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Abstract

A decision-making body may utilize a wide variety of different strategies when required to
make a collective decision. In principle, we would like to use the most effective decision
rule, that is, the rule yielding the highest probability of making the correct decision.
However, in reality we often have to choose a decision rule out of some restricted family
of rules. Therefore, it is important to be able to rank various families of rules. In this paper
we consider three classes of decision rules: (i) balanced expert rules, (ii) the so-called
single expert rules, and (iii) restricted majority rules. For the first two classes, we show
that, as we deviate from the best rule in the family, the effectiveness of the decision rule
decreases. For the last class, we obtain a very different phenomenon: any inner ranking
is possible.

Keywords: Decision rule; weighted majority rule; balanced expert rule; restricted majority
rule; dichotomous choice model
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1. Introduction

There are many situations in which an important decision is to be taken by a panel of experts,
who are expected to have sufficient knowledge of the subject so that their decision will be more
accurate than random guessing. Examples include boards of directors, surgical teams, and
admissions committees. We concentrate on the uncertain dichotomous choice model, which
goes back as far as Condorcet (1785). In this model, a group of n decision makers is required
to select one of two alternatives, only one of which is correct. We assume that the alternatives
are symmetric. Namely, the a priori probabilities of the alternatives are equal, and the benefit
or loss associated with a correct or incorrect decision, respectively, is the same in both cases.
Each expert i, 1 ≤ i ≤ n, selects independently of the others and has his own correctness
probability pi , indicating his ability to identify the correct alternative. It is also assumed that
1
2 ≤ pi < 1, 1 ≤ i ≤ n, and, with no loss of generality, that pi ≥ pj , 1 ≤ i < j ≤ n.
The correctness probabilities are independent of which alternative is the correct one (cf. Nitzan
and Paroush (1985)). A decision rule translates the individual opinions of the members, or
a voting profile, into a group decision. A decision rule v is optimal for a group of experts
with correctness probabilities p = (p1, p2, . . . , pn) if it maximizes the effectiveness π(v, p),
namely, the likelihood of the group to make a correct choice.
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Nitzan and Paroush (1982), (1984), (1985, p. 15) obtained a criterion to identify the optimal
decision rule for known values of correctness probabilities. They proved that the optimal
decision rule is always a weighted majority rule. Specifically, for a committee of n experts, the
optimal rule is given by the vector of weights (w1, w2, . . . , wn), where

wi = log
pi

1 − pi

, 1 ≤ i ≤ n.

The class of weighted majority rules contains the expert and simple majority rules as extremes.
The expert rule assigns zero weights to all members of the group but the most qualified member,
so that the group always follows his decision. The simple majority rule assigns equal weights
to all decision makers, so that the group always follows the majority opinion.

A general comprehensive study of weighted majority rules is a complicated task, since the
class of such rules becomes very large as the number of group members increases (cf. von
Neumann and Morgenstern (1944), Isbell (1959), Muroga et al. (1967), Karotkin (1993),
Karotin and Schaps (2003), and Berend and Sapir (2003)). For any group size, Karotkin
(1998) showed how all the weighted majority rules can be arranged in a graph, where the nodes
are the rules and the edges represent distinguishing voting profiles, namely, profiles on which
corresponding rules disagree.

In this paper, for a fixed group size, we identify all possible rankings of the rules of several
specific types. We are concerned with three families of rules: (i) balanced expert rules,
(ii) single expert rules, and (iii) restricted majority rules. These rules will be defined rigorously
in Section 2.

In the first and the last families, the rules are determined by the number of group members
having an influence on the group decision. However, under the restricted majority rules, each
of these members is equally influential, while the balanced expert rule gives the top member
almost all the power, and he is outvoted only if opposed by all other influential members. In
contrast, in the second family, all decision makers have an influence on the group decision.
More precisely, the rules are determined by the weight assigned to the most competent expert,
while all other experts are equally influential.

For each committee size, we arrange the rules in each of the three families of rules mentioned
above in a sequence, ordered in a ‘natural’ way (e.g. the restricted majority rules are ordered
by the number of influential experts).

The families of the balanced expert and the restricted majority rules were studied by Gradstein
and Nitzan (1986), where an efficient optimality test for these rules was proposed for committees
with known competence levels. Berend and Sapir (2003) computed the probability of these rules
being optimal under partial information about the competence levels. Sapir (2005) obtained a
criterion for ranking pairs of adjacent restricted majority rules (i.e. with numbers of influential
experts differing by 2).

We prove that, for each committee size, in each of the sequences of single expert rules and
of balanced expert rules, the likelihood of selecting the correct alternative is mound-shaped as
a function of the index of the rule in the sequence. That is, the value of the likelihood function
decreases as the parameter deviates from that of the most effective rule in the sequence, in
both directions. In contrast, the family of restricted majority rules does not share this property.
Moreover, for any group size, we prove that any ranking of the set of restricted majority rules
may be realized.

The rest of this paper is organized as follows. In Section 2 we give precise definitions of the
families of rules mentioned above and describe some of their properties. In Section 3 we rank
all weighted majority rules for committees of five members and provide some motivation for
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our results for committees of arbitrary size. Section 4 contains the main results, and Section 5
is devoted to the proofs. We summarize and conclude the paper in Section 6.

2. Weighted majority rule families

Let us first formally define the families of weighted majority rules we investigate.

Definition 1. The balanced expert rule of order k, where 3 ≤ k ≤ n, is denoted by BERn,k

and characterized by assigning weight of k − 2 to the most competent expert, weight 1 to each
of the k − 1 next experts, and zero weight to the remaining n − k experts. Namely, the rule is
given by the vector

(k − 2, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, . . . , 0︸ ︷︷ ︸
n−k

).

Definition 2. Let n, k be of the same parity, where 1 ≤ k ≤ n. The single expert rule of order
k is denoted by SERn,k and given by the vector

(k, 1, . . . , 1︸ ︷︷ ︸
n−1

).

Definition 3. Let k = 2s + 1, where 1 ≤ s < n/2. The restricted majority rule of order k is
denoted by RMRk and is equivalent to the simple majority rule, applied to the subgroup of the
k most competent experts. Namely, the rule is given by the vector

(1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
n−k

).

For a committee of n experts, the competence structure is defined either by a vector of
correctness probabilities (p1, p2, . . . , pn) or, equivalently, by a vector of expertise levels
(α1, α2, . . . , αn), where αi = pi/qi and qi = 1 − pi for 1 ≤ i ≤ n.

Let us now define the criterion for ranking rules. For a group of experts with competence
structure p, we define a weak order ‘�’between decision rules by f � g if π(f, p) ≤ π(g, p).
For convenience, we also use the notation ‘≺’, ‘�’, ‘�’, and ‘∼’ (the latter being an equivalence
relation).

We employ the method introduced by Sapir (2005) for ranking pairs of adjacent restricted
majority rules. This method is based on the following notion.

Definition 4. Let a = (a1, a2, . . . , a2k+1) ∈ R
2k+1. The central mean of a is given by

CM(a) = σk+1(a)

σk(a)
,

where

σj (a) =

⎧⎪⎨
⎪⎩

1, j = 0,∑
1≤i1<i2<···<ij ≤2k+1

ai1ai2 · · · aij , 1 ≤ j ≤ 2k + 1.

In the next sections we will use the following theorem and lemma, based on Sapir (2005).

Theorem 1. For each vector of expertise levels α = (α1, α2, . . . , αn) and odd k, 1 ≤ k ≤
n − 2,

1. RMRk � RMRk+2 if and only if αk+1αk+2 > CM((α1, α2, . . . , αk)),

2. RMRk ∼ RMRk+2 if and only if αk+1αk+2 = CM((α1, α2, . . . , αk)).
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The first part of the theorem is proved in Sapir (2005). A slight modification of this proof
gives the second part of the theorem.

Lemma 1. Let a = (a1, . . . , an), where n ≥ 3 is odd and a1 ≥ a2 ≥ · · · ≥ an > 0. Set
b = (a1, . . . , an−2). Then, CM(a) ≤ CM(b), with equality if and only if a1 = a2 = · · · = an.

The inequality CM(a) ≤ CM(b) is the contents of Lemma 1 of Sapir (2005). Going over the
proof there, it is easy to establish that we have an equality if and only if a1 = a2 = · · · = an.

3. Motivation and illustration

Consider the set of all weighted majority rules for a committee size of n = 5, namely, the
rules (1, 0, 0, 0, 0), (3, 1, 1, 1, 1), (2, 1, 1, 1, 0), (3, 2, 2, 1, 1), (2, 2, 1, 1, 1), (1, 1, 1, 1, 1),
and (1, 1, 1, 0, 0). (In fact, any other vector of weights is equivalent to one of the above; see
Nitzan and Paroush (1985, p. 21).)

The motivation to our present study goes back to Karotkin et al. (1988) and Karotkin (1998).
It was shown there that the above rules can be arranged in the undirected graph depicted in
Figure 1, where each node represents a rule and each edge corresponds to a pair of symmetric
distinguishing voting profiles. For instance, the voting profiles (+1,−1, −1, −1, −1) and
(−1, +1, +1, +1, +1) distinguish between the rules (1, 0, 0, 0, 0) and (3, 1, 1, 1, 1). Note
that any two rules are distinguished by some set of voting profiles. In the graph, however, rules
are adjacent only if they are distinguished by a single pair of symmetric voting profiles.

For each particular committee competence structure, Karotkin (1998) constructed a cor-
responding directed graph, where all edges are directed towards the endpoint rule of lower
expected utility. For example, the directed graph obtained from the competence vector (0.87,

0.84, 0.63, 0.57, 0.56) is depicted in Figure 2(a) and the one obtained from the competence
vector (0.97, 0.72, 0.64, 0.64, 0.55) is depicted in Figure 2(b). It was shown that there exists a
directed path from the node corresponding to the optimal rule to any other node. We refer the
reader to Karotkin (1998) for more details.

Suppose that, for a certain committee, (1, 0, 0, 0, 0) is the optimal rule. From the result of
Karotkin, it follows that

(3, 2, 2, 1, 1) � (1, 1, 1, 0, 0) and (3, 2, 2, 1, 1) � (2, 2, 1, 1, 1).

However, it does not specify which of the rules (1, 1, 1, 0, 0) or (2, 2, 1, 1, 1) is preferable. In
fact, for this committee, there are at most three possible rankings among all rules. Namely,

1. (1, 0, 0, 0, 0) � (3, 1, 1, 1, 1) � (2, 1, 1, 1, 0) � (3, 2, 2, 1, 1) � (1, 1, 1, 0, 0) �
(2, 2, 1, 1, 1) � (1, 1, 1, 1, 1);

2. (1, 0, 0, 0, 0) � (3, 1, 1, 1, 1) � (2, 1, 1, 1, 0) � (3, 2, 2, 1, 1) � (2, 2, 1, 1, 1) �
(1, 1, 1, 0, 0) � (1, 1, 1, 1, 1);

3. (1, 0, 0, 0, 0) � (3, 1, 1, 1, 1) � (2, 1, 1, 1, 0) � (3, 2, 2, 1, 1) � (2, 2, 1, 1, 1) �
(1, 1, 1, 1, 1) � (1, 1, 1, 0, 0).

We verified that each of the above rankings can indeed be realized. This was done with the
aid of a computer program which generates a large number of random competence vectors and
tests the ranking for each of these. For example, ranking 2 above is obtained for the competence
vector (0.95, 0.72, 0.67, 0.63, 0.61).
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(1, 1, 1, 0, 0)

± x6

(1, 0, 0, 0, 0) (3, 1, 1, 1, 1) (2, 1, 1, 1, 0) (3, 2, 2, 1, 1) (2, 2, 1, 1, 1) (1, 1, 1, 1, 1)± x1 ± x2 ± x3 ± x4 ± x5

Figure 1: Graphs of weighted majority rules for n = 5, where x1 = (+1, −1, −1, −1, −1),
x2 = (+1, −1, −1, −1, +1), x3 = (+1, −1, −1, +1, −1), x4 = (+1, −1, +1, −1, −1),

x5 = (+1, +1, −1, −1, −1), and x6 = (+1, −1, −1, +1, +1).

(1, 1, 1, 0, 0)

(1, 0, 0, 0, 0) (3, 1, 1, 1, 1) (2, 1, 1, 1, 0) (3, 2, 2, 1, 1) (2, 2, 1, 1, 1) (1, 1, 1, 1, 1)

(1, 1, 1, 0, 0)

(1, 0, 0, 0, 0) (3, 1, 1, 1, 1) (2, 1, 1, 1, 0) (3, 2, 2, 1, 1) (2, 2, 1, 1, 1) (1, 1, 1, 1, 1)

(a)

(b)

Figure 2: Various directed graphs of weighted majority rules for n = 5 and competence vector
(a) (0.87, 0.84, 0.63, 0.57, 0.56), (b) (0.97, 0.72, 0.64, 0.64, 0.55).

Similar analysis was performed in the case of other optimal rules. Table 1 summarizes
our results. The second column provides the number of rankings, which are consistent with
Figure 1. For example, if the rule (3, 2, 2, 1, 1) is optimal then there are

( 6
1,2,3

) = 60 ways to
order the six other rules. The third column gives the number of rankings that were actually
observed. Thus, these columns provide upper and lower bounds on the number of possible
rankings among all rules.

Table 1: Number of rankings among all rules.

Optimal rule Graph consistent Observed

(1, 0, 0, 0, 0) 3 3
(3, 1, 1, 1, 1) 18 12
(2, 1, 1, 1, 0) 45 29
(3, 2, 2, 1, 1) 60 45
(1, 1, 1, 0, 0) 10 10
(2, 2, 1, 1, 1) 24 18
(1, 1, 1, 1, 1) 4 3

Total 164 120
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The following proposition shows that there exist rankings that cannot be realized even though
they are not eliminated by the graph analysis performed above.

Proposition 1. 1. If (3, 1, 1, 1, 1) � (2, 1, 1, 1, 0) then (1, 0, 0, 0, 0) � (1, 1, 1, 0, 0).

2. If (2, 2, 1, 1, 1) � (3, 2, 2, 1, 1) then (1, 1, 1, 0, 0) � (1, 0, 0, 0, 0).

3. If (3, 2, 2, 1, 1) � (2, 1, 1, 1, 0) then (1, 1, 1, 0, 0) � (1, 0, 0, 0, 0).

4. (3, 1, 1, 1, 1) � (3, 2, 2, 1, 1) if and only if (1, 0, 0, 0, 0) � (1, 1, 1, 0, 0).

Proof. We will prove the first part. The rest of the proposition can be easily proved using
similar arguments. Observe that (3, 1, 1, 1, 1) � (2, 1, 1, 1, 0) implies that p1q2q3q4p5 >

q1p2p3p4q5, or, equivalently, α1α5 > α2α3α4. Since α4 ≥ α5, we have α1α5 > α2α3α4 ≥
α2α3α5 and α1 > α2α3. From Theorem 1, it follows that (1, 0, 0, 0, 0) � (1, 1, 1, 0, 0).

It follows from Proposition 1 that the empirical results in the third column of Table 1 are in
fact the precise numbers of actual possibilities. For instance, suppose that (1, 1, 1, 1, 1) is the
optimal rule. The following ranking is impossible by part 3 of the proposition: (1, 1, 1, 1, 1) �
(2, 2, 1, 1, 1) � (3, 2, 2, 1, 1) � (2, 1, 1, 1, 0) � (3, 1, 1, 1, 1) � (1, 0, 0, 0, 0) � (1, 1, 1, 0, 0).

In Appendix A we provide all 120 possible rankings for group size n = 5.
The above discussion shows that there exists interesting information regarding possible

rankings of weighted majority rules, which does not follow from the structure of the graph of
Karotkin (1998). In the following two sections we consider decision bodies of arbitrary sizes.
In the general case, the identification of all possible rankings between all rules becomes a
formidable task. We focus on several special families of rules and identify all possible rankings
within each family.

4. Main results

Theorem 2. For each n and p, the sequence of decision rules BERn,k is mound-shaped as a
function of k. That is, for some 3 ≤ k0 ≤ n, we have

· · · � BERn,k0−2 � BERn,k0−1 � BERn,k0 � BERn,k0+1 � BERn,k0+2 � · · · .

Example 1. For n = 6 and competence vector p = (0.98, 0.8, 0.8, 0.7, 0.7, 0.5), we have
BER6,3 � BER6,4 � BER6,5 � BER6,6. For p = (0.9, 0.85, 0.84, 0.7, 0.7, 0.6), we have
BER6,3 � BER6,4 � BER6,5 � BER6,6.

Theorem 3. For each n and p, the sequence of decision rules SERn,k is mound-shaped as a
function of k. That is, for some 1 ≤ k0 ≤ n, we have

· · · � SERn,k0−4 � SERn,k0−2 � SERn,k0 � SERn,k0+2 � SERn,k0+4 � · · · .

Theorems 2 and 3 might lead us to believe that the property of mound-shapedness is common
to all sequences of rules that are monotonic in some sense. Somewhat surprisingly, the next
theorem shows that the sequence of restricted majority rules behaves in a completely different
way.

Theorem 4. For each n and permutation (σ1, σ2, σ3, . . . , σm) of the set {1, 3, 5, . . . , 2m − 1},
where m = �(n + 1)/2	, there exists a vector of correctness probabilities for which

RMRσ1 � RMRσ2 � · · · � RMRσm. (1)
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In fact, it will become apparent from the proof that Theorem 4 also holds if some of the
‘�’s in (1) are replaced by ‘∼’. For instance, for n = 11, there exists a vector of correctness
probabilities such that RMR5 ∼ RMR9 � RMR3 � RMR1 ∼ RMR11 � RMR7.

5. Proofs

Proof of Theorem 3. Let us first show that if, for some k, we have SERn,k+2 � SERn,k then
SERn,k � SERn,k−2. The voting profiles distinguishing between SERn,k+2 and SERn,k are
those profiles in which the first expert is supported by exactly (n − k)/2 − 1 other experts.
Similarly, voting profiles that distinguish between SERn,k and SERn,k−2 are those in which the
first expert is supported by exactly (n − k)/2 other experts. Let m = (n − k)/2. The condition
SERn,k+2 � SERn,k implies that

p1

∑
E∈N1̄,m−1

∏
j∈E

pj

∏
j∈{2,...,n}\E

qj ≥ q1

∑
E∈N1̄,n−m

∏
j∈E

pj

∏
j∈{2,...,n}\E

qj ,

where N1̄,l = {E | E ⊆ {2, . . . , n}, |E| = l}. This may be written in the form

α1

∑
i1,...,im−1∈{2,...,n}

αi1 · · · αim−1 ≥
∑

i1,...,in−m∈{2,...,n}
αi1 · · · αin−m,

or, equivalently,

α1

∑
i1,...,im−1∈{2,...,n}

αi1 · · · αim−1 ≥
n∏

j=2

αj

∑
i1,...,im−1∈{2,...,n}

1

αi1 · · · αim−1

. (2)

We have to prove the analogue with m instead of m − 1:

α1

∑
i1,...,im∈{2,...,n}

αi1 · · · αim ≥
n∏

j=2

αj

∑
i1,...,im∈{2,...,n}

1

αi1 · · · αim

. (3)

Observe that

α1

∑
i1,...,im∈{2,...,n}

αi1 . . . αim = 1

m
α1

∑
i1,...,im−1∈{2,...,n}

(
αi1 · · · αim−1

∑
j∈{2,...,n}\{i1,...,im−1}

αj

)
.

Since αj ≥ 1 for 1 ≤ j ≤ n, this implies that

α1

∑
i1,...,im∈{2,...,n}

αi1 · · · αim ≥ n − m

m
α1

∑
i1,...,im−1∈{2,...,n}

αi1 · · · αim−1 . (4)

Similarly,

∑
i1,...,im∈{2,...,n}

1

αi1 · · · αim

= 1

m

∑
i1,...,im−1∈{2,...,n}

(
1

αi1 · · · αim−1

∑
j∈{2,...,n}\{i1,...,im−1}

1

αj

)

≤ n − m

m

∑
i1,...,im−1∈{2,...,n}

1

αi1 · · · αim−1

.
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Hence,

n − m

m

n∏
j=2

αj

∑
i1,...,im−1∈{2,...,n}

1

αi1 · · · αim−1

≥
n∏

j=2

αj

∑
i1,...,im∈{2,...,n}

1

αi1 · · · αim

. (5)

Combining (2), (4), and (5) , we obtain (3).
In the same way we show that if, for some k, we have SERn,k−2 � SERn,k then SERn,k �

SERn,k+2.

Proof of Theorem 2. Let us first show that if, for some k, we have BERn,k+1 � BERn,k

then BERn,k � BERn,k−1. The voting profiles distinguishing between BERn,k+1 and BERn,k

are those profiles in which the first and (k + 1)st expert are opposed by the experts 2, . . . , k.
Similarly, the voting profiles that distinguish between BERn,k and BERn,k−1 are those in which
the first and the kth expert are opposed by the experts 2, . . . , k−1. The inequality BERn,k+1 �
BERn,k implies that

p1q2 · · · qkpk+1 ≥ q1p2 · · · pkqk+1.

This can be written in the form
α2 · · · αk ≤ α1αk+1.

Since αk ≥ αk+1,
α2 · · · αk−1 ≤ α1αk,

which is equivalent to
p1q2 · · · qk−1pk > q1p2 · · · pk−1qk.

This proves that BERn,k � BERn,k−1.
In the same way we show that if, for some k, we have BERn,k−1 � BERn,k then BERn,k �

BERn,k+1. The two implications prove the theorem.

Proof of Theorem 4. It suffices to deal with the case of odd n. In fact, if n is even, and
p = (p1, p2, . . . , pn−1) gives any required ordering of the RMRis for n − 1 experts, then the
vector p′ = (p1, p2, . . . , pn) gives the same ordering for n experts for any pn ∈ ( 1

2 , pn−1).
Define v : R

m → R
n by

v(x1, x2, . . . , xm) = (x1, x2, x2, x3, x3, . . . , xm, xm), (x1, x2, . . . , xm) ∈ R
m.

Also, define functions fi : [0, 1]m → [0, 1], 1 ≤ i ≤ m, by

fi(r) = π(RMR2i−1, v(r)), r = (r1, r2, . . . , rm) ∈ [0, 1]m.

Consider the function f : [0, 1]m → [0, 1]m given by

f (r) = (f1(r), f2(r), . . . , fm(r)), r = (r1, r2, . . . , rm) ∈ [0, 1]m.

To prove the theorem, it suffices to show that if (σ1, σ2, . . . , σm) is any permutation of
{1, 2, . . . , m} then there exists a vector of probabilities r such that fσ1(r) > fσ2(r) > · · · >

fσm(r).
Let A = {(r1, r2, . . . , rm) : 1 > r1 > r2 > · · · > rm > 1

2 }.
Let us first show that there exists a competence vector r0 = (r0

1 , r0
2 , . . . , r0

m) ∈ A such that
f1(r

0) = f2(r
0) = · · · = fm(r0). Choose an arbitrary r0

1 ∈ ( 1
2 , 1). Let α1 = r0

1 /(1 −
r0

1 ). Next, let α2 = α3 = √
α1 and r0

2 = α2/(α2 + 1). In general, for 2 ≤ i ≤ m,
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after α1, α2, α3, . . . , α2i−3, r
0
1 , r0

2 , . . . , r0
i−1 have been defined, with α2j = α2j+1 and r0

j =
α2j−2/(α2j−2 + 1) for 1 ≤ j ≤ i − 2, we take

α2i−2 = α2i−1 = √
CM((α1, α2, . . . , α2i−3)), r0

i = α2i−2

α2i−2 + 1
.

By induction we conclude, from Lemma 1 and Theorem 1, that r0
1 > r0

2 > r0
3 > · · · > r0

m > 1
2

and that f1(r
0) = f2(r

0) = · · · = fm(r0).
Next, let us show that f is differentiable and its Jacobian matrix is invertible for any r =

(r1, r2, . . . , rm) ∈ A. In fact, consider a group of experts with competence vector v(r), where
r ∈ A. We have f1(r) = r1, so that ∂f1(r)/∂r1 = 1 > 0. For 2 ≤ i ≤ m, denote by Pi,k the
probability that at least k out of the 2i−3 most competent experts choose the correct alternative,
and denote by Qi,k the probability that exactly k of them do so. Then

fi(r) = r2
i Pi,i−2 + 2ri(1 − ri)Pi,i−1 + (1 − ri)

2Pi,i

= r2
i (Qi,i−2 − Qi,i−1) + 2riQi,i−1 + Pi,i , 2 ≤ i ≤ m.

Since r ∈ A, significantly small changes in r do not change the ranking of the experts, so that
Pi,i and each of the Qi,j s are polynomial in the variables r1, r2, . . . , ri−1. In particular, f is
differentiable on A. Now

∂fi(r)

∂ri
= 2ri(Qi,i−2 − Qi,i−1) + 2Qi,i−1 = 2riQi,i−2 + 2(1 − ri)Qi,i−1, 2 ≤ i ≤ m.

As r belongs to A, sufficiently small changes in rj for j > i do not effect fi(r), so that
∂fi(r)/∂rj = 0 for j > i. Thus, the Jacobian matrix of f is lower triangular with nonzero
entries along the diagonal for every r ∈ A. In particular, it is invertible.

From Theorem 13.5 of Apostol (1974), it follows that f is an open mapping on A. Since
f takes r0 to a point on the main diagonal of R

m, this means that, for any permutation
(σ1, σ2, . . . , σm) of {1, 2, . . . , m}, there exists a point s = (s1, s2, . . . , sm) ∈ f (A) such that
sσ1 > sσ2 > · · · > sσm . This completes the proof.

6. Discussion and summary

In this paper we considered three classes of decision rules—balanced expert rules, single
expert rules, and restricted majority rules. These classes are ‘similar’ and ‘different’ in various
aspects. In the first two families, the rules assign much of the decisional power to the
most competent expert, whereas the restricted majority rules distribute it equally between
all influential experts. In the context of our results, the first two families also share the same
property of mound-shaped ranking, whereas in the family of restricted majority rules, any inner
ranking is possible. On the other hand, both the family of single expert rules and the family
of restricted majority rules contain the simple majority rule and the expert rule as the polar
members. However, the two sequences of rules formed by the two families starting at the
expert rule and ending at the simple majority rule have very different structures with respect to
their ranking properties.

Appendix A. All possible rankings for n = 5

1. (1, 0, 0, 0, 0)�(3, 1, 1, 1, 1)�(2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 1, 1, 0, 0).

2. (1, 0, 0, 0, 0)�(3, 1, 1, 1, 1)�(2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 1, 1, 1, 1).
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3. (1, 0, 0, 0, 0)�(3, 1, 1, 1, 1)�(2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(1, 1, 1, 0, 0)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1).

4. (3, 1, 1, 1, 1)�(1, 0, 0, 0, 0)�(2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 1, 1, 0, 0).

5. (3, 1, 1, 1, 1)�(1, 0, 0, 0, 0)�(2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 1, 1, 1, 1).

6. (3, 1, 1, 1, 1)�(1, 0, 0, 0, 0)�(2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(1, 1, 1, 0, 0)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1).

7. (3, 1, 1, 1, 1)�(2, 1, 1, 1, 0)�(1, 0, 0, 0, 0)�(3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 1, 1, 0, 0).

8. (3, 1, 1, 1, 1)�(2, 1, 1, 1, 0)�(1, 0, 0, 0, 0)�(3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 1, 1, 1, 1).

9. (3, 1, 1, 1, 1)�(2, 1, 1, 1, 0)�(1, 0, 0, 0, 0)�(3, 2, 2, 1, 1)�(1, 1, 1, 0, 0)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1).

10. (3, 1, 1, 1, 1)�(2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(1, 0, 0, 0, 0)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 1, 1, 0, 0).

11. (3, 1, 1, 1, 1)�(2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(1, 0, 0, 0, 0)�(2, 2, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 1, 1, 1, 1).

12. (3, 1, 1, 1, 1)�(2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(1, 0, 0, 0, 0)�(1, 1, 1, 0, 0)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1).

13. (3, 1, 1, 1, 1)�(2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(1, 0, 0, 0, 0)�(1, 1, 1, 1, 1)�(1, 1, 1, 0, 0).

14. (3, 1, 1, 1, 1)�(2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(1, 0, 0, 0, 0)�(1, 1, 1, 0, 0)�(1, 1, 1, 1, 1).

15. (3, 1, 1, 1, 1)�(2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 0, 0, 0, 0)�(1, 1, 1, 0, 0).

16. (2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0)�(3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 1, 1, 0, 0).

17. (2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0)�(3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 1, 1, 1, 1).

18. (2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0)�(3, 2, 2, 1, 1)�(1, 1, 1, 0, 0)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1).

19. (2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(3, 2, 2, 1, 1)�(1, 0, 0, 0, 0)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 1, 1, 0, 0).

20. (2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(3, 2, 2, 1, 1)�(1, 0, 0, 0, 0)�(2, 2, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 1, 1, 1, 1).

21. (2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(3, 2, 2, 1, 1)�(1, 0, 0, 0, 0)�(1, 1, 1, 0, 0)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1).

22. (2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(1, 0, 0, 0, 0)�(1, 1, 1, 1, 1)�(1, 1, 1, 0, 0).

23. (2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(1, 0, 0, 0, 0)�(1, 1, 1, 0, 0)�(1, 1, 1, 1, 1).

24. (2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 0, 0, 0, 0)�(1, 1, 1, 0, 0).

25. (2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(3, 1, 1, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 0, 0, 0, 0).

26. (2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(3, 1, 1, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 0, 0, 0, 0)�(1, 1, 1, 1, 1).

27. (2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(3, 1, 1, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

28. (2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(3, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 0, 0, 0, 0)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1).

29. (2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(3, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(2, 2, 1, 1, 1)�(1, 0, 0, 0, 0)�(1, 1, 1, 1, 1).

30. (2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(3, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

31. (2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 0, 0, 0, 0).

32. (2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 0, 0, 0, 0)�(1, 1, 1, 1, 1).

33. (2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

34. (2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 0, 0, 0, 0).

35. (2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

36. (2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 0, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0)�(1, 1, 1, 1, 1).

37. (2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 0, 0)�(3, 1, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

38. (2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 1, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

39. (2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(1, 1, 1, 0, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1).
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40. (2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(1, 1, 1, 0, 0)�(3, 1, 1, 1, 1)�(2, 2, 1, 1, 1)�(1, 0, 0, 0, 0)�(1, 1, 1, 1, 1).

41. (2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(1, 1, 1, 0, 0)�(3, 1, 1, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

42. (2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(1, 1, 1, 0, 0)�(2, 2, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0)�(1, 1, 1, 1, 1).

43. (2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(1, 1, 1, 0, 0)�(2, 2, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

44. (2, 1, 1, 1, 0)�(3, 2, 2, 1, 1)�(1, 1, 1, 0, 0)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

45. (3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 0, 0, 0, 0).

46. (3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 0, 0, 0, 0)�(1, 1, 1, 1, 1).

47. (3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

48. (3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 0, 0, 0, 0)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1).

49. (3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(2, 2, 1, 1, 1)�(1, 0, 0, 0, 0)�(1, 1, 1, 1, 1).

50. (3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

51. (3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(2, 2, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 0, 0, 0, 0).

52. (3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(2, 2, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 0, 0, 0, 0)�(1, 1, 1, 1, 1).

53. (3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(2, 2, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

54. (3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 0, 0, 0, 0).

55. (3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

56. (3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(2, 2, 1, 1, 1)�(1, 1, 1, 0, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0)�(1, 1, 1, 1, 1).

57. (3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(2, 2, 1, 1, 1)�(1, 1, 1, 0, 0)�(3, 1, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

58. (3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(2, 2, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 1, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

59. (3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(1, 1, 1, 0, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1).

60. (3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(1, 1, 1, 0, 0)�(3, 1, 1, 1, 1)�(2, 2, 1, 1, 1)�(1, 0, 0, 0, 0)�(1, 1, 1, 1, 1).

61. (3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(1, 1, 1, 0, 0)�(3, 1, 1, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

62. (3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(1, 1, 1, 0, 0)�(2, 2, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0)�(1, 1, 1, 1, 1).

63. (3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(1, 1, 1, 0, 0)�(2, 2, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

64. (3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(1, 1, 1, 0, 0)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

65. (3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 0, 0, 0, 0).

66. (3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 0, 0, 0, 0)�(1, 1, 1, 1, 1).

67. (3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

68. (3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(2, 1, 1, 1, 0)�(1, 1, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 0, 0, 0, 0).

69. (3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(2, 1, 1, 1, 0)�(1, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

70. (3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(2, 1, 1, 1, 0)�(1, 1, 1, 0, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0)�(1, 1, 1, 1, 1).

71. (3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(2, 1, 1, 1, 0)�(1, 1, 1, 0, 0)�(3, 1, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

72. (3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(2, 1, 1, 1, 0)�(1, 1, 1, 0, 0)�(1, 1, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

73. (3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 0, 0, 0, 0).

74. (3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(2, 1, 1, 1, 0)�(1, 1, 1, 0, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

75. (3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

76. (3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 0, 0)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0)�(1, 1, 1, 1, 1).
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77. (3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 0, 0)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

78. (3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 0, 0)�(2, 1, 1, 1, 0)�(1, 1, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

79. (3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 1, 1, 1, 1)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

80. (3, 2, 2, 1, 1)�(1, 1, 1, 0, 0)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1).

81. (3, 2, 2, 1, 1)�(1, 1, 1, 0, 0)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(2, 2, 1, 1, 1)�(1, 0, 0, 0, 0)�(1, 1, 1, 1, 1).

82. (3, 2, 2, 1, 1)�(1, 1, 1, 0, 0)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

83. (3, 2, 2, 1, 1)�(1, 1, 1, 0, 0)�(2, 1, 1, 1, 0)�(2, 2, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0)�(1, 1, 1, 1, 1).

84. (3, 2, 2, 1, 1)�(1, 1, 1, 0, 0)�(2, 1, 1, 1, 0)�(2, 2, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

85. (3, 2, 2, 1, 1)�(1, 1, 1, 0, 0)�(2, 1, 1, 1, 0)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

86. (3, 2, 2, 1, 1)�(1, 1, 1, 0, 0)�(2, 2, 1, 1, 1)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0)�(1, 1, 1, 1, 1).

87. (3, 2, 2, 1, 1)�(1, 1, 1, 0, 0)�(2, 2, 1, 1, 1)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

88. (3, 2, 2, 1, 1)�(1, 1, 1, 0, 0)�(2, 2, 1, 1, 1)�(2, 1, 1, 1, 0)�(1, 1, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

89. (3, 2, 2, 1, 1)�(1, 1, 1, 0, 0)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

90. (2, 2, 1, 1, 1)�(3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 0, 0, 0, 0).

91. (2, 2, 1, 1, 1)�(3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 0, 0, 0, 0)�(1, 1, 1, 1, 1).

92. (2, 2, 1, 1, 1)�(3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

93. (2, 2, 1, 1, 1)�(3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(1, 1, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 0, 0, 0, 0).

94. (2, 2, 1, 1, 1)�(3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(1, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

95. (2, 2, 1, 1, 1)�(3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(1, 1, 1, 0, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0)�(1, 1, 1, 1, 1).

96. (2, 2, 1, 1, 1)�(3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(1, 1, 1, 0, 0)�(3, 1, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

97. (2, 2, 1, 1, 1)�(3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(1, 1, 1, 0, 0)�(1, 1, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

98. (2, 2, 1, 1, 1)�(3, 2, 2, 1, 1)�(1, 1, 1, 1, 1)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 0, 0, 0, 0).

99. (2, 2, 1, 1, 1)�(3, 2, 2, 1, 1)�(1, 1, 1, 1, 1)�(2, 1, 1, 1, 0)�(1, 1, 1, 0, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

100. (2, 2, 1, 1, 1)�(3, 2, 2, 1, 1)�(1, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

101. (2, 2, 1, 1, 1)�(3, 2, 2, 1, 1)�(1, 1, 1, 0, 0)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0)�(1, 1, 1, 1, 1).

102. (2, 2, 1, 1, 1)�(3, 2, 2, 1, 1)�(1, 1, 1, 0, 0)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

103. (2, 2, 1, 1, 1)�(3, 2, 2, 1, 1)�(1, 1, 1, 0, 0)�(2, 1, 1, 1, 0)�(1, 1, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

104. (2, 2, 1, 1, 1)�(3, 2, 2, 1, 1)�(1, 1, 1, 0, 0)�(1, 1, 1, 1, 1)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

105. (2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 0, 0, 0, 0).

106. (2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(1, 1, 1, 0, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

107. (2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(3, 2, 2, 1, 1)�(1, 1, 1, 0, 0)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

108. (1, 1, 1, 1, 1)�(2, 2, 1, 1, 1)�(3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 1, 1, 0, 0)�(1, 0, 0, 0, 0).

109. (1, 1, 1, 1, 1)�(2, 2, 1, 1, 1)�(3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(1, 1, 1, 0, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

110. (1, 1, 1, 1, 1)�(2, 2, 1, 1, 1)�(3, 2, 2, 1, 1)�(1, 1, 1, 0, 0)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

111. (1, 1, 1, 0, 0)�(3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1).

112. (1, 1, 1, 0, 0)�(3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(2, 2, 1, 1, 1)�(1, 0, 0, 0, 0)�(1, 1, 1, 1, 1).

113. (1, 1, 1, 0, 0)�(3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 0, 0, 0, 0).
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114. (1, 1, 1, 0, 0)�(3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(2, 2, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0)�(1, 1, 1, 1, 1).

115. (1, 1, 1, 0, 0)�(3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(2, 2, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

116. (1, 1, 1, 0, 0)�(3, 2, 2, 1, 1)�(2, 1, 1, 1, 0)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

117. (1, 1, 1, 0, 0)�(3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0)�(1, 1, 1, 1, 1).

118. (1, 1, 1, 0, 0)�(3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

119. (1, 1, 1, 0, 0)�(3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(2, 1, 1, 1, 0)�(1, 1, 1, 1, 1)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0).

120. (1, 1, 1, 0, 0)�(3, 2, 2, 1, 1)�(2, 2, 1, 1, 1)�(1, 1, 1, 1, 1)�(2, 1, 1, 1, 0)�(3, 1, 1, 1, 1)�(1, 0, 0, 0, 0).
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