g. Thus we may assume B Π C = 0, and

since B ( j C c A it follows that J3 c A\C. Now <?' qL \JP&A\C P, and </ is

generated by homogeneous elements of the same degree. Thus there exists

a homogeneous element x e q'\Mq' with x g {JPeA\C P> Then by our as-

sumption, Jx is prime, and since x g ^JPeA\c P it follows that A\C consists

of at most one element. But on the other hand, 0 Φ B a A\C, and

hence B = A\C. Therefore B (J C = A which implies that Vp<7 = Λ/ J.

But then by Hartshorne's connectedness theorem ([4]), grade (p + q)/J < 1,

and hence ht (p + q)jJ < 1 since Q/J satisfies (S2). Therefore ht (p + q)

< g + 1 because Q is equidimensional and catenary. •

Proof of Theorem 2.1. We may assume that the residue class field of

S is infinite. Choose w as in Proposition 2.2, then S[It, Γ2)t2] = S[Λ, wt2].

In addition to the notations introduced prior to Proposition 2.2, write

D = S[Λ, jwfl, Q = P[W] = S[Ti, Γ2, Γ,, VF] where W is a variable, and

define an epimorphism e: Q-^ D that extends ψ and maps W to wf. In

Q consider the ideals p = ker ε, q = mQ, and J = (1^, F2, G1? G2, G3) where

Gi = xtW — J€. First notice that J dp, since (jFi, FZ)P = ker 99 and e(G<)
= x4w;i2 - A^2 = 0 by Proposition 2.2. On the other hand, (Fu F2)Q =
(ker <p)Q is a prime ideal of height 2 with Gέ g (F1? F2)Q, and therefore

ht J > 3. Since h t p = 3 it follows that ht J = 3. Thus p, q, J are homo-

geneous ideals of the same height 3.

Next we show that J is a Gorenstein ideal. To this end let Xu X2,

Xz be variables over Q, let Y be a generic 2 by 3 matrix, let 21? J2, J 3

be the maximal minors of Y (with appropriate signs), write Q = Qfi7]®.?

S[Xj, X2> XH{m,χι,χ2,χ3)9 a n ( i l e t ĉ  be the Q-ideal generated by the elements

ΣS-i y*Λ, 1 < i < 2, and ̂  W - J t , 1 < i < 3. Then J is a homogeneous

Gorenstein ideal of height 3 ([6]). If we map Xt to xt and Ytj to τij9 then

J specializes to J, and since J is Cohen-Macaulay and ht J = ht J, it

follows that the kernel of this specialization is generated by a regular

sequence on QjJ. Thus also J is a Gorenstein ideal.

Now we need to prove that the ideal J is independent of the chosen

generating set xlt x2, xz of IX(A) as along as we replace xίy x2y xz by x'l9 x'2,

X3, where
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and E is a 3 by 3 matrix over S with det E — 1.

To show this claim, let CΊ, C2 be 3 by 3 matrices over S with

Notice that

/ ί l \ Mi\

?::H#
where " * " denotes transpose. Now define Γ' = ΓE~\ then

and

Thus we may take Γf — ΓE~ι to be the Γ-matrix associated to the new

generators x[, x'2, x'3 of I^A). Let Δ[, Δ'2, Δ'z be the maximal minors of Γ;

(with appropriate signs), then

and hence

Therefore x[, x'2, x'z define the same ideal J as xu x2, xs.

Next we prove that for every element x e ItiAyXml^A), the localiza-

tion Jx is a prime ideal in Qx. By the above, we may assume that x = xlt

But then JX1 contains the ideal (F19 F2, W — x^Δ^Q^, which is a prime

ideal of height 3 since QJ(FU Fz, W - X{1A)QX1 = BX1. Therefore JXί itself

is prime.
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Now we are ready to complete the proof of Theorem 2.1. By Vas-

concelos ([25]) or Schenzel ([18]) we know that S(I) = D if and only if

grade mD > 2. Since D ~ Q/p and q = mQ, this inequality is equivalent

to grade (p + q)jp > 2.

We first consider the case where J = 0. Then J C (m, Δu Δ2, ΔZ)Q c

mQ = g. Write g' = I1(A)Q, and M = m©Q,. Now p, g, g', J are homo-

geneous ideals of height 3, with p 3 J c g and V g = V g', and g' is

generated by homogeneous elements of degree 0. Moreover we have seen

that Q/J is Cohen-Macaulay and that Jx is a prime ideal for every x e

71(A)\m71(A) and hence for every homogeneous element x e q'\Mq'. There-

fore by Lemma 2.3, ht (p + q) < 4. Thus grade (p + q)/p < ht(p + q)jp

< 1, and hence S(I) Φ D.

Next we consider the case where Δ ψ 0 (this part of the proof follows

[25] very closely). Then J gt mQ = g.

We first claim that p = J. Suppose that i1(A)\;n/1(A) is contained

in the union of all associated primes of J, then for some ifeAss(J),

/j(A)Q C /ί and hence g =- \/?i(A)Q C K. But g is a prime of height 3

and J is a Cohen-Macaulay ideal of height 3. Therefore q -- K Z) :/,

which is ruled out by our assumption. Thus there exists an element x e

J1(A)\m/1(A) such that x is regular on QjJ. Moreover by what we have

seen before, Jx is prime. Therefore also J is prime and hence p = J since

htp = ht J.

In particular D ~ Qjp = Q/J is Cohen-Macaulay, and then grade

mD > 2 if and only if dim D/mD < 2. However, D/mD ^ Qj(p + q) =

Ql(q + J) = Q/(mQ, J1? 4 ? 4) - (SM77,, Γ2? Γs]/J)[ W]. Therefore dim D/mD

< 2 if and only if ht J > 2 or, equivalently, ht Δ = 2. Γ]

The proof of Theorem 2.1 also shows the following: Suppose that

Assumption 1.6 is satisfied. If I is self-linked and hence J ψ 0 (Proposi-

tion 1.8), then S[It, I{2)ί2] = Q/J is Gorenstein (c.f. also [25]). If however

I is not self-linked and hence J = 0, then J dp f] q (using the notations

of the proof of Theorem 2.1), p Φ q, Ass(J) = {p, q} (proof of Lemma 2.3),

and Jp = pJ (proof of Theorem 2.1). Therefore J = K Π p where i£ is

the g-primary component of J, or in other words, the defining ideal p of

S[It, Ii2H2\ is geometrically linked to K with respect to the Gorenstein

ideal J (for the definition of geometric linkage see [14]). (In fact, now

the main step in the proof of Theorem 2.1 for J = 0 can be recast in the
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statement that up to radical, p + q/p is a canonical ideal of S[It, Ii2)t2].)

In many instances one can compute K and it turns out that S[It, I(2)ί2]

need not be Gorenstein as will be shown in the next example.

EXAMPLE 2.4. Consider the monomial curve singularity R = k[X, Y,

ZJII=klt\t\tί0J. Now

( γ-3 y2 >72\
A 1 L \
Z X Y)

and J = (X3TX + Y2T2 + Z2T3, ZTX + XT2 + YT3, XW - YTXΎ2 + ZTl YW

- ZTXTZ + X*T\, ZW - X2TXTZ - YTl). Then JQq = (X, 7, Z)Qq = gQq,

and hence J = p Π ^. Therefore p and g are linked with respect to J.

Since q = (X, Y, Z)Q is Cohen-Macaulay it follows by [14] that S[It, Ii2)t2]

= Q/p is Cohen-Macaulay and that r(S[It, I{2Ψ]) = μ(q/J) = 3.

The next corollary is an immediate consequence of Theorem 2.1 and

Proposition 1.8.

COROLLARY 2.5. If under the Assumption 1.6, S(I) = S[Λ, I(2)22],

/ is self-linked.

Thus when dealing with the question whether S(I) — S[It, I{2)t2], we

may assume that I is self-linked. But then by Proposition 1.8 one may

( xx a \1 2 13) with I^A) = (jcx, x2, Xg) and an = cx3, α22 =
X 3 (Z 2 2 ΰ>23/

d^j + d2#2 + cί3x3, α23 = exxγ + e2x2 + e3x3. In the following corollary we

formulate the height condition of Theorem 2.1 in a more accessible way.

COROLLARY 2.6. With the above notations the following are equivalent:

a) S(I) = S[It, /(2)ί2]

b) either

c & m and (e2,dx + d2d3, ex + d2ez — cdl) φ m

or

cem and (e2e3f dx + d2d3, eί + d2e3 + d3e2) ςt m.

Proof. Write k[Tu T2, T3] = S/m[Tu T2, T3l and let " ~ " denote reduc-

tion modulo m. Then

i Ά cTΛ
k h)

where lx = dxT2 + e,T3, l2 = d2T2 + e2T3, l3 = T, + dzT2 + e3Tz. By Theorem

2.1 it suffices to show that the k[Tu JΓ2, Γ3]-ideal Δ = 72(Γ) has height two
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if and only if condition 2.6 b) is satisfied.

We first consider the case where c g m. If e Φ 0, then one can see

from the Jacobi matrix that k[Tu T2, T^KΔ^ is normal, and hence Δx is a

prime element. Moreover, J, does not divide J3, and thus ht (Δ) = 2 in

this case. If e2 = 0, then after subtracting d2 times the first row of Γ

from the second row we may assume that

Γ_(Tί T2~cT
1 -\H o \ z

with l[ = -d2T, + dxT2 + eJΉ K = Tx + d,T2 + (e3 - cd2)T3. Now J =

T2(l'i, K) + (4), where T2 does not divide J 2 and J 2 e (/ί, Iζ). Thus ht J = 2

if and only if /( and 1'3 are linearly independent. This in turn is equivalent

to dλ + d2dz Φ 0 or ex + d2ez — cd\ Φ 0.

Now we consider the case where c em. Then (Δu Δ2) = (Tu T2)l3, with

Z3 a prime element. Thus ht Δ — 2 if and only if /3 does not divide z/3.

Writing T, = l3 - d,T2 - e3Γ3 we see that modulo (Z3), - J 3 = (^ + d2d,)T\

+ (βi + d2e, + dze2)T2Tz + e2e3Γ3

2. Since *[Z,, ϊ7,, Γ8] - ^[ϊ7,, Γ2, Γ8] it follows

that Δ3 ^Ξ 0 mod (Z3) if and only if dj + d2d3 ^ 0, or ex + d2ez + d3e2 Φ 0, or

e2e3 Φθ. •

Now let A be a matrix as in Corollary 2.6. After multiplying A

from the right by the invertible 3 by 3 matrix

- c - d

A = (X2~~ C X l ~ d*Xl y

\ y *

we may assume that

with y = dxxx + d2x2 — cxz and /^A) = (x1? xt, xz) = (Λ:2 — cxγ — dzxu xϊ9 xz).

Thus instead of supposing that Assumption 2.6 is satisfied and I is self-

linked we may assume the following (see also Theorem 1.1 and Proposition

1.8):

ASSUMPTION 2.7. Suppose that

withJJ)
write y ~ axx + cι2u + azυ, z = bxx + b2u + bzυ, and let fl9 f2, fz be the

maximal minors of A (with appropriate signs).
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In the remainder of this section we are interested in further describ-

ing a generator w of I^jP (under the Assumption 2.7). We will write w

explicitly as a linear combination of the two elements /3, ufx + vfs, which

form a '"self-linking" sequence of I (Proposition 2.8). We then characterize

those ideals I for which w can be chosen to be part of a self-linking

sequence /3, w (Corollary 2.10), and prove that for such ideals necessarily

S(I) = S[It,P2Ψ] (Proposition 2.11).

PROPOSITION 2.8. Suppose that Assumption 2.7 is satisfied, let w be

as in Proposition 2.2, and set a = ( α ^ — a3bt)u — (a2 + b3)v — axy + z,

b = α362 — #2̂ 3- Then

a) w = α/3 + b{uf, + vf2)

b) P^dif^uf + vf,).

Proof. We first prove part a). Choosing x, u, υ as a generating se-

quence of /j(A) we obtain

Then

Γ = (
KT bT T b2T2 a,Tx + b3T2

w =

Now our claim follows by an elementary calculation using the equations

fi=yυ - zu, fz=yu - OT5 fz = xz- y2.

To prove part b), notice that by Proposition 2.2, / ( 2 ) = (P, w). More-

over Γ c (/i, w/i + y/2) by Remark 1.3, and w e (fZy ufx + vf2) by part a). Π

Before we can proceed we need a lemma.

LEMMA 2.9. Suppose that Assumption 2.7 is satisfied and let I = ctf3 +

c2(ufi + vf2) + /ι with cte S and h e P. Then (/3, Z) = (/3, ufx + u/2) i/ and

only if c2 is a unit

Proof As heP and P c (/3, w/i + vf2) by Remark 1.3 or Proposition

2.8, there exist du d2 is S such that h — dj% + d2(ufx + vf2). Hence (/3, /)

= (Λ, (c2 + d2)(ufx + vf2))9 and this ideal equals (/3, ufx + vf2) if and only

if c2 + c?2 is a unit.

The assertion will follow once we have shown that d2 e m. Suppose

that d2 g m, then ufx + vf2 + gfz e I 2, where g = cίjdΓj"1. The exact sequence
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implies that modulo 7,

Therefore w — sxx — s2y e I and v — sty — s2z e 7. In other words, we may

change A = (x y

χ

 u\ to Af = ( x J JJ,Ί with u' and 1/ in I. Since 1 =

72(A') it follows that 7 = (xε — y2) + ml, which by Nakayama's Lemma

would imply that 7 is principal. •

COROLLARY 2.10. Suppose that Assumption 2.7 is satisfied and let w

be any element such that 7(2) = (I2, w). Then the following are equivalent:

a) I = (Λ,α;): 7

b) α 3 δ 2 — a2b3 £ m.

Proof. We first show that a) is equivalent to (/3, w) — (/3, ufλ + vf2).

The latter equality certainly implies a), since I = (/3, M^ + u/2): J by

Remark 1.3. Conversely assume a). Then the canonical module ω of S/I

can be computed as ω = ((/3, «;): /)/(/3, ι̂ ) = I/(/3, w) ([14]). On the other

hand, ω ^ ((Λ, Λ̂ + vf2): J)/(/3, w/i + υf2) ^ //(/;, M/λ + u/3), and therefore

!/(/„ w;) S //(/„ ^/i + ϋΛ). By Proposition 2.8, / ( 2 ) C (/•, w/i + u/2), hence

(Λ, α;) C (Λ, M/; + vf2). Now the natural projection //(£, M;) -> //(/3, Λ̂ + ι;/2)

is an epimorphism of isomorphic modules and therefore injective. Thus

(/3, w) = (/3, ufx + vf2).

Next we have to show that the equality (/3, u;) = (/3, z/̂  + y/2) is

equivalent to b). By Proposition 2.8 we know that w = ε(α/3 + 6(ιz/i + υf2))

+ /ι, where ε is a unit, b = α362 — α263, and /ι e I 2. Now Lemma 2.9 implies

that (/3, w) = (/s, ufλ + υf2) if and only if α362 — α263 g m. D

Let us consider an example illustrating Proposition 2.8 and Corollary

2.10. We choose A = (x y z) with I^A) = (x, y, z). Notice that J =
\y z x]

72(I) is indeed a prime ideal if we assume for example that S = R[x, y, z]{x,y,z).

Now let w = DJx be as in Proposition 2.2, then 7(2) = (P, w). Moreover

w = (fl- fifs)*'1 = x* + f + z* - 3 x ^ = - 2/j - x/2 - 3/,. On the other

hand we may transform A into ( x ^ u) with w = x + z and ι> = x + y.

Then ^(A) = (x, u, v) and, using the notation of Corollary 2.10, α3δ2 — α263
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= 1. Now Corollary 2.10 implies that I = (fz, w): I. Thus J(2) = (P,

zft + xf* + yfs), and I = (/„ zfx + xf2 + yf3): I.

Before we consider more examples we need the following result:

PROPOSITION 2.11. Suppose that Assumption 1.6 is satisfied and that

there exist elements fel and weP2) such that

i) /w = (/*, w)
ii) I=(f,w): I.

Then S(I) = S[It, P2)t2].

Proof. Since w e P2) c m/ (Proposition 2.8), and / = (/, w): I it follows

from Remark 1.4 that f&ml. In particular, feP2) and we may assume

that I = (/i, /2, Λ) with /3 = /. As P C (/3, w;), we obtain equations f\ =

ftΛ + î̂ » /a = gifz + Λ2w. Here ^ / 3 e J(2), and thus ft e I since /j 6 /(2).

Then we may write ^ = cn/i + cί2/2 + cί3/3j and get the following relations:

, v /i - CπΛΛ - c12/2/3 - cls/J - hxw = 0
(*)

/2 - c21ΛΛ - c22/2/3 - c23/Ίj - htw = 0.
Now present D = S[It, P2)t2] — S[fxt, f2t, fzt, wt2] as a quotient of the poly-

nomial ring S[Tlf T2, Ts, W] (see the proof of Theorem 2.1). Then because

of the two relations (*), DjmD is an epimorphic image of Sjm[Tu T2y T3, W]

I(T\ + lu T\ + k) where lt e (Tt, W). Therefore ht mD > 2, and hence grade

mD > 2 since D is Cohen-Macaulay by the remarks following the proof

of Theorem 2.1. Now [25] or [18] implies that D = S(I). •

We now apply our theory to monomial space curves.

COROLLARY 2.12. Let R = S/I = k\tn\ tn\ tn*J be a monomial space

curve singularity that is not a complete intersection. As in Corollary 1.10

write

Ass/x-> Y* z-

Then the following are equivalent:

a) S(I) = S[It, PZΨ]

b) there exist elements fel and wel(2) such that

ϊ) 7(2) = (P, w)

ii) I=(f,w): I

c) ax = a2 and βx < β2 and Tι > Γ2, or,

ϊί < Γ2, or,
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α?! < a2 and βι > β2 and JΊ = ϊ%.

Proof. Set a = a2 — ai9 β = β2 — βu ΐ = ϊ2 — ΐi- Assume a), then by

Corollary 2.5, I is self-linked. Thus by Corollary 1.10, we may assume

that a > 0, /3>0, ϊ < 0 (the other cases follow by suitable permutations

of the rows and columns of A). But then I^A) = (Xa\ Yβ\ Zrή and

γβl Z-7Zr

r2 χaχai

Now Corollary 2.6 implies that if T = 0 then a = 0 or β = 0, whereas if

- r > 0 then or = 0. Thus a = 0 and 0 > 0 and r = 0, or or > 0 and j8 = 0

and ϊ = 0, or αr = 0 and 0 > 0 and T < 0. In either case, condition c) is

satisfied.

Next we prove that c) implies b). After a cyclic permutation of the

variables we may assume that a = 0 and β > 0 and Γ < 0. Then I^A) =

(X-, Y*, Zr2) and

. _ /zαi ŷ 1 z-τzr*\
Λ-\zr* x«i γβγ^j'

We may transform A into the form

This matrix has the form required in Assumption 2.7 since it is almost

symmetric and IX(A) = (Yβ\ Xai + Z~rZr\ ZH + YβYβl). Now write

χai = Z-ry/i(y/ii) + 1 (χ« 1 + ^-rZr 2) _ Z'\ZH + YβYh)

+ YβYβl).

Then with the notations of Assumption 2.7, α362 — #263 = l g m , and thus

our assertion follows from Corollary 2.10.

Finally b) implies a) by Proposition 2.11. •

The equivalence of a) and c) in Corollary 2.12 has been independently

proven by T. Marley, and the fact that c) implies a) has been previously

shown by P. Schenzel ([19]). We conclude this paper with an example

which indicates that a) and b) in Corollary 2.12 might not be equivalent

for general space curves.

Let (T, ή) be a three-dimensional regular local ring, let xu x2, x3 be

an arbitrary system of parameters of T, and consider the T-ideal K = I2(B)

where
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(xx x2 x3 0\
J 3 = 0 x1 x, xl).

\0 0 x1 xj

Then K is a perfect ideal of height 2 which is generically a complete

intersection. Let hu h2y hz, h4 be the maximal minors of B (with appropriate

signs), let ztj (1 < i < 2, 1 < j < 2) be variables over Γ, set S = Tfo,) =

ΓfeilnT Cί,/]* a n ( * «i = Λi + znh3 + z2ίh4, a2 = h2 + zx2hz + z22h4. Then J =

(αrj, α2)S ^ S is an S-ideal of height 2. Moreover ί is a "universal link"

of K ([12]), and therefore I is actually a prime ideal ([12]). On the other

hand, notice that

^22^2

where A = (* y

χ ^J with x = xu u = x, - znx, - zί2x2, v == - e 2 1 ^ -

^ = x2, z — x\ — z22xx + zί2x2. Then I^A) = (x, u, v), and writing y = α ^

+ a2w + a3v, z = bλx + b2u + b3v, we get ax = —z21jz22 mod m, a2 = 0 mod m,

a 3 = —1/^22mod7w, 6j = — 222 — znz2jz22modm, 5 2 Ξ 0 m o d m , 63 = 2: 1 2/2 2 2modm.

Thus azb2 — a2bz e m, and now Proposition 2.11 implies that there exists no

element w such that J ( 2 ) = (P, ^) and J = (/3, w): I. On the other hand,

one can show using Corollary 2.6 that S(I) = S[It, I(2H2].
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